Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÖzdemir, Özer
dc.contributor.authorAslanargun, A.
dc.contributor.authorAsma, S.
dc.date.accessioned2019-10-20T09:31:34Z
dc.date.available2019-10-20T09:31:34Z
dc.date.issued2010
dc.identifier.issn1538-9472
dc.identifier.urihttps://dx.doi.org/10.22237/jmasm/1288585440
dc.identifier.urihttps://hdl.handle.net/11421/17731
dc.description.abstractPrediction of the outputs of real world systems with accuracy and high speed is crucial in financial analysis due to its effects on worldwide economics. Because the inputs of the financial systems are timevarying functions, the development of algorithms and methods for modeling such systems cannot be neglected. The most appropriate forecasting model for the ISE national-100 index was investigated. Box-Jenkins autoregressive integrated moving average (ARIMA) and artificial neural networks (ANN) are considered by using several evaluations. Results showed that the ANN model with linear architecture better fits the candidate dataen_US
dc.language.isoengen_US
dc.publisherWayne State Universityen_US
dc.relation.isversionof10.22237/jmasm/1288585440en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectForecastingen_US
dc.subjectIse Stock Marketen_US
dc.subjectTime Series Modelingen_US
dc.titleANN forecasting models for ISE national-100 indexen_US
dc.typearticleen_US
dc.relation.journalJournal of Modern Applied Statistical Methodsen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, İstatistik Bölümüen_US
dc.identifier.volume9en_US
dc.identifier.issue2en_US
dc.identifier.startpage579en_US
dc.identifier.endpage583en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster