Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorLimoncu, Murat
dc.date.accessioned2019-10-20T14:28:11Z
dc.date.available2019-10-20T14:28:11Z
dc.date.issued2016
dc.identifier.issn0046-5755
dc.identifier.issn1572-9168
dc.identifier.urihttps://dx.doi.org/10.1007/s10711-015-0100-x
dc.identifier.urihttps://hdl.handle.net/11421/18045
dc.descriptionWOS: 000372959100014en_US
dc.description.abstractLet M be a closed manifold of dimension four, and let [0, T) be the maximal time interval for the normalized Ricci flow equation. We prove that, if the normalized Ricci flow equation has a solution on the non-negative real line, i.e., T = infinity, then the Euler characteristic chi(M) of M is non-negative. Under suitable assumptions on the solution of the normalized Ricci flow equation on M x [0, T), we prove one more theorem stating that the Hitchin-Thorpe type inequality 2 chi(M) >= 3 vertical bar sigma(M)vertical bar holds between the Euler characteristic chi(M) and the signature sigma(M) of M. To obtain these results, we utilize the Riccati comparison theorem. In this respect, we present a new application of the Riccati comparison theorem.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s10711-015-0100-xen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNormalized Ricci Flowen_US
dc.subjectRiccati Comparison Theoremen_US
dc.titleThe Euler characteristic and signature of four-dimensional closed manifolds and the normalized Ricci flow equationen_US
dc.typearticleen_US
dc.relation.journalGeometriae Dedicataen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, Matematik Bölümüen_US
dc.identifier.volume180en_US
dc.identifier.issue1en_US
dc.identifier.startpage229en_US
dc.identifier.endpage239en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US]


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster