dc.contributor.author | Bozkurt, Sinem | |
dc.contributor.author | Günal, Serkan | |
dc.contributor.author | Yayan, Uğur | |
dc.contributor.author | Bayar, V. | |
dc.date.accessioned | 2019-10-21T20:10:59Z | |
dc.date.available | 2019-10-21T20:10:59Z | |
dc.date.issued | 2015 | |
dc.identifier.isbn | 9781467373869 | |
dc.identifier.uri | https://dx.doi.org/10.1109/SIU.2015.7129947 | |
dc.identifier.uri | https://hdl.handle.net/11421/20022 | |
dc.description | 2015 23rd Signal Processing and Communications Applications Conference, SIU 2015 -- 16 May 2015 through 19 May 2015 -- -- 113052 | en_US |
dc.description.abstract | The selection of appropriate classifier is of great importance in improving the positioning accuracy and processing time for indoor positioning. In this work, an extensive analysis is carried out to determine the most appropriate classification algorithm to solve the indoor positioning problem. KIOS Research Center dataset is used in the experimental work. Principal Component Analysis method is employed together with Ranker method to determine the best features. In the next stage, the performances of Naïve Bayes, Bayesian Network, Multilayer Perceptron, K-Nearest Neighbor and J48 Decision Tree, which are widely preferred classification algorithms for indoor positioning studies, are analyzed on four distinct mobile phones. The results of the analysis reveal that J48 Decision Tree is superior to the other classification algorithms in terms of both processing time and accuracy | en_US |
dc.language.iso | tur | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.isversionof | 10.1109/SIU.2015.7129947 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Classification | en_US |
dc.subject | Feature Extraction | en_US |
dc.subject | Feature Selection | en_US |
dc.subject | Indoor Positioning | en_US |
dc.subject | Pattern And Object Recognition | en_US |
dc.subject | Rssi | en_US |
dc.title | Classifier selection for RF based indoor positioning [RF Temelli Iç Ortam Konumlama için Siniflandirici Seçimi] | en_US |
dc.type | conferenceObject | en_US |
dc.relation.journal | 2015 23rd Signal Processing and Communications Applications Conference, SIU 2015 - Proceedings | en_US |
dc.contributor.department | Anadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.identifier.startpage | 791 | en_US |
dc.identifier.endpage | 794 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.contributor.institutionauthor | Günal, Serkan | |