Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBozkurt, Sinem
dc.contributor.authorElibol, Gulin
dc.contributor.authorGünal, Serkan
dc.contributor.authorYayan, Uğur
dc.date.accessioned2019-10-21T19:44:23Z
dc.date.available2019-10-21T19:44:23Z
dc.date.issued2015
dc.identifier.isbn978-1-4673-7751-5
dc.identifier.urihttps://hdl.handle.net/11421/19869
dc.descriptionInternational Symposium on Innovations in Intelligent SysTems and Applications (INISTA 2015) -- SEP 02-04, 2015 -- Madrid, SPAINen_US
dc.descriptionWOS: 000380428200008en_US
dc.description.abstractFingerprinting based positioning is commonly used for indoor positioning. In this method, initially a radio map is created using Received Signal Strength (RSS) values that are measured from predefined reference points. During the positioning, the best match between the observed RSS values and existing RSS values in the radio map is established as the predicted position. In the positioning literature, machine learning algorithms have widespread usage in estimating positions. One of the main problems in indoor positioning systems is to find out appropriate machine learning algorithm. In this paper, selected machine learning algorithms are compared in terms of positioning accuracy and computation time. In the experiments, UJIIndoorLoc indoor positioning database is used. Experimental results reveal that k-Nearest Neighbor (k-NN) algorithm is the most suitable one during the positioning. Additionally, ensemble algorithms such as AdaBoost and Bagging are applied to improve the decision tree classifier performance nearly same as k-NN that is resulted as the best classifier for indoor positioning.en_US
dc.description.sponsorshipUniv Autonoma Madrid, AIDAen_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectIndoor Positioningen_US
dc.subjectReceived Signal Strength (Rss)en_US
dc.subjectClassificationen_US
dc.subjectMachine Learning Algorithmsen_US
dc.subjectNearest Neighbor (Nn)en_US
dc.subjectSmoen_US
dc.subjectDecision Tree (J48)en_US
dc.subjectNaive Bayesen_US
dc.subjectBayes Neten_US
dc.subjectAdaboosten_US
dc.subjectBaggingen_US
dc.subjectWekaen_US
dc.subjectRf Mapen_US
dc.subjectLocalizationen_US
dc.titleA Comparative Study on Machine Learning Algorithms for Indoor Positioningen_US
dc.typeconferenceObjecten_US
dc.relation.journal2015 International Symposium On Innovations in Intelligent Systems and Applications (Inista) Proceedingsen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.startpage47en_US
dc.identifier.endpage54en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster