Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorParlak, Bekir
dc.contributor.authorUysal, Alper Kurşat
dc.date.accessioned2019-10-21T19:44:30Z
dc.date.available2019-10-21T19:44:30Z
dc.date.issued2015
dc.identifier.isbn978-1-4673-7386-9
dc.identifier.issn2165-0608
dc.identifier.urihttps://hdl.handle.net/11421/19891
dc.description23nd Signal Processing and Communications Applications Conference (SIU) -- MAY 16-19, 2015 -- Inonu Univ, Malatya, TURKEYen_US
dc.descriptionWOS: 000380500900389en_US
dc.description.abstractMedical text classification is still one of the popular research problems inside text classification domain. Apart from some text data compiled from hospital records, most of the researchers in this field evaluate their classification methodologies on documents from MEDLINE database. When whole documents in the database are taken into consideration, MEDLINE is a multi-class and multi-label database. A dataset, containing a small subset of MEDLINE documents belonging to disease categories, is constructed in this study. It is a multi-class but single-label dataset. Due to the highly unbalanced distribution of this dataset, only documents belonging to top-10 disease categories are used in the experiments. The performances of three different pattern classifiers are analyzed on disease classification problem using this dataset. These three pattern classifiers are Bayesian network, C4.5 decision tree, and Random Forest trees. Experiments are realized for the two different cases where the stemming preprocessing step is applied or not. Experimental results show that the most successful classifier among three classifiers is Bayesian network classifier. Also, the best performance is obtained without applying stemming.en_US
dc.description.sponsorshipDept Comp Engn & Elect & Elect Engn, Elect & Elect Engn, Bilkent Univen_US
dc.language.isoturen_US
dc.publisherIEEEen_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectText Classificationen_US
dc.subjectMedical Documentsen_US
dc.subjectDisease Classificationen_US
dc.subjectMesh Headingsen_US
dc.titleClassification of Medical Documents According to Diseasesen_US
dc.typeconferenceObjecten_US
dc.relation.journal2015 23rd Signal Processing and Communications Applications Conference (Siu)en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.startpage1635en_US
dc.identifier.endpage1638en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorUysal, Alper Kurşat


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster