dc.contributor.author | Tanışlı, Murat | |
dc.contributor.author | Demir, Süleyman | |
dc.date.accessioned | 2019-10-20T09:31:00Z | |
dc.date.available | 2019-10-20T09:31:00Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1300686X | |
dc.identifier.uri | https://hdl.handle.net/11421/17550 | |
dc.description.abstract | This paper begins with the introduction of biquaternion algebra and its properties in compact, profound and comprehensible approach. The Schrödinger equation including both the scalar Aharonov-Bohm(sAB) and Aharonov-Casher(AC) effects, that are currently popular in particle physics and condensed-matter physics, has been re-written by biquaternions. The newly biquaternionic Schrödinger equation, which is defined with various assumptions and approaches, also includes the biquaternionic generalized momentum in Hamiltonian. | en_US |
dc.language.iso | eng | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Aharonov-Casher(Ac) Effect | en_US |
dc.subject | Biquaternion | en_US |
dc.subject | Quaternion | en_US |
dc.subject | Scalar Aharonov-Bohm (Sab) Effect | en_US |
dc.subject | Schrödinger Equation | en_US |
dc.title | Biquaternionic description of the Schrödinger equation | en_US |
dc.type | article | en_US |
dc.relation.journal | Mathematical and Computational Applications | en_US |
dc.contributor.department | Anadolu Üniversitesi, Fen Fakültesi, Fizik Bölümü | en_US |
dc.identifier.volume | 17 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 176 | en_US |
dc.identifier.endpage | 181 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.institutionauthor | Tanışlı, Murat | |
dc.contributor.institutionauthor | Demir, Süleyman | |