dc.contributor.author | Yıldız, Bengi | |
dc.contributor.author | Dzhafarov, Vakif | |
dc.contributor.author | Bhattacharyya, Shankar P. | |
dc.date.accessioned | 2019-10-20T14:28:02Z | |
dc.date.available | 2019-10-20T14:28:02Z | |
dc.date.issued | 2015 | |
dc.identifier.isbn | 978-1-4799-8673-6 | |
dc.identifier.uri | https://dx.doi.org/10.1109/MCSI.2015.29 | |
dc.identifier.uri | https://hdl.handle.net/11421/17985 | |
dc.description | Second International Conference on Mathematics and Computers in Sciences and in Industry MCSI -- AUG 17-19, 2015 -- Sliema, MALTA | en_US |
dc.description | WOS: 000380543500012 | en_US |
dc.description.abstract | This paper deals with the robust stability of a discrete time stable state space system subject to structured real parameter uncertainty. Using Lyapunov's Theorem and Stein's equation the radius of a stability hypersphere in parameter space is derived from the structure matrices, with the property that all for parameter perturbations lying within the hypersphere stability of the system matrix is preserved. A numerical example is provided. | en_US |
dc.description.sponsorship | IEEE, CPS, Univ Sofia Tech | en_US |
dc.language.iso | eng | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | 10.1109/MCSI.2015.29 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Discrete Time Stability Margins From Stein's Equation | en_US |
dc.type | conferenceObject | en_US |
dc.relation.journal | 2015 Second International Conference On Mathematics and Computers İn Sciences and İn Industry (Mcsi) | en_US |
dc.contributor.department | Anadolu Üniversitesi, Fen Fakültesi, Matematik Bölümü | en_US |
dc.identifier.startpage | 72 | en_US |
dc.identifier.endpage | 75 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US] |
dc.contributor.institutionauthor | Dzhafarov, Vakif | |