Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYazıcı, Ahmet
dc.contributor.authorKeser, Sinem Bozkurt
dc.contributor.authorGünal, Serkan
dc.contributor.authorYayan, Uğur
dc.date.accessioned2019-10-21T19:44:21Z
dc.date.available2019-10-21T19:44:21Z
dc.date.issued2018
dc.identifier.issn0218-2130
dc.identifier.issn1793-6349
dc.identifier.urihttps://dx.doi.org/10.1142/S0218213018500185
dc.identifier.urihttps://hdl.handle.net/11421/19861
dc.descriptionWOS: 000441749700004en_US
dc.description.abstractIndoor positioning system is an active research area. There are various performance metrics such as accuracy, computation time, precision, and f-score in machine learning based indoor positioning systems. The aim of this study is to present a multi-criteria decision strategy to determine suitable machine learning methods for a specific indoor positioning system. This helps to evaluate the performance of machine learning algorithms considering multiple criteria. During the experiments, UJllndoorLoc, KIOS and RFKON datasets are used from the positioning literature. The algorithms such as k-nearest neighbor, support vector machine, decision tree, naive bayes and bayesian networks are compared using these datasets. In addition to these, ensemble learning algorithms, namely adaboost and bagging, are utilized to improve the performance of these classifiers. As a conclusion, the test results for any specific dataset are reevaluated using the performance metrics such as accuracy, f-score and computation time, and a multi-criteria decision strategy is proposed to find the most convenient algorithm. The analytical hierarchy process is used for multi-criteria decision. To the best of our knowledge, this is the first work to select the proper machine learning algorithm for an indoor positioning system using multi-criteria decision strategy.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [1130024]en_US
dc.description.sponsorshipThis work is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under grant number 1130024.en_US
dc.language.isoengen_US
dc.publisherWorld Scientific Publ Co Pte LTDen_US
dc.relation.isversionof10.1142/S0218213018500185en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMulti-Criteria Decision Strategyen_US
dc.subjectAnalytical Hierarchy Processen_US
dc.subjectIndoor Positioningen_US
dc.subjectFingerprintingen_US
dc.subjectMachine Learningen_US
dc.titleA Multi-Criteria Decision Strategy to Select a Machine Learning Method for Indoor Positioning Systemen_US
dc.typearticleen_US
dc.relation.journalInternational Journal On Artificial Intelligence Toolsen_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume27en_US
dc.identifier.issue5en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorGünal, Serkan


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster