g Ihllv'.

or0%

ANADOLU UNIVERSITESI BiLIM VE TEKNOLOJI DERGISI

o ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY

% ]

5
"'lmomﬁ“°

ARASTIRMA MAKALESI/RESEARCH ARTICLE

Cilt/Vol.:2 - Sayi/No: 2 : 401-402 (2001) 0

POLYNOMINAL RINGS SATISFYING THE RADICAL FORMULA
Dilek PUSAT-YILMAZ!

ABSTRACT
It is not completely known that which non-Noetherian rings satisfy the radical formula In this paper, a neces-
sary and sufficient condition for a polynomial ring to satisfy the radical formula is given.
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RADIKAL FORMULAY1 SAGLAYAN POLINOM HALKALARI

0z

Noether olmayan hangi halkalarin radikal formulay: sagladig1 tam olarak bilinmemektedir. Bu makalede bir
polinom halkasinin radikal formulay: saglamas: i¢in gerek ve yeter bir kosul verilecektir.

Anahtar Kelimeler: Asal Altmodiil, Radikal Formiilii.

1. INTRODUCTION

Let R be a commutative ring and M be an R-modu-
le. A proper submodule P of M is called prime if whe-
never rm e Pforsomere R,me M,thenme Porr
M C P.Let Nbea submodule of M with N = M. The ra-
dical of N in M, rad,, (N) is defined to be the intersecti-
on of all prime submodules of M containing N. If there
is no prime submodule containing N, then we put rad,,
(N) = M. The envelope of Nin M, E,; (N), is defined to
be the set

{rm :r € R and m € M such that r"m & N for some po-
sitive interger n = 1}.

We say that M satisfies the radical formula
(M s.t.r.f) if for every submodule N of M, the radi-
cal of N is the submodule genereted by its envelope,
i.e. rady (N) = < Ep (N) >. Aring R s.t.rf. provided
that every R-module s.t.r.f..

2. RESULTS

Following work of McCasland and Moore (1986),
(1991), (1992) and of Jenkins and Smith (1992), in a s¢-
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ries of recent papers Man (1996), (1997a), (1997b) and
Man and Leung (1997), have characterised which com-
mutative Noetherian rings s.t.r.f.. In partucular, Man
showed that a commutative Noetherian domain s.t.r.f. if
and only if R is Dedekind. It is not entirely clear to us
which non-Noetherian rings s.t.r.f.. But for a polynominal
rings S {X] where S is commutative (not necessarily No-
etherian) domain we can say the following:

Theorem 2.1. Let S be commutative domain. Then
the polynomial ring R = S [X] s.t.rf. if and only if S is
a field.

Proof. (=) Suppose R s.t.rf.. Then the R-module
F=R®Rstrf. Let 0= a e Sandlet W be the ideal
YR, + RX of R and N be the submodule W (a,X) of F.
First we will show that N = Ep- (N). Let r, sy, s, belong to
R such that 7% (s}, 5,) € N for some positive integer k. The-
re exists w € W such that r (s, ;) = w (a,X), i.c.
rks; = wa, rk s, = wX. It follows that ks X = rksoa. If r =0
thenr (s, s5) € N. Suppose that r 0. Then 5;X. = s,a. Sin-
ce a # 0 it follows that s, = Xh for some & € R. Then
53X = spa = Xha Now

gives s; = ha

* (sy, s9) = rk (ha,hX) = rkn (a,X) and hence rkh & W.
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Clearly (rh)* € W and hence rh €W. Thus
r (sy, sp)=rh (a, X) € N. It follows that E.. (N) c N
and hence Ep (N) = N. Since F s.t.rf.
N = Ep (N) = < Ep (N)>=radg (N). Now let K be a
prime submodule of F such that N € K. Then W (a, X) € K

gives WF C K or (a, X) € K. In any case (g, X) € K.
Thus

R (a, X) Crady (N) =N =W (a, X).

There exists g € W such that (¢, X) = g (a, X). In
particular, @ = ga so that g = 1. It follows that W = R
and hence R = Ra + RX. There exist f (X), g (X) € R
suchthat 1 =f(x) a + g (X) X. Then 1 = f(0) @ and hen-
ce a is a unitin S.

(&) If S'is afield then S [X] is a principal ideal do-
main and hence a Dedekind domain. Thus R = § [X]
s.t..f by Theorem 9 in Jenkins and Smith (1992).

Corollary 2.2. Let R be a commutative ring. Then
the polynomial ring R [X,, ..., X,,] does not s.t.r.f. for
positive integers n > 1.

Proof. It is easy to check that if the commutative
ring R s.t.r.f. then the ring R / I s.t.r.f. where 7 is a pro-
per ideal of R. Now suppose R [X}, ..., X,] s.t.rf. where

n> 1. Let 7 be any prime ideal of R. Then the ring

RIPYIXp o X ) =RXpy o X, ) P (X, .oy X

strf.LetS= R/ P)IX;, ... X, ;. Then S [X, ] = (R/ P)
1X;, ... X1, so s.t.r.f. but S is not a field, a contradicti-
on.
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