Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.advisorPolat, Hüseyin
dc.contributor.authorBilge, Alper
dc.date.accessioned2015-11-04T10:43:43Z
dc.date.available2015-11-04T10:43:43Z
dc.date.issued2013
dc.identifier.uri
dc.identifier.urihttps://hdl.handle.net/11421/4357
dc.descriptionTez (doktora) - Anadolu Üniversitesien_US
dc.descriptionAnadolu Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Anabilim Dalıen_US
dc.descriptionKayıt no: 689138en_US
dc.description.abstractGizliliği koruyan ortak süzgeçleme yöntemleri bireylerin gizliliklerini tehlikeye atmadan yararlı süzgeçleme becerileri ortaya koymaktadır. Ancak bu sistemler doğruluk, ölçeklenebilirlik ve boşluklu veri sorunlarıyla karşı karşıyadır. Gizli kalması gereken tercihlerin saklı tutulması için uygulanan gizlilik ölçütleri, toplanan veride bozulmaya yol açar ve dolayısıyla gizliliği koruyan ortak süzgeçleme sistemlerinin doğruluğuna zarar verebilir. Öneri alanındaki içerik genişledik çe toplanan verinin boyutları hızlı biçimde büyür ve sistemlerin ölçeklenebilirlik sorunlarını daha da zorlaştırır. Ek olarak, kullanıcılar mevcut ürünlerin genelde küçük bir yüzdesine tercih belirtebildiklerinden dolayı derlenen verinin boşluklu yapısı bir sorun haline gelmektedir. Bu tezde gizliliği koruyan ortak süzgeçleme sistemlerinin karşılaştığı doğruluk, ölçeklenebilirlik ve boşluklu veri sorunlarınının üstesinden gelmek üzere çeşitli önişeme yöntemleri önerilmiştir. Ürün sıralama ve eleme, kümeleme, boyut indirgeme, kullanıcı ayrımlama, profil klonlama vb. gibi önerilen önişleme yöntemlerinim uygulanmasıyla yeni gizliliği koruyan ortak süzgeçleme, şemaları geliştirilmiştir. Önerilen önişleme ile iyileştirilmiş şemalar kişilerin gizliliğini tehlikeye sokmadan, verinin sürekli genişleyen yapısıyla başa çıkabilmek ve yeterli doğrulukla öneriler üretmek üzerine odaklanmıştır. Önerilen taslaklar, sağlanan gizlilik ve ortaya çıkan ek yükler açısından analiz edilmiştir. Ayrıca gerçek veri tabanlı deneyler yapılarak, bu taslakların doğruluk, ölçeklenebilirlik ve gizliliğe etkileri ölçülmüştür. Analizler ve deneysel sonuçlar yöntemlerin gizlili ği koruduğunu veölçeklenebilir zaman dilimleri içinde yeterli doğrulukla öneriler ürettiğini göstermiştir.en_US
dc.language.isoturen_US
dc.publisherAnadolu Üniversitesien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectİşbirlikçi filtrelemeen_US
dc.subjectVeri korumaen_US
dc.titleImproving performance of privacy-preserving collaborative filtering schemesen_US
dc.typedoctoralThesisen_US
dc.contributor.departmentFen Bilimleri Enstitüsüen_US
dc.identifier.startpageXIII, 117 y. + 1 CD-ROM.en_US
dc.relation.publicationcategoryTezen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster