Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorShamilov, Aladdin
dc.date.accessioned2019-10-20T09:31:32Z
dc.date.available2019-10-20T09:31:32Z
dc.date.issued2007
dc.identifier.issn0378-4371
dc.identifier.issn1873-2119
dc.identifier.urihttps://dx.doi.org/10.1016/j.physa.2007.04.014
dc.identifier.urihttps://hdl.handle.net/11421/17722
dc.descriptionWOS: 000248198800011en_US
dc.description.abstractIn the present study we have formulated a generalization of entropy optimization problems (GEOP), proposed sufficient conditions for the existence of solution. We have suggested also a new method based on a priori evaluations and Newton's methods for calculation of Langrange multipliers. Mentioned method allows calculating Langrange multipliers by starting from arbitrary initial point for Newton's approximations of constructed auxiliary equation. The solution of auxiliary equation is chosen as initial point for second constructed auxiliary equation. The recurring mentioned process for finite time leads to achieve an initial point for Newton's approximations of given equation and allows to find its unknown solutionen_US
dc.language.isoengen_US
dc.publisherElsevier Science BVen_US
dc.relation.isversionof10.1016/j.physa.2007.04.014en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEntropy Optimization Problemen_US
dc.subjectNewton'S Methoden_US
dc.subjectExistence Theoremen_US
dc.subjectA Priori Evaluationen_US
dc.titleGeneralized entropy optimization problems and the existence of their solutionsen_US
dc.typearticleen_US
dc.relation.journalPhysica A-Statistical Mechanics and Its Applicationsen_US
dc.contributor.departmentAnadolu Üniversitesi, Fen Fakültesi, İstatistik Bölümüen_US
dc.identifier.volume382en_US
dc.identifier.issue2en_US
dc.identifier.startpage465en_US
dc.identifier.endpage472en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster