Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorUysal, Gökçen
dc.contributor.authorŞorman, Ali Ünal
dc.contributor.editorAliev, RA
dc.contributor.editorPedrycz, W
dc.contributor.editorJamshidi, M
dc.date.accessioned2019-10-21T21:11:33Z
dc.date.available2019-10-21T21:11:33Z
dc.date.issued2017
dc.identifier.issn1877-0509
dc.identifier.urihttps://dx.doi.org/10.1016/j.procs.2017.11.234
dc.identifier.urihttps://hdl.handle.net/11421/21040
dc.description9th International Conference on Theory and Application of Soft Computing, Computing with Words and Perception (ICSCCW) -- AUG 22-25, 2017 -- Budapest, HUNGARYen_US
dc.descriptionWOS: 000426703300035en_US
dc.description.abstractData driven techniques have become well-known application in hydrology in which physical processes are highly nonlinear. They require detailed analyses of different input combinations, selecting the appropriate model structures, assigning the optimization parameters etc. Besides, the model performance are also highly correlated with additional analysis techniques. In this study, the value of using different data sets such as air temperature, precipitation, evaporation and streamflow records, evapotranspiration around the basin are investigated to estimate monthly inflows using a multi-layer perceptron network model. Since the noise always exists in the time-series data, Discrete Wavelet Transform (DWT) is applied for data decomposition. Caml. dere dam basin, which is one of the vital water supply reservoir of the capital city of Turkey, Ankara, is selected as an application area. The model sets are employed using 1960 -2016 monthly observed data. The reliability of the modelled flows are verified with: coefficient of determination (R-2), Nash-Sutcliffe model efficiency (NSME), root mean square error (RMSE) and mean absolute error (MAE). According to the results, instead of increasing input vector number, application of data pre-processing have more impact to capture especially high flows. Decomposed discharge data together with meteorological other inputs perform 0.85 - 0.73 both for R-2 and NSME for training and testing periods, respectively.en_US
dc.language.isoengen_US
dc.publisherElsevier Science BVen_US
dc.relation.ispartofseriesProcedia Computer Science
dc.relation.isversionof10.1016/j.procs.2017.11.234en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMonthly Streamflow Estimationen_US
dc.subjectNeural Netwoken_US
dc.subjectMulti-Layer Perceptronen_US
dc.subjectWavelet Transformen_US
dc.titleMonthly streamflow estimation using wavelet-artificial neural network model: A case study on Camlidere dam basin, Turkeyen_US
dc.typeconferenceObjecten_US
dc.relation.journal9th International Conference On Theory and Application of Soft Computing, Computing With Words and Perception, Icsccw 2017en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümüen_US
dc.identifier.volume120en_US
dc.identifier.startpage237en_US
dc.identifier.endpage244en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorŞorman, Ali Ünal


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster