Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBilge, Alper
dc.contributor.authorPolat, Hüseyin
dc.date.accessioned2019-10-21T19:44:18Z
dc.date.available2019-10-21T19:44:18Z
dc.date.issued2011
dc.identifier.isbn978-0-7695-4492-2
dc.identifier.issn2325-6516
dc.identifier.urihttps://dx.doi.org/10.1109/ICSC.2011.20
dc.identifier.urihttps://hdl.handle.net/11421/19852
dc.description5th Annual IEEE International Conference on Semantic Computing (ICSC) -- SEP 18-22, 2011 -- Stanford Univ, Palo Alto, CAen_US
dc.descriptionWOS: 000410187400020en_US
dc.description.abstractTraditional collaborative filtering (CF) systems widely employing k- nearest neighbor (kNN) algorithms mostly attempt to alleviate the contemporary problem of information overload by generating personalized predictions for items that users might like. Unlike their popularity and extensive usage, they suffer from several problems. First, with increasing number of users and/ or items, scalability becomes a challenge. Second, as the number of ratable items increases and number of ratings provided by each individual remains as a tiny fraction, CF systems suffer from sparsity problem. Third, many schemes fail to protect private data referred to as privacy problem. Due to such problems, accuracy and online performance become worse. In this paper, we propose two preprocessing schemes to overcome scalability and sparsity problems. First, we suggest using a novel content-based profiling of users to estimate similarities on a reduced data for better performance. Second, we propose pseudo-prediction protocol to help CF systems surmount sparsity. We finally propose to use randomization methods to preserve individual users' confidential data, where we show that our proposed preprocessing schemes can be applied to perturbed data. We analyze our schemes in terms of privacy. To investigate their effects on accuracy and performance, we perform real databased experiments. Empirical results demonstrate that our preprocessing schemes improve both performance and accuracy.en_US
dc.description.sponsorshipIEEE, IEEE Comp Soc, Microsoft, Wells Fargo, Franz Incen_US
dc.description.sponsorshipTUBITAK [108E211]en_US
dc.description.sponsorshipThis work is supported by Grant 108E211 from TUBITAK.en_US
dc.language.isoengen_US
dc.publisherIEEE Computer Socen_US
dc.relation.ispartofseriesIEEE International Conference on Semantic Computing
dc.relation.isversionof10.1109/ICSC.2011.20en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPreprocessingen_US
dc.subjectProfilingen_US
dc.subjectPrivacyen_US
dc.subjectPerformanceen_US
dc.subjectRecommendationen_US
dc.subjectAccuracyen_US
dc.titleAn Improved Profile-based CF Scheme with Privacyen_US
dc.typeconferenceObjecten_US
dc.relation.journalFifth IEEE International Conference On Semantic Computing (Icsc 2011)en_US
dc.contributor.departmentAnadolu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.startpage133en_US
dc.identifier.endpage140en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorBilge, Alper


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster