Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBirkenmeier, G. F.
dc.contributor.authorMutlu, F. Takil
dc.contributor.authorNebiyev, C.
dc.contributor.authorSokmez, N.
dc.contributor.authorTercan, A.
dc.date.accessioned2019-10-20T14:28:11Z
dc.date.available2019-10-20T14:28:11Z
dc.date.issued2010
dc.identifier.issn0017-0895
dc.identifier.urihttps://dx.doi.org/10.1017/S0017089510000212
dc.identifier.urihttps://hdl.handle.net/11421/18047
dc.descriptionConference on Rings and Modules held in honor of Patrick F Smith -- SEP 16-19, 2008 -- Univ Lisboa, Lisbon, PORTUGALen_US
dc.descriptionWOS: 000280225100005en_US
dc.description.abstractMotivated by a relation on submodules of a module used by both A. W. Goldie and P. F. Smith, we say submodules X, Y of M are beta* equivalent, X beta* Y, if and only if X + Y/X is small in M/X and X + Y/Y is small in M/Y. We show that the beta* relation is an equivalence relation and has good behaviour with respect to addition of submodules, homomorphisms and supplements. We apply these results to introduce the class of G*-supplemented modules and to investigate this class and the class of H-supplemented modules. These classes are located among various well-known classes of modules related to the class of lifting modules. Moreover these classes are used to explore an open question of S. H. Mohamed and B. J. Mueller. Examples are provided to illustrate and delimit the theory.en_US
dc.language.isoengen_US
dc.publisherCambridge University Pressen_US
dc.relation.isversionof10.1017/S0017089510000212en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleGoldie-Supplemented Modulesen_US
dc.typeconferenceObjecten_US
dc.relation.journalGlasgow Mathematical Journalen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, Matematik Bölümüen_US
dc.identifier.volume52Aen_US
dc.identifier.startpage41en_US
dc.identifier.endpage52en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster