dc.contributor.author | Çelik, Derya | |
dc.contributor.author | Koçak, Şahin | |
dc.contributor.author | Özdemir, Yunus | |
dc.date.accessioned | 2019-10-20T14:27:58Z | |
dc.date.available | 2019-10-20T14:27:58Z | |
dc.date.issued | 2008 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.uri | https://dx.doi.org/10.1016/j.jmaa.2007.03.102 | |
dc.identifier.uri | https://hdl.handle.net/11421/17955 | |
dc.description | WOS: 000255425400027 | en_US |
dc.description.abstract | We prove for the Sierpinski Gasket (SG) an analogue of the fractal interpolation theorem of Barnsley. Let V-0 = [p(1), p(2), p(3)) be the set of vertices of SG and u(i) (x) = 1/2 (x + p(i)) the three contractions of the plane, of which the SG is the attractor. Fix a number n and consider the iterations u(w) = u(w1) u(w2)...u(wn) for any sequence w = (w(1), w(2),...,w(n),) is an element of{1, 2, 3}(n). The union of the images of V-0 under these iterations is the set of nth stage vertices V-n of SG. Let F : V-n -> R be any function. Given any numbers ce", (W is an element of {1, 2, 3}(n)) with 0 < vertical bar alpha(w)vertical bar < 1, there exists a unique continuous extension f : SG -> R of F, such that f(u(w)(x)) = alpha(w) f(x) + h(w)(x) for X is an element of SG, where h(w) are harmonic functions on SG for w is an element of {1, 2, 3}(n). Interpreting the harmonic functions as the "degree I polynomials" on SG is thus a self-similar interpolation obtained for any start function F:V-n -> R (C) Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Academic Press Inc Elsevier Science | en_US |
dc.relation.isversionof | 10.1016/j.jmaa.2007.03.102 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Fractal Interpolation | en_US |
dc.subject | Sierpinski Gasket | en_US |
dc.subject | Harmonic Functions | en_US |
dc.subject | Self-Similar Functions | en_US |
dc.title | Fractal interpolation on the Sierpinski Gasket | en_US |
dc.type | article | en_US |
dc.relation.journal | Journal of Mathematical Analysis and Applications | en_US |
dc.contributor.department | Anadolu Üniversitesi, Fen Fakültesi, Matematik Bölümü | en_US |
dc.identifier.volume | 337 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 343 | en_US |
dc.identifier.endpage | 347 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US] |
dc.contributor.institutionauthor | Koçak, Şahin | |
dc.contributor.institutionauthor | Özdemir, Yunus | |