dc.contributor.author | Karabacak, F | |
dc.contributor.author | Tercan, A | |
dc.date.accessioned | 2019-10-20T14:28:20Z | |
dc.date.available | 2019-10-20T14:28:20Z | |
dc.date.issued | 2003 | |
dc.identifier.issn | 0011-4642 | |
dc.identifier.uri | https://dx.doi.org/10.1023/B:CMAJ.0000024507.03939.ce | |
dc.identifier.uri | https://hdl.handle.net/11421/18097 | |
dc.description | WOS: 000186018800010 | en_US |
dc.description.abstract | A ring R has right SIP (SSP) if the intersection (sum) of two direct summands of R is also a direct summand. We show that the right SIP (SSP) is the Morita invariant property. We also prove that the trivial extension of R by M has SIP if and only if R has SIP and (1 - e)Me = 0 for every idempotent e in R. Moreover, we give necessary and sufficient conditions for the generalized upper triangular matrix rings to have SIP. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Czechoslovak Mathematical Journal | en_US |
dc.relation.isversionof | 10.1023/B:CMAJ.0000024507.03939.ce | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Modules | en_US |
dc.subject | Summand Intersection Property | en_US |
dc.subject | Morita Invariant | en_US |
dc.title | Matrix rings with summand intersection property | en_US |
dc.type | article | en_US |
dc.relation.journal | Czechoslovak Mathematical Journal | en_US |
dc.contributor.department | Anadolu Üniversitesi, Fen Fakültesi, Matematik Bölümü | en_US |
dc.identifier.volume | 53 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 621 | en_US |
dc.identifier.endpage | 626 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US] |