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TEKNIK NOT/TECHNICAL NOTE

THE QUATERNION REPRESENTATION OF STATIC GRAVITATIONAL FIELD:
POISSON’S EQUATION

Murat TANISLI", Abidin KILIC!

ABSTRACT
The quaternions are numbers which have division algebra. This property advantages for physicists. So, Quater-
nions can be used in the each field of physics and, physical quantities can be represented by the quaternions. In this
paper, a quaternionic equation which replaces to the two vector equations of static gravitational field is written in
4-dimensions. In addition, Poisson’s equation is also defined in quaternionic representation.
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STATIK GRAVITASYONEL ALANIN KUATERNION GOSTERIMi:
POISSON DENKLEMi

0z
Kuaternionlar boliim cebri olan bir say1 sistemidir. Bu 6zellik fizikg¢iler icin avantaj saglamaktadir. Kuaterni-

onlar fizigin her alaninda kullanilabildigi gibi fiziksel nicelikler kuaternionlarla gosterilebilir. Bu ¢aligmada, statik
gravitasyonel alana ait iki vektor denklemi yerine gecen 4-boyutta tek bir kuaternion denklemi yazsimustir. Ayrica,

Poisson denklemi de kuaternionik gosterimde tanimianmugtir.

Anahtar Kelimeler: Kuaternion, Poisson Denklemi, Statik Gravitasyonel Alan.

1. INTRODUCTION

Complex numbers were a hot subject for research
in the early eighteen hundreds. An obvious question
was that if a rule for multiplying two numbers together
was known, what about multiplying three numbers? For
over a decade, this simple question had bothered Ha-
milton, the big mathematician of his day.

Hamilton had found a long sought-after solution, it
was 4-dimension. One of the first things Hamilton did
was get rid of the fourth dimension, setting it equal to
zero, and calling the result a “proper quaternion”. He
spent the rest of his life trying to find a use for quater-
nions. By the end of the nineteenth century, quaternions
were viewed as an oversold novelty.

In the early years of this century, Prof. Gibbs of
Yale found a use for proper quaternions by reducing the
extra fluid surrounding Hamilton's work and adding

1

key ingredients from Rodrigues concerning the applica-
tion to the rotation of spheres. He ended up with the
vector dot product and cross product we know today.

Today, quaternions are of interest to historians of
mathematics. Vector analysis performs the daily mathe-
matical routine that could also be done with quaterni-
ons.

Quaternions which are very useful numbers in the
Justification of the postulates in special relativity, quan-
tum and classical mechanics as well as in solving high
energy physic’s problems can be used to representing of
physical quantities. Some of them, for example, are Di-
mensional - Directional Analysis by a Quaternionic
Representation of Physical Quantities (Arenada,1996),
General Quaternion Transformation Representation for
Robotic Application (Tan and Balchen,1993), and Qu-
aternion Scalar Field is another example (De Leo and
Rotelli, 1992).
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2. QUATERNION ALGEBRA

Considering that the physical quantities of Newto-
nian mechanics are scalars or vectorials. The both types
of quantities in the quadri-dimensional vectorial space
of the quaternions is possible represented. Then a
physical scalar(vectorial) quantity is represented by a
scalar(vector) quaternion.

A quaternion is a quantity represented symboli-
cally by Q and defined by the equation (Ozdas and Oz-
das,1986):

O =qho + @A + phr + @Az = [¢p,q1,R,B]
3 ~ ~
0= Z) Gh, ro=1,  (k=0,123)
. (D
where the real numbers g denote the component of Q

relative to the unitary quaternion Xk (k=0,1,2,3). The
scalar and vectorial parts of Q are designed, respecti-
vely, by (Q), and (Q),, and they are defined by,

(O)s = who

(Q). = qul + qixz + (bx:s @)

A quaternion 1s a scalar(vector) quaternion if its
vectorial(scalar) parts are equal to zero.

The unitary quaternions xk (k=0,1,2,3) satisfy the
Hamilton and Taif multiplication table (Arenada,1996).

do M A A
1\0 1 1\1 Iz ;1\3
;1\1 Ao -l /Ta -//\12
F P I P VA T

The quaternion conjugate Q* of a given quaterni-
on Q are defined as (Horn, 1987):

0" =who-ahi - @hr- gha=[w, -qi, @, ] O3
The product of two quaternions Q and P with com-
ponents g, and py (k=0,1,2,3) is given by (Chou, 1992):

QF ={qpo - (@ps + @p2 + @p3)}Ao + {apr + Gpo + (P - pp2)}As
+ {ap2 + @po + (Bp1 - @p3)}Az + {@ps + gpo + (qip2 - QP )3

@

It must be observed that this product is not com-
mutative (QP+PQ). But the product of quaternion is as-
sociative (Harauz,1990):

P(QR)=(PQ)R. 5)
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The inverse Q-1 of a quaternion Q whose norm No
is different from zero is given by
0'=<
No ©)
Where NQ = QQ*. The quotient between a quater-
nion /” and a quaternion Q with Ny # 0 is defined as
(Tanigli, 1995):
P-pol= PQ" )
0 Ng )
To each vector quaternion P with components
[0,p1.p2.p3] a vector P of the Euelidean tridimensional

space with components (py,p;,p3) is associated recipro-
cally.

If P and Q are the vectors associated, respectively,
of the quaternion vectors P and Q, then the scalars and
vectorial products of these vectors can be expressed as

P.O=(PQ),
PxQ=(PQ),.

It must be observed that (Funda and Paul, 1988):
PQ=-PQ+(PxQ) (8

Quaternion notation of V operator in the Hamil-
ton’s quaternion can be written as;

V=iV, ©)

Divergence and curl operators are expressed (De-
reli, 1992),

VFx)=-V - F(x) +V X F(x) = -divF(x) + curlF(x) (10)

[TR1

where “.” and *“x” are dot and cross product of two vec-
tor quaternions, respectively, and Laplace operator can
be defined as follows:

N(V) = Vivi.. an

3. STATIC GRAVITATIONAL FIELD

It is known from experiments that the gravitational
field of a point particle of mass M is given by

T Cr (12)
where ¢ is a unit vector drawn outward from the par-
ticle. The value of the gravitational constant is
G = 6,67.108cm3gmsec? =3,42.10-%t3slug Isec?.

(13)
It is also known from experiment that the gravita-

tional field has the algebraic properties of a vector. For
example, let P be a distance r|, from mass M; and a dis-

tance r, from M, (Figure 1). If };; and gz are the gra-
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M.

Figure 1. Static Gravitational Field.

vitational fields at P due to M; and M, separately, then
the resultant gravitational field at P is (Bradbury,1968):

- Y

g=g +gp=- Mg OMa g

" i (14)

If there are n-point masses present, the net gravita-
tional field is:

g=-3 Meg, (15)

o=]1 Ty

To find the gravitational field of a continuous dist-

ribution of matter, the sum must be replaced by an in-

tegral. The net gravitational field of the distribution of

matter evaluated at the field point is:

=] Gam 8,=-ij(’;’“2 &: (dm=p(x)dE) (16)

} is also derivable from scalar potential (®):

2=V O, <I>=-Ipr(xi)dZ (17)

where ¢ is called the gravitational potential and has di-
mensions of (force per unit mass)x (distance), or ener-
gy per unit mass and Eq.(17) proves that the static gra-
vitational field is a conservation vector field.

It is frequently easier to calculate the gravitational
potential by means of Eq.(17) rather then to calculate
g directly from Eq.(16). If a particle of mass m is plj\-
ced in gravitational field, it experiences a force F = mg.
Its potential energy can be taken as V=m¢. If there are
a number of point masses enclosed by a surtace than

[ gndo=-47G (my+mz+m3 + ...) (18)

=- 4 1 G {total mass enclosed byo)

If the mass enclosed by & is in the form of a continuous
distribution then to be replaced by

Jg-ﬁda=-4nGdez 19)
o z

where the volume integral is only over the region ¥
enclosed by 6. Eq.(19) is known as Gauss’ law (Brad-
bury, 1968).
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Gauss divergence theorem, Eq.(19) can be conver-
ted to
J5-5d2=~4nGIpdz (20)
z

z

This result is an identity applying to any arbitrarily
chosen region of integration implying that

€-§=‘4nGp 21

The mass density p is therefore a source function
for the gravitational field. More properly it should be

called a “sink function” since the lines of g always
converge toward the matter. Since g is conservative, a

second fundamental differential equation obeyed by g
is:

Vxg=0 (22)

Dot and Cross products of two vectors are defined
with a quaternion equation which is the quaternion pro-
duct of two quaternions. If we use the rule of product of
two vector(pure) quaternions which are V and g (Eq.
8), a quaternion equation can be written as follows:

Vg -[f (x),0,0,0] =0 23)

Where f{x) is 4tGp. This equation of quaternion
replaces both of Eq.(21) and Eq.(22). In addition, the
substitution of g = - V& into Eq.(23) leads to

'VV(D + [f (x),0,0,0] =0 (24)
showing that the basic quaternion equation satisfied by
the scalar quaternion of gravitational potential is Pois-
son’s equation. If f{x) is zero in Eq.(24), The equation
will be Laplace’s equation.

4. CONCLUSIONS

The static gravitational field is conservative and
the divergence of which is Gauss’ Law for gravitation.
We have written a simpler and general way to express
the static gravitational field and Poissson’s equation as
the product of two quaternions. This equation has the
same form as the vector equations which was written
for conservative field and Divergence theorem. Doing
physics with quaternions has very easy, useful and com-
pact representation. It is shown that physical quantities
can be represented with quaternions. Also, the test for a
conservative field can be done with operator quaterni-
ons.

In this study, The defining equations are quaterni-
onic partial differential equations. One of them is Lap-
lace’s equation, another is Poisson’s equation.
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Four Maxwell equations in the electromagnetic
theory can be written with two quaternion equations
which are electrostatic field and magnetic field.
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