Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÇimen, Emre
dc.contributor.authorÖztürk, Gürkan
dc.contributor.editorArabnia, HR
dc.contributor.editorDeligiannidis, L
dc.contributor.editorYang, M
dc.date.accessioned2019-10-21T20:41:32Z
dc.date.available2019-10-21T20:41:32Z
dc.date.issued2016
dc.identifier.isbn978-1-5090-5510-4
dc.identifier.urihttps://dx.doi.org/10.1109/CSCI.2016.154
dc.identifier.urihttps://hdl.handle.net/11421/20816
dc.descriptionInternational Conference on Computational Science and Computational Intelligence (CSIC) -- DEC 15-17, 2016 -- Las Vegas, NVen_US
dc.descriptionWOS: 000405582400147en_US
dc.description.abstractHeart disease is one of the important cause of death. In this study, we used ECG data obtained from MIT-BIH database to classify arrhythmias. We select 5 classes; normal beat (N), right bundle branch block (RBBB), left bundle branch block (LBBB), atrial premature contraction (APC) and ventricular premature contraction (VPC). We applied k-means based Polyhedral Conic Functions (k-means PCF) algorithm to classify instances. The performance of the proposed classifier is shown with numerical experiments. With proposed algorithm we obtained 98 % accuracy rate. This test result is compared with other well known classification methods.en_US
dc.description.sponsorshipAmer Council Sci & Educen_US
dc.description.sponsorshipAnadolu University Scientific Research Projects Commission [1103F035]en_US
dc.description.sponsorshipThe authors would like to thank anonymous referees for their criticism and comments which allowed to improve the quality of the paper. The authors also thank to cardiologist Dr. Ozcan Yucel for his help in analyzing the ECG signals, and Prof. Dr. Omer Nezih Gerek for his guiding in signal processing. This study was supported by Anadolu University Scientific Research Projects Commission under the grant no: 1103F035.en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/CSCI.2016.154en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArrhythmiaen_US
dc.subjectClassificationen_US
dc.subjectClusteringen_US
dc.subjectMathematical Programmingen_US
dc.titleArrhythmia Classification via k-Means based Polyhedral Conic Functions Algorithmen_US
dc.typeconferenceObjecten_US
dc.relation.journal2016 International Conference On Computational Science & Computational Intelligence (Csci)en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.identifier.startpage798en_US
dc.identifier.endpage802en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster