Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTakıl Mutlu, Figen
dc.date.accessioned2019-10-20T14:28:14Z
dc.date.available2019-10-20T14:28:14Z
dc.date.issued2018
dc.identifier.issn1300-0098
dc.identifier.issn1303-6149
dc.identifier.urihttps://dx.doi.org/10.3906/mat-1609-77
dc.identifier.urihttps://hdl.handle.net/11421/18066
dc.descriptionWOS: 000447946800043en_US
dc.description.abstractIn this paper, matrix rings with the summand intersection property (SIP) and the absolute direct summand (ads) property (briefly, SA) are studied. A ring R has the right SIP if the intersection of two direct summands of R is also a direct summand. A right R-module M has the ads property if for every decomposition M = A circle plus B of M and every complement C of A in M, we have M = A circle plus C. It is shown that the trivial extension of R by M has the SA if and only if R has the SA, M has the ads, and (1 - e)Me = 0 for each idempotent e in R. It is also shown with an example that the SA is not a Morita invariant property.en_US
dc.description.sponsorshipAnadolu University Scientific Research Projects Commission [1503F139]en_US
dc.description.sponsorshipThis study was supported by Anadolu University Scientific Research Projects Commission under the grant no: 1503F139.en_US
dc.language.isoengen_US
dc.publisherScientific Technical Research Council Turkey-Tubitaken_US
dc.relation.isversionof10.3906/mat-1609-77en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAds Propertyen_US
dc.subjectSummand Intersection Propertyen_US
dc.subjectTrivial Extensionen_US
dc.titleOn matrix rings with the SIP and the Adsen_US
dc.typearticleen_US
dc.relation.journalTurkish Journal of Mathematicsen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, Matematik Bölümüen_US
dc.identifier.volume42en_US
dc.identifier.issue5en_US
dc.identifier.startpage2657en_US
dc.identifier.endpage2663en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster