Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorParlak, Bekir
dc.contributor.authorUysal, Alper Kurşat
dc.date.accessioned2019-10-21T20:10:59Z
dc.date.available2019-10-21T20:10:59Z
dc.date.issued2015
dc.identifier.isbn9781467373869
dc.identifier.urihttps://dx.doi.org/10.1109/SIU.2015.7130164
dc.identifier.urihttps://hdl.handle.net/11421/20019
dc.description2015 23rd Signal Processing and Communications Applications Conference, SIU 2015 -- 16 May 2015 through 19 May 2015 -- -- 113052en_US
dc.description.abstractMedical text classification is still one of the popular research problems inside text classification domain. Apart from some text data compiled from hospital records, most of the researchers in this field evaluate their classification methodologies on documents from MEDLINE database. When whole documents in the database are taken into consideration, MEDLINE is a multi-class and multi-label database. A dataset, containing a small subset of MEDLINE documents belonging to disease categories, is constructed in this study. It is a multi-class but single-label dataset. Due to the highly unbalanced distribution of this dataset, only documents belonging to top-10 disease categories are used in the experiments. The performances of three different pattern classifiers are analyzed on disease classification problem using this dataset. These three pattern classifiers are Bayesian network, C4.5 decision tree, and Random Forest trees. Experiments are realized for the two different cases where the stemming preprocessing step is applied or not. Experimental results show that the most successful classifier among three classifiers is Bayesian network classifier. Also, the best performance is obtained without applying stemmingen_US
dc.language.isoturen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/SIU.2015.7130164en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDisease Classificationen_US
dc.subjectMedical Documentsen_US
dc.subjectMesh Headingsen_US
dc.subjectText Classificationen_US
dc.titleClassification of medical documents according to diseases [Tibbi dokümanlarin hastaliklara göre siniflandirilmasi]en_US
dc.typeconferenceObjecten_US
dc.relation.journal2015 23rd Signal Processing and Communications Applications Conference, SIU 2015 - Proceedingsen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.startpage1635en_US
dc.identifier.endpage1638en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorUysal, Alper Kurşat


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster