Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTurgut, Enis Turhan
dc.date.accessioned2019-10-20T19:32:54Z
dc.date.available2019-10-20T19:32:54Z
dc.date.issued2017
dc.identifier.issn1302-3160
dc.identifier.urihttp://www.trdizin.gov.tr/publication/paper/detail/TWpRMk9ERTBOQT09
dc.identifier.urihttps://hdl.handle.net/11421/18681
dc.description.abstractFuel flow rate of an aircraft varies significantly during a typical flight, mainly due to required engine thrust, speed, weather conditions, aircraft configuration and aircraft mass. Of these, the effect of aircraft mass, being the non-payload portion, on fuel flow is investigated in this study. The investigation is carried out for twin-engined wide-bodied aircraft, during its intercontinental flights. Based on actual flight data records, two approaches are developed, in which the fuel flow rate is estimated based on three independent variables; altitude, aircraft mass and flight speed. The regression models are found to be highly significant and average fuel consumption is found to be 2-3% of the non-payload mass per flight hour. It should be noted that this percentage is affected by flight altitude and aircraft initial mass, of which the latter has a greater effect. In addition, it is worth noting that when the aircraft initial mass increases, the fuel consumption percentage also tends to increase.en_US
dc.description.abstractFuel flow rate of an aircraft varies significantly during a typical flight, mainly due to required engine thrust, speed, weather conditions, aircraft configuration and aircraft mass. Of these, the effect of aircraft mass, being the non-payload portion, on fuel flow is investigated in this study. The investigation is carried out for twin-engined wide-bodied aircraft, during its intercontinental flights. Based on actual flight data records, two approaches are developed, in which the fuel flow rate is estimated based on three independent variables; altitude, aircraft mass and flight speed. The regression models are found to be highly significant and average fuel consumption is found to be 2-3% of the non-payload mass per flight hour. It should be noted that this percentage is affected by flight altitude and aircraft initial mass, of which the latter has a greater effect. In addition, it is worth noting that when the aircraft initial mass increases, the fuel consumption percentage also tends to increase.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectOrtak Disiplinleren_US
dc.titleAn Analysis of the Effect of Non-Payload Weight on Fuel Consumption For a Wide-Bodied Aircraften_US
dc.typearticleen_US
dc.relation.journalAnadolu Üniversitesi Bilim ve Teknoloji Dergisi :A-Uygulamalı Bilimler ve Mühendisliken_US
dc.contributor.departmentAnadolu Üniversitesi, Havacılık ve Uzay Bilimleri Fakültesi, Uçak Gövde Motor Bakım Bölümüen_US
dc.identifier.volume18en_US
dc.identifier.issue1en_US
dc.identifier.startpage59en_US
dc.identifier.endpage68en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorTurgut, Enis Turhan


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster