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AB5TRACT
The tool of field of values (also known as the classical numerical range) is used to recover most results ava­

ilable in the literature and to obtain some new one s concerning Hurwitz and Schur stability of matrix polytopes. So­
me facts obtained by an application of the elementary properties of field of values are as follows. If the vertex mat­
rices have polygonal field of values, then the matrix polytope is Hurwitz and Schur stable if and only if the vertex
matrices are Hurwitz and Schur stable, respectively. If the polytope is nonnegative and the symmetric part of each
vertex matrix is Schur stable, then the polytope is Schur stable. For polytopes with spectral vertex matrices, Schur
stability of vertices is necessaryand sufficient for the Schur stability of the polytope.

Key words: robust stability, structured perturbations, matrix polytopes, interval matrices, field of values,
numerical range.

MATRis POLiTOPLARININ DEGERLER ALANI

ÖZ
Matris politoplarmm Hurwitz ve Schur kararlılığı ile ilgili bilinen bir çok sonuç ve bazı yeni sonuçlar, nüme­

rik kapsam olarak da bilinen, değerler alanı fikri kullanılarak elde edilmektedir. Bu şekilde ulaşılan bazı sonuçlar
şunlardır: eğer politop, değerler alanı poligon olan köşe matrislerinden oluşmuşsa, köşe matrislerinin Hurwitz veya
Schur kararlı olması, tüm politopun kararlılığı için gerek ve yeter şarttır. Eğer politop negatif olmayan matrislerden
oluşuyorsa ve köşe matrislerinin simetrik kısımları Schur kararlı ise, tüm politop da kararlıdır. Eğer politopun köşe

matrisleri spektra! matrislerse, köşe matrislerinin Schur kararlılığı, tüm politopun Schur kararlılığı için gerek ve ye­
ter şarttır.

Anahtar Kelimeler: gürbüz kararlılık, yapısal perturbasyonlar, matris politopları, aralık matrisi, değerler ala­
nı, nümerik kapsam.

1. INTRODUCTION

One active area of research in stability robustness
of linear time invariant systems is concerned with sta­
bility of matrix polytopes. Various structured real para­
metric uncertainties can be modeled by a family of
matrices consisting of a convex hull of a finite number
of known matrices yielding a matrix polytope. An inter­
va! matrix family consisting of matrices whose entries
lie in given intervals are specia! types of matrix poly­
topes and it model s a commonly encountered paramet­
ric uncertainty.

Results that allow the inference of the stability of
the whole polytope from stability of a finite number of
elements of the polytope are of interest. Deriving such
results is known to be difficult and few results of suffi­
cient generality exist. Apart from the obvious case
where the vertices are all upper (lower) triangular, ver­
tex results have been obtained only for polytopes with
normal (in particular symmetric) vertex matrices, Wang
(1991), Çevik (1995), Mansour (1988). it is also well
known that a matrix polytope is Hurwitz stable if the
symmetric part of every vertex matrix is negative defi­
nite, Jiang (1987), Mansour (1988). Concerning inter-
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2. ELEMENTARY PROPERTIES OF THE FIELD OF
VALUES

This seetion contains the definition, a summary of
the properties of field of values, and its computation.
For a more in-depth discussion and for the proofs Hom
and Johnson (1991) can be consulted.

The field of values of A E Cnxn is

F(A) = {x* Ax: x E Cn ,x*x = I} .

Thus, F(A) is the range in the complex plane of the con­
tinuous function x~ x* Ax with the unit Euclidean balı

{x E Cn: x*x =I} as its domain. Altematively, F(.) can
be viewed as a function from Cnxn to the complex plane
like the spectrum cr(.). By considering the unit eigen­
vectors associated with each eigenvalue of A, it imme­
diately follows that

A fundamental property of F(A), known as the Toeplitz­
Hausdorff theorem, is that it is a (compact and) convex
subset of the complex plane. Any information on the
location and the shape of this convex set can be used to
bound the eigenvalues. For matrices of size 2, the field
of values is always an ellipse (possibly degenerate) with
eigenvalues at the feci. When the size of the matrix is
larger than 2 however, a variety of shapes are possible
in general. The field of values of real matrices are sym­
metrically located with respect to the real axis.

A useful measure of the size of F(A) is the radius
of the smallest disc centered at the origin of the com-

(1)cr(A) ç;;; F(A).
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the set of eigenvalues of A called the spectrum of A. For
the notation, terminology, and for various unproved ele­
mentary facts conceming vector norm s and induced
matrix norms (or operator norms) used in this paper, we
refer the reader to Noble and Daniel (1977).

The set of points in the open left half complex
plane and the open unit disk are denoted by C_ and Dı,

respectively. A polynomial pes) with real or complex
coefficients is said to be Hurwitz (Schur) stable if all its
roots lie in C_ (Dı), A square matrix A E Cnxn is said

to be Hurwitz (Schur) stable if its characteristic polyno­
mial is Hurwitz (Schur) stable, which is equivalent to
cr(A) c C_ (cr(A) ç;;; Dı). Given a matrix family A we

say that A is (robustly) Hurwitz (Schur) stable if all its
members are Hurwitz (Schur) stable.

If S is aset, then conv(S) denotes the convex hull
of S which is the smallest convex set containing S.
Altematively, conv(S) is the set of all convex combi na­
tions of any finite number of elements of S. The reader
is referred to Rockafellar (1970) for the algebra and the
properties of convex sets.
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val matrix families, Kharitonov theorem for interval
polynomials yield a vertex result for interval matrices in
companion form. A variety of vertex or test matrix
results are available at the cost of rather severe assump­
tions on the family, Mori and Kokame (1987), Mansour
(1988), Shi and Gao (1986), Soh (1990), Sezer and
Siljak (1994). A fairly complete survey of existing ver­
tex, edge, or face type of results for robust stability of
matrix polytopes until 1994 can be found in Barmish
(1994).

In this paper, we employ the concept of the field of
values or the numerical range associated with a matrix
to obtain conditions for the Hurwitz and Schur stability
of matrix polytopes. The reader is referred to the book
Hom and Johnson (1991) for an excellent exposure to
various properties of the field of values and their appli­
cations. The field of values has been applide to robust
stability problems earlier by Owens (1984). In Owens
(1986) and Palazoglu and Khambanonda (1989), the
merit of field of values in handling the phase informa­
tion in structured multiplicative perturbations has been
emphasized. classically, the field of values has been
demonstrated to be an effective tool in giying estimates
for the stability of numerical methods in boundary
value problems, see e.g., Spijker (1993). The technique
of quadratie stability, which has developed out of com­
mon Lyapunov function approaches to families of
uncertain matrices, can also be applied to polytopes of
matrices, and has strong links with the field of values
approach taken here. The reader may refer to
Khargonekar et al. (1990) and the references therein for
more recent examples of the application of quadratic
stability to uncertain systems. Some links with the field
of values is clarified in Remarks 1 and 3 below.

In Seetion 2, we give a summary of those proper­
ties relevant to the stability of matrix polytopes. In
Seetion 3, the field of values of the matrix polytope
under consideration is examined. Sections 4 and 5 are
devoted to the application of the concept of field of val­
ues to Hurwitz and Schur stability of matrix polytopes,
respectively. The results reported here are based on the
initial results of Saadaoui (1997).

Notation: The field of real and complex numbers
are denoted by R and C, respectively. If c E C, then
~ denotes the complex conjugate of c, Re(c) the real

part, Im(c) the imaginary part, and İCİ the magnitude of

c. The angle or phase ()of a complex number c = Id el"

is denoted by Le. Given a matrix A =[~j] E Cnxm ,A'

denotes the ttanspose of A, A* denotes the complex

conjugate transpose of A, and iAi denotes the matrix

[Iaijl] . A nonnegative matrix, such as LA! ,is a real matrix
with each entry nonnegative; A ~ O denotes that A is
(real and) nonnegative. When n = m, cr(A) stands for
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F(U* AU) = F(U-I AU) = F(A).

for any A E Cnxn

The field of values is invariant under unitary sirni­
larity transformations, by an easy consequence of its
definition. For all A E Cnxn and unitary U E Cnxn,

r(A):numerical
radius

Smallestcircle ılı

Im

Field of vaIuesof A

(2)p(A)::s; r(A)

plex plane that contains F(A). This is the numerical
radius of A E Cnxn defined by

r(A) := max { izi: z E F(A)} .

Since the spectral radius p(A) = max { iAi : A E cr(A)}
is the radius of the smallest disc centered at the origin
in the complex plane that includes all eigenvalues of A,
(1) gives

Moreover, if V E Cnxk with k s nis such that V*V =
I, then Figure ı. The field of values of a matrix A.

(4)

namely, the numerical radius is not larger than the

largest singular value. In the case of Lı and Loo induced

norms, asimilar inequality to (8) is not possible.
However, it can be shown that (see CoroIIary ı .5.4 in
Hom and Johnson (199 ı»

For nonnegative matrices, better bounds on the nurner­
ical radius are possible. Recall that if a real A is non­
negative, then the spectral radius p(A) is an eigenvalue
of A. If A is nonnegative, then so is H(A). By (7), it fol­
lows that r(H(A» = p(H(A». On the other hand, for any

x E Cn and nonnegative A = iaij], we have

(9)

(8)

r(A) = max ix* A~ :s max IIA~lı Ilxllı = IlA/lı.
IIx/h=1 ilX/12=1

ix* A~ = 14 4 aijXixJs4 4 aij IxJ Ixj
i J 1 i J

so that r(A)::s; max {x'Ax: XE Rn ,xi~O ,x'x= i}=
max {x ' H(A)x: x E Rn , xi ~ O, x'x = ı} = p(H(A».
Moreover, by property (5), it is easily seen that r(H(A»
s r(A). We thus arrive at the foIIoving property of the
field of values of nonnegative matrices. If A E Rnxn is
nonnegative, then

Hence, for any AE cnxn ,

r(A) :s IlA/lı ,

H(A) and with horizontal sides going through the
smaIIest and the largest eigenvalues of -j S(A). The two
regions, one circular and one rectangular, in which F(A)
is inscribed are shown in Figure i for a real matrix A.

A simple bound on the numerical radius is easily
obtained on noting that

F(V* AV) C F(A). (3)
IfA is a normal matrix (i.e.,A*A = AA *), then it is uni­
tarily similar to a diagonal matrix having its eigenval­
ues as diagonal entries. The field of values of a diago­
nal matrix, on the other hand, can easily be seen to be a
polygon in the complex plane having the diagonal ele­
ments at its vertices. By unitary similarity invariance of
F(A), it foIIows that if A E Cnxn is normal, then

F(A) =convtrr(A) =

{f a}"i: ai ~ O , f ai = ı ,Ai E cr(A)}
1=1 1=1

In particular, if Q is Hermitian, then F(Q) is the interval
[A,min(Q), Amax(Q)J, where Amin(Q), AmaiQ) denote the

minimum and maximum eigenvalues of Q.

Given A E Cnxn , Iet H(A) and S(A) denote the
Hennitian and the skew-Hermitian parts of A, respec­
tively, i. e.,

H(A) :;::A+A* ,S(A)=A-A*
2 2

For any x E Cn such that x*x = ı, we have x*H(A)x =
Re(x*Ax) and x*S(A)x = j Im(x*Ax), by a straight­
forward computation. it foIIows that For A E Cnxn with
Hennitian part H(A) and skew-Hermitian part S(A).

F(H(A» = Re(F(A» : = {Re(z) : z E F(A)} , (5)

F(S(A» = j Im(F(A» : ={j Im(z) : z E F(A)}. (6)

Using the facts that F(S(A» = jF(-jS(A» and -jS(A) is
Hennitian, we obtain

F(H(A» = [Amin (H(A», Amax(H(A»] , (7)

F(S(A» = ÜAmin (-jS(A» ,j Amax (-jS(A»].

The properties (5) and (6) thus yield a rectangular
region containing F(A) with vertical sides going
through the smallest and the largest eigenvalues of
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r(A) = r(H(A» = p(H(A». (10)

GivenA = laij] E Cnxn ,Iet IAI: = lIaijl]. Clearly,for any

X E Cn and any A = laij], we have

so that r(A) :5 r (IAI). By property LO, we get the
following bounds on the numerical radius of any matrix
A ECnxn

p(A):5 r(A):5 r(IAI)=p(H(A». (11)

Although our main concem is to utilize the field of val­
ues as a theoretical tool, a comment on the numerical or
graphical computation is in order. One method of com­
putation of F(A) is based on the fact that

F(A)= rı He, He :
0:59<2rr

= the half-plane e-je {z : Re(z) :5 "max(H(e-je A» l.
Upon choosing a finite number of angular mesh

points {eı , ... , ek }, the convex set Fk(A): = n~=IHei

(outer) approximates F(A) and converges to F(A) as k
~ 00. Altematively, an inner approximation or a combi­
nation of the two are also possible, Hom and Johnson
(1991), Owens (1984), Palazoglu and Khambanonda
(1989).

3. FIELD OF VALUES OF MATRIX POLYTOPES

We now turn to our main objective of examining
the stability of a matrix polytope

A={A=~1 <XiEj:Ei E cnxn'<Xi~O'~1 <Xi=I}' (12)

The matrices Ei ' i = 1 , ... ,N are called vertex matri­

ces since

A =conv {Eı, ... ,EN}'

If the vertex matrices are real, then the whole polytope
is real and we denote the real matrix polytope by Ar .An

important subfamily of Ar is the interval matrix family

Aint = {A = ["ij] : .!!. ij';; "ij ,;;;iij , .!!. ij , ;iij ER, i j = ı.; ,n}

sometimes specified by alternative notations

Aint = [[ ~ ij, ~jII or Aint =

{AE Rnxn: ~ :sA:sA, ~ ,AE Rnxn}.

Upon choosing the vertex matrices as
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Ev = [eij]: t;j E { ~ ij , aij}, i,j = 1,2,....n, (13)

v = i ,2,...,2
n2

,

it is clear that an interval family is a matrix polytope,
AIso observe that any real matrix polytope can be
imbedded in an interval matrix family upon choosing !!ij

and aij to be, respectively, the minimum and maximum
among the ij-th entries of Eı , ... , EN'

For a general matrix polytope (12), by the defini­
tion of F(A), we easily obtain the inclusion

F(A) =~~i (XiI;) ç;; ~i aiF(q) c:;;;;

eanv (F(Eı) U o 00 U F(EN))

for any A = "N <XiEiE A so that
L ı-I

U {F(A) : AE l} c conv (F(Eı) U o.. U F(EN»o (15)

The reverse inclusion holds if the left hand side is con­
vex , e.g, if Ei = eiI for ei E C, i = 1, ..o,No Even when

Ei is normal for eaeh i = i, ... , N ,the reverse inclusion

in (15) may fail to hold as the following example
shows.

Example ı. Let n =N =2 and

Eı = [~ ~], E2 = [~ -~] .

Both vertex matrices are normal so that F(Eı) and F(E2)
are intervals [-1,1] and [-j, +j], respectively. The convex
hull of F(E 1) U F(E2) is the region bounded by a square
with vertices at ±1, ±j. Any A E A is of the form

A=[~ ~],aE[-I,IJ.

The field ofvalues of A is an ellipse with center at the
origin, foci at the eigenvalues, and major and minor
axes of lengths 1 ± lal . Since A is real, the major axis is
parallel to either the real or imaginary axis, At a =0, the

ellipse degenerates to a circle of radius ~ with center at
the origin. For a < O, the major axis is parallel to the
imaginary axis and for a » 0, the major axis is paral­
lel to the real axis. The ellipse in rectangular eoordi­
nates x = Re z,y = Im z has then the equation.

2 2 i__x_ + _y_ = _ , O< i~ < I.
(l+a)2 (I-af 4

it is easy to see that this ellipse has no intersection with
the lines ±x + ±y = 1 for anya E (-1 , O) U (O , 1)0
Infinitely many points in e~nv {F(Eı)uF(E2)} do not
belong to F(A) for any A EA oThe situation is illustrat­
ed in Figure 2.

Since each F(Ei) is convex, the disk of radius
maxi:{ r(Ei)} contains the right hand side in (15)0 This
yields the following inequality for the numerical radii:
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The same P is also a positive definite solution of A*p +
PA = - Q for any A which is a convex combination of
vertex matrices, where Q is the same convex combina­
tion of positive definite Qi , i = 1 , ... , N. Fact I.i fol­
lows by Lyapunov's theorem. The reason why this
result follows equally easily by the two approaches may
be explained by the strong links, Horn and Johnson
(1991), that exist between the field of values and the
Lyapunov's theorem. To emphasize this point, suppose
P is a positive definite solution of (18) for some positive
definite Qi for all i = i , ... , N. Let pt be the
unique positive definite suuare root of P.Then, by (18),

ı 1 (ı j)* ı ı
we have pIEiP'I + pIEiP'I = _P2QiP'I and hence

_J ı 1) .
H\PIEiP'I is negative definite, or equivalently, Hurwitz

stable. By projection property (5), F(ptEiP't) c C_ .

Now, given A E A , by (14), we have F(ptAP't) ç C_
and spectral containment (1) yields that

cr(A) = JptAP't) ç C_This shows, using field of values,
that A is Hurwitz stable whenever the Lyapunov equa­
tions for vertex matrices admit a simultaneous solution
P.

i!i.i =gji , 3ıj =aji ,i ,j = I, ..' , n . (19)

Remark 2. Fact l.ii has an interesting application
to interval matrix families. A particular case in which
the assumption in Fact l.ii is fulfilled is for the interval
matrix family .

Aint = [[i.lij , 3ıj]] ,

with the additional property
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(iii) if each Ei is Hermitian, thenA is Hurwitz stable if
and only if Ei ' i = i , ... , N are Hurwitz stable.

Proof. (i) If H(Ei) is Hurwitz stable, then by (7),

F(H(Ei)) is contained in the negative real axis. The

result follows by Theorem I.i. (ii) If E", E A ,then

H(E) which is a convex combination of Ei and E", is

also in A. Stability of A hence implies stability of
H(Ei) for i = i, .., , N. The converse follows by (i). (iii)

This is a special case of (ii).

Remark ı. By elementary properties of the field of
values, we thus obtained the results noted by Jiang
(1987), Mansour (1988), Soh (1990), Shi and Gao
(1986) and Çevik (1995). As noted by Mansour (1988),
Fact l.i is also a very simple consequence of
Lyapunov's theorem. If H(E) is Hurwitz stable, then
Qi: = -(Ei + E*i) is negative definite and P = i is a pos­
itive definite solution of the Lyapunov equation

(16)

Convax

Hull

0.2 0.4 0.6 0.8
-1 L---L_--,-L-_-:-'c-_.J.---"lL--:-':_-"L-_:'-:-------:'c:c----.J
-1 -0.8 -0.6 -0.4 -0.2

(ii) Schur stable if r(Ei ) < i for each i = 1, ..., N.

Proof. (i) If max{~ : ~ E F(H(Ei))} < Ofor each

i =1,...,N, then by (17), Re(F(A)) is contained in the
negativf real axis and hence, by (5), F(A) c C_ for any
A E 1* The spectral containment property (1) gives
thatAis Hurwitz stable. (ii) If r(Ei) < 1 for each i =1,

... , N, then by (16), r(A) < 1 so that F(A) ç Dı for every

A E A.By (1), we have that A is Schur stable.

Figure 2. The field of values of the polytope of Example ı.

An immediate consequence of Theorem l.i is the
following.

Fact ı. Consider A =conv {E, ' ... , En} .

(i) If H(Ei) , i = i, ... , N are Hurwitz stable, then Ais

Hurwitz stable

(ii) if E*i E Afor i = 1 , ... , N, then A is Hurwitz sta­

ble if and only if H(Ei), i = 1 , ... , N are Hurwitz

stable.

0.4

4. HURWITZ STABILlTY OF MATRIX POLYTOPES

0.2

0.8

0.6

and since each F(H(Ei)) is an interval on the real axis,

we have that

max{Re(z) : z E F(A)} :5 (17)
m.ax{~:~EF(H(Ei»} ,VAEA.

ı

We thus obtain the following central result.

Theorem ı. A matrix polytopeA= conv {Eş , ... , EN} is

(i) Hurwitz stable if max{~: ~ E F(H(Ei))} < O for
each i = 1, ..., N,

-0.8

r(A):5 max{~q)} , V A EA.
ı

Furthermore, by (5) and (15),

Re(F(A)) ç conv(F(H(E ı )) u ", u F(H(EN) ) )

-0.6

-0.4

-0.2
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Then, A is Hurwit: stable if and only if H(A) is Hurwit;
stable.

Proof.1f (20) holds for A, then as conv(cr(A)) is a
polygon with vertices consisting of some (or all) eigen­
values of A, we have

max {Re z : z E F(A)} = max {Re(A) : Ai E cr(A)}

Re

(23)

o ] ~
.~ , Ei is normal,

PjEiPio

[
~ O ~]
O O 1

satisfies (22) but not (20), see Figure 3.

Fact 4. Let A be such that every vertex matrix
Ei is spectral. Then, the following are equivalent:

(i) A is Schur stable,

Figure 3. The field of values of (23).

Im

p(A) = r(A). (22)

Note that, by (2), p(A) s r(A) for any A. In view of (4),
normal matrices or matrices for which (20) hold are
spectral. The converse is true only in the case n = 2. For
instance, the 3 x 3 matrix

(ii) r(E i) < 1 for i = 1, ... , N,

(iii) Ei' i =1, ... , N are Schur stable.

Proof. Obviously (i) implies (iii). Since a
matrix is Schur stable if and only if its spectral radius is

We now examine the robust Schur stability of a
general matrix polytope (12) using Theorem l.ii.

A matrix A E Cnxn is called spectral if

5. SCHUR STABILlTY OF MATRIX POLYTOPES

for some P, E cnxk such that P*iPi = i. Note that even

though Ei is normal, P~EiPi may not be normal unless
n= k.
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Fact 3 provides a strict extension of the result in
Wang (1991). By (3), the hypothesis of Fact 3 is satis­
fied whenever each vertex matrix Ei is unitarily similar

(or equal) to

(20)

Fact 2. Suppose A E Cnxn satisfies

F(A) = conv (cr(A)).

and the result follows.

By (4), a normal matrix satisfıes (20). If n s 4, then
any matrix satisfying (20) is normaL. If n > 4, then there
are matrices satisfying (20) which are not normaL. Such
matrices are characterized by Theorem 1.6.8 of Hom
and Johnson (1991) : E satisfies (20) if andonly if
either E is normal or E is unitarily similar to a matrix of
the form

[~ ~] ,E is normal and F (E) c F (E) (21)

The following fact recovers the result by Wang (1991)
conceming polytopes with normal vertex matrices.

Fact 3. Suppose a matrix polytopeA=conv
{E, ,...,EN} is such that each Ei is either normal or uni-

tarily similar to a matrix of (21). Then, the following
are equivalent:

(i) Ais Hurwitz stable,

(ii) H (Ei),İ=1 ,...,N are Hurwitz stable,

(iii) Ei' i= 1,...,N are Hurwitz stable.

Proof. By the hypothesis, vertex matrices statisfy

F(Ei) = conv (cr(Ei)), i=1 ,...,N.

By Fact 2, (i) and (ii) are equivalent. The fact that (i)
implies (iii) is obvious. Finally, (ii) implies (i) by Fact
l.i.

Such a family is Hurwitz stable if and only if the sym­
metric parts of the vertex matrices are Hurwitz stable.
This result implies but is different from the result of Shi
and Gao (1986) or Soh (1990) who show that if aij= aji,

i , j = 1 , ... , n for all A = [aji] E: Aint' then the resulting

symmetric interval matrix family is stable if and only if
(a subset of) the vertex matrices are stable. Asimilar
result was established by Rhon (1994) who additional­
ly showed that onlyaportion of the vertex matrices is
sufficient to infer Hurwitz stability of the family.

Hurwitz stability of the Hermitian part of any
matrix is sufficient to conclude the Hurwitz stability of
the matrix by (5). The converse is not generally true but
tums out to be true for normal matrices and abit more.
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Fact 5. A nonnegative matrix polytope Ann is

Schur stable if either of the following hold:

(i) H (Ei), i = 1,..., N are Schur stable,

(ii) B = [bijI is Schur stable, where. bi} is the maximum

among all ij-tlı entries of Ek' k = 1, ..., N.

(iii) C = [cijl is Schur stable, where, bi}is the maximum

among all ij-tlı entries of H(Ek) =1,... , N.

Proof. (i) If h (Ei)' i = 1,... , N are Schur stable then

r(h(Ei» < 1 and by (Iü) r(E) < 1, i = 1,... , N. The result

follows by Theorem l.ii and by (2). (ii) Note nonnega­
tive matrices, p(A) s p(B) < 1 for all A E A. (iii) Note
thet Os H (Ei) S C for all i = 1,..., N. Schur stability of

C thus implies the Schur satibilty of H (Ei) for i = 1,...,

N. The result follows by (i).

Remark 4. The above proof of Fact 5. ii uses a
basic property of nonnegative matrices and does not
resort to field of values. One useful consequence of
Fact 5. ii is for nonnegative interval matrice, obtained in
Shafai et al. (1991), Sezer and Siljak (1994) by other
means. Consider the nonnegative inteval matrix family

Aint-nn:= {AE Rnxn: O sA sA sA}.

Using Fact 5. ii, Aint-nn is Schyr stable if and onl

if B = A is. Applying Fact 5. iii lo ~ int-nn , we see that

if H (A) is Schur stable, then Aint-nnis olso Schur sta­

ble. This however is a consequence of the italicized
statement, since by (Iü) p(A) s p(H(A» for any A;;::O.

There is no implication in general between condi­
tions (ii) and (iii) of Fact 5.

Example 2. Consider
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less than 1, (ii) is equivalent to (iii) by the hypothesis
r(Ei) = p(Ei), i = 1 , ... , N. Finally, (ii) implies (i) by

Theorem l.ii and by (2) which is true for any matrix A.

A corollary of Fact 4 is that a polytope with normal
(or Hermitian) vertex matrices is Schur stable if and
only if the vertices are Schur stable, a result of Wang
(1991). among the many characterizations for spectral
matrices, the following can be cited, Hom and Johnson
(1991), pp. 61-62: A matrix A is spectral if and only if
A is unitarily similar to a matrix of the form

r(A) [~ :] ,U is unitaray, p(B) < 1, r (B)::5 ı.

The norm bounds (8) and (9) together with Theorem l.ii
yield that if

min {IIEillı 'i (IlEiilı + IIEill~)} < 1, (24)

for every i = 1 , ... , N, then A is Schur stable if and
only if the vertex matrices are Schur stable. However,
this result is weaker than what can be obtained by
directly using the spectral property of induced norms.
Sinceevery induced matrix norm ll.ll is spectrally dom­
inant, i.e., p(.) s 11.11 and satisfies the triangle inequality,
it immediately follows that if

min {IlEiilı' (ii Eillı + IIEill~)} < 1,

for all i = i, ... , N, then A is Schur stable, a result
noted by Mori and Kokame (1987) for interval matrix
families.

Remark 3. A contact with the discrete-time ver­
sion of the Lyapunov's theorem is possible. Suppose
that for every vertex matrix Ei , the discrete-time

Lyapunov equation

(25) Eı=[O.5
0.3

0.6 ],Eı =[ 0.5
0.5 c

b ].
0.5

where d = max {0.45, 0.5 (b + cj}, For b = 0.1,
c = 0.7, the matrix C is Schur but not B. On the other
hand, for b = 0.6 , c = 0.4, the matrix B is Schur stable
but not C.

The enquality (Il) gives a slight generalization of
Fact Li.

Fact 6. A matrix polytope A is Schur stable if
H(lEil), i = 1, ..., D are Schur stable.

Proof. The result follows by (11), Theorem 1. ii,
and (2).

has a positive definite (common) solution P for some

posilive definite Qi, i = 1 , ..., N. Let pt be the unique

positive definite square root of P and note that
i i

Gi := pı qP-ı is such that G", G, - i is negative defi-

nite for i = 1,..., N. It follows that

I"'max (G; GJ =IGil; < 1 which by (8) gives r (G j ) < i.
Now, Kiven A E At , we have by (16) that

~pt Apı) < 1 and hence cı (A)= ~pt AP1) is contained

in Dı . With field of values arguments, we have thus

recovered the fact noted by Mansour (1988) that if there

is a simultaneous solution P of (25), then te matrix

polytope A is Schur stable

Let us now consider a nonnegative matrix polytope

A nt: = conv {Ej , ..., EN} , Ei E Rnxn, Ei ;;:: O,

i= 1, ...,N.

If b s 0.6 and c z 0.3, then we have

0.6 ],C=[ 0.5
0.5 d 0~5 ],
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6. CONCLUSIONS

We have examined robust stability of matrix poly­
topes and demonstrated tht elementary porperties of the
field of values directly yield many existing results and
some others such as Facts 1,3-7. Inview of the encour­
aging reports as in Palazoglu and Khanmbanonda
(I 989) concerning the graphical computation of the
field of values, (15) can be used to graphically check
the satbility of a matrix polytope.

We have not consumed all applications. A refine­
ment of the inequality (9) as in Horn and Jhonson ,
(1991) and diagonal scaling yield circular disks in
which the eigenvalues are inscribed. In general, these
regions neither contain nor are contained in the union of
the Gershgorin circles and hence they can be used to
give alternative sufficient conditions for the stability bf
the polytope in terms of the radius of the disks obtained
for vertex matrices. We have not pursued such alterna­
tive approaches to e.g. Sezer and Siljak (1994).1

Alimitation of the field of values approach is c1ear.
Like the Gershgorin circies, the field of values yield
regions in the complex plane where the eigenvalues lie
in. The field of values like Gershgorin circles can not
capture a full information on thespectrum. Unlike the
Gershgorirı's theorem or its extensions, however, there
are stronger links between the type of a matrix andist
field of values as witnessed by the properties listenin
Seetion 2.

Finally, as pointed out in Barmish (1994), con­
struction of parametric Lyapunov functions for matrix
polytopes is aresearch direction not yet fully exploited.
A field of values approach to parametric Lyapunov
seems also possible in view of some results in Horn and
Johnson (1991).
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