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ABSTRACT

A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

ESSAYS ON ASSET PRICING AND DOWNSIDE RISK

Usman Muhammed Umer

Department of Business Administration
Finance Program

Anadolu University, Graduate School of Social Sciences, November
2017

Supervisor: Prof. Dr. Güven SEVİL

This dissertation presents three essays on asset pricing and downside
risk. The first chapter investigates whether the variation in asset returns can
be captured by the association of returns with the conditional risk premia. I
propose asset pricing models that distinguish market factor between upside and
downside components. The central idea of these models is that investors care
differently between downside losses and upside gains, and asset pricing models
that distinguish downward market from upward trend appear to characterize
investors’ risk perception. The finding of the study shows that downside risk
is an informative measure of risk, and asset pricing models that characterize
the disappointment aversion of representative investors better explains the
variation of equities, currencies, bonds, commodities and CDS returns.

The second chapter provides an empirical investigation of momentum in
equity and currency markets. Momentum strategy offers higher Sharpe ratio
than the market return. However, it exposes to huge crash risk following
market rebound. I propose optimal risk management strategy to mitigate
momentum crash based on hedging the time-varying risk exposure of
momentum then scaling the hedged long-short portfolio by its forecasted
semi-variance. This strategy remarkably mitigates momentum crash and
provides higher positive returns in the crisis and tranquil periods. Looking at
currency markets, huge crash risk is not prevalent in currency momentum.
Idiosyncratic risk accounts for the main source of currency momentum risk.

The third chapter examines the existence of idiosyncratic risk premia in
stock markets. The relationship between idiosyncratic risk and stock returns
is subject to idiosyncratic risk measures. Average stock returns increase
monotonically with the increase in the conditional idiosyncratic volatility.
However, when one-month lagged idiosyncratic volatility used as a proxy of
specific risk, a systematic pattern is not found. The conditional idiosyncratic
volatility priced positively in a downside market. The overall result
demonstrates that investors require a positive risk premium to hold stocks
with high idiosyncratic risk.

Keywords: Risk premia, Downside risk, Momentum, Idiosyncratic risk, Asset
pricing.
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ÖZET

Doktora Tezi

FİNANSAL VARLIK FİYATLANDİRMASINDA KAYIP RİSKİ
VE ÖNEMİ

Usman Muhammed Umer

İsletme Anabilim Dalı
Finansman Bilim Dalı

Anadolu Üniversitesi, Sosyal Bilimler Enstitüsü, Kasım 2017

Danışman: Prof. Dr. Güven SEVİL

Tez çalışması varlık fiyatlama ile aşağı yönlü risk konularıyla ilgili üç
araştırmayı içermektedir. Birinci bölümde, varlık getirilerinin koşullu risk
primi ile belirlenebilmesi konuları araştırılmıştır. Aşağı yönlü riski ve yukarı
yönlü risk unsurlarını içeren faktörlere dayalı varlık fiyatlama modelleri
önerilmiştir. Modellerin temel noktası yatırımcıların aşağı yönlü riski ve
yukarı yönlü kazançlar arasında farklı görüşlere sahip olduklarıdır. Bu
bağlamda; aşağı yönlü ve yukarı yönlü trendleri belirleyen varlık fiyatlama
modelleri yatırımcıların risk algılarını yansıtmaktadır. Araştırmanın
bulguları; aşağı yönlü riskin, risk ölçütü olarak, bilgi verme özelliği
gösterdiğini ve kaybetme korkusundan kaçınmaya yol açan yatırımcı
davranışlarının esas alındığı varlık fiyatlama modellerinde pay senetleri,
dövizler, tahviller, emtialar ve CDS getirilerdeki değişimi daha iyi
açıkladığını göstermektedir.

İkinci bölüm pay senetleri ve döviz piyasalarında momentumun
uygulamalı araştırmasını içermektedir. Momentum stratejisi piyasa getirisine
göre daha yüksek Sharpe oranları sunmaktadır. Ancak, piyasa geri
çekilmelerinde momentum stratejisi yüksek nakit riskine maruz kalmaktadır.
Momentum çöküşlerini önleyecek en uygun risk yönetim stratejisi olarak,
momentumun maruz kaldığı zaman değişkeni risklerine bağlı olarak hedging
yapılması ve ardından semi-varyans öngörülerine bağlı uzun ve kısa pozisyon
portföylerinin ölçeklendirilmesi önerilmiştir. Bu strateji, momentum
çökmesini önemli ölçüde azaltımakta ve durgun dönemlerde ise daha fazla
pozitif getiri kazanıldığı görülmüştür. Döviz piyasalarına bakıldığında
momentum stratejisinde nakit riskinin olmadığı görülmektedir. Sistematik
olmayan risklerin döviz kuru momentum riskin temel kaynağı olduğu
görülmüştür.

Tezin üçüncü bölümünde sistematik olmayan risk priminin pay senedi
piyasasında varlığı incelenmiştir. Sistematik olmayan risk ile pay senedi
getirileri arasındaki ilişki sistematik olmayan riskin ölçümüne bağlıdır.
Koşullu sistematik olmayan volatilitedeki artışla beraber, ortalama pay
senetleri de tekdüze şekilde artmaktadır. Ancak, spesifik risk yerine
sistematik olmayan volatilitenin bir ay gecikmeli değerleri kullanıldığında
sistematik bir ilişki görülmemektedir. Koşullu varlık fiyatlama modellerinde
aşağıyönlü riski olası piyasalarda sistematik olmayan volatilitenin pozitif
olarak fiyatlandığı görülmüştür. Sonuç olarak, yatırımcılar yüksek sistematik
olmayan riske sahip pay senetlerini elde tutmak için pozitif risk primi talep
etmektedir.

Anahtar Kelimeler: Risk primi, Aşağı yönlü risk, Momentum, Sistematik
olmayan risk, Varlık fiyatlama
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INTRODUCTION

The pricing of financial assets plays a vital role in the theory of finance

and applications. Over the past half-century, it has witnessed considerable

developments on how to price assets and determine what kind of risk

eventually derive asset returns. Numerous researches attempted to develop

distinct theoretical models that helps to understand the pricing mechanism

in apparently complex financial markets. One of the first models that

illustrates how to price assets was the Capital Asset Pricing Model (CAPM)

of Sharpe (1964), Lintner (1965) and Mossin (1966). It links the cross-section

of expected returns with the market, which is constant across periods of

market upturn and downturns. Subsequent studies challenged the validity

and applicability of this model. It led them to relax some unrealistic

assumptions to become closer with the reality without drastically affecting

the empirical predictions of the model. While others, extend the model by

adding new factors and using different risk measures to explain the

cross-section of asset returns precisely. Merton (1973) relaxes the single-time

period assumption of CAPM with continuous-time framework to initiate the

Intertemporal Capital Asset Pricing Model. This model relates the expected

return of any asset to several state variables that eventually results a

multi-factor model. Ross (1976) also propose Arbitrage Pricing

Theory(APT), which claims that in asset pricing of no-arbitrage the expected

return of an asset is linearly related to factors risk premia.

In the realm of capital asset pricing model, market is the only risk

factor embedded in the asset returns, however the so-called anomaly

literatures provide empirical evidence that other factors such as firm size,

book-to-market value, momentum, profitability and investment dynamics

also influences asset returns. Banz (1981) documents that stocks with lower

market capitalization have higher risk adjusted average returns than stocks

with higher market capitalization, he named it size effect. Another widely

reported anomaly is value effect, stocks with high book-to-market value

outperform the return of stocks with low book-to-market ratio (Rosenberg,

Reid, and Lanstein, 1984, DeBondt and Thaler, 1985 and Lakonishok,

Shleifer and Vishny, 1994). Jegadeesh and Titman (1993) also introduce the

existence of momentum in asset returns, which is a tendency of asset’s return

to stay on its recent relative performance. Subsequently, Fama and French

(1993) suggest a three-factor model to explain average returns by extending
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the basic CAPM to include size and book-to-market factors. In order to

capture momentum and other anomalies, Carhart (1997) proposes a

four-factor model by allowing the Fama and French three-factor model to

incorporate momentum effect. Recently, Fama and French (2015) come with

a five-factor model by including profitability and investment dynamics in

their three-factor model to explain the variations in average returns.

While risk is considered as an essential deriving force of asset returns,

there is no consistent method how to price risk and what kind of risk explain

the cross-section of asset returns. Numerous risk proxies have been proposed

by researchers to characterize the risk perception of investors. In this regard,

the behavioral based approach suggests placing more weight on loss compared

with gain to account for investors’ loss aversion in the utility function. Loss

aversion refers to the tendency of an agent to be more sensitive to loss than

gain. The notion of loss aversion plays a central role in the prospects theory of

Kahneman and Tversky (1979). They provide empirical evidence that agents

place higher weight on loss than gain of the same amount of income. Tversky

and Kahneman (1992) estimate the loss aversion coefficient of utility function

and find a value close to 2, meaning that the disutility of losing something is

twice as great as the pleasure associated with gaining it. Gul (1991) propose

axiomatic Disappointment Aversion (DA) framework that allows asymmetric

treatment of lottery outcomes where the threshold to the outcomes determined

relative to endogenous expected certainty equivalent. Hence, outcomes below

the certain equivalent treated as disappointments and receive a greater weight

in the expected utility calculation of disappointment-averse individuals. Asset

pricing studies based on these theories argues to put greater risk premium on

downside risk in the capital market equilibrium.

Asymmetric relationship of asset returns with the market across upside

and downside movements have been documented in several literatures. Ang

and Chen (2002) reported that the correlation between stocks and aggregate

market is much greater when the market moves down than it moves up.

They also find greater asymmetric correlations for value, small and past loser

firms. Similarly, Hong, Tu, and Zhou (2006) designed a model-free approach

to examine the asymmetric dependence between portfolio returns and

market. They find evidence of asymmetries for momentum and size

portfolios. Moreover, they state the economic importance of considering

asymmetries in the investment decision of investors with disappointment

2



aversion preference. Ang, Chen, and Xing (2006) calculate downside and

upside beta to characterize the sensitivity of stock returns to market

movement. They show that stocks that covary strongly with downside

market exhibit higher average returns, which implies that investors require

extra premium for holding stocks with higher downside risk. Hence, asset

pricing model with downside risk frameworks better explains the variation in

stock returns. Lettau, Maggiori, and Weber (2014) also emphasize the

importance of asymmetric pricing of upside and downside risk in a

conditional market setting. They demonstrate that the downside risk capital

asset pricing model better explains the return of multiple asset classes.

This thesis examines the cross-section of asset returns based on the risk

perception of investors. It consists of three essays on asset pricing and

downside risk. The first chapter investigates the relationship between risk

and return, and assesses whether the cross-section of asset returns better

explained using asset pricing models that characterize the risk aversion of

representative investors. The predominant asset pricing models relates the

expected return of an asset with the market risk, which is constant across

periods of market upturn and downturns. However, these models may not

better characterize the risk perception of the investors. In order to describe

investors’ perception towards risk, the behavioral based approaches suggest

asymmetric treatment of downside risk from upside gain in the market

equilibrium. I propose alternative asset pricing models that distinguish

market factor between upside and downside components. The central idea of

these models is that investors care differently between downside loss and

upside gain, and asset pricing models that distinguish downward market from

upward trend appear to characterize investors risk perception. I investigate

the return of multiple asset classes such as equities, currencies, bonds,

commodities and CDS. The efficiency of asset pricing models examined using

Fama-MacBeth regressions and GMM approaches.

The second chapter provides empirical investigation of momentum in

equity and currency markets. Numerous studies show the profitability of

momentum strategy, buying recent winner and selling recent loser assets, in

the short-run. However, given the pervasive and outstanding performance of

momentum across many markets and asset classes, it exposes to huge crash

risk. In this study, I examine the performance of momentum strategy using

an extended time span and larger cross-section of currencies and equities. It

3



allows to capture the variation in momentum across time and markets.

Furthermore, I propose a novel approach to mitigate the risk of momentum

crash. This approach is based on hedging the time-varying risk exposure of

momentum then by scaling the hedged long-short portfolio using its

forecasted semi-variance. The robustness of this risk management strategy

examined relative to the market and other strategies in the tranquil and a

period when plain momentum strategy experience worst losses. The risk

exposure of currency momentum further investigated by decomposing the

risk factor into systematic and idiosyncratic components.

The third chapter explore the existence of idiosyncratic risk premia in

the cross-section of stock returns. In the sphere of traditional asset pricing

framework, only systematic risk should be incorporated in the asset price and

entails risk premium, but the exposure to idiosyncratic risk should not be

compensated as it can be avoided in a well-diversified portfolio. This

assumption holds if investors are alike and fully-diversify their portfolios. In

reality, however, investors may not hold market portfolio for various reasons.

Failure of investors to hold market portfolio may lead them to be careful

about the firm-specific risk and require risk premium for assets with high

idiosyncratic risk. In recent years, empirical findings on the existence of

idiosyncratic risk premia in stock returns has revisited the interest of

idiosyncratic risk in asset pricing studies. In this paper, I investigate the

presence of compensation for holding assets with high idiosyncratic risk using

1000 firms traded in NYSE and NASADQ. A distinguishing feature of this

study is that it uses a conditional asset pricing models that incorporates

idiosyncratic volatility and other time-varying factors. Hence, the conditional

relationship between idiosyncratic risk and stock returns can be captured by

the association of returns with conditional market. The incremental impact

of idiosyncratic risk on asset reruns also assessed by including idiosyncratic

volatility extensions to the traditional asset pricing models. The performance

of these models evaluated using Fama-MacBeth regressions.
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1. THE CROSS-SECTION OF ASSET RETURNS

AND DOWNSIDE RISK

1.1 Introduction

Risk has been widely recognized as the driving force of asset returns.

Numerous studies proposed distinct theoretical models to elucidate the

pricing mechanisms in apparently complex financial markets. The earliest

model that gives mathematical explanation what kind of risk systematically

explain asset returns was the Capital Asset Pricing Model (CAPM) of

Sharpe (1964), Lintner (1965) and Mossin (1966). This model provides

idealized portrayal of how asset price can be estimated by quantifying risk,

and it is marked as the foundation of modern asset pricing theory. Despite

the fundamental and most influential concepts of CAPM in modern finance,

the validity and applicability of the model sparks vigorous debate since its

conception. A vast amount of debates relies on how risks measured and what

kind of factors persistently drives asset returns. This inspired a vast amount

of empirical studies to uncover new risk premia and propose alternative risk

measures to explain the variation in asset returns.

Merton (1973) introduce a multifactor Intertemporal Capital Asset

Pricing Model and Ross (1976) an Arbitrage Pricing Theory, where the

expected return of an asset is a linear function of risk factors. The classic

studies of Breeden (1979) and Hansen and Singleton (1983) show how a

consumption based asset pricing model can capture asset returns. While,

Campbell and Cochrane (2000) explain the poor performance of standard

consumption based asset pricing model relative to CAPM using a model with

external habit formation. Acharya and Pedersen (2005) also suggests a

liquidity adjusted CAPM to explain the cross-section of asset returns, where

expected return depends on liquidity risk. Prominent study by Fama and

French (1992, 1993) provide a three-factor model by extending the basic

CAPM to include size and book-to-market value to explain the patterns of

average returns. To capture momentum anomaly, Carhart (1997) augmented

a four-factor model by extending the Fama and French three-factor model to

incorporate momentum effect. More recently, Fama and French (2015)
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foreword a five-factor model by adding profitability and investment dynamics

in their three-factor model. As for the use of different risk measures, several

studies employ various risk proxies, such as downside risk using semi-variance

or downside beta, to better characterize investor’s preference.

One of the best documented positions of CAPM that are seriously

questioned by empirical evidence is the price of market risk, which is

constant across periods of market upturn and downturns. Extensive studies

on asset pricing suggest the necessity of asymmetric treatment of good and

bad market returns through distinguishing between downside and upside

betas. Ang, Chen, and Xing (2006) argue that investors who are more averse

to downside loss compared with upside gain, demand a premium to hold

assets with greater downside risk than upside gain. Because, from investors

perspective these assets are considered to be unattractive investment as they

generate lower return relative to similar assets that are equally sensitive to

the upside and downside market movements. Therefore, in a market where

investors care much about downside losses than upside gains, assets with

higher sensitivities to downward market tend to have higher average returns.

Alternative specifications based on this risk perception of investors

challenged the dominance of traditional asset pricing models.

The notion that investors’ asymmetric response to upside and downside

market movement dates back to Roy (1952) and Markowitz (1959), although

it was in 1970s asset pricing models with downside risk were introduced. Roy

(1952) argues that the main concern of rational investors is ‘safety first’, and

investors should be more sensitive to downside risk relative to upside gains.

Hence, assets that tend to do poorly in a decline markets should have an

extra premium more than assets that perform in a similar way in a rising

market. Markowitz (1959) advocates semi-variance as a measure of risk than

variance, since semi-variance provides a good proxy of downside risk instead

of upside gains. Accordingly, asset pricing models based on recognizing risk as

the deviation below a certain target rate of return has gain momentum, like

the mean-lower partial moment framework of Hogan and Warren (1974).

Behavioral based approaches suggest placing more weight on losses

compared with gains in the utility function in order to represent investors’

aversion to downside risk. In this regard, the loss aversion prospects theory

of Kahneman and Tversky (1979) and the disappointment-averse theory of

Gul (1991) provide a theoretical explanation of asymmetric attitudes toward
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upside and downside risk. The central prediction of disappointment-averse

utility function is that asymmetric attitudes towards risk cause individuals to

overweight the disutility of a potential loss relative to the positive utility

from a potential gain. This utility function places higher weights on

disappointing outcomes and suggests a greater risk premium in downside

risk.

Earlier studies found little evidence on the explanatory power of downside

risk asset pricing models on asset returns. For instance, Jahankhani (1976)

reports little improvement of Hogan and Warren (1974) mean-lower partial

moment asset pricing model relative to the traditional model in explaining

expected returns. However, he does not estimate a downside risk premium

using a portfolio arranged for downside risk analysis and the market price

of risk is not conditional on the aggregate return of the market. Bawa and

Lindenberg (1977) propose an extended form of the CAPM by replacing the

regular beta with a downside market beta that measures assets co-movements

with a declining market. In the Bawa-Lindenberg’s model, the downside risk

defined as the deviation below the benchmark return of risk-free rate. Harlow

and Rao (1989) argue that defining downside risk as the deviation of asset

return below the risk-free rate is not successful in explaining the risk premium

of risky investment.

While, recent studies provide empirical evidence on the superior

performance of downside risk asset pricing models. Ang, Chen, and Xing

(2006) provide extensive evidence on the appealing property of downside risk

to predict the asset returns. They show the superiority of downside beta

asset pricing model to explain the cross-section of stock returns than the

regular beta asset pricing model. Lettau, Maggiori, and Weber (2014) extend

the downside risk study to the case of several risky assets and report that the

price of market risk is highly conditional on downside market returns than on

upside market returns. Hence, high yield assets earn higher average returns

than low yield assets since their co-movement with the market is strongly

conditional on downside market returns than on upside market returns.

Moreover, they note that the variations of betas and risk premia in downside

risk capital asset pricing model can capture the cross-sectional return of the

underline assets. Dobrynskaya (2014) suggests downside risk as a better

measure of risk and high explanatory power of downside risk pricing models

in the estimation of currency returns.
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This study is distinct from other downside risk researches in two major

aspects. First, while several downside risk studies examined the performance

of downside risk CAPM there are little or no previous studies, to the best of

my knowledge, which empirically investigate the ability of extended downside

risk models to explain the cross-sectional variation of asset returns. Second,

numerous asset pricing studies examine the performance of asset pricing

models using a specific asset group. Therefore, this study expands the

spectrum of many of earlier downside risk studies in twofold: First, it

assesses whether downside risk is an informative measure of risk, and the

cross-sectional variation of asset returns can be captured using extended

downside risk asset pricing models that include other risk factors. Second,

this study investigates a wider range of asset classes such as equities,

currencies, bonds, commodities and CDS. Furthermore, it evaluates the

performance of asset pricing models using Fama-MacBeth regressions and

GMM-SDF approaches. Beside the theoretical contributions, this study may

have important implications in financial applications, such portfolio

optimization and risk management.

The remainder of the chapter is organized as follows. Section 1.2 presents

modeling framework of asset pricing models. Section 1.3 explains the dataset

and portfolio formulation. Section 1.4 discusses the main results. Section 1.5

presents the robustness of findings. Section 1.6 concludes.

1.2 Modeling framework

This section presents the methodological approach and estimation strategies

of asset pricing models under consideration. In order to assess whether the

variation of asset returns can be explained by the association of returns with

the market and other risk factors, the market price of risk allowed to be

conditional on upside and downside market movements. Finance literature

suggests various methods to characterize and examine the precision of risk

premium estimation in a particular asset pricing model. The beta and

stochastic discount factor (SDF) representations are the two recognized

characterizations of asset pricing models. In beta representation, the

expected return of an asset is a linear function of its factor betas, whereas in

SDF representation the price of an asset is a function of its future payoffs

discounted by the stochastic discount factor (SDF). To evaluate the fit of
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candidate models in beta representation, the most widely cross-sectional test

is the two-pass regression approach of Fama and MacBeth (1973). On the

other hand, to examine whether the test asset payoffs are correctly prices by

the candidate model in SDF representation, the generalized method of

moments (GMM) is the most applicable method.

Both beta and SDF methods are theoretically considered equivalent,

while the parameters of interest to represent the factor risk premium under

the two setups are different. The SDF representation is constructed to

estimate the parameters in the imposed SDF; conversely the parameter of

interest in beta method is to estimate the factor risk premium. Kan and

Zhou (1999) evaluate the efficiency of estimation using beta and SDF

approaches in the context of standardized single factor model, and reports

the poor performance of SDF relative to the beta approach. However,

Jagannathan and Wang (2002) and Cochrane (2005) argue that SDF method

provide asymptotically efficient estimate of risk premium as beta methods in

a non-standardized single-factor model. Lozano and Rubio (2011) evaluate

the performance of these two methods by extending to multi-factor models,

and they documented that the beta method dominate the SDF by producing

more precise estimates of risk premium. Garrett, Hyde and Lozano (2011)

argue that the choice of estimate and evaluation between the Beta and SDF

methods is a choice of efficiency versus robustness. If we are interested in

making inference, beta method provides more reliable estimates on

multifactor model estimators, whereas if we are primarily concerned in

estimating pricing errors SDF method is generally more efficient.

Extensive studies in asset pricing evaluate the precision of risk premium

and the associated pricing errors by applying either beta or SDF methods. In

this study, however, I apply beta and SDF approaches to investigate whether

the variation in expected return across assets can be explained by the

association of returns with the conditional market risk premia and other

price of risk. In this setting, I examine the efficiency of asset pricing models

using Fama-MacBeth regression and GMM approaches.
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1.2.1 Asset pricing models

1.2.1.1 Linear beta pricing models

Let rit be the vector of n asset returns in excess of risk-free rate and ft

realized value of risk factors in period t. Using the traditional

return-generating process, excess return time-series regression can be

generated as

rit = ai + β′ift + εit, t = 1, 2,. . .,T, for ∀i = 1, . . . ,N, (1.1)

Where εt is the residual or idiosyncratic risk of an asset with zero mean

and uncorrelated with the factors ft. β = cov [rt, ft] /var [ft] is the parameters

that measures the factor loading of returns with respect to a set of aggregate

risk factors. For multifactor model, the linear regression parameters β = (β1t +
⋅ ⋅ ⋅ +βKt) and the factor loadings ft = (f1t + ⋅ ⋅ ⋅ + fKt). N and T are the number

of assets and time-series observations, respectively.

Let µ be the mean of the factors f t. A beta specification pricing model

suggests that the excess return of an asset is a function of its beta with

respect to factors loading. The standard asset pricing model under the beta

representation given by

E (ri) = β′iλ i = 1, 2,. . .,N, (1.2)

Where E (ri) is expected excess return of asset i and λ is the vector of

factor risk premia.

According to asset pricing theory, investors are assumed to be risk averse

and require premium for holding risky assets. The general idea behind this

premise is that investors require higher expected return for investment that

demonstrates higher risk. The predominant CAPM asserts that the expected

return of an asset is a linear function of its market risk computed by beta.

A basic representation of this relationship can be exogenously specified in the

following cross-sectional regression

E (ri) = βm
i λ

m
i (1.3)
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Where βm
i = cov(rit, rmt)/var(rmt) denotes the market beta coefficient and rmt

is the market excess return. The assumption of positive risk-return trade-

off for risky portfolio holds when the market excess return or beta coefficient

is positive. If the market return is less than risk-free rate, a negative risk

premium that is proportional to beta can be inferred, although the test uses

realized return instead of expected return.

Fama and French (1992, 1993), elucidate the failure of static CAPM

to explain asset returns, and incorporate other variables the model that are

supposed to capture the variations in returns. The Fama and French (1993)

three-factor model defines the expected return of asset as a function of market

excess return, size and value factors. These factors are denoted by m for

market risk factor, smb (‘small minus big’) for the size factor and hml (‘high

minus low’) for the value or book-to-market factor.

Then, the beta representation of expected return under FF three-factor

model can be specified as

E (ri) = βm
i λ

m
i + βsmb

i λsmb
i + βhml

i λhml
i (1.4)

The sensitivity of asset returns to market risk, size and value factors

are denoted by the beta coefficients of βm
it , βsmb

it and βhml
it , respectively. λmi ,

λsmb
i and λhml

i indicates the respective risk premium for market, size and value

factors.

Alternative specification, which is a reduced form of basic asset pricing

models and embeds the aforementioned characteristic factors, is the Carhart

factor model. The Carhart model was proposed by Carhart (1997) by adding

the momentum factor in the FF three-factor model. The expected mean excess

return in Carhart model expressed as

E (ri) = βm
i λ

m
i + βsmb

i λsmb
i + βhml

i λhml
i + βwml

i λwml
i (1.5)

Where wml(‘winner minus loser’) is a momentum factor.

Recent study by Fama and French (2015) argue that a five-factor model,

by including profitability and investment dynamics in the three-factor model

of Fama and French (FF hereafter), better explain the variation in average

returns. This model exogenously express expected average return using the
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following cross-sectional regression

E (ri) = βm
i λ

m
i + βsmb

i λsmb
i + βhml

i λhml
i + βrmw

i λrmw
i + βcma

i λcma
i (1.6)

The difference between the returns on robust and week profitability

portfolios denoted by rmw (‘robust minus week’) and the difference between

the returns on assets of conservative (small) and aggressive (high investment)

firms represented by cma (‘conservative minus aggressive’) factor.

The traditional asset pricing models relates the expected excess return

of an asset to market risk, which is constant across periods of market upturn

and downturns. By relaxing this assumption, Ang, Chen, and Xing (2006)

and Lettau, Maggiori, and Weber (2014) augmented the downside risk CAPM

that allows a variation in a market factor conditional on upside and downside

market movement.

Ang, Chen, and Xing (2006) propose a downside risk CAPM based on

conditional association of returns on market returns. The expected average

return in this model specified as

E (ri) = βm+
i λm+

i + βm−
i λm−

i (1.7)

βm+
i = cov(rit, rmt∣rmt ≥ rm)

var(rmt∣rmt ≥ rm) , βm−
i = cov(rit, rmt∣rmt < rm)

var(rmt∣rmt < rm)

Where βm+
i and βm−

i are upside and downside betas defined by an

exogenous threshold for the market excess return, which measures asset’s

co-movement with the market conditional on the market excess return being

above and below a threshold. λm+
i and λm−

i is the upside and downside

market prices of risk, respectively. Ang, Chen, and Xing (2006) use the

average market return, rm, as a threshold and define the downside event

when the market rerun fall below its mean.

To assess whether asymmetric treatment of upside and downside

component of market return plays an important role in the estimation of

asset returns, I propose a new version of downside asset pricing models that

incorporates market and other risk factors. The first specification includes

size and value factors in Equation (1.7). This specification can be written as

E (ri) = βm+
i λm+

i + βm−
i λm−

i + βsmb
i λsmb

i + βhml
i λhml

i (1.8)
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The second specification is by adding momentum factor in Equation

(1.8), or it can be stated as a modified version of Carhart (1997) model that

distinguishes between upside and downside market return

E (ri) = βm+
i λm+

i + βm−
i λm−

i + βsmb
i λsmb

i + βhml
i λhml

i + βwml
i λwml

i (1.9)

The third specification is based on FF five-factor model that allows

asymmetric treatment of market risk. This model can be specified as

E (ri) = βm+
i λm+

i +βm−
i λm−

i +βsmb
i λsmb

i +βhml
i λhml

i +βrmw
i λrmw

i +βcma
i λcma

i (1.10)

Beside the above specifications, I also derive extended versions of

Lettau, Maggiori, and Weber (2014) downside risk asset pricing model.

These specifications incorporate other factor attributes in the model and

distinguish between unconditional and downside components of market.

Lettau, Maggiori, and Weber (2014) propose a downside risk capital asset

pricing model (D-CAPM) in a framework that allows a variation in a market

return conditional on market movements. This model can be specified as

E (ri) = βm
i λ

m
i + (βm−

i − βm
i )λm−

i (1.11)

βm
i = cov(ri, rm)

var(rm) , βm−
i = cov(ri, rmt∣rmt < µrm − σrm)

var(rmt∣rmt < µrm − σrm)

Where βm
i and βm−

i are the unconditional and downside beta. The

downside beta defined by an exogenous threshold for the market excess

return, which measures asset’s co-movement with the market conditional on

the market excess return being more or less than one standard deviation

below its sample mean. Downside market beta captures the notion of

asymmetric exposures to market risk across downside market moves. µrm and

σrm are sample average and standard deviation of market excess return,

respectively. λmi and λm−
i are unconditional and downside market price of

risks. In the absence of difference between downside and unconditional

market risk, λ− = 0 or if the downside beta is equals to the CAPM beta,

βm−
i = βm

i then the downside risk capital asset pricing model reduces to

CAPM. Ang, Chen, and Xing (2006) defines the downside state cut-off,

slightly different, as the market return become below its mean.
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The forth asset pricing model which I propose includes size and book-

to-market ratio in Equation (1.11). This model can be taken as a modified

version of FF three-factor model that distinguish between unconditional and

downside market risk. The expected average return in this model estimated

as

E (ri) = βm
i λ

m
i + (βm−

i − βm
i )λm−

i + βsmb
i λsmb

i + βhml
i λhml

i (1.12)

The fifth specification is by adding momentum dynamics in Equation

(1.12). It can also be identified as a modified version of the so called Carhart

four-factor model that allows asymmetric treatment between unconditional

and conditional market risk. The beta representation of this model written as

E (ri) = βm
i λ

m
i + (βm−

i − βm
i )λm−

i + βsmb
i λsmb

i + βhml
i λhml

i + βwml
i λwml

i (1.13)

The last asset pricing model which I augmented is a modified version

of the FF five-factor model. Like the previous specifications, it distinguishes

between unconditional and conditional market excess returns. The expected

average return of an asset can be represented in this specification as

E (ri) = βm
i λ

m
i +(βm−

i − βm
i )λm−

i +βsmb
i λsmb

i +βhml
i λhml

i +βrmw
i λrmw

i +βcma
i λcma

i

(1.14)

These proposed models emphasize the roles of downside market risk

exposure in asset pricing. In this setting, I examine whether distinguishing

between upside and downside portion of market risk improves estimation

performance of asset pricing models.

1.2.1.2 SDF models

The SDF approach provides a general framework for pricing of securities

based on conditional expectation of their discounted payoffs. This method

has become popular in finance literatures. As discussed by Campbell (2000)

and Cochrane (2005), SDF method is adequately general and flexible that

can be used to analysis linear and non-linear asset pricing models by

introducing explicit assumptions on pricing kernel and on the payoff

distributions for various assets. A general framework of asset pricing with
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SDF representation can be written as

pt = Et [mt+1xt+1] (1.15)

mt+1 = f(data, parameters)

Where pt is the current price of an asset, Et is the conditional

expectation operator conditioning on information up to current time t, mt+1
is the stochastic discount factor (SDF) or the pricing kernel and xt+1 is the

random payoff on an asset at time t + 1 or tomorrow. The payoff includes

asset’s price, dividend, interest or other payments received at time t + 1. This

pricing equation illustrates that today’s market value of an asset, under a

notion of uncertainty, is the expected payoffs tomorrow multiplied by

discount factor in light of the probability of each state of nature. In the

absences of uncertainty or for risk-neutral investors, the discount factor

become constant to covert the expected payoffs into today’s value. Campbell

(2000) describes the conditional expectation in equation (1.15) as the

probability weighted average. Thus, in a discrete-state setting, the price of

an asset can be understood as the probability weighted average of the

payoffs, multiplied by the ratio of state price to probability of each state.

If pt is nonzero in equation (1.15), we can divide the payoff xt+1 by pt to

obtain a gross return (R). We can divide through by pt and pass though the

conditional expectation operator to make the derivation more convenient and

obtain

1 = Et [mt+1Ri,t+1] (1.16)

Where Ri, t+1 ≡ xt+1

pt
is the gross return on asset i. Here, we can think of

return as a payoff that has a price equal to one, if we pay one dollar today how

much dollar we get tomorrow. If we work with a zero-cost excess return(ri,t+1 ≡
Ri,t+1 −Rf,t+1), the fundamental pricing equation can be expressed as

0 = Et [mt+1ri,t+1] (1.17)

We can derive a linear factor model from SDF representation as m = b′f .

Since we want a connection with a beta representation based on covariance, it

is convenient to hold factors mean constant and for simplicity let us remove

the subscript and write m = a− b′f ∼ m = a− b′E[f]+ b′(f-E[f]). Where b and f
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are K-dimensional vectors, with E[f ]=0 and hence E [m] = a . Since we work

with excess returns, 0 = E [mri], that is the mean of m is not identified and

we can normalize a aribitrarly. As Cochrane (2005) shown we can normalize

by setting E [m] = 1, which implies that

m = 1 − b(f −E[f])′ (1.18)

This representation suggests that SDF is a linear function of the de-

meaned factors, and is supported by Kan and Robotti (2008).

Using the definition of covariance and equation (1.18), the expected

excess returns of asset i

0 = E [mri]

E [ri] = −Cov [mri] (1.19)

= Cov [rif ′] b

= −Cov [rif ′] (V ar [f] )−1V ar [f] b

= βi′λ

Where βi = (V ar [f] )−1Cov [fri] are the regression coefficients of returns

on factors that measures quantity of risk for an asset i relative to the factors

and λ = V ar [f] b are factor risk prices.

1.2.2 Evaluation of asset pricing models

There are many finance literatures on the econometric evaluation of beta and

SDF asset pricing models. The traditional or beta method of representing

linear factor pricing model relies on regression of returns on factor, and assess

whether the variation on returns can be captured on the parameters of the

regression model. Another approach that becomes common in recent empirical

studies is specifying asset pricing models in SDF framework and estimating

these models using GMM method. As discussed by Cochrane (2005), these

techniques quest to answer how to test asset pricing models. In this sub-

section, I discuss how I use Fama-MacBeth and GMM approaches to evaluate

linear asset pricing models using their beta as well as SDF representation.
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1.2.2.1 Fama-MacBeth method

One of the historically important, simple to implement and still widely used

methodology to evaluate asset pricing models is the two stage regression

approach of Fama and MacBeth (1973). In this approach, the efficiency of

the model to predict the cross-section of asset returns examined by using two

stages. In the first stage, the beta of each factor with the corresponding time

period t are estimated using a time-series regression as shown below

rit = ai + β′ift + εit, t = 1, 2,. . .,T, for ∀i = 1, . . . ,N, (1.20)

Where rit is a vector of n asset returns in excess of risk-free rate at time

t and ft is realized value of risk factors in period t. If the exposure to risk

factors capture all variations in expected returns, the intercept in the above

regression become zero.

The second stage is to estimate the ex-post risk premia and asset returns

using ex-ante betas as explanatory variable in the cross-sectional regression.

E (ri) = β̂′iλ + αit (1.21)

Where β is the right-hand variable, λ the regression coefficient that

measures reward for bearing risk and the error term αit is the pricing errors.

The first stage of Ang, Chen, and Xing (2006) downside risk capital asset

pricing model includes two regression equations to estimate the market beta

factor for each portfolio using realized return for the upstate and downstate

observations.

rit = a+ + β+it rmt + ε+it, Whenever rmt ≥ rm (1.22)

rit = a− + β−it rmt + ε−it, Whenever rmt < rm (1.23)

Where β+i and β−i are upside and downside beta which measures asset’s

co-movement with the market conditional on the market excess return being

above and below zero.

These two regressions provide a proxy for the upside and downside betas,

β̂+it and β̂−it , which are used as explanatory variable in the second stage for
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estimating upside and downside risk premia, λ+ and λ−. The resulting second

stage cross-sectional regression equation is

E (ri) = β̂m+
i λm+

i + β̂m−
i λm−

i (1.24)

Similarly, the first step regression to estimate beta for each factor in

Lettau, Maggiori, and Weber (2014) downside risk capital asset pricing model

is using the following two time-series regressions.

rit = ai + βm
i rmt + εit (1.25)

rit = a− + β−it rmt + ε−it, Whenever rmt ≤ µrm − σrm (1.26)

Then, the second stage regression specified as

E (ri) = β̂m
i λ

m
i + (β̂m−

i − β̂m
i )λm−

i (1.27)

As shown in Equation (1.21) the cross-sectional regression of average

asset return on estimated beta can be expressed as

ri = β̂′iλ + αit, for ∀i = 1, 2, . . . ,N, (1.28)

Where ri = 1
T ∑

T
t=1 ri is the arithmetic average return of excess returns,

β̂′i is a vector of estimated betas obtained from the first stage regression and

are used as explanatory variable in the second stage cross-sectional regression.

The error term αit are the pricing errors.

Following Burnside (2011) the model’s fit evaluated using R2 statistics

R2 = 1 − (r − β̂λ̂)
′

(r − β̂λ̂)
(r − r̈)′(r − r̈)

(1.29)

Where r̈ = 1
T ∑

T
t=1 ri is the arithmetic average return of mean excess

returns in the data.

Furthermore, models are tested on the basis of pricing errors. According

to Cochrane (2005), factor risk premia λ and pricing error αit are estimate
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using the average value of cross-sectional regression estimates

λ̂ = 1

T

T

∑
t=1
λ̂t, α̂i =

1

T

T

∑
t=1
α̂it (1.30)

Fama-MacBeth suggests computing the standard errors for these

estimates using the standard deviation of the cross-sectional regression

estimates

σ2 (λ̂) = 1

T 2

T

∑
t=1

(λ̂t − λ̂)
2
, σ2 (α̂i) =

1

T 2

T

∑
t=1

(α̂it − α̂i)2 (1.31)

Let α̂ denotes as a vector of pricing errors across assets, and α̂t stacks

all α̂it. The covariance matrix of sampling error can be compute as

Cov (α̂) = 1

T 2

T

∑
t=1

(α̂t − α̂)(α̂t − α̂)
′

; where α̂ = 1

T

T

∑
t=1
α̂t (1.32)

Given its theoretical intuitive appeal, we can evaluate asset pricing model

by testing whether the pricing errors are jointly zero or not by

α̂
′

Cov (α̂)−1α̂ ∼ χ2
N−K (1.33)

Fama-MacBeth two stage regression suppose that returns are

independent and normally distributed over time. In the presence of serial

correlation or heteroskedasticity conditional on the factor component of

returns, the standard error of estimated parameters and the associated asset

pricing test may not be valid. To mitigate these problems, Shanken (1992)

explains how to adjust the standard errors if the return exhibits serial

correlation in the factors, whereas Jagannathan and Wang (1998) present an

asymptotic theory to deal with conditional heteroskedasticity.

1.2.2.2 GMM method

The GMM approach, which was developed by Hansen (1982), become a reliable

and more robust method on empirical researches in asset pricing since it allows

serial correlation, conditional heteroskedasticity and non-normal distribution

in the return residuals and factors. It provides an elegant way to deal with
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the problems in two stage regression method. Cochrane (2005) and Burnside

(2011) describe the econometric techniques how to apply GMM when testing

asset pricing models. The sample moment conditions can be expressed as

E [mri] = 0, when suppressing time scripts. The moment restrictions of a

model with constant can be written as

E (rit − ai − β
′

i ft) = 0 (1.34)

E[(rit − ai − β
′

i ft) f
′

t] = 0 (1.35)

E (rit − δ − β
′

i λ) = 0 (1.36)

Where a and β are a vector of constants1 and factor loading for N test

assets in the time-series regression that are exactly identified in the top two

moment conditions. λ is factor risk prices that is identified by the third group

of moment, the asset pricing model, in the GMM procedure.

The last momentum restriction of a model in the absence of constant as

E (rit − β
′

i λ) = 0 (1.37)

Estimation of asset pricing model in the GMM method can be done using

the following moment conditions:

E {rt [1 − (ft −E[f])
′

b]} = 0 (1.38)

E (ft −E[f]) = 0 (1.39)

The moment conditional which allows pricing error across assets can be

written as

E {rt [1 − (ft −E[f])
′

b] − ϕ} = 0 (1.40)

When identity matrix used to weight the moment, the GMM estimate

results the so called first stage estimate, where the pricing errors are identical

to the second stage regression in Fama-MacBeth method. The first stage

estimate assumes no serial correlation and the regression errors are

independent of right-hand explanatory variables. Hence, to produce

1The intercept a is not necessarily equal to the pricing error α in the cross-sectional
regression.
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equivalent result with Fama-MacBeth estimates, I use first-stage estimate of

GMM. To mitigate the possibility of serial correlation in errors terms and

draw more accurate inference from estimated parameters, the GMM errors

are constructed using VAR heteroskedasticity and autocorrelation consistent

(HAC) or VARHAC procedure of Haan and Levin (2000). Estimation of

asset pricing models are following Burnside (2011).Cochrane (2005) also

presents detail procedure on how to apply Fama-MacBeth and GMM

methods to evaluate asset pricing models.

1.3 Data

One of the distinguishing features of this study from previous researches is

that it investigates multiple asset classes, such as equities, currencies, bonds,

commodities and CDS. Furthermore, it examines the robustness of results to

a combination of broad range of asset categories.

For equities, I examine the cross section of equity returns using 25 value-

weighted equity portfolios formed on size and book-to-market value. These

portfolios are constructed as an intersection of five portfolios formed on size

and five portfolios formed on the ratio of book-to-market equity. In addition,

I test 6 value-weighted equity portfolios formed on size and momentum, which

is constructed as an intersection of 2 portfolios formed on size and 3 portfolios

formed on prior returns. All these equity portfolios include stocks listed in

NYSE, AMEX and NASDAQ. The data are obtained from Fama and French

data library2 and covers the sample period from January 1975 to May 2016.

As for currency, I use spot and one month forward exchange rate

against the US dollar to construct bilateral foreign currency excess-returns

for a sample of 38 countries: Austria, Belgium, Canada, Chile, China,

Colombia, Czech Republic, Denmark, Egypt, Finland, France, Germany,

Greece, Hong Kong, Hungary, India, Indonesia, Israel, Italy, Japan, Kuwait,

Mexico, Norway, Philippines, Poland, Portugal, Qatar, Russia, Saudi Arabia,

Singapore, South Africa, Spain, Sweden, Switzerland, Taiwan, Thailand,

Turkey and United Arab Emirates. An increase in the foreign exchange rate

means a depreciation of the respective currency against the US dollar; the

opposite is also true when foreign exchange rate decreases. The data is

monthly and cover the period from March 1997 to May 2016. It should be

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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noted that the availability of data for some of these currencies varies over the

course of the sample, for instance forward exchange rate are unavailable for

some currencies starting from 1997. Thus, I exclude the time period if there

is partly exchange rate data and only keep the series both spot and forward

exchange rates are available. All data are collected from WM/Reuters and

Barclays International Bank (BIB) via Datastream.

Instead of assessing individual currency excess returns, I form different

sets of sorted currency portfolios. Following Lustig and Verdelhan (2007) and

Burnside (2011) I construct 10 equally weighted portfolios composed of

currencies sorted on the basis of their respective forward discount, which is

equivalent to sorting on interest rate differentials relative to the US dollar.

Currencies are ranked from small to large forward discount and the portfolios

re-balance at the end of each month. Portfolio 1 contains those currencies

with the smallest forward discounts (the lowest interest rate); the next

portfolio 2 composed of the next smallest forward discount basket of

currencies, and so on until portfolio 10 which consists of currencies with the

largest forward discount (the highest interest rate).

For commodities, I use a set of 24 commodity future portfolios composed

of energy products, agricultural crops, live stocks and metals for the period

from February 2002 to September 2012. As for the cross-section of US bonds

I use ten government bond portfolios sorted by maturity and ten corporate

bond portfolios sorted on yield spreads in the same class from January 1975

to December 2012. In order to reduce commonalities and the sensitivity of my

findings to the choice of test asset, I also examine 20 credit default swaps (CDS)

portfolios sorted by spread using 5-year contracts for the period from February

2001 to December 2012. All commodities, US bonds and CDS portfolios are

obtained from He, Kelly, and Manela (2017)3.

1.4 Empirical results

This section presents the result of asset pricing test for multiple asset

categories. Before proceeding to the estimation of asset pricing models, I

carry out a simple investigation of candidate factor variables. Table 1.1

reports the descriptive statistics of factor portfolios namely, excess returns on

the market (MKT), SML (‘small minus big’), HML (‘high minus low’), WML

3http://apps.olin.wustl.edu/faculty/manela/data.html
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(‘winner minus loser’), RMW (‘robust minus week’) and CAM (‘conservative

minus aggressive’). These variables represent market, size, value, momentum,

profitability and investment factors, respectively. Excess returns on market

are computed as the market return minus one month government Treasury

bill rate. The result of descriptive statistics shows that market excess return

and momentum factors have higher mean return with the corresponding

higher standard deviations. Conversely, size and investment factors have

lower mean returns. The Sharpe ratio, which measures how much return an

asset yields for each unit of volatility, varies between 0.15 and -0.05 on

market excess return and investment factor, respectively. Beside the market,

momentum factor achieved a positive Sharpe ratio of 0.05 when others have a

negative mean return after adjusting for volatility. The Pearson correlation

result shows that market factor positively correlated with size, and negatively

with value, momentum, profitability and investment factors. High correlation

found between value and investment, and low correlation between momentum

and investment factors.

Table 1.1: Descriptive statistics of factor portfolios

Correlation

Variable Mean Std.dev Sharpe MKT SML HML WML RMW CMA

MKT 1.06 4.47 0.15 1

SML 0.27 2.97 -0.04 0.24 1

HML 0.32 2.89 -0.02 -0.25 -0.10 1

WML 0.62 4.42 0.05 -0.11 0.04 -0.22 1

RMW 0.31 2.36 -0.03 -0.30 -0.41 0.20 0.11 1

CMA 0.29 1.95 -0.05 -0.37 -0.06 0.68 0.00 0.10 1

Asset pricing model need to correctly capture the variation in betas and

risk premia to explain the cross-section of returns. The CAPM argues the

existence of interdependence between mean return and market beta. It claims

that assets which strongly covary with the market tend to have high average

returns. Hence, a systematic pattern should be demonstrated between the

return and market beta. Figure 1.1 depicts the relationship between risk and

return using the mean excess return and estimated betas from equity and

bond portfolios. Beside the regular beta β, I compute upside and downside

betas, β+, β−, following Ang, Chen, and Xing (2006) to explore the linkage

between average return and market risk conditional on market rise and decline.

A relative downside beta (β− − β) also computed to examine the difference

between downstate and unconditional beta.
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The left top panel of Figure 1.1 shows asset’s mean excess return against

regular beta. There is no consistent pattern between regular beta and mean

excess returns across assets. This implies that a change in mean excess return

is less associated with regular beta, in contrast with the CAPM premise.

Figure 1.1: Risk versus returns: equities and bonds

The figure shows OLS estimate of realized mean excess returns versus
betas to illustrate the risk-return relationship for equity and bond
portfolios. β denotes the CAPM beta, β+ upside betas, β− downside
betas and (β

−

− β) are relative downside betas.

To examine whether distinguishing beta between market upturn and

downturn better explain asset returns, I compute upside and downside betas

for each portfolio. The top right panel of Figure 1.1 plots mean excess return

of each portfolio against upside beta. It is evident that using upside beta as a

measure of risk does not improve the relationship between market risk and

average returns. I plot the relationship between mean excess return and

downside beta in the bottom left panel of Figure 1.1. The result exhibits a

slight improvement in the risk and return relationship of equity portfolios.

The bottom right panels of Figure 1.1 illustrate the risk-return pattern by

depicting the mean excess return against relative downside beta(β− − β),
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which measures additional impact of downside beta over regular beta. The

plot prevails that the link between average return and relative downside beta

is negative. This implies an increase in average return is associated with a

contemporaneous decrease in relative downside beta.

Figure 1.2: Risk versus returns: currencies, commodities and CDS

The figure shows OLS estimate of realized mean excess returns versus
betas to illustrate the risk-return relationship for currency, commodity
and CDS portfolios. β denotes the CAPM beta, β+ upside betas and β−

downside betas and β− − β are relative downside betas.

Additionally, I investigate the relationship between mean excess return

and market beta using currency, commodity and CDS portfolios, and the

results are shown in Figure 1.2. The top left panel of Figure 1.2 shows the

absence of clear relationship between average returns and regular beta. This

confirms the failure of CAPM to explain asset returns as shown in Figure 1.1.

Similarly, the top right panel of Figure 1.2, which depicts the relationship

between average return and upside beta, reveals that average excess returns

are not meaningfully related with upside beta. While, this finding infers the

irrelevance of upside beta to explain asset returns, it cannot support the
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evidence of failure of CAPM beta to price asset reruns. Because, portfolios

that have higher regular beta also prevails higher upside beta.

I plot asset’s average return against downside beta in the bottom left

panel of Figure 1.2. A slight positive relation is visible between downside

beta and average commodity reruns, which implies that portfolios with higher

exposure to downside beta tend to have higher average returns. As for currency

and CDS portfolios, association of returns with the market conditional on

downstate does not alter the dynamics. The right panel in the bottom row of

Figure 1.2 depicts mean excess returns versus relative downside beta. It shows

that relative downside beta decreases with the increase in average returns of

most portfolios. The results in Figure 1.1 and 1.2 demonstrate that downside

beta better capture average return of assets than regular or upside betas.

Next, empirical estimation of asset pricing models are performed for

several test assets namely, equity, currency, bond, commodity and CDS

portfolios.

1.4.1 Equity portfolios

My investigation of risk premia begins with presenting the estimation result

of asset pricing models. Table 1.2 reports the test results of asset pricing

models based on 25 equity portfolios sorted on size and book-to-market ratio.

To make model comparisons easy, I present all models under consideration

in one table. The statistical significance of coefficients and pricing errors are

evaluated using standard errors computed by applying VARHAC procedure.

As a rule of thumb, if the absolute value of a coefficient or pricing errors that

is twice as large as standard error considered as statistically significant at 5%

level.

In evaluating model fit, it becomes more meaningful comparing asset

pricing models that have the same information in addition to comparing asset

pricing models in a similar category. For instance, comparing among CAPM,

downside risk CAPM of Ang, Chen, and Xing (2006) and the downside risk

CAPM of Lettau, Maggiori, and Weber (2014). Even though, both Ang, Chen,

and Xing (2006) and Lettau, Maggiori, and Weber (2014) downside risk CAPM

have two factors, the only information require to create these factors is market

return. Moreover, in the absence of agent’s disappointment or risk aversion,

the CAPM become a restrictive version of the downside risk capital asset
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Table 1.2: Estimation of linear factor models: 25 equity portfolios

CAPM FF3F CHRT FF5F ACX SpecI SpecII SpecIII LMW SpecIV SpecV SpecVI

λ̂m 0.82 0.64 0.76 0.61 1.87 -0.75 0.70 0.01
(0.21) (0.20) (0.27) (0.23) (0.96) (0.76) (0.22) (0.66)

λ̂m− 1.09 -1.31 -0.48 -0.58
(0.83) (0.65) (1.27) (0.53)

λ̂m+ -0.19 1.78 1.28 1.17
(0.44) (0.56) (0.87) (0.38)

λ̂m− 0.94 -1.20 -0.56 -0.59
(0.46) (0.58) (0.88) (0.38)

λ̂smb
0.28 0.26 0.35 0.34 0.31 0.36 0.34 0.29 0.37

(0.13) (0.17) (0.13) (0.15) (0.16) (0.13) (0.16) (0.16) (0.15)

λ̂hml
0.39 0.39 0.29 0.37 0.38 0.31 0.39 0.40 0.31

(0.14) (0.28) (0.17) (0.18) (0.28) (0.19) (0.14) (0.14) (0.14)

λ̂mom
3.54 2.70 3.01

(0.91) (1.06) (1.05)

λ̂rmw
0.32 0.25 0.30

(0.23) (0.25) (0.25)

λ̂cma
0.26 0.30 0.30

(0.23) (0.24) (0.22)
R2 -0.60 0.39 0.70 0.59 -0.47 0.56 0.78 0.63 -0.51 0.49 0.74 0.61
MAE 0.19 0.12 0.08 0.10 0.17 0.11 0.07 0.10 0.18 0.12 0.08 0.10

χ2-test 101.70 90.13 34.46 75.79 79.75 46.29 29.73 61.90 73.09 55.30 27.11 56.62
(0.00) (0.00) (0.03) (0.00) (0.00) (0.00) (0.07) (0.00) (0.00) (0.00) (0.13) (0.00)

The table reports risk premia estimate of asset pricing models. Column 1 to 4 presents
the result of CAPM, the FF three-factor model, the Carhart model(CHRT) and the FF
five-factor model. Column 5 to 8 shows the downside risk CAPM of Ang, Chen, and Xing
(2006, ACX) and extended specifications(Spec). Columns 9 to 12 presents estimation results
for the downside risk CAPM of Lettau, Maggiori, and Weber (2014, LMW) and extended
asset pricing models that incorporate other risk factors. The test assets are 25 Fama-French
equity portfolios sorted by size and book-to-market value. Asset pricing models from CAPM
to specification three are estimated using GMM approach with identity weighting matrix.
Following Lettau, Maggiori, and Weber (2014) I use Fama-MacBeth approach to estimate
LMW and extended specifications. The table also reports R2 statistics along with the mean
absolute pricing error (MAE). In terms of asset pricing error, second stage Fama-MacBeth
and first stage GMM approaches produce equivalent results. VARHAC standard errors are in
parentheses at 5 percent significance level. The χ2-test statistics are with the null hypothesis
that the pricing errors are jointly zero. The p-values for χ2-test are in parenthesis.

pricing models. Likewise, FF three-factor model has to be compared with

specification I and specification IV, and Carhart model with Specification II

and Specification V, beside overall model’s comparison.

The left section of Table 1.2 shows the estimation results of conventional

asset pricing models. The first model is the CAPM. While, the market risk

premia is statistically significant, the R2 statistics of the model is negative

(-60%) and the mean absolute pricing error is quite substantial, that is 0.19%

per month. Moreover, the χ2-test rejects the null hypothesis that the pricing

errors are jointly zero. This result illustrates the failure of CAPM to capture

the returns of 25 equity portfolios sorted by size and book-to-market ratio,

which is in line with the previous studies. The FF three-factor model performs
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relatively well with significant factor price of risks, albeit the R2 value is small

and the pricing error is still large.

The Carhar model which includes momentum factor better explains the

return of 25 equity portfolios. The R2 value increase to 70%, the MAE fall to

0.08%. Moreover, the performance of FF five-factor model is relatively good

compared to CAPM and FF three-factor models. It provides modest fit with

R2 value of 60% and the mean absolute pricing error of 0.1%. However, The

χ2-test rejects the null of all four models at 5% level of significance, which

indicates that the pricing errors of these models are statistically different from

zero.

The next section of Table 1.2 shows estimation result of Ang, Chen,

and Xing (2006, ACX) downside risk asset pricing model and extended

specifications. ACX downside risk model shows a negative R2 estimate of

-46%, hence the model has no explanatory power of equity returns.

Asymmetric treatment of upside and downside market risk does not bring

significant improvement to the CAPM. The model is also rejected by the

χ2-test.

As can be seen from the table, the first specification constructed by

including size and value factors in ACX downside risk model. This model

amends the FF three-factor model to allow for asymmetries across upside and

downside markets. Even though, Each factor prices of risk are statistically

significant and the R2 increase to 55%, the mean absolute pricing error barely

decreases and the test of pricing errors rejects the null hypothesis. The second

specification, which incorporates momentum factor, explains around 78% of

the cross-sectional variation of returns. The MAE is 0.07%, which is fairly

low. Moreover, the χ2-test of this model fails to reject the null hypothesis

that pricing errors are jointly zero. The third specification in this category

can be interpreted as the modified version of FF five-factor model that splits

market factor into upside and downside components. This model improves the

explanatory power of FF five-factor model, while the pricing error test rejects

the model.

The result of Lettau, Maggiori, and Weber (2014, LMW) downside risk

model and extended specifications are displayed in the right section of Table

1.2. The LMW model basically does not explain the variation in equity

returns, as indicated by a negative R2(-51%), large MAE and statistically
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Table 1.3: Estimation of linear factor models: 6 equity portfolios

CAPM FF3F CHRT FF5F ACX SpecI SpecII SpecIII LMW SpecIV SpecV SpecVI

λ̂m 0.73 0.79 0.71 0.50 3.48 5.17 0.97 27.42
(0.21) (0.21) (0.21) (0.41) (1.76) (3.50) (0.42) (143.90)

λ̂m− 2.74 4.24 4.84 25.75
(1.70) (3.34) (6.86) (137.73)

λ̂m+ -1.02 -1.62 2.40 11.49
(0.82) (1.52) (1.46) (39.99)

λ̂m− 1.70 2.45 -1.79 -10.90
(0.79) (1.59) (1.49) (39.79)

λ̂smb
0.29 0.27 0.60 0.17 0.39 1.13 0.11 0.08 -1.06

(0.17) (0.14) (0.79) (0.17) (0.18) (2.19) (0.21) (0.37) (9.13)

λ̂hml
-1.10 0.54 -2.00 0.10 0.81 0.82 0.11 0.04 -1.44
(0.42) (0.29) (2.38) (0.58) (0.44) (12.53) (0.68) (0.93) (13.13)

λ̂mom
0.60 0.60 0.60

(0.20) (0.34) (0.23)

λ̂rmw
2.99 -2.35 1.55

(2.48) (19.80) (17.36)

λ̂cma
-3.13 10.82 -12.16
(3.01) (49.37) (59.13)

R2 -0.13 0.30 0.83 0.92 0.54 0.73 0.87 1.00 0.61 0.86 0.86 1.00
MAE 0.28 0.20 0.11 0.08 0.16 0.15 0.10 0.00 0.15 0.11 0.11 0.00

χ2-test 49.16 35.14 18.10 1.15 16.43 9.31 6.05 899.46 10.36 2.70 1.72 5215.79
(0.00) (0.00) (0.00) (0.28) (0.00) (0.01) (0.01) (0.00) (0.04) (0.26) (0.19) (0.00)

The table reports risk premia estimate of asset pricing models. Column 1 to 4 presents the
result of CAPM, the FF three-factor model, the Carhart model(CHRT) and the FF five-
factor model. Column 5 to 8 shows the downside risk CAPM of Ang, Chen, and Xing (2006,
ACX) and extended specifications(Spec). Columns 9 to 12 presents estimation results for
the downside risk CAPM of Lettau, Maggiori, and Weber (2014, LMW) and extended asset
pricing models that incorporate other risk factors. The test assets are 6 Fama-French equity
portfolios sorted by size and momentum. Asset pricing models from CAPM to specification
three are estimated using GMM approach with identity weighting matrix. Following Lettau,
Maggiori, and Weber (2014) I use Fama-MacBeth approach to estimate LMW and extended
specifications. The table also reports R2 statistics along with the mean absolute pricing
error (MAE). In terms of asset pricing error, second stage Fama-MacBeth and first stage
GMM approaches produce equivalent results. VARHAC standard errors are in parentheses
at 5 percent significance level. The χ2-test statistics are with the null hypothesis that the
pricing errors are jointly zero. The p-values for χ2-test are in parenthesis.

insignificant factor prices of risk. The next augmented model that include

size and value factors, provides a substantial improvement to the LMW

downside risk CAPM and FF three-factor model. The goodness-of-fit is

relatively modest (49%). The result in the fifth specification is substantially

better when momentum factor included. The R2 value increase to 74% and

the MAE fall to 0.08%, moreover the model passes the χ2-test, that the

pricing errors are not statistically different from zero. The last pricing model

in Table 1.2 transforms the FF five-factor model to treat market upturn and

downturn separately. The estimation result reveals that this specification has

a similar fit with the FF five-factor model.

Table 1.3 presents estimation result of asset pricing models for 6 equity
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portfolios sorted on size and momentum. The CAPM performs badly to

explain the cross-section of equity returns. FF three-factor model also

provide a relatively small fit to explain the variation in returns. The R2 value

is small and the MAE is large. As for Carhart model, the result substantially

improves the previous two models. The R2 estimate raises to 83% and the

MAE fall to 0.11%. The χ2-test of these models shows that the pricing errors

are different from zero. The momentum factor is the key reason behind

Carhart model’s high goodness-of-fit. The FF five-factor model do a good job

in explain the variation in equity returns. It provides a considerable

improvement in the model fit (92%) relative to other conventional asset

pricing models. The MAE is quite low and the p-value of χ2-test confirms

that these pricing errors are jointly zero.

The risk premia estimate of Ang, Chen, and Xing (2006, ACX)

downside risk capital asset pricing model shows that asymmetric treatment

of market return better price the cross-section of equity returns relative to

CAPM. Similarly, the first and second specifications which treats upside and

downside market return separately substantially improves the explanatory

power. The R2 on these models are 73% and 87%, as compared to 30% and

83% for FF three-factor and Carhart models, respectively, while the pricing

error test rejects the null hypothesis. The result of the third specification

seems surprising as the R2 is 100%. However, most likely such very high

value of R2 occurs due to sampling error. The pricing errors test also rejects

the null hypothesis.

The downside risk CAPM of Lettau, Maggiori, and Weber (2014, LMW)

is much more successful that the CAPM and the downside risk CAPM of Ang,

Chen, and Xing (2006). The MAE is 0.15% and the R2 estimate is 61%.

The prices of conditional and unconditional market risks are positive but not

statistically significant. The χ2-test rejects the model at 5% significance level.

The fourth specification better explains the cross-section of equity return than

FF three-factor model and the first specification. The fifth specification has

very similar fit with the forth specification, with the mean absolute pricing

error of 0.11% and R2 estimate of 86%. The pricing errors of these models

are not different from zero. The last column of Table 1.3 reports an estimate

of a modified version of FF five-factor model which treat unconditional and

downside market risk asymmetrically. Similar to the third specification the

mean absolute pricing error is 0% and R2 value is 100%. However, the pricing
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error test strongly rejects the model.

The result of asset pricing tests using 25 equity portfolios sorted by size

and book-to-market show that the second specification better explains the

cross-section of equity returns. As for 6 equity portfolios sorted by size and

momentum, specification four and five do a good job based on model’s fit

combined with pricing error test. Asymmetric treatment of upside and

downside market risk improves the explanatory power of conventional asset

pricing models. The result is consistent across all proposed asset pricing

specifications. I investigate further whether this finding is appealing in other

asset classes too.

1.4.2 Bond portfolios

Table 1.4 presents assets pricing model estimations using 20 bond portfolios.

The CAPM shows a slight improvement, with explanatory power of 44%.

The market risk premia remains positive and statistically significant.

However, the MAE is relatively high as compared to other models and the

χ2-test strongly rejects the model. The FF three-factor and Carhart models

explain a significant portion of the variation in risk prmia. They have similar

mean absolute pricing error of 0.04% and R2 estimate of 78%. The χ2-test

illustrates that the pricing errors of these models are not statistically

different from zero. The FF five-factor model has the highest coefficient of

determination, 84%, relative other conventional models, although the pricing

error test rejects the model.

The estimation result of Ang, Chen, and Xing (2006, ACH) downside risk

model reveals that the model explains 70% of the variation in average returns,

which is 26% more than that of CAPM. The mean absolute pricing error is

0.05% and the χ2-test indicates that these pricing errors are jointly different

from zero. The first and second specification of asset pricing models adds more

light on the explanation of the cross-section of bond returns compared with FF

three-factor and Carhart models. The mean absolute pricing error on these

model drops to 0.02% and R2 value rises to 93%. While, the pricing error

test strongly rejects the null of both specifications. The third asset pricing

specification offer the biggest fit than other asset pricing models, with R2

estimate of 96%. The mean absolute pricing error is 0.02%, but the model

does not pass the χ2-test.
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Table 1.4: Estimation of linear factor models: 20 bond portfolios

CAPM FF3F CHRT FF5F ACX SpecI SpecII SpecIII LMW SpecIV SpecV SpecVI

λ̂m 2.09 -0.69 -0.50 1.46 1.67 -2.25 -0.12 -0.99
(0.62) (1.59) (1.74) (1.32) (0.85) (2.17) (1.89) (2.31)

λ̂m− -0.08 -2.08 -2.04 -2.02
(0.69) (1.07) (1.25) (1.34)

λ̂m+ 1.57 1.42 1.45 2.29
(0.58) (0.83) (0.86) (1.08)

λ̂m− 0.22 -1.38 -1.27 -1.00
(0.40) (0.81) (0.79) (0.80)

λ̂smb
-1.44 -1.06 -0.30 0.89 1.13 0.86 1.02 1.12 0.83
(1.61) (2.17) (1.35) (1.21) (1.74) (1.32) (1.36) (2.56) (1.62)

λ̂hml
4.71 4.62 1.07 1.97 1.92 0.02 2.31 2.29 0.28

(2.38) (2.41) (2.07) (2.12) (2.18) (2.27) (2.24) (2.83) (2.54)

λ̂mom
-0.67 -0.47 -0.72
(3.09) (2.21) (3.98)

λ̂rmw
2.55 0.50 0.12

(1.48) (1.40) (1.67)

λ̂cma
1.34 1.59 2.15

(1.46) (1.25) (1.58)
R2 0.44 0.78 0.78 0.84 0.70 0.93 0.93 0.96 0.68 0.91 0.91 0.95
MAE 0.07 0.04 0.04 0.04 0.05 0.02 0.02 0.02 0.06 0.03 0.03 0.02

χ2-test 72.35 25.06 26.27 34.80 68.79 41.34 41.35 27.84 43.05 36.15 26.24 19.14
(0.00) (0.09) (0.05) (0.00) (0.00) (0.00) (0.00) (0.02) (0.00) (0.00) (0.04) (0.16)

The table reports risk premia estimate of asset pricing models. Column 1 to 4 presents the
result of CAPM, the FF three-factor model, the Carhart model(CHRT) and the FF five-
factor model. Column 5 to 8 shows the downside risk CAPM of Ang, Chen, and Xing (2006,
ACX) and extended specifications(Spec). Columns 9 to 12 presents estimation results for
the downside risk CAPM of Lettau, Maggiori, and Weber (2014, LMW) and extended asset
pricing models that incorporate other risk factors. The test assets are 20 bond portfolios.
Asset pricing models from CAPM to specification three are estimated using GMM approach
with identity weighting matrix. Following Lettau, Maggiori, and Weber (2014) I use Fama-
MacBeth approach to estimate LMW and extended specifications. The table also reports R2

statistics along with the mean absolute pricing error (MAE). In terms of asset pricing error,
second stage Fama-MacBeth and first stage GMM approaches produce equivalent results.
VARHAC standard errors are in parentheses at 5 percent significance level. The χ2-test
statistics are with the null hypothesis that the pricing errors are jointly zero. The p-values
for χ2-test are in parenthesis.

The last section of Table 1.4 presents the Lettau, Maggiori, and Weber

(2014, LMW) downside risk capital asset pricing model and other augmented

specifications. In the test with bond portfolios LMW model performs well

relative to the CAPM. It has a goodness-of-fit of 68%. While, the fourth

and fifth specifications have R2 value of 91%, and the mean absolute pricing

error of 0.03% per month. However, the pricing errors test rejects the null

of both models. The last column reports an estimate of a modified version

of FF five-factor model which treat unconditional and downside market risk

asymmetrically. The model is much more successful than other asset pricing

models. The mean absolute pricing error is low, 0.02%, and the R2 is 95%.

The χ2-test also fails to reject the null hypothesis that the pricing errors are

jointly zero.
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Figure 1.3 displays a visual summary of CAPM, FF three-factor model,

Carhart model and FF five-factor model fit. It plots realized versus predicted

average excess returns of equity and bond portfolios using these models. In a

perfect model, all points which represents the test assets would lie in the

45-degree diagonal line. While, a vertical distance from the diagonal line

characterizes the corresponding pricing error. The figure shows that the FF

five-factor model pricing error is much smaller than the pricing errors of

CAPM and FF three-factor model in all portfolios. It also outperforms

Carhart model in bond and 6 equity portfolios sorted on size and momentum.

The plot illustrates the failure of CAPM explain the cross-section of mean

returns, as shown in Table 1.2, 1.3 and 1.4.

Figure 1.3: Realized versus predicted returns: equities and bonds

The figure shows the realized mean excess returns against the predicted
excess returns for CAPM, the Fama–French three-factor model, the
Carhart model and the FF five-factor model using equity and bond
portfolios. The predictions are made from the first four set models
reported in Table 1.2, 1.3 and 1.4.

Figure 1.4 plots realized against predicted mean excess returns of equity

and bond portfolios using Ang, Chen, and Xing (2006) downside risk asset
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pricing model and extended specifications. These models distinguish market

risk between upside and downside components. As clearly shown in the picture,

all specifications substantially improve the fit of corresponding traditional asset

pricing models. The mean return of 25 equity portfolios better explained by

the first specification, while the third specification performs well for 6 equity

and bond portfolio.

Figure 1.4: Realized versus predicted returns using ACX and Spec.I-III: equities
and bonds

The figure shows the realized mean excess returns against the predicted
excess returns of equity and bond portfolios using Ang, Chen, and Xing
(2006, ACX) and extended specifications. The predictions are made from
the second four set models reported in Table 1.2, 1.3 and 1.4.

In order to portray the performance of Lettau, Maggiori, and Weber

(2014, LMW) downside risk capital asset pricing model and other augmented

specifications, Figure 1.5 depicts the scatter plot of actual against predicted

return. When we look at the pricing errors of these models it becomes apparent

that making distinction between unconditional and downside component of

market considerably enhances the explanatory power of asset pricing models.

In this regard, the fifth specification excel in explaining the mean return of 25
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equity portfolios. While, the cross-section of 6 equity and bond returns better

explained by the sixth specification.

Figure 1.5: Realized versus predicted returns using LMW and Spec.IV-VI: equities
and bonds

The figure shows the realized mean excess returns against the predicted
excess returns of equity and bond portfolios from Lettau, Maggiori, and
Weber (2014, LMW) and an extended specification. The predictions are
made from the third four set models reported in Table 1.2, 1.3 and 1.4.

The results in Figure 1.4 and 1.5 provide intuitive evidence that

asymmetric treatment of upside and downside market risk improves the

explanatory power of conventional asset pricing models.

1.4.3 Currency portfolios

Next, I investigate whether the cross-section of currency returns better

explained by factor pricing models that allows the market risk to change on

the market condition.

Table 1.5 presents the estimation result of asset pricing models for 10
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Table 1.5: Estimation of linear factor models: 10 currency portfolios

CAPM FF3F CHRT FF5F ACX SpecI SpecII SpecIII LMW SpecIV SpecV SpecVI

λ̂m 7.91 -4.00 -8.54 -3.27 10.11 -5.71 -8.66 -9.11
(7.03) (18.24) (15.86) (10.25) (8.38) (24.87) (17.01) (22.01)

λ̂m− 3.66 -1.76 -4.13 -4.69
(3.89) (10.39) (10.53) (8.83)

λ̂m+ 3.51 -1.86 -3.29 0.40
(2.10) (4.47) (6.95) (5.45)

λ̂m− 4.07 -1.35 -3.18 -3.01
(2.59) (7.31) (8.21) (6.73)

λ̂smb
7.54 8.36 2.45 7.38 8.16 5.26 7.60 8.70 5.54

(6.18) (8.64) (5.40) (7.32) (8.75) (7.14) (9.19) (10.78) (8.68)

λ̂hml
7.70 9.70 4.78 7.26 8.80 4.21 7.71 9.94 5.70

(9.39) (11.56) (9.25) (7.96) (10.68) (9.67) (10.87) (13.33) (11.95)

λ̂mom
-2.57 -2.47 -2.86

(15.89) (9.95) (12.37)

λ̂rmw
5.13 -0.71 1.21

(10.65) (7.17) (7.90)

λ̂cma
5.05 6.88 7.57

(3.89) (6.26) (7.89)
R2 0.32 0.64 0.66 0.89 0.33 0.63 0.64 0.98 0.34 0.64 0.66 0.97
MAE 0.24 0.19 0.19 0.11 0.24 0.20 0.21 0.04 0.25 0.20 0.20 0.05

χ2-test 12.83 2.39 1.39 0.45 13.23 2.66 1.70 0.21 7.45 2.46 1.47 0.19
(0.17) (0.94) (0.97) (0.99) (0.10) (0.85) (0.89) (1.00) (0.49) (0.87) (0.92) (1.00)

The table reports risk premia estimate of asset pricing models. Column 1 to 4 presents the
result of CAPM, the FF three-factor model, the Carhart model(CHRT) and the FF five-
factor model. Column 5 to 8 shows the downside risk CAPM of Ang, Chen, and Xing (2006,
ACX) and extended specifications(Spec). Columns 9 to 12 presents estimation results for
the downside risk CAPM of Lettau, Maggiori, and Weber (2014, LMW) and extended asset
pricing models that incorporate other risk factors. The test assets are 10 currency portfolios.
Asset pricing models from CAPM to specification three are estimated using GMM approach
with identity weighting matrix. Following Lettau, Maggiori, and Weber (2014) I use Fama-
MacBeth approach to estimate LMW and extended specifications. The table also reports R2

statistics along with the mean absolute pricing error (MAE). In terms of asset pricing error,
second stage Fama-MacBeth and first stage GMM approaches produce equivalent results.
VARHAC standard errors are in parentheses at 5 percent significance level. The χ2-test
statistics are with the null hypothesis that the pricing errors are jointly zero. The p-values
for χ2-test are in parenthesis.

currency portfolios sorted on forward discount. The result shows that the

CAPM have similar performance with the downside risk CAPM of Ang, Chen,

and Xing (2006) and Lettau, Maggiori, and Weber (2014). They have very

close R2 and mean absolute pricing error. Moreover, the χ2-test cannot reject

the null hypothesis of pricing errors.

The FF three-factor model has done relatively well and has similar

explanatory power with the first and forth specifications. The R2 and the

mean absolute pricing error on these models are around 64% and 0.2%,

respectively. Moreover, the χ2-test fail to reject null hypothesis of these

models. The second and fifth specifications, which separate market returns,

fails to improve the fit of Carhart model, while specification three and six
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provides considerable improvement to the FF five-factor model. The mean

absolute pricing errors on the third and sixth specifications are 0.04% and

0.05% respectively. The χ2-test shows that the pricing errors of these models

are not statistically different from zero. Surprisingly, in the estimation of

factor risk premia using currency portfolios, the χ2-test indicates that all

asset pricing model under consideration cannot reject the null hypothesis

that pricing errors are jointly zero.

1.4.4 Commodity portfolios

The estimation result of model’s fit for 24 commodity portfolios are shown in

Table 1.6. The first model is the CAPM. It has a positive but insignificant

market risk premia and the goodness-of-fit is only 31%, which is similar to

the result in currency returns. The mean absolute pricing error of CAPM is

very high, 0.65% per month and the χ2-test rejects the model at 5% significant

level. The downside risk CAPM of Ang, Chen, and Xing (2006) and Lettau,

Maggiori, and Weber (2014) slightly increase the model fit, the R2 rise to 37%

and 36% respectively. Moreover, the mean absolute pricing errors on these

models decrease to 0.59%, but still high. The widely-known FF three-factor

model unable to improve much the explanatory power of CAPM. It increases

the R2 value just to 35% and barely decreases the mean absolute pricing errors.

Similarly, the first and forth specifications provide a small improvement the FF

three-factor model. These models have a positive but insignificant downside

market risk premia, low R2 values and a mean absolute pricing error of 0.59%.

However, they do not reject the null hypothesis of χ2-test at 5% significant

level.

The Carhart model has a similar goodness-of-fit with FF three-factor

model. Alternatively, the second and fifth specifications provide a relatively

well fit in explaining the cross-section of commodity returns. The χ2-test of

the second specification indicates that the pricing errors are jointly zero, but

the null hypothesis of the fifth specification rejected at 5% significance level.

The next model is FF five-factor model. It explains around 47% of commodity

average returns, which is similar to the estimation result of third specification.

These two models have the same mean absolute pricing error of 0.51% and the

pricing errors are not statistically different from zero.

The sixth specification, has better fit relative to other models under
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Table 1.6: Estimation of linear factor models: 24 commodity portfolios

CAPM FF3F CHRT FF5F ACX SpecI SpecII SpecIII LMW SpecIV SpecV SpecVI

λ̂m 1.55 1.65 1.70 1.16 2.41 2.44 1.56 1.61
(0.86) (0.95) (0.77) (0.75) (1.51) (1.58) (0.88) (1.27)

λ̂m− 1.08 1.03 1.41 0.42
(0.85) (0.92) (0.85) (0.79)

λ̂m+ 0.24 0.33 0.20 0.40
(0.64) (0.64) (0.73) (0.69)

λ̂m− 1.20 1.19 1.62 0.76
(0.77) (0.83) (0.71) (0.67)

λ̂smb
0.92 0.96 0.24 0.59 0.59 0.22 0.49 0.38 0.36

(0.98) (0.85) (0.81) (0.80) (0.82) (0.80) (0.89) (0.89) (0.93)

λ̂hml
-0.01 -0.01 0.16 -0.14 -0.23 0.13 -0.19 -0.34 0.32
(0.66) (0.67) (0.67) (0.67) (0.69) (0.66) (0.72) (0.69) (0.79)

λ̂mom
-0.82 -1.46 -1.49
(1.75) (1.96) (1.90)

λ̂rmw
-0.51 -0.52 -0.55
(0.44) (0.44) (0.47)

λ̂cma
-0.52 -0.51 -0.59
(0.44) (0.45) (0.44)

R2 0.31 0.35 0.35 0.47 0.37 0.39 0.45 0.47 0.36 0.39 0.43 0.48
MAE 0.65 0.63 0.64 0.51 0.59 0.58 0.57 0.51 0.59 0.59 0.58 0.49

χ2-test 35.88 34.48 33.78 23.40 31.05 31.11 28.98 23.02 30.35 30.94 30.70 22.19
(0.04) (0.03) (0.03) (0.22) (0.10) (0.05) (0.07) (0.19) (0.11) (0.06) (0.04) (0.22)

The table reports risk premia estimate of asset pricing models. Column 1 to 4 presents
the result of CAPM, the FF three-factor model, the Carhart model(CHRT) and the FF
five-factor model. Column 5 to 8 shows the downside risk CAPM of Ang, Chen, and Xing
(2006, ACX) and extended specifications(Spec). Columns 9 to 12 presents estimation results
for the downside risk CAPM of Lettau, Maggiori, and Weber (2014, LMW) and extended
asset pricing models that incorporate other risk factors. The test assets are 24 commodity
portfolios. Asset pricing models from CAPM to specification three are estimated using
GMM approach with identity weighting matrix. Following Lettau, Maggiori, and Weber
(2014) I use Fama-MacBeth approach to estimate LMW and extended specifications. The
table also reports R2 statistics along with the mean absolute pricing error (MAE). In terms
of asset pricing error, second stage Fama-MacBeth and first stage GMM approaches produce
equivalent results. VARHAC standard errors are in parentheses at 5 percent significance
level. The χ2-test statistics are with the null hypothesis that the pricing errors are jointly
zero. The p-values for χ2-test are in parenthesis.

consideration. The goodness-of-fit is 48% and the mean absolute pricing

errors is 0.49%, yet still large. The χ2-test also fails to reject the null

hypothesis of pricing errors. Similar to previous test assets, asset pricing

models that asymmetrically treat market movements provide empirical

improvement relative to the conventional asset pricing models for commodity

returns.

1.4.5 Credit Default Swaps(CDS) portfolios

Finally, I examine the performance of asset pricing models using the cross-

section of CDS. Table 1.7 presents estimation result of linear factor models

for 20 CDS portfolios sorted by spread using 5-year contracts. The CAPM

38



Table 1.7: Estimation of linear factor models: 20 CDS portfolios

CAPM FF3F CHRT FF5F ACX SpecI SpecII SpecIII LMW SpecIV SpecV SpecVI

λ̂m 1.42 -0.97 -2.21 1.97 -0.68 -1.13 1.18 0.81
(0.64) (1.37) (1.82) (1.65) (1.69) (1.94) (1.33) (2.61)

λ̂m− -2.03 -2.12 -2.10 -0.88
(1.00) (1.04) (1.31) (1.37)

λ̂m+ 2.83 2.41 2.53 2.02
(0.71) (0.55) (0.66) (0.64)

λ̂m− -1.69 -1.82 -1.75 -0.60
(0.91) (0.92) (0.84) (1.21)

λ̂smb
3.04 0.87 0.87 1.01 1.14 0.76 1.15 1.28 0.84

(2.62) (2.12) (1.95) (0.98) (1.08) (1.25) (0.95) (1.40) (1.37)

λ̂hml
4.59 4.83 1.24 0.68 0.50 0.82 0.21 0.03 0.59

(3.03) (2.92) (2.73) (1.73) (1.54) (1.89) (1.70) (1.84) (1.93)

λ̂mom
-7.23 -0.96 -0.55
(3.60) (2.39) (2.84)

λ̂rmw
-3.89 -2.31 -2.62
(2.10) (2.05) (2.35)

λ̂cma
3.20 1.90 1.99

(1.76) (1.34) (1.57)
R2 0.53 0.67 0.79 0.97 0.97 0.97 0.97 0.99 0.96 0.97 0.97 0.99
MAE 0.08 0.08 0.06 0.02 0.02 0.02 0.02 0.01 0.03 0.03 0.03 0.02

χ2-test 44.40 13.63 9.50 5.46 12.12 12.49 12.08 4.77 14.72 12.74 7.24 4.64
(0.00) (0.69) (0.89) (0.99) (0.84) (0.71) (0.67) (0.99) (0.68) (0.69) (0.95) (0.99)

The table reports risk premia estimate of asset pricing models. Column 1 to 4 presents the
result of CAPM, the FF three-factor model, the Carhart model(CHRT) and the FF five-
factor model. Column 5 to 8 shows the downside risk CAPM of Ang, Chen, and Xing (2006,
ACX) and extended specifications(Spec). Columns 9 to 12 presents estimation results for
the downside risk CAPM of Lettau, Maggiori, and Weber (2014, LMW) and extended asset
pricing models that incorporate other risk factors. The test assets are 20 CDS portfolios.
Asset pricing models from CAPM to specification three are estimated using GMM approach
with identity weighting matrix. Following Lettau, Maggiori, and Weber (2014) I use Fama-
MacBeth approach to estimate LMW and extended specifications. The table also reports R2

statistics along with the mean absolute pricing error (MAE). In terms of asset pricing error,
second stage Fama-MacBeth and first stage GMM approaches produce equivalent results.
VARHAC standard errors are in parentheses at 5 percent significance level. The χ2-test
statistics are with the null hypothesis that the pricing errors are jointly zero. The p-values
for χ2-test are in parenthesis.

captures 53% of the variation in mean returns. The market risk premia are

positive as expected and statistically significant at 5% level. However, it is the

only model χ2-test strongly rejects at 5% significance level.

The downside risk asset pricing model of Ang, Chen, and Xing (2006,

ACX) and Lettau, Maggiori, and Weber (2014, LMW) considerably improve

the explanatory power of CAPM. The R2 statistics rise to 97% and 96%, and

the mean absolute pricing error decline to 0.02% and 0.03% for ACX and LMW

models, respectively. Similarly, the first and forth specifications do better job

in explaining CDS returns relative to the corresponding FF three-factor model.

They provide considerable improvement in the goodness-of-fit, that is 30%

more than FF three-factor model. Furthermore, the MAE is very small. The
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χ2-test reveals that the pricing errors of these models are not different from

zero.

The Carhart model captures a significant portion of the variation in risk

premia. The R2 estimate is 79% and the mean absolute pricing error is 0.06%.

The augmented models, specification two and five, enhances the explanatory

power of the cross-section of CDS returns. In the test with CDS portfolio, the

fit of FF five-factor model increases remarkably, as shown by R2 value of 97%

and the mean absolute pricing error of 0.02% per month. The corresponding

specification three and six add more light in the model fit by explaining a

remarkable fraction of the cross-section of returns, with is close to 99%. Most

likely such very high value of R2 occurs due to sampling error. The mean

absolute pricing errors of these two models fall to 0.01% and 0.02% per month,

respectively. Moreover, the χ2-test fails to reject the null hypothesis of these

models at 5% significant level.

The improvement in model’s fit is prevalent as we move from left to

right, that is from CAPM to FF five-factor model, from ACX to the third

specification and from LMW to specification six. The results in Table 1.6

demonstrates the superior performance of asset pricing models with downside

market risk factor.

To illustrate the empirical fit of models, Figure 1.6 plots actual versus

predicted mean excess return of currency, commodity and CDS portfolios using

conventional asset pricing models.

The top left panel shows the poor performance of CAPM to capture the

returns of currency and commodity portfolios. The CAPM model predicts

similar returns while the actual return change significantly. The FF three-

factor and Carhart models, improves the fit of CAPM especially for currency

and CDS portfolios. The points, which represents asset returns, lie close to

the 45-degree diagonal line. The right bottom panel of the figure indicates

the performance of FF five-factors model. This model provide improvement

in explaining the returns of currency and CDS relative to other conventional

asset pricing models.

Figure 1.7 depicts the scatter plot of actual against predicted returns

of currency, commodity and CDS portfolios using the downside risk CAPM

of Ang, Chen, and Xing (2006, ACX) and extended specifications. The top

panel shows that ACX model and first specification considerably improve the
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Figure 1.6: Realized versus predicted returns: currencies, commodities and CDS

The figure shows the realized mean excess returns against the predicted
excess returns of currency, commodity and CDS portfolios using CAPM,
the FF three-factor model, the Carhart model and the FF five-factor
model. The predictions are made from the first four set models reported
in Table 1.5, 1.6 and 1.7.

fit of CAPM and FF three-factor model for CDS portfolios. Looking at the

second specification, in the left bottom panel, it becomes clear that allowing

the market returns to change conditional on market movement improves the fit

of Carhart model in commodity and CDS portfolios. In the third specification,

the points which represents the test assets are close to the diagonal line. The

pricing error of this model is much smaller and provide better fit than other

pricing specifications.

To assess the fit of Lettau, Maggiori, and Weber (2014, LMW) and

subsequent specifications visually, Figure 1.8 plots the actual versus predicted

mean returns of currency, commodity and CDS portfolios. Comparing the

performance of LMW with the standard CAPM and ACX model in Figure

1.6 and 1.7, it become apparent that LMW downside risk model provide a
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Figure 1.7: Realized versus predicted returns using ACX and Spec.I-III: currencies,
commodities and CDS

The figure shows the realized mean excess returns against the predicted
excess return of currency, commodity and CDS portfolios using Ang,
Chen, and Xing (2006, ACX) and extended specifications. The predictions
are made from the second four set models reported in Table 1.5, 1.6 and
1.7.

good job in currency and CDS portfolios. In the right top panel of the figure,

the forth specification improves the fit of the corresponding FF three-factor

model in commodity and CDS portfolios. Moreover, it provides very close fit

with the first specification. In left bottom panel, the fifth specification

considerably enhances the explanatory power of Carhat model in commodity

and CDS portfolios. The sixth specification also provide even superior

improvement relative to the fit of other models in all three portfolios. The

points, which indicates portfolio returns, line up close to the diagonal line.

The visual test of asset pricing models confirms the superiority of asset

pricing specifications that distinguish market return between upside and

downside movements as compared to the unconditional asset pricing
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Figure 1.8: Realized versus predicted returns using LMW and Spec.IV-VI:
currencies, commodities and CDS

The figure shows the realized mean excess returns against the predicted
excess returns of currency, commodity and CDS portfolios from Lettau,
Maggiori, and Weber (2014, LMW) and extended specifications. The
predictions are made from the third four set models reported in Table
1.5, 1.6 and 1.7.

specifications. Moreover, it become evident that the model fit increases as we

move from left to right panels and from top to bottom panels in the figures.

1.4.6 Robustness check

Next, I examine the robustness of results based on jointly using the cross-

section of multiple asset classes. Table 1.8 reports estimation result of asset

pricing models when the test assets are a combination of 25 equity portfolios

sorted by size and book-to-market value, 6 equity portfolios sorted by size

and momentum and 10 currency portfolios. In the first column, the market

risk premia for CAPM is statistically significant and has a positive sign as
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Table 1.8: Models robustness: equities and currencies

CAPM FF3F CHRT FF5F ACX SpecI SpecII SpecIII LMW SpecIV SpecV SpecVI

λ̂m 0.81 0.63 0.71 0.68 1.31 1.01 0.70 0.49
(0.32) (0.30) (0.31) (0.38) (0.87) (0.83) (0.31) (0.78)

λ̂m− 0.50 0.38 0.20 -0.19
(0.67) (0.66) (0.66) (0.58)

λ̂m+ -0.04 0.10 0.41 0.66
(0.50) (0.48) (0.48) (0.44)

λ̂m− 0.83 0.54 0.29 0.01
(0.53) (0.50) (0.51) (0.44)

λ̂smb
0.30 0.25 0.31 0.29 0.25 0.32 0.30 0.25 0.32

(0.22) (0.22) (0.29) (0.22) (0.22) (0.31) (0.23) (0.23) (0.23)

λ̂hml
0.35 0.36 0.12 0.35 0.36 0.12 0.35 0.36 0.12

(0.23) (0.25) (0.31) (0.24) (0.26) (0.37) (0.22) (0.22) (0.23)

λ̂mom
0.48 0.47 0.48

(0.37) (0.37) (0.41)

λ̂rmw
0.10 0.05 0.04

(0.44) (0.46) (0.33)

λ̂cma
0.74 0.89 0.88

(0.43) (0.38) (0.33)
R2 0.60 0.68 0.77 0.81 0.61 0.69 0.77 0.81 0.60 0.68 0.77 0.81
MAE 0.22 0.20 0.15 0.15 0.22 0.20 0.14 0.15 0.22 0.20 0.14 0.15

χ2-test 94.26 94.16 93.47 77.72 91.50 92.59 91.17 70.35 82.08 80.06 75.00 57.72
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

The table presents risk premia estimate of asset pricing models. Column 1 to 4 presents
the result of CAPM, the FF three-factor model, the Carhart model and the FF five-factor
model. Column 5 to 8 shows the downside risk CAPM of Ang, Chen, and Xing (2006, ACX)
and extended specifications. Columns 9 to 12 presents estimation results for the downside
risk CAPM of Lettau, Maggiori, and Weber (2014, LMW) and extended asset pricing models
that incorporate other risk factors. The test assets are 25 equity portfolios sorted by size
and book-to-market value, 6 equity portfolios sorted by size and momentum and 10 currency
portfolios. Asset pricing models from CAPM to specification three are estimated using GMM
approach with identity weighting matrix. Following Lettau, Maggiori, and Weber (2014) I
use Fama-MacBeth approach to estimate LMW and extended specifications. The table
also reports R2 statistics along with the mean absolute pricing error (MAE). In terms of
asset pricing error, second stage Fama-MacBeth and first stage GMM approaches produce
equivalent results. VARHAC standard errors are in parentheses at 5 percent significance
level. The χ2-test statistics are with the null hypothesis that the pricing errors are jointly
zero. The p-values for χ2-test are in parenthesis.

expected. The downside risk CAPM of Ang, Chen, and Xing (2006, ACX)

and Lettau, Maggiori, and Weber (2014, LMW) slightly improve the fit of

CAPM. Additionally, the three-factor model of FF enhances the explanatory

power of CAPM and provide similar fit with specification one and four.

The result for Carhart model shows that the model captures a

significant part of the variation in risk premia. The R2 statistics is 77% and

the mean absolute pricing error is 0.15% per month. Augmented specification

two and five, offer a minor improvement in explaining the cross-section of

returns. Likewise, the third and sixth specifications provide further

improvement relative to FF five-factor model, the goodness-of-fit rises to

81%. However, the χ2-test significantly rejects the null hypothesis that the
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Table 1.9: Models robustness: commodities, bonds and CDS

CAPM FF3F CHRT FF5F ACX SpecI SpecII SpecIII LMW SpecIV SpecV SpecVI

λ̂m 1.81 1.87 1.91 1.42 2.83 2.85 1.75 2.14
(0.91) (0.97) (0.75) (0.74) (1.64) (1.72) (0.88) (1.32)

λ̂m− 1.26 1.22 1.57 0.70
(0.93) (1.03) (0.95) (0.78)

λ̂m+ 0.29 0.38 0.26 0.46
(0.65) (0.61) (0.67) (0.66)

λ̂m− 1.38 1.36 1.69 0.97
(0.85) (0.90) (0.73) (0.68)

λ̂smb
0.96 0.99 0.30 0.58 0.55 0.26 0.48 0.35 0.78

(0.98) (0.85) (0.80) (0.77) (0.79) (0.78) (0.89) (0.88) (0.89)

λ̂hml
0.23 0.24 0.33 0.08 0.09 0.29 0.00 -0.07 0.42

(0.65) (0.69) (0.66) (0.66) (0.71) (0.65) (0.74) (0.76) (0.77)

λ̂mom
-0.90 -1.27 -1.46
(1.62) (1.68) (1.72)

λ̂rmw
-0.50 -0.52 -0.52
(0.45) (0.45) (0.46)

λ̂cma
-0.50 -0.49 -0.53
(0.50) (0.51) (0.49)

R2 0.30 0.33 0.33 0.43 0.36 0.37 0.40 0.43 0.36 0.37 0.40 0.43
MAE 0.40 0.40 0.39 0.34 0.37 0.37 0.36 0.34 0.38 0.37 0.36 0.34

χ2-test 97.33 95.96 94.53 94.72 91.73 90.36 82.16 93.59 95.04 89.34 88.11 86.21
(0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.03) (0.00) (0.00) (0.01) (0.01) (0.01)

The table presents risk premia estimate of asset pricing models. Column 1 to 4 presents
the result of CAPM, the FF three-factor model, the Carhart model and the FF five-factor
model. Column 5 to 8 shows the downside risk CAPM of Ang, Chen, and Xing (2006, ACX)
and extended specifications. Columns 9 to 12 presents estimation results for the downside
risk CAPM of Lettau, Maggiori, and Weber (2014, LMW) and extended asset pricing models
that incorporate other risk factors. The test assets are 24 commodities, 20 bonds and 20
CDS portfolios. Asset pricing models from CAPM to specification three are estimated using
GMM approach with identity weighting matrix. Following Lettau, Maggiori, and Weber
(2014) I use Fama-MacBeth approach to estimate LMW and extended specifications. The
table also reports R2 statistics along with the mean absolute pricing error (MAE). In terms
of asset pricing error, second stage Fama-MacBeth and first stage GMM approaches produce
equivalent results. VARHAC standard errors are in parentheses at 5 percent significance
level. The χ2-test statistics are with the null hypothesis that the pricing errors are jointly
zero. The p-values for χ2-test are in parenthesis.

pricing errors are indistinguishable from zero.

The results in Table 1.8 shows that the superior performance of downside

risk asset pricing models is robust across many asset classes.

Finally, I investigate whether asymmetric treatment of market return

plays a key role in the performance of asset pricing models using a different

combination of asset returns. Table 1.9 reports the estimation result of linear

factor models using a joint cross-section of 24 commodity, 20 bond and 20 CDS

portfolios.

Moving from left to right in each section of the table, that is from CAPM

to FF five-factor model, from Ang, Chen, and Xing (2006, ACX) model to
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specification three and from Lettau, Maggiori, and Weber (2014, LMW) model

to the sixth specification, it is evident that the R2 statistics increases and the

mean absolute pricing error decreases. This implies that the variation in asset

returns can be better captured by extended factor pricing models.

The first column in Table 1.9 shows the estimate of CAPM. This model

has lower fit as prevailed by small goodness-of-fit and high mean absolute

mean error. ACX and LMW downside risk CAPM improve the fit of CAPM

by increasing R2and decreasing the mean absolute pricing error estimates.

Similarly, the second and forth specifications, which take into account market

asymmetries enhances the explanatory power of FF three-factor model.

Another customary asset pricing model is the Carhart four-factor models. It

has similar fit with FF three-factor model. However, the second and fifth

specifications that have similar information with Carhart model associated

with high R2 and low pricing errors. Furthermore, the third and sixth

specifications improve the explanatory power of FF five-factor model across

asset returns. Overall, the empirical estimate of models clearly shows that

the cross-section of asset returns better explained by asset pricing models

that asymmetrically treat market movements.

1.5 Conclusions

Conventional asset pricing models relates asset returns to market risk, which

is constant across periods of market upturn and downturns. However, these

models do not characterize the risk aversion of representative investors. In

order to examine whether asymmetric treatment of market movement plays a

vital role in the estimation of asset returns, I propose alternative asset

pricing specification that distinguish market factor between upside and

downside components. The central idea of these models is that investors care

differently between downside loss and upside gain, and asset pricing models

that distinguish downward market from upward trend tend to characterize

investors’ risk perception.

The finding of this study suggests that asset pricing models based on risk

perception of investors better explains the cross-section of equity, currency,

bond, commodity and CDS portfolio returns. It gives an integrated view the

presence of downside risk premium in asset returns and empirical content in the

theoretical paradigm of downside risk. The success of these models is measured
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based on the cross-sectional price of risk, R2 statistics, mean absolute pricing

error statistics and χ2-test that evaluate pricing errors across asset pricing

models. The empirical results are consistent with other downside risk studies

that suggests conditional association of market factor with asset returns. A

close examination of the findings shows some negative relationship between

downside market risk and asset returns, which remains a puzzle in this study,

suggestive of further empirical and theoretical works.
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2. MOMENTUM IN EQUITY AND CURRENCY

MARKETS

2.1 Introduction

Momentum is an asset pricing anomaly that has attracted a great deal of

attention in asset pricing studies and market efficiency debates. It refers to

the tendency of asset’s return to stay on its recent relative performance.

Momentum strategy implemented simply by buying recent winner and selling

recent loser assets. The possibility of making abnormal return based on the

historical pattern of asset returns, which is contrary to the market efficiency

theory that predicts the future returns do not follow any trend, has been

documented in the finance literatures. A prominent study of Jegadeesh and

Titman (1993) examine the historical pattern of US stock returns and show

that recent winner stocks continue to outperform recent losers over the next

few months, and buying stocks with high recent returns and selling stocks

with low recent returns generates abnormal returns in the short-run. In

subsequent studies, momentum effect has been detected in currency, bond,

commodity and other asset classes. Menkhoff et al. (2012) investigate the

cross-section of 48 currencies and show that buying past winner currencies

and selling past losers yields annual excess return of 10%. Momentum return

in corporate bonds and commodities has also been reported by Jostova et al.

(2013) and Gorton, Hayashi, and Rouwenhorst (2008), respectively. Asness,

Moskowitz, and Pederson (2013) report the existence significant momentum

return premia across numerous markets and asset classes.

Despite the persistence of momentum has been extensively reported in

many markets, the literature do not have yet conclusively explain the

underlying mechanism that causes this effect. Several explanations have been

given by researchers about the source of momentum returns. The major

approaches to explain the cause of this anomaly can be broadly classified into

three distinct categories. The first approach is using risk-based models based

on the idea that the returns of this strategy as a compensation of risk.

Grundy and Martin (2001) derive models to detects the dynamic factor risk

exposure of momentum returns and find that factor models can explain a
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significant portion of the variability in momentum profits. Liu and Zhang

(2008) examine whether momentum is a risk driven phenomenon and show

that macroeconomic risk plays an important in explaining more than half of

momentum returns. Asness, Moskowitz, and Pederson (2013) also report that

liquidity risk partly explains momentum returns in many markets and asset

classes. Wang and Xu (2015) investigate the role of market volatility in

characterizing momentum profit and find that market volatility has a

significant explanatory power of momentum payoffs after controlling for

business cycle and market conditions. Recently, Min and Kim (2016) show

the payoffs to momentum strategy is conditional on economic conditions.

They argue that momentum strategy provides positive returns in good

economic states when market risk premium is low, whereas it delivers a great

negative payoffs in bad economic conditions when expected market risk

premium is high. Moreover, they state that momentum strategy is

fundamentally risky as it exposes investors to huge downside risk.

The second sets of approach to explain momentum is based on transaction

costs and other asset characteristics. Lesmond, Schill, and Zhou (2004) argue

that stocks that generate high returns associated with momentum are those

stocks with high transition costs. Therefore, abnormal returns of momentum

strategy is an illusion profit and nonexistent. Using currency data, Menkhoff et

al. (2012) investigate the sensitivity of momentum returns to transaction costs

by making bid–ask spread adjustments. They show that the transaction cost

accounts half of the momentum returns. In a similar sprit, Barroso and Santa-

Clara (2015) assess whether managing the risk of momentum will lead to low

transaction costs so that it enables to exploit momentum strategy. Despite, the

transaction costs of risk-managed momentum roughly 40% higher than plain

momentum, managing the risk of momentum greatly improves the Sharpe ratio

and reduce high-order risk of excess kurtosis and negative skewness.

The third approach presents behavioral-based models to provide

explanations of momentum effects. It is based on the premise that the

profitability of momentum strategies arises because of investors inherent bias

in the way they interpret or react to information, investor’s sentiment and

confidence. Jegadeesh and Titman (2001) argue that investors are slow to

adjust to new information and their delayed overreaction to recent

information push the price of recent winners (losers) above (below) their

fundamental values, this results short-term momentum. Earlier studies such
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as DeBondt and Thaler (1985) provide evidence of long-term overreaction of

investors; Chan, Jegadeesh, and Lakonishok (1996) on how investors

under-react to information such as past earnings, and Daniel, Hirshleifer, and

Subrahmanyam (1998) on investor overconfidence to discount new

information that conflicts with their prior knowledge. A study by

Stambaugh, Yu, and Yuan (2012) show that the profitability of momentum

strategy is stronger when investor’s sentiment is high. Similarly, Antoniou,

Doukas and Subrahmanyam (2013) examine whether investors sentiment

affects the momentum return based on the notion that investors feel unduly

optimistic or pessimistic based on the spread of good or bad news which

causes cognitive dissonance. They indicate that momentum profits are more

pronounced only when investors are optimistic as they expect price

continuations during optimistic periods, which is similar to the result shown

by Hong and Stein (1999). Chui, Titman and Wei (2010) investigate the

influence of cultural difference on the profitability of momentum returns.

They show that investors from different cultural backgrounds interpret

information in different ways, which significantly impact the pattern of stock

return and momentum strategies.

Given the pervasive and outstanding performance of momentum across

diverse markets and asset classes, it exposes to sporadic crashes. Barroso

and Santa-Clara (2015) show that momentum provide investors the highest

Sharpe ratio as compared with the market, value or size factors with huge

crash risk. They illustrated this with the fact that in July and August of 1932

momentum resulted a cumulative return of -91.59%, and from March to May

2009 it delivers another huge loss of -73.42%. These two periods marked as

market reversal after stock market collapsed associated with great depression

and Global financial crisis. Similarly, Daniel and Moskowitz (2016) argue

that despite the highest positive return momentum strategy can offer across

diverse assets, it suffers from great crash as the market starts to rebound after

experiencing large decline. Using US equity data, they find momentum reversal

following market drawdowns that losers outperforms winner by 200% and 155%

in 1932 and 2009, respectively. Therefore, it results a strong momentum crash

as momentum strategy long winners and short losers.

Previous researches attempt to explain what eventually drives

momentum crash. One explanation of this phenomenon is the time-varying

beta of momentum portfolios. Grundy and Martin (2001) argue that when
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the market falls dramatically, the stocks that fall tremendously with the

market are high beta stocks and those who performed well are low beta

stocks. Consequently, following market drawdown, the momentum strategy

likely to short past loser or high beta stocks and long past winners or low

beta stocks, which results a significant negative momentum beta. When the

market rebound, momentum strategy interrupted with strong reversal or

crash. They suggest that hedging the dynamic time-varying market exposure

dramatically improve the performance of momentum strategy. Martens and

Oord (2014) analyze whether hedging the time-varying exposures improve

momentum returns, and they show that hedged momentum provide more

stable returns over different market conditions than raw momentum that

experience losses following bear market.

Barroso and Santa-Clara (2015) propose managing the risk of

momentum using realized variance instead of time-varying beta. They argue

that specific risk is more persistent and predictable component of momentum

risk than market risk, thus hedging time-varying betas does not avoid

momentum crash. Their risk managed momentum strategy not only

improves the Sharpe ratio but also avoids momentum crash. Furthermore,

Daniel and Moskowitz (2016) suggest a dynamic momentum strategy based

on ex-ante expected return and variance of momentum portfolio. They show

that this strategy offers positive and statistically significant alpha relative to

the constant volatility strategy of Barroso and Santa-Clara (2015). Moreover,

alpha and Sharpe ratio of dynamic momentum strategy using bear market

indicators and forecasted mean and variance of momentum is approximately

twofold of the static momentum strategy.

This study extends previous researches in several ways. First, beside

examining momentum strategies in equity markets, it investigates currency

momentum using extended time span and larger cross-section of currencies in

foreign exchange markets. Thus, it allows to capture the variation in

momentum returns across time and markets. Second, it proposes a different

approach to mitigate the risk of momentum, which is based on hedging the

time-varying risk exposure of momentum then by scaling the hedged

long-short portfolio using its forecasted semi-variance. This approach is more

closely related to the method suggested by Grundy and Martin (2001) and

Barroso and Santa-Clara (2015). But the optimal momentum strategy

designed in this paper is distinct from their work in the way it defines upside
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and downside risk exposure and estimate the risk of momentum using

forecasted semi-variances instead of variance. Finally, this study examines

the risk exposure of currency momentum by decomposing the risk factors

into systematic and idiosyncratic components.

The reminder of the chapter organized as follows. Section 2.2 provides

detail description of the data and portfolio construction. Section 2.3 discusses

the main findings of equity momentum strategy and its exposure to crash risk.

Section 2.4 examine the performance of optimal momentum strategy. Section

2.5 discusses currency momentum and decomposing momentum risk. Section

2.6 presents the conclusions.

2.2 Data and portfolio constructions

2.2.1 Equity momentum

The equity data used in this study are daily and monthly decile portfolios

constructed using NYSE, AMEX and NASDAQ stocks prior returns. The

winner portfolio contains a group of stocks in the top decile portfolio based

on their cumulative return in the ranking period (from month t-12 to t -2).

While, the loser portfolio is a set of stocks in the bottom decile of portfolio

over the past 11 months. Hence, the momentum return is the return of past

winner minus the return of past loser portfolio. One month gap between the

ranking and holding period is to avoid short term reversal. The sample period

covers between January 1927 to February 2017. The data for momentum

decile portfolios, including market return, size and value factor are obtained

from Kenneth French’s data library1.

2.2.2 Currency momentum

I use spot and one month forward exchange rates against the US dollar to

construct bilateral foreign currency excess-returns then momentum

portfolios. The currencies included in the sample are from 56 different

counties: Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Chile,

China, Colombia, Croatia, Czech Republic, Denmark, Egypt, Euro area,

Finland, France, Germany, Greece, Hong Kong, Hungary, Iceland, India,

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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Indonesia, Israel, Italy, Japan, Jordan, Kuwait, Malaysia, Mexico,

Netherlands, New Zealand, Norway, Pakistan, Peru, Philippines, Poland,

Portugal, Qatar, Romania, Russia, Saudi Arabia, Singapore, Slovakia,

Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Taiwan,

Thailand, Turkey, United Arab Emirates, Ukraine and United Kingdom. The

sample period is from January 1985 to March 2017, while the availability of

data for some of these currencies varies over time. Figure 2.1 shows the

number of currencies available over the course of the sample. The daily and

monthly currency data are collected from WM/Reuters and Barclays

International Bank (BIB) via Datastream.

Currency excess returns : I define the log excess return of currencies

from US investor perspective. The log excess return rx from buying a foreign

currency k in the forward market and selling it later in spot market after one

month is given by

rxkt+1 = fk
t −skt+1 (2.1)

Where skt and fk
t denotes log one month spot and forward exchange

rate of foreign currency per US dollar at time t, respectively. It can also be

represented as the difference between the log forward discount and the change

in spot exchange

rxkt+1 = (fk
t −skt+1) −∆skt+1 (2.2)

If the investor covers the investment with a forward contract, covered

interest rate parity (CIP) holds, interest rate differential is equal to the forward

discount i.e. ikt − it ≈ fk
t −skt+1 . Where ikt and it denotes one month interest

rates in foreign and domestic country. Hence, the monthly excess return for

investing in foreign currency k equals the interest rate differential less exchange

rate depreciation2

rxkt+1 = (fk
t −skt+1) −∆skt+1 ≈ fk

t −skt+1 (2.3)

Momentum portfolios: Currency momentum portfolios are formed

by ranking currencies into octile based on their past performance during the

ranking period (months t-12 to t-2). The procedure for constructing 8 currency

portfolios are similar to the method applied by Menkhoff et al. (2012) to

2Lustig, Roussanov and Verdelhan (2011) sort currencies based on their respective
interest rates to build currency portfolios for analyzing carry trade.
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analyze the cross-section of currency momentum. The first portfolio contains

currencies with the worst past performance (losers), the next basket composed

of currencies with the next better prior returns and so no, and the last portfolio

consists of currencies with the best prior performance (winners). Momentum

profit is computed by deducting the returns of loser portfolio from the return

of winner portfolio.

2.3 Equity momentum returns

In this section, I investigate the performance of equity momentum strategy

using different sample periods. Furthermore, the dark side of momentum

strategy, momentum crash, are examined in detail.

2.3.1 Performance of equity momentum

Table 2.1 shows the characteristics of momentum decile, winner minus loser

(WML) and market portfolio over the sample period from January 1927 to

February 2017. The average payoffs increase when moving from loser portfolio

to winner portfolio. Conversely, the returns of winner portfolios are more

negatively skewed than the returns of loser portfolios. The WML strategy

has an average annual excess return of 14.14%, which is almost twofold of

the market returns, with the corresponding volatility of 27.10%. The Sharpe

ratio of this strategy is higher than the Sharpe ratio of the market. However,

looking at the distribution of returns, momentum strategy characterized by fat

left tails as indicated by high excess kurtosis of 17.40 coupled with considerable

negative skewness of -2.34. This reflects high exposure of momentum to crash

risk, as shown by Barroso and Santa-Clara (2015) and Daniel and Moskowitz

(2016).

The next section of Table 2.1 shows ordinary least square (OLS)

regression result of momentum portfolios on the market, size and value

factors to examine whether high excess return of momentum related with

high risk exposure. The CAPM regression result shows that after controlling

significant negative exposure to market, the WML portfolio yields abnormal

annual return of 18.33%. Moreover, zero-investment WML portfolio

generates abnormal return of 21.15% after controlling significant negative

loading on the market (-0.38), size (-0.26) and value (-0.74) factors.
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Table 2.1: Equity momentum portfolios and market

Decile Momentum Portfolios

Statistics 1 2 3 4 5 6 7 8 9 10 WML RMRF

Mean 0.57 5.12 5.77 7.26 7.33 7.95 8.89 10.13 11.04 14.70 14.14 7.83

Std. 33.93 27.91 24.21 22.03 20.64 20.12 19.06 18.52 19.49 22.47 27.10 18.63

SR 0.02 0.18 0.24 0.33 0.36 0.40 0.47 0.55 0.57 0.65 0.52 0.42

Sk. 1.78 1.81 1.51 1.53 1.31 0.86 0.09 0.02 -0.31 -0.50 -2.34 0.19

Ku. 16.03 20.50 19.02 18.00 17.67 12.99 7.37 4.71 3.63 2.19 17.40 7.76

α CAPM -11.64 -5.28 -3.44 -1.30 -0.80 -0.13 1.29 2.81 3.49 6.69 18.33 0.00

t(α) -6.24 -3.86 -3.15 -1.47 -1.05 -0.20 2.00 4.18 4.33 5.30 6.85 3.58

β RMRF 1.56 1.33 1.18 1.09 1.04 1.03 0.97 0.93 0.96 1.02 -0.53 1.00

t(β) 54.32 63.03 69.83 79.86 88.31 105.20 97.60 90.29 77.84 52.70 -13.00 ∞
α FF3F -13.69 -6.79 -4.61 -2.15 -1.58 -0.65 1.17 2.89 3.71 7.46 21.15 0.00

t(α) -8.06 -5.33 -4.53 -2.57 -2.24 -1.07 1.84 4.31 4.60 6.38 8.43 3.56

This table presents descriptive statistics of equity momentum portfolios and market. The
first decile portfolio(loser) contains stocks with the worst past performance and the tenth
decile portfolio(winner) consists of stocks with the best prior performance. The Winner-
Minus-Loser (WML) portfolio is the difference between the return of top decile (winner)
portfolio and the return of bottom decile(loser) portfolio. The table presents annualized
average excess return, annualized standard deviation, annualized Sharpe ratio, skewness
and kurtosis. The CAPM alpha and Fama and French alpha along with their t-statistics
are also shown from ordinary least square(OLS) regression of WML portfolio on market and
Fama and French (1992) three factor. All statistics are computed using monthly data from
January 1927 to February 2017.

Figure 2.1 shows the cumulative returns from investing in the market

portfolio, risk-free asset, loser portfolio, winner portfolio and winner-minus-

loser (WML) portfolio from January 1927 to February 2017. The left side of

the figure shows the dollar value of each portfolios at the end of the period

by investing $1 in January 1927, without adjusting the transaction costs. The

payoffs to the winner and WML portfolios are remarkably higher than other

portfolios in the sample period. This reflects the impressive performance of

momentum strategy over the sample period.

However, Barroso and Santa-Clara (2015) and Daniel and Moskowitz

(2016) documented the long-term dramatic under performance of momentum

strategy following market drawdown. They illustrate their points by taking two

sample periods that include market turbulence, Great depression and Global

financial crisis. In a similar way, I examined the presence of momentum crash

after the market experiencing heavy loss using two sample periods, from 1930

to 1939 and from 2007 to 2017.

55



Figure 2.1: Cumulative returns of equity portfolios from 1927 to 2017

The figure plots cumulative returns of market portfolio, risk-free asset,
loser portfolio, winner portfolio and winner-minus-loser(WML) portfolio
over the full sample period from January 1927 to February 2017. The
dollar value in the left side of the figure shows the worth of each portfolios
at the end of the period by investing $1 in January 1927, without adjusting
the transaction costs.

Figure 2.2 displays the performance of momentum during and after

Great depression from January 1930 to December 1939. In July and August

1932, momentum strategy results a negative return of -60.17% and -77.02%,

respectively. While, the loser and market portfolio yields 93.95% and 74.27%,

and 37.06% and 33.84% returns during the same months. The figure shows

that momentum strategy experienced server crash as the market reverse after

stock market collapsed associated with Great depression. Moreover, it takes

a long time to recover the initial investment.

Figure 2.3 shows the cumulative returns of portfolios between January

2007 and February 2017. In a similar way, WML portfolio crashes when the

market rebound from major losses in the Global financial crisis. In March

2009, momentum strategy provides a negative return of -45.79%. Conversely,

the loser and market portfolios yields 45.66% and 10.19% returns, respectively,

during the same month. Furthermore, it takes more than 10 years to recover

initial investment after experiencing momentum crash.
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Figure 2.2: Cumulative returns of equity portfolios from 1930 to 1939

The figure plots cumulative returns of market portfolio, risk-free asset, loser
portfolio, winner portfolio and winner-minus-loser(WML) portfolio from January
1930 to December 1939. The dollar value in the left side of the figure shows the
worth of each portfolios in December 1939 by investing $1 in January 1930, without
adjusting the transaction costs.

Figure 2.3: Cumulative returns of equity portfolios from 2007 to 2017

The figure depicts cumulative returns from January 2007 to February 2017. The

dollar value in the left side of the figure shows the value of portfolios in February

2017 by investing $1 in January 2007, without adjusting the transaction costs.
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2.3.2 Time-varying risk exposure of momentum

Grundy and Martin (2001) find a significant time-varying risk exposure of

momentum strategy. They argue that, in a simple scenario where stock

returns are governed by their co-movement with the market, during bear

market ranking period winner stocks are those stocks with low market beta

and loser stocks are with high market beta. Alternatively, during bull market

ranking period winner stocks are those with high market beta and loser

stocks are low market beta stocks. Therefore, the momentum portfolio,

which long past winners and short past losers, tends to have a significant

negative beta after bear market and a significant positive beta following bull

market. When the market rebound after market drawdown, momentum

strategy experience huge losses. I investigate the time-varying risk exposure

of momentum by analyzing the beta of winner and loser portfolio. Figure 2.4

and 2.5 plots the market beta of winner and loser decile portfolios from

August 1930 to January 1940 and from January 2007 to February 2017,

respectively. These two periods marked as market reversal after stock market

collapsed associated with Great depression and Global financial crisis, and

include a time periods momentum strategy experienced worst returns. The

winner and loser beta are estimated by running 6 months rolling regression of

market model using monthly data.

As shown in Figure 2.4, the market beta of loser portfolio before

momentum crash (before July 1932) ranges between 1.35 and 2.70, while the

market beta for winner portfolios during the same period is between 0.50 and

1.09. This indicates that during bear market, Great depression, stock that

fell with the market (losers) are high beta stocks, conversely stocks that

performs well(winner) are low market beta stocks, which results a negative

market beta of momentum strategy. During the crash period, in July 1932,

loser portfolio has a market beta of 1.92 and winner 0.56. Similarly, in

August 1932, losers and winners have a market beta of 1.97 and 0.49,

respectively. After momentum crash, which is characterized by market

recovery, the variability of beta between winner and loser portfolios widened

sharply. The beta of loser portfolio reached as high as 3.58 and a minimum

value of 0.38 and the beta of winner portfolio varies between 1.97 and 0.29.

This reflects the time-varying risk exposure of momentum strategy.

To examine the time-varying exposure of momentum before and after
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Figure 2.4: Market beta of winner and loser decile portfolios from 1930 to 1940

The winner and loser beta are estimated by running 6 months rolling
regression of market model using monthly data.

Global financial crisis, Figure 2.5 depicts the market beta of winner and loser

portfolios between August 2007 and February 2017. The upward and

downward trend of winner and loser portfolio’s market beta reversed after

they reached 2.36 and -0.02 on March 2008, respectively. In this month, the

financial market panicked when JP Morgan acquire Bear Sterns. Following

this bear market phenomenon, the dynamics of loser and winner market

betas changed dramatically. The beta of loser portfolio, a group of stocks

that fell with the market, gradually increase until it reaches 4.37 on

September 2009. While, the market beta of winner portfolio steadily

decreases until it reaches its minimum value of -0.10 on October 2009. This

indicates that following bear market winner portfolio tend to have low

market beta and loser portfolio high market beta, consequently a negative

momentum beta.

Similar tends are also observed when Lehman Brothers collapsed on

September 2008, which brought down the financial system. Following this

incident, there was a wide difference between the beta of loser and winner

portfolios. When momentum strategy experience huge crash on March 2009

following market upswing from Global financial crisis, momentum portfolio

has a market beta of -0.89, which is the differences between market beta of
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Figure 2.5: Market beta of winner and loser decile portfolios from 2007 to 2017

The winner and loser beta are estimated by running 6 months rolling
regression of market model using monthly data.

loser and winner portfolios. Following bull market the momentum portfolio

has positive market beta. This illustrates the time-varying beta of

momentum strategy.

2.3.3 Hedging risk exposure of momentum

Grundy and Martin (2001) and Martens and Oord (2014) suggests that

hedging the time-varying exposure improves the performance of momentum

and provide more stable returns than unhedged momentum portfolio. I

assess whether hedging market exposure of momentum avoids momentum

crash and provide stable return using two most turbulent decades of the

strategy. Momentum hedging are performed in two ways. The first approach

is by taking opposite positions of unconditional market factor from CAPM

regression

rWML, t = α+βt ∗ rM,t + et (2.4)

Then Hedged momentum portfolio computed as

rhedgedWML, t+1 = rWML, t+1 − β̂hedged
WML, t+1 ∗ rM,t+1 (2.5)
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The second version of hedging momentum portfolio is by taking opposite

position of upside and downside market risk factors using downside risk CAPM

of Ang, Chen and Xing (2006) regression, which is based on association of

momentum returns on market risk factor conditional on upside and downside

market movements.

rcWML, t = α+β+t βt ∗ r+M,t + β−t βt ∗ r−M,t + et (2.6)

Then conditionally hedged momentum portfolio generated as

rc hedged
WML, t+1 = rcWML, t+1 − β̂+ c hedged

WML, t+1 ∗ r+M,t+1 − β̂− c hedged
WML, t+1 ∗ r−M,t+1 (2.7)

Figure 2.6: Hedging time-varying exposure of momentum from 1930 to 1939

The figure shows cumulative returns of unhedged winner-minus-
loser(WML), hedged WML and conditionally hedged WML portfolios
from January 1930 to December 1939. The dollar value in the left side
of the figure shows the worth of each portfolios in December 1939 by
investing $1 in January 1930, without adjusting the transaction costs.

Figure 2.6 shows the performance of unhedged momentum portfolio and

two hedged momentum portfolios between January 1930 and December 1939.

The cumulative returns of hedged momentum portfolios are higher than raw

(unhedged) momentum portfolio. Furthermore, asymmetric treatment of

upside and downside market risk exposure improves the profitability of

unconditional hedged momentum. However, both version of hedging
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Figure 2.7: Hedging time-varying exposure of momentum from 2007 to 2017

The figure plots cumulative returns of unhedged winner-minus-
loser(WML), hedged WML and conditionally hedged WML portfolios
from January 2007 to February 2017. The dollar value in the left side of
the figure shows the value of each portfolios in February 2017 by investing
$1 in January 2007, without adjusting the transaction costs.

strategies cannot not avoid the risk of momentum crash. The returns of

momentum strategies suffer huge loss following dramatic upswing of market

after severe drawdown. Figure 2.7 depicts the cumulative returns of hedged

and unhedged momentum portfolios from January 2007 to February 2017.

The figure shows that while hedging the exposure of market risk improve the

returns momentum strategy, it cannot alleviate the risk of momentum crash.

2.4 Optimal momentum strategy

The previous section gives important insights that merely hedging the

time-varying risk exposure of momentum can not prevent this strategy from

enormous losses. Therefore, it requires to design more efficient risk

management technique that increase the payoff and mitigate crash risk. In

this study, I propose a risk management strategy that scale zero-investment

momentum strategy by its forecasted semi-variance. This approach involves

two major steps. First, the time-varying risk exposure of plain momentum

portfolio are conditionally hedge out by taking opposite positions of upside
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and downside market risk factors, as shown in equation (2.7). Second, the

conditionally hedged momentum portfolios are scaled using its forecasted

semi-variances. Barndor-Nielsen, Kinnebrock, and Shephard (2010) show the

construction of upside and downside semi-variances. For each month, upside

and downside volatilities (semi-variances) are forecasted using previous

126-day (≈ six months) momentum returns. Let {rc hedged

WML, t}
T

t=1 and

{rc hedged

WML, d}
D

d=1 be the monthly and daily returns of conditionally hedged

momentum portfolio. The upside and downside semi-variances forecasts are

ŝvU c hedged
WML,t = 21

125

∑
j=0
r2 c hedged

WML, dt−1−j/126 ∗ φ[rc hedged
WML, dt−1

≥0] (2.8)

ŝvD c hedged
WML,t = 21

125

∑
j=0
r2 c hedged

WML, dt−1−j/126 ∗ φ[rc hedged
WML, dt−1

<0] (2.9)

Where, φ is a dummy variable that take a value 1 if the argument is true,

otherwise zero.

Then I use the forecasted semi-variances to scale the conditionally

hedged momentum portfolio returns. Risk adjusted optimal momentum

portfolio computed as

r�WML,t =
svUtarget

ŝvUt
r
U c hedged

WML, t +
svDtarget

ŝvDt
r
D c hedged

WML, t (2.10)

Where, r�WML,t is optimal momentum portfolio, r
U c hedged

WML, t is upside

(positive) conditionally hedged momentum, r
D c hedged

WML, t is downside (negative)

conditionally hedged momentum. svUtarget and svDtarget denotes the

corresponding target level of upside and downside semi-variance. Barroso

and Santa-Clara (2015) picked 12% annual target volatility to scale

momentum return. For easy comparison, the returns of optimal strategy

scaled to 6% upside and 6% downside annualized target semi-variances.

Figure 2.8 shows the performance of plain (unscaled) momentum, risk

managed momentum of Barroso and Santa-Clara (2015) and optimal

momentum strategy over the 90-year full sample period from January 1927 to

February 2017. The optimal WML strategy immensely outperform the

constant variance risk managed momentum strategy and plain momentum.

The dollar value shown in the left side of the graph is without adjusting the
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Figure 2.8: Cumulative returns of plain and risk-managed momentums
from 1927 to 2017

The figure reports cumulative returns of plain momentum(WML), Barroso
and Santa-Clara (2015)’s risk managed momentum(WML*) and optimal
momentum(WML�) over the 90-year full sample period from January 1927
to February 2017. Optimal portfolio uses the semi-variance of previous
126-day (≈ six months) to scale conditionally hedged momentum portfolio.
The left side of the figure shows the dollar value of each portfolios at the
end of the period by investing $1 in January 1927, without adjusting for
transaction costs.

transaction cost. Practical implementation of optimal WML strategy may

incur high transaction costs than other two strategies and reduce exaggerated

payoff.

The robustness of optimal momentum portfolio checked using two

turbulence decades, Great depression and Global financial crisis: 1930 to

1939 and 2007 to 2017. Figure 2.9 plots the cumulative reruns of raw

momentum, Barroso and Santa-Clara (2015)’s risk managed momentum and

optimal momentum between January 1930 and December 1939. Optimal

portfolio uses the semi-variance of previous 126-day (≈ six months) to scale

conditionally hedged momentum portfolio. Interestingly, beside mitigating

momentum crash, optimal strategy yields higher payoff than other two

strategies.

Figure 2.10 also illustrates the performance of momentum strategies for

the subsample period from January 2007 to February 2017. Consistent with
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Figure 2.9: Cumulative returns of plain and risk-managed momentums
from 1930 to 1939

The figure plots cumulative returns of plain momentum(WML), Barroso and Santa-
Clara (2015)’s risk managed momentum(WML*) and optimal momentum(WML�)
from January 1930 to December 1939.

Figure 2.10: Cumulative returns of plain and risk-managed momentums
from 2007 to 2017

The figure shows cumulative returns of plain momentum(WML), Barroso

and Santa-Clara (2015)’s risk managed momentum(WML*) and optimal

momentum(WML�) from January 2007 to February 2017.
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the previous results, optimal strategy remarkably outperforms the plain

momentum and Barroso and Santa-Clara (2015)’s risk managed strategies by

providing better returns and mitigating crash risk. These result indicates the

outstanding performance of optimal momentum strategy. However,

transaction cost should be taken into account for practical implementation of

this strategy.

Table 2.2: Twelve worst plain WML losses together with risk
managed momentum strategies

Rank Month WMLt WMLt* WMLt� Markett

1 1932:08 -77.02 -18.26 -12.22 37.06

2 1932:07 -60.17 -16.28 -10.65 33.84

3 2009:04 -45.79 -6.44 -5.58 10.19

4 1939:09 -45.16 -24.57 -18.75 16.88

5 2001:01 -41.97 -13.65 -15.64 3.13

6 1933:04 -41.92 -11.79 -3.70 38.85

7 2009:03 -39.39 -6.07 -5.51 8.95

8 1938:06 -33.20 -8.97 -5.09 23.87

9 1931:06 -29.26 -9.85 -6.22 13.90

10 1933:05 -26.87 -8.41 -4.00 21.43

11 2009:08 -24.85 -3.51 -2.96 3.33

12 2002:11 -20.40 -7.79 -7.08 5.96

Mean (1:12) -40.50 -11.30 -8.12 18.12

This table reports twelve worst plain WML losses together with the monthly reruns of
Barroso and Santa-Clara (2015)’s constant volatility risk managed momentum(WML*),
optimal momentum strategy (WML�) and the contemporaneous market return.

In order to compare the performance of risk management strategies in

more detail, Table 2.2 shows twelve worst WML losses together with the

monthly reruns of Barroso and Santa-Clara (2015)’s constant volatility risk

managed momentum, optimal momentum strategy and the market. Optimal

strategy better reduces WML losses relative to Barroso and Santa-Clara

(2015)’s risk managed momentum strategy. The average monthly returns of

constant volatility and optimal momentum strategies over twelve worst

returns of WML portfolio are -11.30% and -8.12%, respectively. This result

illustrates that optimal strategy reduces momentum crash quite substantial.

Furthermore, Table 2.3 presents the characteristics of plain momentum,

risk managed momentum of Barroso and Santa-Clara (2015), optimal
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momentum and the market returns over full sample period from January

1927 to February 2017. The optimal momentum strategy has average annual

excess return of 25.26%, with the corresponding volatility of 19.60%. While,

the plain momentum and Barroso and Santa-Clara (2015)’s risk managed

momentum strategy have average excess returns of 14.12% and 15.77%, with

annualized volatility of 27.11% and 16.45%, respectively. Excess kurtosis

dropped from 17.38% in plain momentum to 2.90% of optimal momentum

strategy. Higher Sharpe ratio coupled with positively skewed return of

optimal momentum make this strategy more attractive.

Table 2.3: Descriptive statistics of plain WML and risk managed
momentum strategies

Statistics WMLt WMLt* WMLt� Markett

Mean 14.12 15.77 25.26 7.84

Std. 27.11 16.45 19.60 18.64

SR 0.52 0.96 1.29 0.42

Sk. -2.34 -0.33 0.12 0.19

Ku. 17.38 2.11 2.90 7.75

This table reports descriptive statistics of plain WML portfolio, constant volatility risk
managed momentum(WML*) of Barroso and Santa-Clara (2015), optimal momentum
strategy (WML�) and the contemporaneous market return over the 90-year full sample
period from January 1927 to February 2017. The table presents annualized average excess
return, annualized standard deviation, annualized Sharpe ratio, skewness and kurtosis.
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2.5 Currency momentum returns

In this section I examined the characteristics of currency momentum returns.

Moreover, I assess whether momentum crash that observed in equity

momentum are also prevalent in currency market.

Figure 2.11: Number of available currencies from 1985 to 2017.

As explained before, currency portfolios are formed by ranking currencies

based on their prior performance. The availability of currency data, spot and

forward exchange rate, varies over time. Figure 2.11 depicts the number of

available currencies from January 1985 to March 2017. The plot shows that

the number of currencies in the sample period ranges from 16 to 56.

Table 2.4 presents the characteristics of octile (8) currency momentum,

the winner minus loser(WML) and market portfolios over the full sample period

from January 1985 to March 2017. Consistent with finance literatures, the

average excess return of currency momentum rises when moving from loser

to winner portfolio. While looking at annualized volatility, winner tend to

have higher volatility than loser portfolio. Moreover, the return distribution of

winner portfolio are more positively skewed and fat-tail as indicated by high

excess kurtosis.

Zero-investment WML currency portfolio has an average excess return of

14.62 % per year, almost twofold of market returns, coupled with high Sharpe
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Table 2.4: Currency momentum portfolios and market

Octile Momentum Portfolios

Statistics 1 2 3 4 5 6 7 8 WML RMRF

Mean -4.71 -1.84 -0.01 0.07 1.41 0.55 0.39 9.91 14.62 7.93

Std. 8.05 5.62 5.63 5.95 6.16 6.47 6.93 17.12 18.21 15.38

SR -0.58 -0.33 0.00 0.01 0.23 0.09 0.06 0.58 0.80 0.52

Sk. 0.91 0.03 0.13 0.12 0.23 0.30 0.29 3.87 3.63 -0.91

Ku. 4.78 3.48 2.11 4.07 1.88 4.47 3.69 20.62 19.56 2.75

α CAPM -4.40 -1.39 0.47 0.43 1.86 0.93 0.88 10.96 15.36 0.00

t(α) -3.02 -1.38 0.47 0.40 1.68 0.79 0.71 3.55 4.66 nan

β RMRF -0.04 -0.06 -0.06 -0.05 -0.06 -0.05 -0.06 -0.13 -0.09 1.00

t(β) -1.45 -3.08 -3.24 -2.27 -2.78 -2.17 -2.68 -2.30 -1.52 ∞

The table reports descriptive statistics of currency momentum portfolios and market returns.
The first portfolio(loser) contains currencies with the worst past performance and the eighth
portfolio(winner) consists of currencies with the best prior performance. The Winner-Minus-
Loser (WML) portfolio is the difference between the return of top octile (winner) portfolio
and the return of bottom octile (loser) currency portfolio. The table presents annualized
average excess return, annualized standard deviation, annualized Sharpe ratio, skewness
and kurtosis. The CAPM alpha along with their t-statistics are also shown from ordinary
least square(OLS) regression of WML portfolio on market. All statistics are computed using
monthly data from January 1985 to March 2017.

ratio and positively skewed return distribution. However, its large payoff come

at the cost of high excess kurtosis. To identify whether high excess return of

currency momentum related with high market risk exposure, the last four rows

present ordinary least square(OLS) regression result of currency momentum

portfolios on the market factor. The result shows that currency WML portfolio

has no significant exposure to market, and it offers abnormal annual return of

15.36%.

Figure 2.12 plots the cumulative returns of market portfolio, risk-free

asset, currency loser portfolio, winner portfolio and WML portfolio from

February 1986 to March 2017. Comparing the overall performance of these

portfolios, the return of currency WML portfolio outperform others in the

sample period. In the early part of the sample, zero-investment momentum

strategy provides lower return than market portfolio and risk-free asset.

However, the momentum strategy experience huge return upswing after

January 2001. One possible explanation of this result is availability of fewer

currencies in the early years of the sample. Menkhoff et al. (2012) explain

this phenomenon that, while it is possible to implement momentum strategy
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using closely linked currencies, the expected momentum return should be

relatively lower in the early years of the sample. Interestingly, the figure also

shows that there is no huge drop-down in currency momentum returns.

Figure 2.12: Cumulative returns of currency portfolios from 1986 to 2017

The figure presents cumulative returns of market portfolio, risk-free asset,
currency loser portfolio, winner portfolio and winner-minus-loser(WML)
portfolio from February 1986 to March 2017. The dollar value in left side
of the figure shows the worth of each portfolios in March 2017 by investing
$1 in February 1986, without adjusting the transaction costs.

To examine further whether momentum crash are also prevalent in

currency market, I sort twelve worst monthly returns of currency momentum.

These returns ranges from -10.88% in October 1998 to -5.34% in October

2010. This reflects the absence of huge crash in currency momentum.

Interestingly, the performance of currency momentum do not interrupted

even following Global financial crisis. It seems that large disconnection of

currency momentum from US business cycle.

Table 2.5 presents the risk exposure of currency momentum to the

systematic risk factors using univariate and multivariate regressions. I

decompose market risk to upside and downside market factor to consider

asymmetric response of momentum strategy to upward and downward

market movement. Panel A of the Table shows univariate regression of WML

on each risk factors. The first row is the result of OLS regression of WML on

market(CAPM). Currency momentum portfolio have no significant exposure
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Table 2.5: Risk exposure of currency momentum strategy

Panel A: Univariate regression Panel B: Multivariate regression

Variable
α β

R2 Variable
α β

R2

t(α) t(β) t(α) t(β)

RMRF
15.36 -0.09

0.61 RMRFU 17.73 -0.17
0.92

(4.66) (-1.52) (4.46) (-1.80)

HML
14.53 0.11

0.45 RMRFD
-0.01

(4.46) (1.29) (-0.10)

SMB
14.38 0.09

0.23 RMRF
15.01 -0.10

1.65
(4.39) (0.93) (4.54) (-1.64)

RMRFU
17.88 -0.17

0.91 HML
0.17

(4.84) (-1.85) (1.87)

RMRFD 14.13 -0.04
0.05 SMB

0.10

(4.10) (-0.44) (1.07)

The table presents ordinary least square(OLS) regression of currency momentum returns
on market(RMRF), size(SMB), value(HML), upside market (RMRFU ) and downside
market(RMRFD) risk factors along with their t-statistics. Panel A of the Table shows
univariate regression of WML on each risk factors. Panel B shows the multivariate regression
of WML portfolio using downside CAPM of Ang, Chen and Xing (2006) and Fama and
French (1992) three-factor model. Alpha and R2values are in percent, and t-statistics are in
parentheses. All statistics are computed using monthly data from February 1986 to March
2017.

to market risk factor. This result reinforces the findings in Figure 2.12, that

great disconnection of currency markets form US stock market. The result of

second and third row implies that currency momentum exposure to size and

value factors are minimal. Asymmetric treatment of upside and downside

market risk exposure cannot change the dynamics of relationship.

Panel B presents multivariate regression of WML portfolio using

downside CAPM of Ang, Chen and Xing (2006) and Fama and French (1992)

three-factor model. The result shows that strategy’s exposure to the upside

and downside market risk factor is insignificant. Moreover, the exposure to

the Fama and French (1992) three factor are also negligible. Hence, it can be

infer that systematic risk factors do not help to understand currency

momentum return.

2.5.1 Decomposing currency momentum risk

In this sub-section I provide an in-depth analysis of currency momentum by

decomposing the risk factor into systematic and specific(idiosyncratic)
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components. I propose realized semi-variance to decompose the risk of

currency momentum into systematic and specific risks. This approach helps

to investigate the source of momentum risk by further decomposing the

systematic risk component into upside and downside market risk factors. The

construction of upside and downside realized semi-variance are detailed by

Barndor-Nielsen, Kinnebrock, and Shephard (2010).

For momentum portfolio or market risk factor, upside and downside semi-

variances computed as

RS+t =
nt

∑
j=1
r2j,t ∗ φ[r≥0] (2.11)

RS−t =
nt

∑
j=1
r2j,t ∗ φ[r<0] (2.12)

Where, φ is a dummy variable that take a value 1 if the argument is

true, otherwise zero. I set zero threshold to decompose upside and downside

portfolio returns. Subsequently, I use the conditional market model to

decompose momentum risk into upside(downside) market and specific risk:

RS+WML, t = β2
t
+
RS+RMRF,t +RS+ε (2.13)

RS−WML, t = β2
t
−
RS−RMRF,t +RS−ε (2.14)

Upside(downside) semi-variance and betas are estimated using previous

126-day (≈ six months) return.

I test in-sample and out-of-sample(OOS) predictability of risk. The main

idea of this approach is to run regression on 240 months training sample and

use the estimated coefficients and recent month realized variance to forecast

the realized variance of next month. To evaluate the forecasting fit using

realized variance, the OOS R2 calculated as

R2
i,OOS = 1 − ∑

T−1
t=S (α̂t + ρ̂tRV i,t −RV i,t+1)2

∑T−1
t=S (RV i,t −RV i,t+1)

2 (2.15)

Where, α̂t and ρ̂t are estimated coefficients from AR (1). S denotes

training sample. The OOS goodness-of-fit or R2 using semi-variance estimated
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Table 2.6: Decomposing the risk of currency momentum

Panel A: Upside realized semi-variance Panel B: Downside realized semi-variance

Variable
α ρ

R2 R2
oos Variable

α ρ
R2 R2

oos
t(α) t(ρ) t(α) t(ρ)

RS+WML

0.04 0.21
4.30 36.3 RS−WML

0.00 -0.02
0.05 -6.07

(1.16) (1.63) (1.35) (-0.17)

RS+RMRF

0.01 0.77
58.80 82.88 RS−RMRF

0.00 0.78
64.70 97.84

(1.92) (9.18) (0.64) (10.39)

β2+ 9.98 0.05
0.24 2.35 β2− 0.00 0.25

6.27 42.80
(2.25) (0.38) (1.02) (1.98)

β2+RS+RMRF

0.24 0.00
0.00 -2.64 β2− RS−RMRF

0.00 0.28
7.84 47.21

(1.54) (-0.00) (0.99) (2.24)

RS+ε
-0.22 -0.16

2.49 -36.15 RS−ε
0.00 -0.01

0.01 -3.44
(-1.51) (-1.22) (1.17) (-0.09)

The table shows AR (1) for each component of risk. α and ρ are estimated coefficients
from AR(1). Panel A of the Table shows upside realized semi-variance for each component
of risk, and Panel B the corresponding downside realized semi-variance. The first row
shows the upside(downside) realized semi-variance of currency WML portfolio. The second
row is upside(downside) realized semi-variance of market(RMRF) portfolio. The third one
is upside(downside) squared beta, which is estimated by regression of upside(downside)
WML portfolio on upside(downside) market using six months’ daily return. The forth row
presents the systematic component of upside(downside) market risk. The last row presents
the specific component of risk. R2 and R2

oosdenotes in-sample and out-of-sample coefficient
of determination. All statistics are computed using currency data from February 1986 to
March 2017.

by employing upside realized semi-variance (RS+i,t) and downside semi-variance

(RS−i,t).

Table 2.6 reports AR (1) result of each components of risk. Panel A of

the table shows the upside realized semi-variance for each component of risk,

while Panel B presents the result of downside semi-variance. Moreover,

in-sample and out-of-sample(OOS) predictability of each component of risk

are also reported in the table. The result shows that, while realized upside

and downside market semi-variances are the most predictable component of

momentum risk either in sample or OOS, upside and downside market betas

remain the least predictable. When combined, upside market risk,

β2+RS+RMRF, has no contribution to the upside momentum risk.

Furthermore, the downside component of market risk, β2−RS−RMRF, accounts

only 7.8% of downside momentum risk with an OOS R-square of 47.21%.

This illustrates that the systematic (market) risk component of momentum

strategy is very less. Upside momentum risk found to be the more
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Table 2.7: Currency momentum volatility on upside and downside realized
semi-variance of market

Realized Variance: RV WML,t = β+t RS+RMRF,t + β−t RS−RMRF,t +RV ε

α ρ+ ρ−
R2

t(α) t(ρ+) t(ρ−)

RVWML

0.034 0.05 -6.91
6.98

(1.08) (2.08) (-0.18)

The table shows AR (1) of currency momentum volatility on upside and downside realized
semi-variance of market. α, ρ+ and ρ− are estimated coefficients from AR(1). All statistics
are computed using currency data from February 1986 to March 2017.

predictable risk with an OOS R-square of 36.30% relative to the downside

risk. Either in-sample or OOS, specific risk is the least predictable

component of upside and downside momentum risk.

To investigate the volatility of currency momentum, I compute realized

variance, which is a sum of upside and downside semi-variance:

RV WML,t = β2
t
−
RS−RMRF,t + β2

t
−
RS−RMRF,t +RV ε (2.16)

Table 2.7 presents the result of equation (2.16). Consistent with the

previous finding, on average market component of momentum volatility

accounts only 7%, another 93% is specific to the momentum strategy.

I also investigate the composition of currency momentum risk by

decomposing the total risk into market and specific component using market

model. The results are available in the Appendix (Table A1). The market

component of risk, β2 RVRMRF,is the least predictable component of total

momentum risk. This implies that hedging the market risk of currency

momentum do not improve the performance of strategy, as most risk remain

unhedged.

2.6 Conclusions

In this chapter, I investigate momentum strategies in equity and currency

markets. In a stable economic condition buying recent winner and selling

recent loser assets provide higher positive returns. However, the impressive

74



performance of equity momentum interrupts following market draw-down

and results huge momentum crash, which wiped out amassed returns and

takes a long time to recover. In July and August 1932, momentum strategy

results a negative stock return of -60.17% and -77.02%, respectively. In

March 2009, equity momentum provides a negative return of -45.79%. I

propose an optimal momentum strategy to manage the risk of crash and keep

momentum performance consistent. This strategy remarkably mitigates

momentum crash and provide higher payoff than plain momentum and risk

managed momentum strategy suggested by Barroso and Santa-Clara (2015).

In July and August 1932, this strategy reduces momentum crash to -10.65%

and -12.22%, respectively. It also provides higher positive return in the

tranquil and crisis periods.

Momentum strategy provide higher Sharpe ratio in currency market.

Unlike equity momentum, huge crash risk is not pronounced in currency

momentum. The strategy do not have significant risk exposure to the

standard risk factors. Further decomposing the risk of currency momentum

shows that systematic market risk is the least component of total risk, which

implies that specific risk accounts the main source of currency momentum

risk. In general, managing the risk of momentum mitigate crash risk and

provide consistent higher positive returns.
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3. CONDITIONAL ASSET PRICING, IDIOSYNCRATIC

RISK AND THE CROSS-SECTION OF RETURNS

3.1 Introduction

Most empirical studies on asset pricing have focused on testing whether asset

pricing models can explain the cross-section of returns when one or more

systematic risk factors are incorporated in the model and assume risk

premium. However, the possibility of asset pricing model that could price

idiosyncratic risk to compensate investors’ under-diversification has given less

emphasis. This is partly due to the views of modern portfolio theory that

suggest only systematic risk of assets should be priced in equilibrium, but the

exposure to idiosyncratic risk should not be compensated as it can be

eliminated in a well-diversified portfolio. This assumption holds if investors

optimally diversify their portfolios. As a rule of thumb, Campbell, Lettau et

al. (2001) suggests a portfolio of 50 stocks to achieving a large fraction of

diversification benefits. In reality, however, investors may not hold diversified

portfolio for various reasons. Barber and Odean (2000) report that a typical

US individual investor holds a portfolio contains only four stocks. Huberman

(2001) and Polkovnichenko (2005) provide additional evidence that investors

ignore to diversify their portfolios in practice. Goetzmann and Kumar (2008)

examine the portfolio choice of 62,387 US individual investors from 1991 to

1996. They show that more than 50% of investors’ portfolio hold one to three

stocks, 70% of portfolios contains less than five stocks and 90-95% of

portfolios comprise of less than ten stocks.

Some prior studies propose asset pricing models that incorporate

idiosyncratic risk to account for holding imperfectly diversified portfolio.

Mayers (1976), Levy (1978) and Merton (1987) advance a model by

extending the CAPM to include investors’ under-diversification effect in asset

prices. Merton argues that if investors unable to hold diversified market

portfolio because of incomplete information or deliberately structure their

portfolios to accept considerable firm-specific risk, they require higher returns

for assets with high idiosyncratic risk. Malkiel and Xu (2006) show that in

the absence of fully diversified portfolio, investors demand compensation for
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holding securities with idiosyncratic risk. Boehme et al. (2009) find strong

support of Merton’s suggestion that investors price idiosyncratic risk when

they hold under-diversified portfolios, and the relationship between

idiosyncratic risk and expected returns is positive.

Empirical evidences on the existence of idiosyncratic risk premia in

expected returns revisited the interest of idiosyncratic risk in asset pricing

studies, while the findings are mixed. The seminal work of Campbell, Lettau

et al. (2001) find that idiosyncratic risk is the main component of total risk

and varies over time. They develop an equilibrium model that consider an

idiosyncratic risk premium in the cross-section of asset returns, and report

the existence of significant positive linkage between expected returns and

idiosyncratic risk. Goyal and Santa-Clara (2003) observe a significant

positive interdependence between idiosyncratic volatility and subsequent

stock returns. Fu (2009), Bali and Cakici (2008) and Chua, Goh, and Zhang

(2010) also show a positive linkage between returns and idiosyncratic

volatility. While, Ang, Hodrick, Xing, and Zhang (2006, 2009, hereafter

AHXZ) find a significant negative relationship between average returns and

lagged idiosyncratic risk, they call it a “substantive puzzle”. The conflicting

results in the existing literatures may be due to lack of consistency in the

choice of variable used to proxy idiosyncratic risk and asset returns. Some

studies use lagged or realized idiosyncratic volatility as a measure of

idiosyncratic risk, while others employ conditional or expected idiosyncratic

volatility. Additionally, there is also disparity in using realized and future

returns.

AHXZ (2006) sort the return of stocks by their idiosyncratic volatility

and find low average returns for stocks with high idiosyncratic volatility in

the subsequent month. More specifically, the quantile of stock portfolio with

the highest idiosyncratic volatility earns average monthly return of 1.06 %

less than the quantile of stocks with the lowest idiosyncratic volatility. They

also show a negative linkage between average returns and idiosyncratic

volatility after controlling firm specific characteristics. In their subsequent

study, AHXZ (2009) provide evidence of significant negative relationship

between future average returns and past idiosyncratic volatility in other G7

countries. Moreover, they report a -1.31% difference of average monthly

returns between high and low quantiles sorted on idiosyncratic volatility after

considering for the exposure to the world market, size and value factors
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across 23 developed markets.

Jiang and Lee (2006) argue that lagged idiosyncratic volatility is not a

proper proxy of idiosyncratic risk as it may not capture the time-varying

property, rather they suggest using conditional expected idiosyncratic

volatility instead. They show a positive relationship between idiosyncratic

volatility and returns. Fu (2009) point out that the theoretically correct

factor to explain expected returns should be the same period expected

idiosyncratic volatilities, since the time-varying nature of idiosyncratic

volatility may not make the one-month lagged idiosyncratic volatilities a

good proxy of current month expected idiosyncratic volatility. Therefore, the

negative relationship between lagged idiosyncratic volatilities and average

returns reported by AHXZ (2006, 2009) could not be used to infer the

relationship between expected returns and idiosyncratic risk. To explain the

time-variation in the idiosyncratic volatility process, Fu (2009) estimate the

expected idiosyncratic volatility using the exponential generalized

autoregressive conditional heteroskedasticity (EGARCH) model and uncover

a strong positive relationship between expected returns and conditional

idiosyncratic volatility.

Fu (2009) argues that AHXZ’s results are driven by return reversal over

the next month. Stocks with the highest idiosyncratic volatility tend to have

high expected return, but the trend reverse in the following month and yield

abnormally low average returns. Huang, et al. (2010) suggest that AHXZ’s

results of negative relations are as a result of biased portfolio weighting and

biased estimate of cross-sectional relation brought by return reversal. They

find a significant positive relation between conditional idiosyncratic volatility

and aveage returns after controlling for return reversal. Bali, Cakici, and

Whitelaw (2011) investigate the existence of idiosyncratic risk puzzle by

including additional control variable, past month daily returns, and find the

reverse of negative relationship between returns and idiosyncratic volatility

report by AHXZ.

The purpose of this study is to investigate whether idiosyncratic risk

priced in the cross-section of stock returns. Assessing the existence of

idiosyncratic risk premia is important to determine the presence of

compensation for under-diversified investors as they are exposed to specific

risk for various reasons. The main contribution of this study to the existing

literature is two folds. The first one related to the methodological approach
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for examining the role of idiosyncratic risk in the asset pricing process. In

order to assess idiosyncratic risk in a different way, I employ a parsimonious

conditional asset pricing models in the analysis. This approach enables to

model risk–return relation by correcting the time-variation in market factor

and incorporating idiosyncratic risk in the asset pricing models. Hence, the

conditional relations of idiosyncratic risk and stock returns can be explained

by the association of returns with the conditional market return. It is close

to the method used by Cotter, Sullivan and Rossi (2015) to analyze the

conditional relation between idiosyncratic risk and returns of UK equity

markets. They provide evidence of significant negative linkage between

idiosyncratic risk and returns in the downside market.

The second contribution related to the estimation of idiosyncratic

volatility. Lack of consistency in the variable used to proxy idiosyncratic risk

induced conflicting results in the literature. For instance, AHXZ (2006, 2009)

used one-month lagged idiosyncratic volatility as a proxy of specific risk and

find a negative relation between stock returns and idiosyncratic volatility.

While, Fu (2009) suggests using expected idiosyncratic volatility and shows a

significant positive relationship between idiosyncratic volatility and average

returns. For better comparison, I compute idiosyncratic risk using the

approaches suggested by both authors and assess whether idiosyncratic risk

component is compensated in the financial markets.

The rest of the chapter organized as follows. Section 3.2 describes the

data set and how I construct idiosyncratic volatility and other cross-sectional

variables. Section 3.3 explains the methodology employed to examine the

cross-sectional relationship between idiosyncratic volatility and stock returns.

Section 3.4 discusses the main results. Section 3.5 concludes.

3.2 Data and variable construction

The data set includes 1000 firms traded in NYSE and NASADQ. I obtained

daily and monthly stock prices, book values, and shares outstanding from

DataStream. All stocks have equal sample period ranges from March 2000 to

December 2016. I use share prices and shares outstanding to compute firm’s

market values, and book values to calculate the book-to-market ratio of each

stock. Furthermore, I obtained the daily and monthly risk-free rate and Fama

and French three-factor returns from Kenneth French’s data library. These
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factors are used in the time-series regression of Fama and French (1993) three-

factor model for computing idiosyncratic volatility.

3.2.1 Idiosyncratic volatility

Earlier studies that investigate the interdependence between idiosyncratic

risk and average returns use idiosyncratic volatility as a proxy of specific risk.

To be consistent and for better comparison with these studies, I use the same

proxy to define idiosyncratic risk. While, finance literatures suggest several

ways of measuring idiosyncratic volatility, I estimate idiosyncratic volatilities

using the following two distinct approaches. The first approach is using prior

realized or lagged idiosyncratic volatility. AHXZ suggests using one-month

lagged idiosyncratic volatility as a proxy of idiosyncratic risk. They define

idiosyncratic volatility as the standard deviation of regression residuals.

Following AHXZ, I estimate monthly individual stock residuals by regressing

daily excess returns on the daily Fama and French (1993) three factors:

market excess return(MKT), size (SMB) and book-to-market (HML).

rit = αi + βiMKT + siSMB + hiHML + εit (3.1)

Where rit is the daily excess return of stock i in month t, that is daily

raw stock return minus T-bill rate. βi, si and hi are factor loadings. Stock

i idiosyncratic volatility calculated as the standard deviation of regression

residuals εit. The daily standard deviation of residuals transforms to monthly

by multiplying the daily standard deviation of residuals by the square root of

the number of trading days in that month.

To examine whether idiosyncratic volatility follows a random walk

process or not, I conduct a test by regressing the change in idiosyncratic

volatility(IVOL) against the past month idiosyncratic volatility.

IVOLi,t+1−IVOLi,t=αi+βiIVOLi,t+εi (3.2)

with the associated hypothesis

H0∶ βi = 0;H1∶ βi ≠ 0

Where αi is an arbitrary drift parameter and εi is the random disturbance
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Table 3.1: Random walk tests of idiosyncratic volatility

Panel A ∶ IVOLi,t+1−IVOLi,t=αi+βiIVOLi,t+εi Panel B ∶ ln(IVOLi,t+1)−ln(IVOLi,t) =αi+βiln(IVOLi,t)+εi

Variables Mean Std.dev. Q1 Median Q3 Mean Std.dev. Q1 Median Q3

β -0.45 0.14 -0.54 -0.43 -0.34 -1.42 0.06 -1.47 -1.43 -1.38

t(β) (-7.59) (1.60) (-8.64) (-7.45) (-6.48) (-22.09) (1.61) (-23.15) (-22.07) (-20.97)

The table presents the time-series regression statistics of the change in idiosyncratic volatility
with the past month idiosyncratic volatility to test whether the individual stock idiosyncratic
volatility follows random walk process. The sample period is from March 2000 to December
2016. Idiosyncratic volatilities(IVOL) calculated as the standard deviation of regression
residuals of the Fama and French (1993) three-factor model estimated using the daily stock
returns with in a month. The logarithm of idiosyncratic volatilities ln(IVOL) computed
as ln(IVOLt/IVOLt−1). The table reports the cross-firm mean, standard deviation, lower
quantile, median and upper quantality estimation coefficients of βi with the corresponding
t-statistics. The critical values of Dickey-Fuller unit-root t-statistics to reject the random
walk null hypothesis at 1% is -3.43.

term with εit ∼ N(0, σ2
it). If the time-series of idiosyncratic volatility follows a

random process the coefficient of βi should be equal to zero.

Table 3.1 presents the test statistics of random walk in idiosyncratic

volatility. Panel A reports the mean, standard deviation, lower quantile,

median and upper quantile of βi coefficient and the t-statistics for the

changes in idiosyncratic volatility(IVOL) across 1000 firms in the sample.

The critical values of Dickey-Fuller unit-root t-statistics at 1% for a sample

of greater than 500 is -3.43. The mean βi among these firms is -0.45 with the

corresponding t-statistics of -7.59. Comparing the t-statistics with the

Dickey-Fuller critical value, I reject the random walk null hypothesis. In

Panel B, I estimate the βi and the associated t-statistics of changes in the

natural logarithm of idiosyncratic volatility (ln(IVOL)). The mean βi is -1.42

and the t-statistics is -22.09, which significantly rejects the random walk null

hypothesis. Overall, the findings in Table 3.1 suggest that idiosyncratic

volatility of stock returns do not follow a random walk process. This is

consistent with the findings of Fu (2009) that argues against using the value

of past month idiosyncratic volatility to proxy this month idiosyncratic

volatility, as it could induce estimation error.

The second method of idiosyncratic risk measure is using conditional

idiosyncratic volatility. Fu (2009) argues that the theoretically correct factor

to capture the variation in stock returns should be the same period

idiosyncratic volatilities instead of lagged idiosyncratic volatility. In order to
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characterize the time-varying property of firm-specific risk, I estimate the

conditional expected idiosyncratic volatility using the exponential generalized

autoregressive conditional heteroskedasticity (EGARCH) model. The

exponential GARCH (EGARCH) was proposed by Nelson (1991) as an

extension of the GARCH model that capture the asymmetric effects of

volatility. It has been widely advocated to model the conditional volatility of

asset returns. Spiegel and Wang (2005), Fu (2009), Peterson and Smedema

(2011) and Guo, Kassa and Ferguson (2014) apply EGARCH model to

estimate the conditional idiosyncratic volatility. Using the monthly return, I

estimate the conditional expected idiosyncratic volatility from the Fama and

French (1993) three-factor model with an error term that follows an

EGARCH (p, q) process.

rit = αi + βiMKT + siSMB + hiHML + εit (3.3)

The conditional error term, εit, is assumed to have a normal distribution

with mean of zero and the variance of σ2
it, that is εit ∼ N(0, σ2

it).

and the conditional variance, σ2
it, as a function of the past p-periods residual

variance and q-periods of return shocks

lnσ2
it = αi +

p

∑
l=1
bi,l lnσ2

i,t−1 +
q

∑
k=1
ci,k {θ (

εi,t−k
σi,t−k

) + γ [∣ εi,t−k
σi,t−k

∣ − ( 2

π
)
1/2

]} (3.4)

I estimate the conditional idiosyncratic volatility of each stock using the

full sample and EGARCH (1,1) specification.1 The full sample is from March

2000 to December 2016, and all stocks have 200 monthly observations in the

estimation.

3.2.2 Other cross-sectional factors

Empirical studies show that variables such as beta, size and book-to-market

ratio have an effect in the cross-section of returns, I use these factors in the

cross-sectional regression. The market beta is constructed following the

procedures of Fama and French (1992). I estimate monthly firm pre-ranking

betas (β) from the first stage regression of a market model using the previous

1Cao and Han (2016) and Guo, Kassa and Ferguson (2014) also estimate idiosyncratic
volatility with EGARCH (1, 1) model.
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60 months of returns. Next, stocks are assigned to 10x10 two-way sort

portfolios based on size and pre-ranking beta. I then calculate equal-weighted

portfolio monthly returns for 100 portfolios. Finally, I estimate the betas as

the sum of coefficients in the full sample regression of size-β portfolio returns

on the current and prior month’s market returns, then the beta of size-β

portfolio are allocated to stocks in the portfolio. I employ these betas in the

cross-sectional regression of each stock returns. Table A2 shows the average

monthly returns and beta for stock portfolios formed on size and pre-ranking

betas in the appendix.

I use the firm’s market value of equity (ME), the number of outstanding

shares multiplied by closing price, as a measure of size. Moreover, the book-to-

market ratio (BE/ME) is book value of equity for the fiscal year end divided

by the market value of equity at the end of calendar year. These variables

transformed into natural logarithm to mitigate high skewness.

3.3 Methodology

I examine the relationship between idiosyncratic volatility and stock returns

using two-stage Fama and MacBeth (1973) regression approach. In the first

stage, monthly excess reruns of firms regress on the idiosyncratic volatility and

other firm specific characteristics to estimate the regression coefficient of each

factors with the corresponding time period. In the second stage, I use the ex-

ante regression coefficients as explanatory variables to estimate the ex-post risk

premia, and test whether the coefficient of idiosyncratic volatility is different

from zero. For each month, I run the following cross-sectional regression

Rit = γ0t + γXtXit + γIV tIV it + εit (3.5)

Where Rit is the realized return of stock i in month t. X
′

it denotes a

vector of beta and other firm specific variables. In a cross-sectional regression

X
′

it= [Beta, ln (ME) , ln(BE/ME)]. IV
′

it= [E (IV OL) , Ln(IV OL)t−1], is a

vector of conditional idiosyncratic volatility and one-month lagged

idiosyncratic volatility.

The conditional cross-sectional regression allows the market beta of

stocks and risk premia to change on the market condition. The economic
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intuition of contemporaneous association of returns with the market risk is to

examine investors’ asymmetric response to upside and downside market risk.

In this setting, the upside and downside market beta constructed following

the procedures for computing unconditional market beta as in Fama and

French (1992). I estimate monthly firm upside betas (β+) from the first stage

regression of a market model using the previous 60 months of returns, where

market return being above 1 standard deviation of its mean. Then each stock

grouped into 10x10 two-way sort portfolios based on size and upside betas. I

then calculate equal-weighted portfolio monthly returns for 100 portfolios.

Finally, I estimate the upside betas as the sum of the slopes on the current

and prior month’s upside market returns, then upside beta is allocated to

individual stocks in the portfolio. The same procedures applied to generate

downside beta(β−), where market return being below 1 standard deviation of

its mean. The conditional cross-sectional regressions that incorporates

conditional market beta, idiosyncratic volatility and other time-varying

factors are the following from

Rit = γ0t + γXtXit + γIV tIV it + εit ; X
′

it= [β+, ln (ME) , ln(BE/ME)] (3.6)

Rit = γ0t + γXtXit + γIV tIV it + εit ; X
′

it= [β−, ln (ME) , ln(BE/ME)] (3.7)

In the Fama-MacBeth regressions, the first stage regression estimates

upside market beta ( β+it ), downside market beta (β−it ), size and value

coefficients. The second stage regression estimates the upside and downside

marker risk premia along with other risk premia using the ex-ante regression

coefficients. Hence, it allows to estimate the variation in average returns

conditional on the market movements.

3.4 Empirical results

This section presents several tests of idiosyncratic volatility and

Fama-MacBeth cross-sectional regression results.

3.4.1 Descriptive statistics

Panel A of Table 3.2 presents the pooled descriptive statistics of stock reruns,

idiosyncratic volatilities and other candidate variables. The mean monthly
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return is 1.2% with a standard deviation of 10.61%.

The mean skewness and excess kurtosis of returns is 1.69 and 24.23,

which implies that on average stock returns are positively skewed and

leptokurtic. The mean excess return is 1.08% per month. Systematic risk

measure beta, size and book-to market ratio are on average 1.23, 13.96 and

-0.72, respectively. Average monthly idiosyncratic volatility(IVOL) returns is

9.54% with a standard deviation of 6.56%. The distribution of monthly

idiosyncratic volatility is substantially positively skewed. However, the

natural logarithm of idiosyncratic volatility ln(IVOL) has a distribution close

to symmetric, and it will be used in the cross-sectional regression.

Conditional idiosyncratic volatility(E(IVOL)) has a mean and standard

deviation of 10.10% and 5.36%, respectively.

Panel B shows the time-series mean of the cross-sectional Pearson

correlations. The mean correlation between stock returns and idiosyncratic

volatility is 0.03. While the correlation between returns and one-month

lagged ln(IVOL) is -0.05, which is in line with the negative

return-idiosyncratic volatility association reported in AHXZ. This

relationship reversed when the second measure of idiosyncratic volatility,

conditional idiosyncratic volatility is applied. The correlation between

E(IVOL) and returns is 0.06, which confirms the results of Fu (2009). Among

all candidate variables, the highest correlation exists between IVOL and

E(IVOL), 0.50. For book-to-market equity, the correlation test implies a

positive relationship between returns and ln(BE/ME). Along with the

findings of Fama and French (1992), the mean cross-sectional correlations

between ln(ME) and ln(BE/ME) is negative, -0.30. The negative relationship

is also apparent between beta and ln(ME). Conditional idiosyncratic

volatility is negatively correlated with ln(ME), which implies that small firms

have higher idiosyncratic volatility than large firms. Furthermore, the

positive correlation between ln(BE/ME) and E(IVOL) shows high

idiosyncratic volatility is more prevalent in value firms than growth firms.

Figure 3.1 shows the cross-sectional returns and average idiosyncratic

volatilities over time. Alternative idiosyncratic volatility measures, IVOL and

E(IVOL), are reported separately in the figure. The mean stock returns are

more volatile during the 2008 Global financial crisis. Idiosyncratic volatility

also experienced higher volatility during the same period.
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Table 3.2: Descriptive statistics and cross-sectional correlations for the pooled
sample

Panel A: Variables descriptive statistics

Variables Mean Std dev. Skew Kurt Q1 Median Q3

RET 1.20 10.61 1.69 24.23 -4.21 0.71 5.86

XRET 1.08 10.66 1.68 24.07 -4.34 0.58 5.76

BETA 1.23 0.28 0.14 -0.78 1.01 1.19 1.46

Ln(ME) 13.96 1.99 0.12 -0.19 12.57 13.94 15.27

Ln(BE/ME) -0.72 0.75 -1.59 8.41 -1.09 -0.63 -0.26

IVOL 9.54 6.56 3.98 40.58 5.67 7.82 11.34

Ln(IVOL) -0.33 41.90 0.10 2.00 -25.55 -0.68 24.27

E(IVOL) 10.10 5.36 2.93 23.55 6.71 8.96 12.21

Panel B: Cross-sectional correlation

Variables RET BETA Ln(ME) Ln(BE/ME) IVOL Ln(IVOL) E(IVOL)

RET 1

BETA 0.02 1

Ln(ME) 0.00 -0.21 1

Ln(BE/ME) 0.01 0.11 -0.30 1

IVOL 0.03 0.22 -0.44 0.12 1

Ln(IVOL) -0.05 0.00 0.00 0.00 0.38 1

E(IVOL) 0.06 0.36 -0.34 0.04 0.50 -0.02 1

The table reports sample statistics for the pool data. Panel A presents the variables
descriptive statistics and Panel B the time-series mean of the cross-sectional Pearson
correlations. RET is monthly stock returns. XRET is monthly stock excess return, stock
return minus one-month government T-bill rate. The variable BETA, ME and BE/ME are
constructed following the procedures as in Fama and French (1992). BETA is the coefficient
in the full sample regression of 10x10 size-pre-ranking β portfolio returns on the prior and
current month’s market return. ME is the market capitalization, the product of closing
price and outstanding shares. BE/ME is the book-to-market equity ratio. Idiosyncratic
volatility (IVOL) calculated as the standard deviation of regression residuals from the Fama
and French (1992) three-factor model estimated using the daily stock returns with in a
month. The logarithm of idiosyncratic volatility ln(IVOL) computed as ln(IVOLt/IVOLt−1).
E(IVOL) is the conditional idiosyncratic volatility estimated using EGARCH model. The
ME, BE/ME and IVOL variables are transformed into natural logarithm to mitigate high
skewness. RET, XRET and idiosyncratic volatility variables are reported in percentage. The
sample includes of stocks traded in NYSE and NASDAQ from March 2000 to December 2016.
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Figure 3.1: Cross-sectional average returns and idiosyncratic volatilities over time.

Furthermore, both return and idiosyncratic volatility show a relatively

high volatility following the bursting of the Dotcom bubble in the early 2000s.

This supports the result of positive correlation between stock returns and

idiosyncratic volatility in Table 3.2.

3.4.2 Portfolio returns formed on idiosyncratic volatilities

Portfolio sorts are the most widely approach in finance to examine the

systematic patterns of expected returns related to some stock characteristics.

I examine the cross-sectional relation between idiosyncratic volatilities and

returns using stock portfolios sorted on idiosyncratic volatility. The

procedure for constructing stock portfolios are as follows. In each month,

stocks are sorted into 12 portfolios based on their idiosyncratic volatilities.

The first two portfolios (1A and 1B) split the bottom decile into half that

contains stocks with the lowest idiosyncratic volatilities. The middle 8

portfolios composed of stocks with the next deciles of idiosyncratic

volatilities. The last two extreme portfolios (10A and 10B) divided the top

decile into two that consists of stocks with the highest idiosyncratic
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volatilities.

Table 3.3: Properties of portfolios formed on idiosyncratic volatility

Panel A: Portfolios formed on E(IVOL)

Variables 1A 1B 2 3 4 5 6 7 8 9 10A 10B

RET 0.77 0.62 0.65 0.73 0.76 0.89 0.95 1.07 1.13 1.55 1.86 2.72

BETA 1.05 1.02 1.08 1.12 1.19 1.20 1.26 1.30 1.33 1.40 1.42 1.41

Ln(ME) 14.80 15.21 15.10 14.85 14.58 14.45 14.16 13.79 13.62 13.09 12.76 12.31

Ln(BE/ME) -0.71 -0.77 -0.76 -0.76 -0.71 -0.75 -0.74 -0.67 -0.62 -0.61 -0.64 -0.68

Panel B: Portfolios formed on ln(IVOLt-1)

Variables 1A 1B 2 3 4 5 6 7 8 9 10A 10B

RET 1.05 1.20 0.99 0.92 1.06 1.11 1.15 1.05 0.94 1.06 1.24 1.36

BETA 1.26 1.24 1.24 1.22 1.23 1.21 1.23 1.22 1.24 1.24 1.27 1.27

Ln(ME) 13.98 14.26 14.24 14.28 14.26 14.32 14.32 14.24 14.12 13.85 13.63 13.49

Ln(BE/ME) -0.72 -0.79 -0.72 -0.71 -0.69 -0.72 -0.72 -0.70 -0.67 -0.67 -0.68 -0.72

This table presents the summary statistics of portfolios formed on idiosyncratic volatilities.
The sample period is from March 2000 to December 2016. In panel A, stocks are sorted
into decile on the basis of their expected or conditional idiosyncratic volatility, the E(IVOL)
estimated using EGARCH model. In Panel B, stocks are sorted using one-month lagged
idiosyncratic volatility, the ln(IVOLt−1) calculated as the logarithm of the standard deviation
of regression residuals from Fama and French (1992) three-factor model estimated using the
daily stock returns with in a month. All portfolios are rebalanced each month and are equally
weighted. The first two portfolios (1A and 1B) split the bottom decile into half that contains
stocks with the lowest idiosyncratic volatilities. Portfolio 2-9 composed of stocks with the
next deciles of idiosyncratic volatilities. The last two extreme portfolios (10A and 10B)
split the top decile into half that consists of stocks with the highest idiosyncratic volatilities.
RET is the time-series of monthly average portfolio returns. BETA is the coefficient in the
full sample regression of 10x10 size-pre-ranking β portfolio returns on the prior and current
month’s market return. ME is the market capitalization, the product of closing price and
outstanding shares. BE/ME is the book-to-market ratio.

A zero-investment portfolio can be computed by deducting the returns

of high idiosyncratic volatility portfolio from the return of low idiosyncratic

volatility portfolio. If the return of this portfolio is positive, buying stocks with

the highest idiosyncratic volatilities and selling stocks with lowest idiosyncratic

volatilities provide abnormal positive returns.

Panel A of Table 3.3 shows the properties of portfolios formed on

conditional idiosyncratic volatility. Average monthly returns rises from low

E(IVOL) portfolio to high E(IVOL) portfolio. This monotonic pattern in

portfolio returns implies a strong positive relation between idiosyncratic

volatility and stock returns. Fu (2009) also reports a positive relationship
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between stock return and idiosyncratic volatility using the same measure of

firm-specific risk, E(IVOL). Similar pattern is evident for the market beta,

beta value increases when moving from low E(IVOL) to high E(IVOL)

portfolio, which indicate a positive relationship between beta and

idiosyncratic volatilities. As for size (ME), a monotonically declining patter

is observed in ME from the bottom to top ranked portfolios.

Panel B of Table 3.3 reports portfolios sorted using one-month lagged

idiosyncratic volatility ln(IVOL) following AHXZ. There is an increase in

return from the bottom 1A portfolio to 1B portfolio by around 15 base points

per month, from the third to six portfolios by 23 base points and from decile

eight to 10B by another 42 base points per month. The test result shows that

the positive relationship between idiosyncratic volatility and stock return is

much weaker. Moreover, a systematic pattern is not observed in beta and

other firm-specific characteristics such as size and book-to-market equity

ratio from bottom to top decile portfolio. This indicates lack of strong

relationship between these variables and idiosyncratic volatility.

The portfolios formed on pre-ranking beta and other firm characteristics

are also examined using the procedures in Fama and French (1992). Table

A3 reports the properties of portfolios formed on size, pre-ranking beta and

book-to-market in the appendix. Consistent with the findings of Fama and

French (1992), the result shows a strong positive relation between beta and

average stock returns, and between book-to-market ratio and average returns.

However, there is no strong reliable relationship between average returns and

size.

3.4.3 Cross-sectional analysis

Next, I investigate the existence of idiosyncratic risk premia in the

cross-section of stock returns, hence if compensation exist for

under-diversified investors with idiosyncratic risk. Table 3.4 reports the result

of unconditional Fama and MacBeth regressions of monthly stock returns on

idiosyncratic volatilities and other candidate variables. Model 1 is univariate

regression of returns on conditional idiosyncratic volatility. The average slope

of conditional idiosyncratic volatility from regression is 11.36% with a

t-statistics of 8.42. This reliable positive coefficient with the corresponding

significant t-statistics illustrates a positive relationship between stock returns

89



and conditional idiosyncratic volatility. Hence idiosyncratic volatility appears

to have useful information in explaining stock returns. Fu (2009) also find a

positive relationship between idiosyncratic risk and returns using conditional

idiosyncratic volatility as a proxy of firm-specific risk.

Table 3.4: Cross-sectional regressions: Unconditional test

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

BETA 1.13 1.10 0.63 0.67

(5.90) (5.55) (1.61) (1.67)

Ln(ME) 0.10 -0.01 0.04 0.03

(5.03) (-0.81) (1.73) (1.59)

Ln(BE/ME) 0.12 0.18 0.07 0.06

(3.32) (4.57) (4.36) (4.22)

E(IVOL) 11.36 -0.39 12.61 11.1 0.18

(8.42) (-1.02) (8.64) (8.27) (0.80)

Ln(IVOLt-1) -0.04 0.06 -0.05 -0.04 0.02

(-0.88) (2.02) (-0.97) (-0.74) (0.84)

R2(%) 3.81 0.75 0.12 0.13 4.13 2.01 10.16 7.13 0.32 0.31

The table reports the time-series average of coefficients and the corresponding t-statistics
from monthly Fama-MacBeth regressions of stock returns on idiosyncratic volatility and
firm-specific characteristics. The dependent variable is monthly stock returns RET. BETA
is the coefficient in the full sample regression of 10x10 size-pre-ranking β portfolio returns on
the prior and current month’s market returns. ME is the market capitalization, the product
of closing price and outstanding shares. BE/ME is the book-to-market equity ratio. BETA,
ME, and BE/ME variables are constructed following the procedures of Fama and French
(1992). E(IVOL) is conditional idiosyncratic volatility estimated using EGARCH model.
Ln(IVOLt−1) is the logarithm of one-month lagged idiosyncratic volatility, calculated as the
standard deviation of regression residuals from the Fama and French (1992) three-factor
model estimated using the daily stock returns with in a month. The sample period is from
March 2000 to December 2016.

Model 2 regress stock returns on one-month lagged idiosyncratic

volatility. The average negative slope from regression is not statistically

significant, thus one-month lagged idiosyncratic volatility does not help to

capture the cross-section of stock returns. While, AHXZ report a negative

relationship between average return and lagged idiosyncratic volatility, the

regression result shows the absence of reliable negative relationship between

the two variables. This is against the argument of idiosyncratic risk puzzle,

idiosyncratic risk priced negatively in the cross-section of returns. One

possible explanation suggested by Fu (2009) why one-month lagged

idiosyncratic volatility may not explain expected returns is that since

idiosyncratic volatility is time-varying, last month idiosyncratic volatility

cannot be a good proxy to explain the average return of next month.

In Model 3 and 4, I introduce another risk factor in the cross-sectional

regression. The result shows that adding unconditional beta in the regression
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changes the relationship between average returns and idiosyncratic volatility

reported in Model 1 and 2. Specifically, the coefficient of conditional

idiosyncratic volatility become negative and statistically insignificant, and

the average slope of one-month lagged idiosyncratic volatility changes to

positive with the corresponding significant t-statistics. A significant beta

coefficient in Model 3 and 4 shows the importance of market risk factor in

explaining the variation of stock returns.

The cross-sectional regression in Model 5 suggests that including size

factor in the regression improve the explanatory power of conditional

idiosyncratic volatility in Model 1. The average conditional idiosyncratic

volatility slop rises to 12.61% with the associated t-statistic of 8.64. The size

effect is also significant in explaining the cross-section of returns. However,

the result in Model 6 prevails that after controlling the size effect, one-month

lagged idiosyncratic volatility can not help to explain average returns. The

coefficients of size and one-month lagged idiosyncratic volatility are

insignificant, similar to the regression result in Model 2, that no reliable

negative relationship exists between stock returns and idiosyncratic volatility.

Model 7 and 8 regress returns on book-to-market ratio and

idiosyncratic volatility. The coefficients of book-to-market and conditional

idiosyncratic volatility in Model 7 are positive and statistically significant.

Both candidate variables add explanatory power to the average stock returns.

The regression result in Model 8, however, reveals that one-month lagged

idiosyncratic volatility fails to capture the variation of stock returns. The

average slope and the corresponding t-statistics of lagged idiosyncratic

volatility is similar to the univariate regression. This implies that, there is no

significant relationship between one-month lagged idiosyncratic volatility and

stocks returns after controlling for the value effect.

The last two columns of Table 3.4 controls for beta, firm size and book-to-

market ratio in examining the effect of idiosyncratic risk on expected returns.

The regression result provides striking evidence that the coefficient of neither

factors is different from zero, except book-to-market value. Both idiosyncratic

risk measures found statistically insignificant in explaining stock returns.

The overall result in Table 3.4 suggests that the effect of idiosyncratic

volatility on stock return is sensitive to the idiosyncratic risk measures.

When conditional idiosyncratic volatility used as a proxy of idiosyncratic
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risk, a significant positive relationship found between expected return and

idiosyncratic risk in most regression models. This implies that investors

demand a positive risk premium to hold an asset with high idiosyncratic risk.

On the other hand, when idiosyncratic risk measured as one-month lagged

idiosyncratic volatility following AHXZ, idiosyncratic risk adds no

explanatory power to the expected returns in most regressions. This implies

that a negative return-idiosyncratic risk relationship suggested by AHXZ is

not statistically significant, inferring idiosyncratic risk puzzle do not exist.

Rather investors demand compensation when they are under-diversified and

unable to eliminate idiosyncratic risk.

I investigate further the pricing of idiosyncratic risk in a conditional

market setting. The conditional relationship between beta and stock returns is

to account for investors’ asymmetric treatment towards risk across upside and

downside market movements. Upside and downside market betas computed

using a threshold when market return is above or below 1 standard deviation of

its mean. Table 3.5 reports the conditional cross-sectional regression of stock

returns on idiosyncratic volatility, upside-market beta and other candidate

variables as shown in equation 3.6.

Table 3.5: Cross-sectional regressions: Up-market

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

UP-BETA 1.13 1.08 0.77 0.69

(6.18) (5.71) (2.06) (1.75)

Ln(ME) 0.10 -0.01 0.03 0.03

(5.03) (-0.81) (1.28) (1.40)

Ln(BE/ME) 0.12 0.18 0.04 0.05

(3.32) (4.57) (2.64) (3.14)

E(IVOL) 11.36 -0.92 12.61 11.10 -0.44

(8.42) (-2.24) (8.64) (8.27) (-2.01)

Ln(IVOLt-1) -0.04 0.09 -0.05 -0.04 0.06

(-0.88) (3.84) (-0.97) (-0.74) (2.38)

R2(%) 3.81 0.75 0.19 0.11 4.13 2.01 10.16 7.13 0.37 0.46

The table reports the time-series average of coefficients with the corresponding t-statistics
from monthly Fama-MacBeth cross-sectional regressions of returns on idiosyncratic volatility
and firm characteristics. The dependent variable is monthly stock returns RET. The upside
beta(UP-BETA) calculated as follows. First, I estimate monthly pre-ranking upside betas
from the first-pass regression of a market model where market return being above 1 standard
deviation of its mean. Then UP-BETA is computed as the sum of coefficients in the full
sample regression of 10x10 size-pre-ranking upside beta portfolio returns on the prior and
current month’s upside market return. ME, BE/ME, E(IVOL) and Ln(IVOLt−1) variables
are defined in Table 3.4. The sample period ranges from March 2000 to December 2016.

Regression models that do not include beta factor have the same results

with the unconditional test in Table 3.4. Model 3 of Table 3.5 add
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upside-market beta in the regression. The average slope of conditional

idiosyncratic volatility become negative and statistically significant from

insignificant coefficient in unconditional regression. While, the upside market

beta positively related to average return with a strong t-statistics of 6.18

from 5.90. Model 4 examines the effect of one-month lagged idiosyncratic

volatility on stock returns after controlling for upside-market beta. The

coefficient reveals a significant positive relationship between one-month

lagged idiosyncratic volatility and stock returns.

The regression in Model 9 and 10 controls for upside beta, size and

book-to-market factors in the pricing of idiosyncratic volatility. The negative

coefficient on conditional idiosyncratic volatility suggests the negative

relationship with the average returns. The estimated upside beta and

book-to-market coefficients are also a significant determinants of stock

returns.

Table 3.6: Cross-sectional regressions: Down-market

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

DOWN-BETA 1.18 1.19 0.60 0.77

(5.82) (5.52) (1.49) (1.86)

Ln(ME) 0.10 -0.01 0.04 0.03

(5.03) (-0.81) (1.72) (1.21)

Ln(BE/ME) 0.12 0.18 -0.03 -0.04

(3.32) (4.57) (-1.74) (-2.19)

E(IVOL) 11.36 0.32 12.61 11.10 0.79

(8.42) (0.83) (8.64) (8.27) (3.54)

Ln(IVOLt-1) -0.04 0.01 -0.05 -0.04 -0.02

(-0.88) (0.19) (-0.97) (-0.74) (-0.80)

R2(%) 3.81 0.75 0.48 0.49 4.13 2.01 10.16 7.13 0.49 0.51

The table presents the time-series average of coefficients with the corresponding t-statistics
from Fama-MacBeth cross-sectional regressions of returns on idiosyncratic volatility and firm
characteristics. The dependent variable is monthly stock returns RET. The downside beta
(DOWN-BETA) computed as follows. First, I estimate monthly pre-ranking downside betas
from the first-pass regression of a market model where market return being below 1 standard
deviation of its mean. Then DOWN-BETA is computed as the sum of coefficients in the
full sample regression of 10x10 size-pre-ranking downside beta portfolio returns on the prior
and current month’s downside market return. ME, BE/ME, E(IVOL) and Ln(IVOLt−1)
variables are defined in Table 3.4. The sample period ranges from March 2000 to December
2016.

In Model 10, book-to-market value and one-month lagged idiosyncratic

volatility factors positively and significantly priced in average returns. Looking

at the regressions in Table 3.5, it is evident that conditional association of

beta with the return alter the relationship between idiosyncratic volatility and

average returns in upside market setting.
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Table 3.6 reports the cross-sectional regression of stock returns on

downside-market beta, idiosyncratic volatility and other variables. In Model

3, I include downside-market beta in the idiosyncratic volatility regression.

The time-series average slope of conditional beta is strongly significant,

which confirms a non-zero risk premium. The average risk premium for a

unit of downside-market beta is 1.18% per month. While, the conditional

idiosyncratic volatility failed to be priced in stock returns. Similar results are

also shown in Model 4, where only downside-risk beta has explanatory power

of average returns.

The regression in Model 9 reveals that conditional idiosyncratic volatility

is the only determinant factor of returns. Conditional idiosyncratic volatility

positively related with average stock returns. The regression result in Model

10 shows that book-to-market is the only variable do a fine job in explaining

stock returns, other factors are not different from zero. In both conditional

and unconditional cross-sectional regression test, book-to-market ratio is the

consistent candidate variable that has a premium in the cross-section of stock

returns. The overall result in Table 3.6 illustrates that the average premium for

conditional idiosyncratic volatility is positive after controlling for size and value

factors, while the risk premium for one-month lagged idiosyncratic volatility

is essentially zero when downside-market beta included in the regression.

In summary, the conditional Fama-MacBeth regressions demonstrates

that while asymmetric treatment of market return do not bring major

changes in the market beta-return relationship, it alters the risk premium

associated with idiosyncratic volatilities. Including, upside-market beta in

the regressions change insignificant conditional idiosyncratic volatility

coefficient to a statistically significant negative coefficients, which suggest a

negative association between idiosyncratic volatility and stock returns. The

average slope of lagged idiosyncratic volatility found to be positive and

significant, yet it is small. On the other hand, the downside market test

shows a reliable positive relationship between conditional idiosyncratic

volatility and stock returns. The result of univariate regressions also prevails

that high conditional idiosyncratic volatility compensated by high average

returns over the same period, while the reward for one-month lagged

idiosyncratic volatility is fragile.
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3.5 Conclusions

In this paper, I investigate the pricing of idiosyncratic volatility in the

cross-section of stock returns. Beside the unconditional cross-sectional test,

conditional regressions are employed to characterize the behavior of investors’

asymmetric response to upside and downside market risk. Hence, the

conditional relations of idiosyncratic risk and stock returns captured by the

association of returns with the conditional market return. Moreover, I use

conditional idiosyncratic volatility and one-month lagged idiosyncratic

volatility as a proxy of idiosyncratic risk in the analysis.

I find that average stock returns increase monotonically with an increase

in the conditional idiosyncratic volatility. This implies that investors require a

positive risk premium to hold an asset with high idiosyncratic risk. However,

when one-month lagged idiosyncratic volatility used as a proxy of idiosyncratic

risk, there is no strong significant relationship between idiosyncratic risk and

average returns. The cross-sectional regression shows that, conditional market

setting alters the sign of risk premium associated with idiosyncratic volatility.

Including upside-market beta in the regression results a significant negative

relationship between conditional idiosyncratic volatility and average returns,

but this relationship flips in the downside market setting. The over result

shows that firm-specific risk priced more strongly in the cross-section of returns

when conditional idiosyncratic volatility used as a proxy of idiosyncratic risk,

furthermore investors demand compensation when they are under-diversified

and unable to eliminate idiosyncratic risk.
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CONCLUSIONS

In the realm of asset pricing characterizing investors’ attitude towards

risk is very important. I investigate the cross-section of asset returns and

downside risk for multiple asset classes. Investors are more averse to

downside loss as compared with upside gain, and asymmetric treatment of

downside and upside risk appear to characterize the risk aversion of

representative investors. An increase in average returns is associated with a

contemporaneous increase in downside risk. Asset pricing models that

distinguish market factor between upside and downside components

successfully explain the cross-section of equities, currencies, bonds,

commodities and CDS returns than the traditional asset pricing models.

Moreover, the variation in asset returns better captured by extended

downside risk asset pricing models.

Momentum strategy generate implausible higher Sharpe ratio in equity

and currency markets. However, the distribution of momentum return is

characterized by fat left tails coupled with considerable negative skewness,

which reflects high exposure of this strategy to crash risk. Plain equity

momentum experience huge crash as the market rebound following server

collapse such as Great depression and Global financial crisis. Managing the

risk of momentum enables to mitigate crash risk and generate persistent

returns. Optimal risk management strategy, hedging the time-varying risk

exposure of momentum then scaling the hedged long-short portfolio by its

forecasted semi-variance, increases the Sharpe ratio and reduces momentum

crash considerably. Looking at currency markets, huge crash risk is not

prevalent in currency momentum. The result shows that idiosyncratic risk

accounts the main source of currency momentum risk.

I investigate the existence of idiosyncratic risk premia in the

cross-section of stock returns. Average stock returns increase monotonically

with an increase in the conditional idiosyncratic volatility. This positive

monotonic trend suggests that investors require a positive risk premium to

hold assets with high idiosyncratic risk. However, the relationship between

idiosyncratic risk and stock returns is sensitive to idiosyncratic risk measures

and market setting. I find a significant positive relationship between

expected returns and conditional idiosyncratic volatility, while lagged

idiosyncratic volatility has no significant explanatory power of expected

returns. In a downside market, conditional idiosyncratic volatility positively

priced in the cross-section of stock returns. Overall, investors demand

compensation to hold assets with idiosyncratic risk.
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APPENDIX

Table A1: Currency momentum risk decomposing

Variable
α ρ

R2 R2
oos

t(α) t(ρ)

RVWML
0.04 0.23

5.30 40.17
(1.15) (1.83)

RVRMRF

0.00 0.91
85.90 94.32

(0.73) (18.21)

β2
0.01 0.36

12.65 2.11
(2.76) (2.92)

β2 RVRMRF

0.00 0.04
0.17 -10.58

(3.53) (0.32)

RVε
0.04 0.23

5.35 40.09
(1.14) (1.82)

The table shows AR (1) for each component of risk currency momentum following Pedro
Barroso and Pedro Santa-Clara(2015). α and ρ are estimated coefficients from AR(1). The
first row of the tables shows the realized variance of currency WML portfolio. The second
row is realized variance of market(RMRF) portfolio. The third one is squared beta, which is
estimated by regression of WML portfolio on market using six months’ daily returns. The
forth row is systematic component of market risk. The last row is, specific component of
risk. R2 and R2

oosdenotes in-sample and out-of-sample coefficient of determination. The
t-statistics are in prentices. All statistics are computed using currency data from February
1986 to March 2017.



Table A2: Average returns and post-ranking betas for portfolios formed on size
and then beta

Panel A: Portfolios formed on size and pre-ranking betas

All Low-β β-2 β-3 β-4 β-5 β-6 β-7 β-8 β-9 High-β

Panel A: Average Monthly Return (in percent)

All 1.07 0.97 1.00 1.21 1.30 1.15 0.98 1.10 1.05 1.02 0.93

Small-ME 1.05 1.68 0.92 1.04 1.05 1.04 1.11 1.27 0.95 0.83 0.61

ME-2 0.78 0.48 0.25 0.86 1.07 1.18 0.93 0.75 0.83 0.68 0.74

ME-3 0.73 0.21 0.43 1.10 0.80 0.71 0.73 0.73 0.95 0.79 0.84

ME-4 0.80 0.16 0.63 1.12 0.91 1.10 0.66 0.89 0.76 0.92 0.88

ME-5 0.88 0.25 0.70 1.04 1.03 1.37 0.57 0.94 0.95 1.10 0.83

ME-6 0.97 0.81 0.50 1.38 1.11 1.03 0.92 1.06 1.19 0.77 0.90

ME-7 1.12 1.16 0.87 1.25 1.45 1.08 1.10 0.90 1.09 1.19 1.07

ME-8 1.16 1.24 1.17 1.12 1.37 1.23 0.74 1.53 1.30 0.86 1.02

ME-9 1.48 1.21 2.45 1.72 1.89 0.96 1.43 1.55 0.87 1.62 1.05

Large-ME 1.76 2.48 2.09 1.45 2.30 1.79 1.64 1.43 1.60 1.41 1.37

Panel B: Post-ranking betas

All Low-β β-2 β-3 β-4 β-5 β-6 β-7 β-8 β-9 High-β

All 0.00 1.28 1.22 1.30 1.36 1.26 1.23 1.25 1.24 1.16 1.03

Small-ME 1.07 1.66 0.95 1.15 1.16 1.02 1.02 1.13 0.95 0.73 0.91

ME-2 1.01 0.82 1.14 1.09 1.09 1.15 1.02 1.01 1.19 0.81 0.81

ME-3 0.97 0.97 0.72 0.96 1.13 1.13 1.02 1.01 1.08 0.94 0.80

ME-4 1.10 1.01 1.27 1.08 1.27 1.18 1.03 0.93 1.15 1.14 0.93

ME-5 1.14 0.99 1.31 1.01 1.42 1.13 1.07 1.10 1.08 1.15 1.12

ME-6 1.23 1.47 0.87 1.37 1.57 1.19 1.10 1.23 1.21 1.23 1.06

ME-7 1.36 1.42 1.29 1.53 1.50 1.31 1.33 1.57 1.25 1.38 1.06

ME-8 1.38 1.26 1.13 1.58 1.26 1.44 1.48 1.58 1.52 1.37 1.19

ME-9 1.48 1.61 1.98 1.71 1.42 1.31 1.36 1.55 1.45 1.45 0.96

Large-ME 1.59 1.62 1.51 1.48 1.76 1.77 1.84 1.45 1.54 1.44 1.49

The table reports monthly average returns and post-ranking beta for the stock portfolios
formed on size then beta. The procedure for construction of post-ranking beta and portfolio
sorting are the same with Fama and French (1992). I estimate monthly pre-ranking betas
(β) from the first-pass regression of a market model using the previous 60 months of returns.
Next, all stocks are allocated to 10 size(ME) portfolios then size decile portfolios further
sub-divided into 10 beta portfolios based on betas. I then calculate equal-weighted portfolio
monthly returns for 100 portfolios. Finally, I estimate the betas as the sum of the slopes in
the full sample regression of size-β portfolio returns on the prior and current month’s market
return. The average monthly return is the time-series average of equal-weighted portfolio
returns. The all column and all row presents statistics for equal-weighted size-decile and
beta-decile portfolios, respectively.



Table A3: Properties of portfolios formed on size, pre-ranking beta and
book-to-market

Panel A: Portfolios formed on Size

Variables 1A 1B 2 3 4 5 6 7 8 9 10A 10B

RET 0.95 0.98 1.00 1.21 1.30 1.15 0.98 1.10 1.05 1.02 1.02 0.84

BETA 1.20 1.22 0.86 0.82 0.97 0.99 0.90 1.15 1.05 1.03 0.93 0.89

Ln(ME) 10.32 11.24 12.03 12.75 13.33 13.87 14.37 14.89 15.45 16.25 17.03 18.23

Ln(BE/ME) -0.05 -0.25 -0.40 -0.58 -0.68 -0.77 -0.75 -0.85 -0.87 -0.94 -0.97 -1.10

Panel B: Portfolios formed on pre-ranking betas

Variables 1A 1B 2 3 4 5 6 7 8 9 10A 10B

RET 0.69 0.71 0.74 0.82 1.02 0.90 1.00 1.09 1.16 1.36 1.67 2.16

BETA 0.84 0.83 0.86 0.87 0.90 0.94 0.99 1.05 1.11 1.15 1.18 1.19

Ln(ME) 13.31 13.87 14.17 14.31 14.31 14.34 14.25 14.24 14.25 14.06 13.78 13.56

Ln(BE/ME) -0.69 -0.75 -0.77 -0.75 -0.72 -0.73 -0.68 -0.69 -0.68 -0.67 -0.60 -0.63

Panel B: Portfolios formed on book-to-market

Variables 1A 1B 2 3 4 5 6 7 8 9 10A 10B

RET 1.24 0.97 0.88 0.97 1.08 0.94 0.91 1.00 0.97 1.16 1.21 2.19

BETA 0.98 0.97 0.99 0.99 1.01 0.98 0.95 0.96 0.96 0.99 1.06 1.12

Ln(ME) 14.82 15.00 15.01 14.78 14.69 14.33 14.01 13.85 13.62 13.40 13.08 12.10

Ln(BE/ME) -2.54 -1.63 -1.29 -1.05 -0.87 -0.69 -0.53 -0.40 -0.25 -0.09 0.07 0.40

This table reports the summary statistics of portfolios formed on beta and other firm-
specific characteristics. In panel A of the table, stocks are sorted into decile based on
size. In Panel B and C, stocks are sorted using pre-ranking beta and book-to-market value,
respectively. All portfolios are rebalanced each month and are equally weighted. The first
two portfolios (1A and 1B) split the bottom decile into half. Portfolio 2-9 composed of
stocks with the next deciles. The last two extreme portfolios (10A and 10B) split the top
decile into half. RET is monthly average portfolio returns. BETA is the coefficient in the
full sample regression of 10x10 size-pre-ranking β portfolio returns on the prior and current
month’s market return. ME is the market capitalization, the product of closing price and
outstanding shares. BE/ME is the book-to-market equity ratio. The sample period ranges
from March 2000 to December 2016.




