Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYıldız, Bengi
dc.contributor.authorDzhafarov, Vakif
dc.contributor.authorBhattacharyya, Shankar P.
dc.date.accessioned2019-10-20T14:28:02Z
dc.date.available2019-10-20T14:28:02Z
dc.date.issued2015
dc.identifier.isbn978-1-4799-8673-6
dc.identifier.urihttps://dx.doi.org/10.1109/MCSI.2015.29
dc.identifier.urihttps://hdl.handle.net/11421/17985
dc.descriptionSecond International Conference on Mathematics and Computers in Sciences and in Industry MCSI -- AUG 17-19, 2015 -- Sliema, MALTAen_US
dc.descriptionWOS: 000380543500012en_US
dc.description.abstractThis paper deals with the robust stability of a discrete time stable state space system subject to structured real parameter uncertainty. Using Lyapunov's Theorem and Stein's equation the radius of a stability hypersphere in parameter space is derived from the structure matrices, with the property that all for parameter perturbations lying within the hypersphere stability of the system matrix is preserved. A numerical example is provided.en_US
dc.description.sponsorshipIEEE, CPS, Univ Sofia Techen_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/MCSI.2015.29en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleDiscrete Time Stability Margins From Stein's Equationen_US
dc.typeconferenceObjecten_US
dc.relation.journal2015 Second International Conference On Mathematics and Computers İn Sciences and İn Industry (Mcsi)en_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, Matematik Bölümüen_US
dc.identifier.startpage72en_US
dc.identifier.endpage75en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US]
dc.contributor.institutionauthorDzhafarov, Vakif


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster