Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÖztürk, Gürkan
dc.contributor.authorCeylan, Gurhan
dc.contributor.editorArabnia, HR
dc.contributor.editorDeligiannidis, L
dc.contributor.editorYang, M
dc.date.accessioned2019-10-21T20:41:40Z
dc.date.available2019-10-21T20:41:40Z
dc.date.issued2016
dc.identifier.isbn978-1-5090-5510-4
dc.identifier.urihttps://dx.doi.org/10.1109/CSCI.2016.265
dc.identifier.urihttps://hdl.handle.net/11421/20853
dc.descriptionInternational Conference on Computational Science and Computational Intelligence (CSIC) -- DEC 15-17, 2016 -- Las Vegas, NVen_US
dc.descriptionWOS: 000405582400258en_US
dc.description.abstractIn classification problems, generalization ability has a key role for successful prediction. Well known Support Vector Machine classifier, tries to increase generalization ability via maximizing the margin, which is the distance between two parallel hyperplanes on the closest points. In this work we investigate maximizing the margin on non-parallel multi surfaces, by adapting GEPSVM* to Polyhedral Conic Function Classifiers.en_US
dc.description.sponsorshipAmer Council Sci & Educen_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/CSCI.2016.265en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClassificationen_US
dc.subjectSvmen_US
dc.subjectGepsvmen_US
dc.subjectPcfen_US
dc.titleMax Margin Polyhedral Conic Function Classifieren_US
dc.typeconferenceObjecten_US
dc.relation.journal2016 International Conference On Computational Science & Computational Intelligence (Csci)en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.identifier.startpage1395en_US
dc.identifier.endpage1396en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster