dc.contributor.author | Öztürk, Gürkan | |
dc.contributor.author | Ceylan, Gurhan | |
dc.contributor.editor | Arabnia, HR | |
dc.contributor.editor | Deligiannidis, L | |
dc.contributor.editor | Yang, M | |
dc.date.accessioned | 2019-10-21T20:41:40Z | |
dc.date.available | 2019-10-21T20:41:40Z | |
dc.date.issued | 2016 | |
dc.identifier.isbn | 978-1-5090-5510-4 | |
dc.identifier.uri | https://dx.doi.org/10.1109/CSCI.2016.265 | |
dc.identifier.uri | https://hdl.handle.net/11421/20853 | |
dc.description | International Conference on Computational Science and Computational Intelligence (CSIC) -- DEC 15-17, 2016 -- Las Vegas, NV | en_US |
dc.description | WOS: 000405582400258 | en_US |
dc.description.abstract | In classification problems, generalization ability has a key role for successful prediction. Well known Support Vector Machine classifier, tries to increase generalization ability via maximizing the margin, which is the distance between two parallel hyperplanes on the closest points. In this work we investigate maximizing the margin on non-parallel multi surfaces, by adapting GEPSVM* to Polyhedral Conic Function Classifiers. | en_US |
dc.description.sponsorship | Amer Council Sci & Educ | en_US |
dc.language.iso | eng | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | 10.1109/CSCI.2016.265 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Classification | en_US |
dc.subject | Svm | en_US |
dc.subject | Gepsvm | en_US |
dc.subject | Pcf | en_US |
dc.title | Max Margin Polyhedral Conic Function Classifier | en_US |
dc.type | conferenceObject | en_US |
dc.relation.journal | 2016 International Conference On Computational Science & Computational Intelligence (Csci) | en_US |
dc.contributor.department | Anadolu Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
dc.identifier.startpage | 1395 | en_US |
dc.identifier.endpage | 1396 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US] |