Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorOkkalıoğlu, Burcu Demirelli
dc.contributor.authorOkkalıoğlu, Murat
dc.contributor.authorKoç, Mehmet
dc.contributor.authorPolat, Hüseyin
dc.date.accessioned2019-10-21T19:44:33Z
dc.date.available2019-10-21T19:44:33Z
dc.date.issued2015
dc.identifier.issn0269-2821
dc.identifier.issn1573-7462
dc.identifier.urihttps://dx.doi.org/10.1007/s10462-015-9439-5
dc.identifier.urihttps://hdl.handle.net/11421/19901
dc.descriptionWOS: 000363953700005en_US
dc.description.abstractPrivacy-preserving data mining has attracted the attention of a large number of researchers. Many data perturbation methods have been proposed to ensure individual privacy. Such methods seem to be successful in providing privacy and accuracy. On one hand, different methods are utilized to preserve privacy. On the other hand, various data reconstruction approaches have been proposed to derive private information from perturbed data. Thus, many researchers have been conducting various studies about data reconstruction methods and the resilience of data perturbation schemes. In this survey, we focus on data reconstruction methods due to their importance in privacy-preserving data mining. We provide a detailed review of the data reconstruction methods and the data perturbation schemes attacked by different data reconstruction techniques. We merge our review with the evaluation metrics and the data sets used in current attack techniques. Finally, we pose some open questions to provide a better understanding of these approaches and to guide future study.en_US
dc.description.sponsorshipTUBITAK [113E262]en_US
dc.description.sponsorshipThis work is supported by Grant 113E262 from TUBITAK.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s10462-015-9439-5en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData Reconstructionen_US
dc.subjectData Perturbationen_US
dc.subjectPrivacyen_US
dc.subjectAttack Resilienceen_US
dc.subjectSpectral Filteringen_US
dc.titleA survey: deriving private information from perturbed dataen_US
dc.typearticleen_US
dc.relation.journalArtificial Intelligence Reviewen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume44en_US
dc.identifier.issue4en_US
dc.identifier.startpage547en_US
dc.identifier.endpage569en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster