New approaches to improve performance of background subtraction
Özet
İşlenen bir görüntüde ön planın arka plandan ayrıştırılması, adıyla arka plan modelleme, bazı bilgisayar görme uygulamalarının performansını olumlu şekilde etkiler. Hareketli cisim tanıma, kişi takibi, trafik izleme, hareket yakalama, telekonferans ve güvenlik gözetim sistemleri de içermek üzere birçok görev için ön işlem olarak düşünülür. Video arka planları statik ve dinamik olarak iki kategoride değerlendirilebilir. Bu çalışmada, arka plandaki çıkarma işleminin performansını artırmak için, test imgesi ve arka plan imgesi arasındaki uzaklığın hesaplanmasında farklı araçlar kullanılarak ve dinamik denetleyici parametrelerinin ötesinde çalışan bir geri bildirim mekanizmasının entegrasyonuyla dört farklı yöntem geliştirilmiştir. Bu yöntemler Ortak Vektör Yaklaşımı Kullanarak Arka Plan Modelleme (BMCVA), Ortak Matris Yaklaşımı Kullanarak Arka Plan Modelleme (BMCMA), Kayan Pencere Tabanlı Hareket Tanıma (SWCD) ve Ortak Vektör Tabanlı Arka Plan Çıkarma (CVABS) olarak adlandırılmıştır. CDnet2014 ve Wallflower veritabanları üzerinde dinamik arka planlarla ilgili alakalı farklı problem türleri üzerinden çeşitli deneyler yapılmıştır. Gerçek-Pozitif (TP), Doğru-Negatif (TN), Yanlış-Pozitif (FP) ve Yanlış-Negatif (FN) sayıları üzerinden hesaplanan metrikler objektif ölçümler olarak kullanılmış ve elde edilen görsel sonuçlar nesnel olarak değerlendirilmiştir. Elde edilen sonuçlar incelendiğinde, önerilen yöntemlerin farklı zorluklar için başarılı sonuçlar verdiğini gözlemlenmiştir.
Bağlantı
https://hdl.handle.net/11421/4403
Koleksiyonlar
- Tez Koleksiyonu [14]