Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAşık, Erkan E.
dc.contributor.authorŞen, Fatma
dc.contributor.authorYaymacı, Gizem
dc.contributor.authorSelimoğlu, G. İpek
dc.date.accessioned2019-10-18T19:03:17Z
dc.date.available2019-10-18T19:03:17Z
dc.date.issued2017
dc.identifier.issn1302-3160
dc.identifier.urihttp://www.trdizin.gov.tr/publication/paper/detail/TWpRMk9ERXdNQT09
dc.identifier.urihttps://hdl.handle.net/11421/11030
dc.description.abstractPorous Ti-6Al-4V alloys are attractive candidates as implant materials due to their good biocompatibility combined with the porous structure leading to increased osseointegration and decreased stiffness. Accordingly, different processing techniques were employed for the production of Ti-6Al-4V foams in the literature. Among these techniques, sintering with space holder is used to produce porous Ti-6Al-4V alloys in this study. Magnesium was employed as the space holder material because of its relatively low boiling point as well as high oxygen affinity. Two different compaction techniques, die compaction with hydraulic pressing and cold isostatic pressing (CIP), were employed for obtaining green compacts. Both spherical and nonspherical Ti-6Al-4V powders were used to investigate the effect of powder shape on compaction. Processed foams were characterized in terms of both microstructural and mechanical aspects in order to investigate the effect of pressing conditions in combination with powder characteristics. It was observed that NS-CIP foam, which was produced by compacting nonspherical powders by cold isostatic press, has the highest strength. However, the S-DP foam, which was produced by diepressing of spherical powders, has the highest toughness.en_US
dc.description.abstractPorous Ti-6Al-4V alloys are attractive candidates as implant materials due to their good biocompatibility combined with the porous structure leading to increased osseointegration and decreased stiffness. Accordingly, different processing techniques were employed for the production of Ti-6Al-4V foams in the literature. Among these techniques, sintering with space holder is used to produce porous Ti-6Al-4V alloys in this study. Magnesium was employed as the space holder material because of its relatively low boiling point as well as high oxygen affinity. Two different compaction techniques, die compaction with hydraulic pressing and cold isostatic pressing (CIP), were employed for obtaining green compacts. Both spherical and nonspherical Ti-6Al-4V powders were used to investigate the effect of powder shape on compaction. Processed foams were characterized in terms of both microstructural and mechanical aspects in order to investigate the effect of pressing conditions in combination with powder characteristics. It was observed that NS-CIP foam, which was produced by compacting nonspherical powders by cold isostatic press, has the highest strength. However, the S-DP foam, which was produced by diepressing of spherical powders, has the highest toughness.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectOrtak Disiplinleren_US
dc.titleCOMPARISON OF THE MECHANICAL RESPONSE OF POROUS Ti-6Al-4V ALLOYS PRODUCED BY DIFFERENT COMPACTION TECHNIQUESen_US
dc.typearticleen_US
dc.relation.journalAnadolu Üniversitesi Bilim ve Teknoloji Dergisi :A-Uygulamalı Bilimler ve Mühendisliken_US
dc.contributor.departmentAnadolu Üniversitesien_US
dc.identifier.volume18en_US
dc.identifier.issue1en_US
dc.identifier.startpage13en_US
dc.identifier.endpage21en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster