Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYakut, İbrahim
dc.contributor.authorPolat, Hüseyin
dc.contributor.editorMiyaji, A
dc.contributor.editorKikuchi, H
dc.contributor.editorRannenberg, K
dc.date.accessioned2019-10-21T20:10:53Z
dc.date.available2019-10-21T20:10:53Z
dc.date.issued2007
dc.identifier.isbn978-3-540-75650-7
dc.identifier.issn0302-9743
dc.identifier.urihttps://hdl.handle.net/11421/19940
dc.description2nd International Workshop on Security -- OCT 29-31, 2007 -- Nara, JAPANen_US
dc.descriptionWOS: 000250750200012en_US
dc.description.abstractWith the evolution of e-commerce, privacy is becoming a major concern. Many e-companies employ collaborative filtering (CF) techniques to increase their sales by providing truthful recommendations to customers. Many algorithms have been employed for CF purposes, and Eigentaste-based algorithm is one of them. Customers' preferences about products they purchased previously or showed interest are needed to provide recommendations. However, due to privacy concerns, customers refuse to contribute their ratings at all; or they might decide to give false data. Providing truthful referrals based on such inadequate and false data is impossible. Therefore, providing privacy measures is vital for collecting truthful data and producing recommendations. In this paper, we investigate how to achieve CF tasks (predictions and top-N recommendations) using Eigentaste, which is a constant time CF algorithm, without greatly exposing users' privacy. To accomplish privacy, we employ randomized perturbation techniques (RPT). We modify and/or simplify original Eigentaste algorithm in such a way to provide private referrals efficiently with decent accuracy. We investigate our proposed schemes in terms of privacy. To evaluate the overall performance of our schemes, we conduct experiments using real data sets. We then analyze our outcomes and finally provide some suggestions.en_US
dc.description.sponsorshipISEC Tech Grp Informat Secuity, Engn Sci Soc, Inst Elect Informat & Commun Engineers, CSEC SIG Comp Security Informat Proc Soc Japan, Carnegie Mellon CyLab Japan, Int Commun Fdn, Natl Inst Informat & Commun Technolen_US
dc.language.isoengen_US
dc.publisherSpringer-Verlag Berlinen_US
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titlePrivacy-preserving Eigentaste-based collaborative filteringen_US
dc.typeconferenceObjecten_US
dc.relation.journalAdvances in Information and Computer Security, Proceedingsen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume4752en_US
dc.identifier.startpage169en_US
dc.identifier.endpage+en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster