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ABSTRACT

PERFORMANCE OF SPLINE-BASED GAM IN THE PRESENCE OF
OUTLIERS AND MULTICOLLINEARITY

HURUY DEBESSAY ASFHA

Department of Statistics
Anadolu University, Graduate School of Sciences, May, 2017
Supervisor: Assoc. Prof. Dr. Betiil KAN KILINC

Generalized additive models (GAMs) are extension of additive models as generalized
linear models (GLMs) are to ordinary linear regression model. There are different
approaches of fitting these kinds of models one of which is the smoothing bases
approach, where variety alternatives of smoothing functions are used to define the
bases of the model matrix. Penalized regression spline which is estimated by penalized

regression techniques is one alternative method for representing GAM models.

In this thesis, three penalized regression splines; cubic spline, p-spline, and
thin-plate spline are proposed to fit GAM for a simulated data. The performance
of these smoothers is evaluated and compared for tolerance of the effect of outliers,
multicollinearity and both when they exist together. Results of the experiments showed
that the GAMs fitted using these nonparametric regression techniques are less prone to

multicollinearity and outliers compared to their parametric counterparts.

Keywords: Generalized additive models, Smoothing, Penalized regression spline,

Outlier, Multicollinearity.
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OZET

SPLAYN-TABANLI GAM’IN COKLU BAGLANTI VE AYKIRI DEGER
VARLIGINDA PERFORMANSLARI

HURUY DEBESSAY ASFHA

[statistik Anabilim Dali
Anadolu Universitesi, Fen Bilimleri Enstitiisii, Mayzis, 2017

Danisman: Doc. Dr. Betiil KAN KILINC

Dogrusal regresyon modellerinin genellestirilmis dogrusal modellerin bir uzantisi omasi
gibi genellestirilmis toplamsal modeller de toplamsal modellerin bir uzantisidir. Bu tiir
modellerin veriye uyumu i¢in kullanilan degisik yaklasimlardan biri olan diizlestirme,
model matrisinde cesitli diizlestirme fonksiyonlarinin kullanildigi yaklasimlardandir.
Cezali regresyon splaynlari, genellestirilmis toplamsal modelleri olusturmak cezali

regresyon teknigi ile kestirilen bir diger yontemdir.

Bu tez calismasinda, ii¢ farkli regresyon splaynlari, kiibik, p-splayn ve ince tabakali
splaynlar veri tiretmede kullanilir. Bu diizlestiricilerin, aykiri deger, ¢coklu baglanti ve her
iki durum soz konusu oldugunda performanslari karsilastirilir. Sonuglar elde edildiginde
genellestirilmis toplamsal modellerin, parametrik olan regresyon tekniklerine gore

aykir1 deger ve coklu baglantidan daha az etkilendigini ortaya konmustur.

Anahtar Kelimeler: Genellestirilmis toplamsal modeller, Diizlestirme, Cezali

regresyon splaynlari, Aykiri deger, Coklu baglanti.
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1. INTRODUCTION

Regression analysis, a technique used for investigating and modeling the relationships
among variables, plays a vital role and can safely be argued that it holds a central point in
statistical data analysis. Generally, regression models can be categorized as parametric,
nonparametric and semiparametric (have behaviors of parametric and nonparametric).

Linear regression is the basic parametric model and is written in the form of
y=XpB+e (1.1)

where, X is model matrix, 3 is a vector of unknown model coefficients, and y is response

variable. € is random error term which follows N (0, ¢2) distribution.

These kind of models are simple to use however, there are five key strict
assumptions to be considered while applying linear regression models. These

assumptions are:

« Linear relationship between response and predictor variables. E(y/X) = [y +
b1z + Poxo + ... + Brxk.

« Response variable is normally distributed;
f(ylX) ~ N(p,0%)

« No or little multicollinearity among covariates

« No autocorrelation:

Cov(e;,€5) =0.

« Homoscedasticity;
2 2 2

o{=05=..=0;

However, these assumptions do not always hold true. Generalized linear models
(GLMs) are introduced to relax the strict assumptions of normality and homoscedasticity
in ordinary linear regression. In GLM, distribution of response variable has to be one
of the exponential family distributions among which are normal, binomial, Poisson,

exponential and gamma distributions [1, 2].
y ~ exponential family distributions

However, the assumption of linear dependence in the classical linear models is carried

over without modifications to GLMs [3]. In GLMs, the similarity in considerably several



properties of the exponential family distributions allows us to use the same technique
to estimate model coefficients using the likelihood concept of estimation. The general
form of GLMs is [4, 3, 5],

g(p) =n=X'B = Lo+ [rx1+ ... + Bpzy (1.2)

where, ¢ is a link function which connects the systematic component, 7 (called linear
predictor), and the random component (response variable) of the model [6]. The expected

response is then obtained as,

E(y)=g"(n) =9 (X'B)

Here, if the response variable follows normal distribution and an identity link function

is used, the generalized linear model turns out to be an ordinary linear regression model.

In parametric regression, the functional form of the model is known in advance
and is then fit to the data with global estimates. In the absence of a strong evidence for
the predefined functional form to represent the data appropriately, an alternative has to
be used; estimating the functional form from the data is the best way to proceed [6]. In
order to estimate the functional form from the data, the global estimation in parametric
models has to be replaced with local estimates. These methods of locally estimating of the

functional form from the data itself is generally described as nonparametric techniques
[6].

Nonparametric regression models allow one to fit a flexible nonlinear model to the
data in order to represent the relationship between the response and predictor variables.

As parametric models, nonparametric models are useful both for modeling and diagnosis

of the nonlinear relationships.

A detailed explanation of some nonparametric model fitting techniques (smoothers
which apply the local estimation principle) can be found in Hastie and Tibshirani,
1990. The most popular methods of nonpara-metric regression techniques include local

polynomial smoothing, kernel smoothing and splines [7, 8].

When the linear predictors in GLM model (Eq:1.2) are replaced with additive
predictors, the model is called generalized additive model (GAM), thus, GAMs are

regarded as extensions of GLMs.

g(p) =mn=PBo+ fi(w1) B+ fa(w2)Ba + ... + [ () By + € (1.3)

The f;’s in generalized additive models are smoothing functions which can be any

of kernels, local regression (loess) or smoothing splines. Due to the fact that GAMs



can incorporate nonparametric models into parametric ones, they can sometimes
be described as semiparametric regression models [6]. In semiparametric models,
some predictor variables are modeled parametrically while others are modeled using
nonparametric regression. In GAMs, while the assumption of standard linear models of
the linear dependency of y on X is relaxed, the additivity assumption still holds true and
it is this additivity property that makes GAMs easier to interpret than other algorithms

such as supportive vector machines (SVM), neural networks, ... etc. [6].

Generally, GAMs are computationally expensive techniques compared to the linear
models due to the fact that they build the model using local fits. However, different
algorithms have been developed to fit GAM models iteratively. The gam package was
developed based on the work of Hastie and Tibshirani, 1990 to fit generalized additive
models to the data of concern [9, 10]. This gam function constructs GAM models by
combining different smoothing methods using backfitting algorithm. Another package
used to fit GAM models in R is the mgcv package of Wood, 2006. It employs the approach
of penalized regression spline to fit a model [4]. By default, the degree of smoothness of
the fit is chosen internally by the algorithm. Automatic selection of smoothing parameter
is an advantage for the reason that it avoids the subjectivity and work of choosing it
by the user. However, it can fail to obtain the best degree of smoothness and human

intervention could sometimes be needed [10].

In parametric regression analysis, there are different causes of model disturbances
one of which is the existence of abnormal observations in the dataset which distorts the
model parameters. Furthermore, this in turn may result in an inflated estimate of o2,
the residual sum of squares. Similarly [11], in nonparametric regression the presence
of small percentage of such anomalous observations in the data affects the estimated
smooth functions causing the model to be more close to them. In literature, some outlier-
resistant GAM fitting techniques have been developed. Alimadad and Salibian-Barrera,
2011 discussed a robust method of GAM fitting technique by using those derived from
robust quasi-likelihood equations in place of the maximum likelihood based weights
in the local scoring algorithm [11]. The rgam in R is an implementation of this robust
method. Wong et al., 2014 proposed an M-type robust estimating technique to fit a more
robust generalized additive model in the presence of outliers and was implemented in R
as robustGAM. The core idea of this method is to decompose the overall M-type problem

into a sequence of additive models fitting problems [12].

The existence of concurvity which leads to a poor estimation of model parameters
and underestimation of their standard error is another cause of model disturbance.
According Buja et al., 1989 concurvity is a nonlinear relationship among predictor

variables which causes degeneracy of the system equations which in turn results to



non-unique solutions. Moreover, in the presence of concurvity, the easy interpretability
feature of additive models may no more be useful because effect of a predictor to the
response variable may be affected by other variables [13, 14]. In the literature, some
approaches were proposed to fit GAM models when the covariates have nonlinear
relationships. Here, the question comes how the existence of linear relationship in

covariates affects the model goodness of fit.

The objective of this thesis is therefore, to examine throughly the performance
of three smoothing spline bases: Cubic regression spline, p-spline and thin plate
spline which are commonly used in fitting GAM models under the following three
situations. First, the performance of these techniques is evaluated when fitted to
data containing outlier values in the response variable. In the second experiment,
the methods are compared when applied to data with multicollinearity. This is to
see how these GAM models perform in situations where the classic linear regression
models are not appropriate due to the violence of the assumption. Finally, presence
of abnormal observations in the response variable and existence of linear relationships
among covariates are both considered to evaluate and compare how these GAM fitting

penalized smoothing splines perform.

This thesis is organized as follows.

« Section 2: Discuses briefly what smoothing is and its importance. It briefly
addresses splines and how they can be used to interpolate data points. It then

presents how penalized splines can be used as smoothers.

« Section 3: This section addresses the concept of fitting GAM models as penalized
GLMs. It also discusses model degrees of freedom and a method for estimating

smoothing parameter.

« Section 4: The simulation procedures used to generate outlier-contaminated data

as well as data with multicollinearity are addressed in this section.
« Section 5: Results and discussion of the study is presented in this section.

« Section 6: This final section addresses the conclusions based on the findings and

includes recommendations of the thesis.



2. SMOOTHING

Smoothing is a method of estimating a nonlinear effect of one or more predictor variables
on the response variable by letting the data suggest the appropriate functional form
[7, 15]. There are different techniques of smoothing data. Some of the popular method
of data smoothing techniques are local polynomial smoothing, kernel smoothing,

regression splines, and penalized regression splines.

Figure 2.1. An example where a linear model is not a best fit to the data

In this section, the concept of splines is discussed first and later it is shown what
regression splines and how to incorporate penalty to control the roughness of the curve

which in turn leads to the topic of penalized regression splines are.

2.1 Splines

The term spline was originally used to name a flexible strip that was being using by
draftsmen to draw curves by joining given points. The purpose was to fix the strip at its
edges and calibrate it in order to pass through all the points so that the resulting shape

will be used as a smooth interconnecting curve [16].

In mathematical sciences, splines are piecewise polynomial functions which are

constrained to be connected at the junction points. Given a tabulated data (z;,y;) for



© = 1,2,..,n, each point is joined by a polynomial function which results in a group
of piecewise curves. A spline is then, the function which is made of these piecewise

polynomials joined together at points called knots.

—-1-0.5

Figure 2.2. Piecewise linear spline with 9 knots interpolating the function —5sin(z) for

1+22

x € [-4,4].

Linear spline is a simple form of interpolation in which the piecewise functions
which connect the knots are straight lines [6]. Figure 2.2 shows a simple linear spline
interpolation (solid line) to estimate the function given by the dotted line. It can clearly
be seen that the linear interpolation fails to capture the curvature of the function.
One could use more knots to improve the accuracy of the interpolation, however, it is
important to note that these kinds of interpolating functions are not continuous on their

first derivatives at the knots. This can be avoided by using higher order polynomials.

Now, consider the points {(z;,y;), fori=1,2,...,n}, where, x; < x;,1. A function,
g(x), interpolating all these points which is constructed by joining sections of cubic
polynomials (degree 3), one for each [z;, x;,1], so that the whole function is continuous
in values and on its first two derivatives is called a cubic spline [17]. Cubic splines are

the most popular interpolators.

2.1.1 Natural cubic spline

Natural cubic splines are a special case of cubic splines where the second derivative at

the two end points are constrained to have zero value. They are called natural for they



are a solution of an optimization problem [18, 17]. In general, a natural cubic spline

satisfies the following:

1. It interpolates the points (z,y) i.e. g(x;) = y;

2. Its second derivative at the two end points is zero;
g”(xl) - g//(l,n) =0.

3. Natural cubic spline is the smoothest interpolator. If f(z) is any continuous
function on the interval [x1, x,, ] and has continuous first and second derivatives,
and interpolates the points (z;, y; ), then the natural cubic spline g() is smoothest

in the sense of minimizing the roughness measure.

fx" g (2)2de < fx F(x)2da, ¥ f e C2 2.1)

x1 1

To demonstrate the smoothness of a cubic spline [17, 19] define a function;

W) = f(x) - g(x).

Since, both f(x) and g() are interpolators of the points,
f(z;) = g(x;) = y; which in turn leads to

f(x;) =h(x;) +g(x;) =0, for i=1,2,....,n. (2.2)
From Eq:2.2, f"(x) = h""(x) + ¢""(x). Squaring both sides gives,

f”(ﬂf)z — h”(.ﬁE)Z +g//($)2 +2h"(:v)g"(:z)

Integrating both sides yield,

f () 2de = f ()2 d + [ " ()2

1 X1 T1

+2 [ ' h'(x)g" (z)dx (2.3)
Now, let the right most hand side of Eq: 2.3 is zero.
2 / ' h'(x)g" (x)dx =0 (2.4)
z1

Using the rule of integration by parts, it can be shown that

(9" (@)W (2)) = g" (@)W (2) + ¢ ()1 ().
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Figure 2.3. Natural cubic spline with 7 interior knots
Source: Wood, 2006, p.124

Therefore, of Eq:2.4 can be written as,

f:n g"(x)h" (x)dx = f:n (¢"(x)W (z)) do - f:n ¢"(z)W (z)dx

Tn

- [:n g""(x)h'(x)dz

x1

[ R @) - g ) - [ g
=0- —/:n " (x)h' (x)dx

=g"(x)h (x)

By definition of natural cubic spline, since g(z) is a piecewise polynomial, ¢’ (x)
is a piecewise constant, say ¢"’(x) = ¢; on each interval [x;,x;,1]. Furthermore, the

constraints of this spline imply that

g"(z1) = g"(x,) = 0.
Thus,

Tn n-l Ti+1
/ g"(z)W"(z)dz ==Y ¢ f b (x)dz
21 i=1 /

Z;

|
—_

n

==, cilh(wi) = h(w;)]

)

1l
—_

However, since both f and g are equal at the points, A(x) = 0 for all the knots. Therefore,

as claimed in Eq:2.4,

fh g"(x)h" (x)dz = 0.

1

Since, the integration of the squared derivatives of f, g and h are all positive. From



Eq:2.3, it can be implied that

f% 9" (x)%dx < fx f(x)2da = f h”(x)deJr/M g (2)2dx

x1 1 1 x1

Therefore,

—/xn g"(x)*dx < /mn 1 (z)*dx, (2.5)

1
where f is any twice differentiable function. The proof is complete and hence, natural
cubic splines have the smoothest curvature among all smooth curves which interpolate

the data points.

2.1.1.1 Derivation of natural cubic spline

Computationally it is tedious to find a natural cubic spline that interpolates the points
(zi,v;), where x; < x;,;. However, a simple algorithm can be developed to generate a
natural cubic spline g(z). Let z; = ¢"(x;) and h; = z;,1 — x;. By definition of natural

cubic splines, then, 2y = 2, = 0.
Lagrange form of the second derivative of the spline is given by [19],

Zi+1
hi

Zi

() - .

(r-—m;)— —(x —x441)-

By integrating ¢!’ (x), we obtain ¢/(z).

/g{’(x)dxz/Z;:l(x—xi)dx—/%(w—xﬂl)daﬁ

(2 7

Zi

gi(x) = S (@ - w)’ = - (w =)+ G- D,

2k,

Here, two arbitrary constants are added for ease of calculations.

/ gi(z)dx = ;Z;Ll (z - x;)%dx - f 222 (z - 2401 )%de + / Cidx - f D;dx

Zi Zi
gz(l’) = 6;%1 (95 - 951‘)3 - 6h, (flf - $z‘+1)3 + Ci(ﬂﬂ - %) - Di(l" - l’z’+1)

Recall that cubic spline interpolates the given points (knots). Therefore,



1. gz(fl’z) =Y

Z.
Yi =L1($i - Ii)g

$i+1)3 +Ci(x; — ;) = Di(w; — T441)

6h; 6h
Yi=-— - Di(-hy)
Y; Zihi
Di=3t == (2.6)
2. gi(Ti1) = Yir
Yivr1 —2};1 (33z+1 Xy )3 6h (l"z+1 931'+1)3 + Cz'(l"ul - l"z) - Dz’($i+1 - $i+1)

Zi+1 3,
i =L 1)+ i)

) ) hz
C, :% _ Finilh *61 (2.7)

Substituting C; and D; in g(z) yields

w0 = 2 o) - 2 (B2 BBy (BB )

(2.8)

and first derivative of g(z) is given by,

LY T Y Fi T A
- h;
hi 6

gi(x) = ”1( - ;)" -

2h

Let the fraction ¥4~ which is a constant be denoted by b;. By definition of cubic

splines, g(x) has continuous first derivative;

gi_1(xz;) = gi(x;), for i=1,2,...,.n-1.
hzzi

Zi+l — %

)= b - hi
giwi) =———+ 5
and,
G () = 3 (= i) = 5 () iy = =

— Zi-1

6

Z; Z
== hi— + bi_ -Z hi_
2 1 1 1

10



Equating ¢/ ,(z;) and g/(x;),

gi1(xi) = gi(x;) =0
zihici 2=z hizi  zi1 — 2
— hifl + — +
2 6 2
3(zihic1) = (2i = ziz1) by + 3hizi + (Zie1 — 2i) by =6(b; — bi—1)

hic1zioy +2(hiz1 + hy) 2 + hizi =6(b; = biy)

hi =b; = b1

There are a total of n — 1 linear equations. Since zy = z, = 0, the first and last
equations have only two terms at the left hand side of the equality. The linear equations

can be written in a matrix form;

Hz=b (2.9)
where,
2dy hy 0 0 0 0 0
hiy 2dy hy O 0 0 0
0 hg 2d3 hg 0 0 0
0 hy 2d 0 0 0
H - ' '3 ‘ 4
2dn—3 hn—S 0
hn—3 2dn—2 hn—Q
0 hn—2 2dn—1
21 \ 6(b1 - bO)
) 6(b2 - bl)
6(bs —b
z = 3 and b= ( 3_ 2)
Zn-2 G(bn—Z - bn—B)
Zn-1 6(bn—1 - bn—2)

where dz = hi—l + hi, hz =Tiy1 — T5 and bz = %

The fact that H is symmetric, tridiagonal, and diagonal dominant ensures that
Eq:2.9 has unique solutions for the unknown variables (2/s). Once obtained, substituting
values of z;’s in Eq:2.8 will result in a cubic polynomial function which is the desired

natural cubic spline.
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2.1.2 Roughness measure of a curve

There are different ways of measuring roughness of a curve g defined on an interval
[a,b] [17]. Given it is twice differentiable function, one common way of quantifying the

wiggliness of g is given by the integration of its squared second derivative;

J(g) = fab [9"(2)] da (2.10)

Some motivating ways of this measure of wiggliness are explained in Green and
Silverman [17]. From the mathematical perspective, |¢”(x)| measures the turning rate
of the curve at a specific value of = [20]; this measure should not be affected by a linear
or constant terms in the model. Thus, two functions which differ only by a constant or a
linear term should have the same quantity of second derivatives at a given point. Based
on this intuitive idea, it becomes logical to use Eq:2.10 as a measure of global wiggliness

of a curve.

2.2 Smoothing Bases

A smoothing function can best be described by considering a univariate model with only

one smoothing function.
Yi = f(Iz) +€; (211)

where, f is a smoother, and ¢; are i.i.d random variables which follows a distribution of

N(0,02).

Here, a basis expansion can be used to define the dimensions of the model matrix
so that a more flexible smoothing function can be achieved [21]. Choosing the basis

function allows the smoother to be written as a linear combination of these bases.

Let b;(x) be the i*" basis function for i = 1,2, ..., ¢. Then, [ is written as;

f(x) = Zq;bi(x)ﬁi (2.12)

where, 3;’s are unknown parameters. Therefore, substituting Eq:2.12 in Eq:2.11 yields a

linear model given by,

Yi = bi(2)B1 +by(x)Ba + ... + by () By + € (2.13)

Different functions can be employed to define the bases. Some common bases are

discussed below.

12



2.2.1 Polynomial basis

Based on how many basis functions should be used to estimate the smoother, a given
order polynomial would be chosen. For example, if a fourth order is chosen, the bases
functions are given by, by (z) = 1, by(x) = x, by = 22, by = 23 and b5 = z* and the

smoothing function is then written as,

f(x) = By + s+ 3° s+ 2° By + a* Bs. (2.14)

The it row of the model matrix is given by,

— 2 .3 .4
X’i - [1,$Z,$Z,xl,$z]

Here, an ordinary least square method is used to determine the model parameters.

35 4.0 45

30

20 2.5

Figure 2.4. An illustration of smoothing data using polynomial bases of varying degrees.

In polynomial regression approach, a higher-order may generally represent the
data well [18]. However, using a higher-degree polynomial means more model
parameters will be included which may result in over-fitting. Figure 2.4 shows how

an increase in order of the polynomial basis influences goodness of fit of the model.
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2.2.2 Spline bases

Splines are among the popular ways of smoothing data by fitting the underlying
function. They are more advantageous than their polynomial counterparts for different

reasons [6].

1. Splines are superior in a sense that they have analytical foundation; it can be

proved that a spline smoother provides a fit with a minimum mean square error.

2. In smoothing splines, a term which controls the trade-off between over-fitting
and goodness of fit can be added to the optimization problem which polynomial

regression lacks to have.

3. For the reason that a lot of new studies about splines are being done while that
of polynomials are more or less static, softwares which implement splines are

superior to those which implement polynomial regression.

35 40 45

3.0

20 2.5

Figure 2.5. Cubic regression spline with different number of knots.

As discussed before, (natural) cubic splines are the smoothest among all

interpolators. For this reason, a cubic regression spline will be considered to show how

14



splines are used to fit a univariate model. Given knots, 7} for j = 1,2, ..., g, there are
different ways of representing cubic basis. For simplicity [4, 22], consider the following

simple representation of cubic smoothing spline for = € [0, 1]. The cubic bases are given

by, bi(x) =1, by(x) = x, and bj.»(z) = R(z,z}), where,

(25 -5 - ][(e-5)2- 5] [(z-251-5)" -3z -2 - 5)* + 5]

Bla.z;) = 1 ) 24
(2.15)
The smoother is then given by,

q
f(x) =1+ Bax + Z BjraRi(x,x%) (2.16)

j=1

The model matrix is an n by ¢ + 2 where, the i** row is given by,

X =12, R(xi,27), B(wi, 23), ... Rz, 77)] (2.17)

In Figure 2.5, the model does not seem good enough to fit the data when three
knots are chosen. On the other hand, if too many knots are used (e.g. the fit with seven
knots) the problem of over-fitting occurs; the fit becomes too wiggly. Therefore, one
has to choose appropriate number of knots in order to get the best fit. In reality, this is
somehow subjective and not the best way to smooth large data for it is hard to guess
the appropriate number of knots. A wiggliness controlling mechanism should then be

addressed in modeling with smoothing functions [4].

As discussed above, the model roughness is controlled by setting the basis
dimension appropriately fixed. It can clearly be seen that the goodness of fit of the
model depends on the location and number of knots. Using too many knots results too

wiggly fit and on the other hand, a model with fewer knots may not fit the data well.

A better way of controlling the wiggliness of a model fit is by using a penalized
regression spline where a roughness of penalty is added to the least square fitting
optimization in order to control the smoothness. In this case, the number of knots are
chosen to be a little more than believed could be desired [4]. The objective in penalized

regression spline is to fit the model by minimizing,

ly-XB1*+ A [ [f"(@)]de (218)

where, the integrated term is the roughness measure, ) is a smoothing parameter which

controls the trade-off between smoothness and goodness of fit of a model. If A\ - oo, f

15



will approach to a straight line fit, where as if A = 0, f will be identical to the regression

spline fitting technique for it will not be penalized.

35 4.0 45

3.0

20 2.5

Figure 2.6. Penalized regression spline with different number of knots

Wood, 2006 showed that the penalty term can be written in quadratic form of 3;

f [f7(2)] dz = BTSP (2.19)
Replacing Eq:2.19 in Eq:2.18 yields,

ly- X8>+ \3"S3 (2.20)

Computationally, Eq:2.20 is more favorable in comparison with the somewhat

complicated form of Eq:2.18. Elements of matrix S are known coeflicients which are
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calculated using the given knots by using Eq:2.15 and is written as,

0 0 0 0 0 0
0 0 0 0 0 0
o |00 R RGLE) - RGpan) R

In a similar way to that of ordinary least square method, the penalized least square

estimator, minimizer of Eq:2.18 is

%[(y XB)(y- XB) + A37SB] =0

(y-XB)(-X")+ASB =0
B=(X"X+18) X"y

and the hat or influence matrix is then given by,
A=X(XTX+18)" X"

Further details of this estimator and its implementations can be found in Wood, 2006.

In the previous section (see Figure 2.5), it has been clearly shown how the increase
of knot size disturbs the model smoothness. Moreover, Figure 2.6 shows how penalized
regression method controls the roughness of the model by adding a penalty term to the
minimization objective. As it can be seen from those two graphs, the more wiggly 7-
knots model in the unpenalized regression can safely be argued that it produced the best

fit after introducing the penalty term.

Furthermore, Figure 2.7 illustrates smoothing data with polynomial basis of order
4, cubic regression spline (unpenalized) and penalized (cubic) regression spline. The
penalized fit seems to represent the data better. Therefore, it is reasonable to adopt

penalized regression spline for smoothing.

Following, three smoothing spline techniques which incorporate a penalty term
will be discussed. These are among the commonly used smoothing splines which are

implemented in the mgcv package [4].

2.2.2.1 Cubic spline

There are different possible ways of defining a cubic smoothing spline basis. One simple

representation of cubic spline was introduced in previous sections. Another way of
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Figure 2.7. Representing univariate smoothing functions using different bases;
Polynomial basis of degree 4, cubic regression spline with 4 knots, and
penalized regression spline with 7 knots.

representing this kind of splines which has an advantage of easy interpretation of model
parameters [4] is given by Eq:2.21. In this approach, the parameters are given in terms

of the knot values.
Recall constructing a cubic spline function f(z), defined for knots z1, zs, ..., 5. If

we let 8; = f(z;) and &; = f”(x;), then f(z) with basis functions aj, af, cj, and cj is

given by,
f(x) = a;(x)B; +aj(x)Bj +c;(2)0; +cj(w)01 if 25 < <2j0g (2.21)

The basis functions are defined in Table 2.1. It can easily be shown that 5, = f(z;)
and 0; = f"(x;).

Table 2.1. Basis functions for a cubic spline; hj = xj.1 — x;

(Ij+1*I)d_h'(x. ~
_ Lo _ h F\Lj+1 SE)
aj(w) = == ¢j (@) = ——
('r_mj)S —hj(z—x;)
T-T; h J J
a;(x) = hj" c;(x) =—t

18



Re-writing f(z) by putting the basis functions in,

(rj010)? (rr))?
%ﬁ-y+—%7__hﬂ%ﬂ_x)-+_E#“J%@_xﬂ 3
hy 7 6 ! 6 "

(2.22)

_IEJ'+1—.T X —

flo)==——0j+

To find f(z;), substitute x; in Eq:2.22

$'+1—$j .Z'j—.l'j
flaj) =~ B + Bjw1 +
J h J h] J+

j 6 !
(22, (z; - 1)
h; g\ Tj = Xj
+ 6 5j+l
. h2 - b2
= h—jﬁj-‘ro-F%(Sj-FO
= /8]
The second derivative of f(x) is given by,
Tjp1 — T T - x,
f(x) = =0, + =0

J J

Therefore, similarly substituting x; in f”(x;) yields,

" Lj+1 — Ty Lj~ Ty
f(x;) =~ d; + 041
J h/] J h/] J+
h;
= h—j(sj +0
=4,

By definition, a natural cubic spline is continuous to second derivative and has
zero second derivative values at the two end knots, say z; and . In this case, to show

that f(x) satisfies these properties is equivalent to showing Eq:2.23 holds true.
Bé =Dp (2.23)

where, 0~ = (02,03, ..., 0p_1)7 [because f"(x1) =01 = 0, = f"(x) = 0]. The matrices
B and D are given below. Continuity of the first derivative of the spline implies that

the the derivative of the sections to the left and right x; are equal [4]. Hence, it can be
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written as;

_& " /6j+1

hj  hy

h; 3h; h; ﬁ'+1 5'+2
s s 2 s M Pl
J + 7+1 6 J+1 6 hj+1 + hj+1

3hj+1
6

hj+1
6

hj+1
6

=041 +0j41 —0js2

Multiplying both sides by —1 and a simple rearrangement of the above equality results

in,
1 1 1 1 h; hi  hi hi
h—jﬁj+(h—j+m)5j+1+mﬁj+2=é5j+(§]+ ‘73 )6j+1+J76j+2
For j =1,2, ...,k — 2, the terms in Eq:2.23 can be written as;
h_11 (hi1+hi) % 0 0 0 0 0
0 ho (hl2+%) his ~ 0 0 0 0
D=|0 0 hs (hi3+h—i) -0 0 0 0
1 1 1 1
0 0 0 0 w0 hg—2 (hk—z + hk—l) hg-1
and
0 0 0 0 -0 0 0 0
b (%+%) b 0 0 0 0 0
0 b (%+%) by 0 0 0 0
B=1o o Iy (%+%) 0 0 0 0
00 0 0 0 iz () i
0 0 0 0 ~ 0 0 0 0

d can be written in terms of B, D and 3 as, 6 = F'3. Consequently, we can write Eq:2.21

in terms of 3 as,

f(x) =a;(x)B; +aj(x)Bj1+c; () F;B+c;(v)FjnB, vj<x<xj (2.24)
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and this can be re-written in the general form as

k
f(@) =, bi(2)B;
i=1
The wiggliness measure of the spline [4] is given by,

f " (F"(2))2de = BT DTB' DS (2.25)

where the penalty matrix is S = DT B-1D.

2.2.2.2 P-spline

For (natural) cubic spline, there is high tendency for the columns of the model matrix X,
to be correlated for they are in someway transformed version of the predictor variable(s)
[6]. This dependency may cause multicollinearity or concurvity which may result in
numerical instability and imprecision in the spline fit [6, 18]. To somehow get rid off
this problem, a B-spline basis which is refined form of a cubic spline, can be employed.

This kind of splines can be used to represent cubic splines as well as higher order splines.

B-spline basis, a strictly local type of spline is non-zero only on the intervals
between m + 3 adjacent knots where m + 1 is the order of the basis (ie. m = 2 for
cubic spline) [4]. In B-spline basis, m + 1 knots are added on two sides of the specified
knots so that totally there will be (m + 1) + k + (m + 1) knots. The spline is however,
defined only on the interval [2,,,2, 2; | which implies that the first m + 1 and last m + 1

knots are arbitrary. Any spline of order m + 1 can then be represented as:

k
f(z) =2, B (2)B: (2:26)
i=1
where the B-spines can recursively be written as,

BP'(x) = ——— B Y(a) + 2L Bl (), i=1,2,.k
Tivm+1 — T4 Tivm+2 — Tisl

Therefore, based on Eq:2.26 a cubic B-spline function (m = 2) with its B-spline

bases are respectively written as;

k
f(x) =) B (x)85; (2.27)
=1
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Figure 2.8. An illustration of representing a smooth curve by B-spline. Dashed (or dotted)
curves are B-spline bases functions multiplied by their coefficients where each
nonzero over 3 intervals in the left panel (m=1), and 4 intervals in the right
panel (m=2) (solid curves represents the desired curve).
Source: Wood, 2006, p.153

and each of the B-spline bases (B’s) for i = 1,2, ..., k are given by,

T— X Tiwd — X
B?(x) = " Bl(z)+ =7 Bl (
z( ) Tiiz— T z( ) Tiia — Tivt z+1( )
Bl(z) = " BY(z) + — 2= B, (x)
Tir2 — X4 Tit3 = Livl
T—-x; Tivo—T
BOz) = X% pipy s L2 7T per, (2.28)
z( ) Tiil — T 7 ( ) Tivo — Tivt z+1( )
1 if z;<x<ux;
Bi_l(x): 7 | i+1
0 otherwise

Basically, a B-spline basis is a rescaling of the piecewise functions, which is the
same principle with rescaling explanatory variables by mean subtraction in order to
minimize collinearity [6]. In a very similar way, the rescaling in B-spline reduces
collinearity between the bases of the model matrix X. This is generally true if large

number of knots are used, otherwise, the B-spline would not be stable [4, 6, 23].

P-splines, a penalty incorporated B-splines, are proposed by Eilers and Marx, 1996
as a more stable version of the B-spline bases particularly for lower rank smoothing.
They are generally defined on an equidistant knots and use a difference penalty applied
to adjacent coefficients, f3;, directly. For example, as given in Wood, 2006 if a squared

difference of adjacent parameters is to be used as penalty measure, it looks like,

k-1
P = (B —B:)> =57 —26102 + 205 — 28285 + 235 + ... + B (2.29)
i1
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In matrix form, it can be written as,

(1 -1 0 0 0 0 0 0]
-1 2 -1 0 0 0 0 0

0 -1 2 -1 0 0 0 0

0 0 -1 2 0 0 0 0

P=p" P : s

0 0 0 0 2 -1 0

0 0 0 0 -1 2 -1 0

0 0 0 0 -1 2 -1
0 0 0 0 - 0 -1 1]

By increasing the differences parameter, a higher order penalty can be produced.
The advantage of p-spline is that they are easy to set up and use. Additionally, they
are flexible in the sense that any order of penalty can be incorporated to any order of
B-spline basis. However, if knots are unevenly spaced, p-splines lose their simplicity
behavior [4].

2.2.2.3 Thin plate spline

For an arbitrary spaced data (z;,y;), thin plate spline, say f(z;,y;), is a two-dimensional
interpolation scheme which is an extension of the natural cubic spline for one
dimensional data [25]. Splines of these types are good solutions for the smoothing
function problem of more than one predictor variables [4]. In thin plate spline, the
problem of estimating a smoothing function, f, is an estimation of a surface while in

natural cubic spline, it is a curve estimation problem [17].

Green and Silverman, 1994 put forth the general properties of the extended cubic
spline in order to develop a methodology (thin- plate interpolant) for bivariate (for
simplicity a bivariate case is used) case. The properties of the roughness penalty, say
J, for data points (21, x3) can be summarized as,

1. If the second derivatives of f are square-integrable over R2, J is finite.

2. If f has high local curvature, J will be large resulting in a large second derivative.

Intuitively, it can be seen that .J measures the wiggliness of f.
3. Rotating the coordinates in $3? does not affect J.

4. The wiggliness penalty, .J, is zero if and only if f is a linear function.
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In smoothing procedure, J is used as roughness penalty and in interpolation,
subjected to the interpolation conditions, it is used to find the natural thin-plate

interpolator [17].

Now, consider the smoothing function, f(x), estimation problem,

yi = f(x;) + €

where ¢; is the random error term and « is a d—vector from n (> d) observations (z;, ;).
In this case , thin plate can be used to estimate the smoothing function, f, of the data
points (x;,y;), where i = 1,2,....n (n > d) by finding the function ¢ [4, 26] which
minimizes

ly - gl? + Ama(g) (2.30)

where, g=(g(x1),9(x2), ..., 9(@x))T, y=(y1, Y2, ..., Yn)T. Jma(g) is the penalty function
which measures the wiggliness of the smoother, g, whereas, A is the smoothing

parameter. Here, the roughness penalty function [4, 17, 26] is given by

2
m)! omg
T :[[ oo, .
d Rd v1+U2+Z,:+Ud:m Ul!...Ud! (81;11)1 -.-al'dd ) 1 d ( )

For two dimension (d = 2, m = 2), this measure of wiggliness is written as

0%g ? 0%g ? 0%g ?
= — 2 dzqd
I [f(@x%) ’ ((%18:82) ’ ox3 e

Given the restriction 2m > d is true, Wood, 2006 put forth that the minimizer of
Eq:2.30 has the form of

o(x) = ilammdﬂu — ) + ilajasj(x), (2.32)
n= j=

where § and « are vectors of coefficients to be estimated in which 4§ is subject to the
linear constraint T76 = 0 where Tj; = ¢;(x;). The ¢, functions span 'null space’ of
functions for which J,,,4 is zero. If m = d = 2 for example, these basis functions are given
by ¢1(x) =1, po(x) = 21, and ¢3(x) = z5. Moreover, the other basis functions in Eq:2.32

are given by

-1 m+1+d/2 i .
22"L_17r(d/2()mfl)!(mfd/2)!r2 leg(T) d is even (2 33)
) 2md d is odd '
22mrd/2 (m-1)!

nmd(r) =
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Here, it is important to note that thin plate splines can be used for any number
of predictors [4]. In addition, there is no need of specifying knot positions. On the
other hand, the disadvantage of these kind of smoothers is their being computational

expensive; there are as many parameters to be estimated as there are data points [26].

2.2.3 Additive models

Now let us consider a model with two covariates, x and z, for a response variable ;.

Then Eq:2.11 is extended in an additive form as,

yi = fi(wi) + f2(2) + & (2.34)

f;’s are smoothers, and ¢; are i.i.d random variables N (0, 0?). From Eq:2.34, it can be
noted that the effects of the covariates to the response variable are assumed to be strictly
additive. Additive models (AM) as well can be represented using penalized regression
spline in a similar way to that of univariate models. Each smoother can independently

be written as a linear combination of the basis.
q1

fl(l’) = 51 + 521' + Z(SZ‘_,_QRi(l’, l‘;)
i=1

and o
fo(@) =71 + oz + 2%423@(2: z)
=1

where f; has ¢; + 2 unknown parameters, J;, whereas f5 has ¢, + 2 parameters, ;. The

knot locations of these two smoothers are given by 7 and 2 respectively.

The problem of identifiability in additive models can clearly be seen from
these equations where the constants are confounded. This can easily be avoided by
constraining one of them to zero [4]. Let 7; = 0, then the i row of the additive model

matrix is
Xi = [17 L, R(l‘l, $i)7 R(mla l’;), BT R(mw x;)? Zis R(’Zia Zf)a R(Zi7 25)7 e R(zi7 252)]
and similarly, the conjugated parameters of the two smoothers will be,

/6 = (517627 "'76(117’727737 --'77(12)'

Having all this, the roughness measure of the smoothers can then be written [4]
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in exactly similar way to Eq:2.10 as,

f fil()?de = BTS:8 and f f(2)2de = BT S,

ot

where, S1 (12 j12) = R(x}, j

) for Z,j = 1, 2, 1 and S2(i+q1—1,j+q1—1) = R(Z;, Z;)

The optimization problem to be minimized in order to fit the additive model using

penalized least squares method is then given by,

ly - X,@”Q +M8T8:18 + X067 S..

The smoothing parameters, A\; and \,, control the smoothness of f; and f, respectively

and give more weight to the one which is more close to the objective model.

Similarly, the additive model with two covariates discussed here can be extended
into a model with more covariates. Moreover, bases other than the above given cubic

regression basis can be used to fit additive models.
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3. GENERALIZED ADDITIVE MODELS

In this chapter, the nonparametric (or semi-parametric) regression model, generalized
additive models (GAMs), will be discussed. The core point of this chapter will be
to present a commonly used method of fitting a GAM model; the smoothing spline
basis approach which is used in mgcv package [28]. Given a spline basis is selected,
a GAM model fitting will be discussed in relation to that of GLMs. For this reason, first,
generalized linear (GLM) model and its fitting method will be discussed.

In application, fitting GAM is an estimation of model parameters as well as
smoothing parameters. Appropriate techniques of estimating smoothing parameters
will be presented as well as a part of the model estimation.  Furthermore,

multicollinearity and outliers in a data and their effect to a fitted model will be addressed.

3.1 Generalized Linear Models (GLMs)

Recall that generalized linear models (GLMs) are an extension of the ordinary linear
regression model [3] in a sense that they can model any response variable which follows
any of the exponential family distributions. GLMs consider a response variable y whose
distribution is from the exponential family distributions [2, 4, 27]. Any distribution with

a probability density function of the form

yit; — b(0;)

f(yi305,0) = exp| 0

|+ h(yi, 1) (3.1)

belongs to the exponential family distributions. Here, a, b, and h are any arbitrary
functions, ¢ is a scale parameter, 0; is the so called natural location parameter, whereas

y; for @ = 1,2, ..., n represents the predictor variables. For exponential family members

(2],

p=E(y)=0b'(9)
V(y) =b"(0)a() (3.2)

Here, a(¢) is any function of the scale parameter ¢ which is usually given by a(¢) = ¢/w
for a known constant w, hence [4], V' (y) = b"(0)¢/w.
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GLMs can be written in linear form of the parameters as,
= 9(E(y)) = 9(n) = X8
and note that the expected response is given by,
E(y:) =g (m) = Q_I(Xz{ﬁ)

If the link function, g, is chosen in such a way that 7; = 6;, then 7, is called canonical
link [2]. Table 3.1 provides the canonical links (7 = 6) of some exponential family

distributions. However, there are others that can be used as link function in GLM [2].

Table 3.1. Canonical Links for exponential family distributions

Distribution  f(y) 0 ¢ a(o) b(0)

Normal U\}gexp(_(g;é‘)g) o a2 ¢(=0?) %

Poisson “y%j(_“) log(u) 1 ¢(=1) exp(0)
Binomial (Z)(%)y(l—%)”‘y log(+£;) 1 ¢(=1) nlog(1+e?)

Source: Wood, 2006 and Montgomery et al., 2012

Now, assuming the canonical link function is used, the likelihood of 3 (since y;’s

are independent) is

L(B) - ﬁﬂyi; ,,0),

and hence, the log-likelihood function is given by,

1(B) = ZZOQ(f(yu 0i,9))
i=1
- yithi — b(6i)
+h Yis (b

Do
Thus, the equations to be solved in order to find estimate of 3 are given by
o _1 2”: [yi — b(0:)] O
ap; o= b (0:)]wi 9P
Zyi_m% for Vj
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Substituting Eq:3.2 yields,

P Oli ) for vj (3.3)

If V' (11;) were known and independent from (3, the least square optimization objective

would be

(yz :uz)
S = 2; ) (3.4)

A[k
where, 11; depends on 3 nonlinearly. Now, let B[ ] be estimates at the kt" iteration,
elements of vectors nl¥] and ul¥! are respectively given as nz.[k] = X,;B¥ and uz[k] =

g‘l(nl.[k]). In each iteration [4], Eq:3.4 can be written as,

5= | ¥ty -uio)
VW (2 - X 3)

2

~

(3.5)

where, Vi = V(ul[k]), elements of the diagonal matrix V. The pseudo-data, zl-[k] is,

k k k
F= g/ ) = ) 4l
and elements of the diagonal weight matrix W[¥! are given by

(K] _ 1
i KN ¢ [k
V(g (2

The method of iterative re-weighted least square (IRLS) [4] iterates to convergence

where the converged 3 solves Eq:3.3.

1. Using pu[*) and n!*] obtain z[*] and the weight matrix, W,

2. Minimize Eq:3.5 with respect to 3 in order to obtain Jellasd [k+1] =

X B and plk+1,

, and hence n

It can be noted that as initial values only p[% and 7(°] are needed but not ﬁ[o]

(0] _

Usually, initial values are taken as p; - = y; with slight adjustment in order to avoid

infinite for 77 (for example, when y; = 0 with a log link) and 77 = g(pgo]).
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3.2 Generalized Additive Model as Penalized GLMs

In section 2.2.3, a basic additive model with two covariates was presented. As GLMs are

to linear models, generalized additive models [7] are generalization of additive models.

The general structure of a GAM modeling a response variable, y with multiple

predictors is,
g(,ul) :X:0+f1(1'11)+f2(l’21)+ (36)

where, 1; = FE(y;) and g is a function mapping y;’s through a mathematical
transformation to the linear predictor, hence called a link function. In order the mapping
to be ensured, a g must be twice differentiable monotonic function [4]. The most
commonly used link functions are identity, logit, probit, and log [6]. In Eq:3.6, the
GAM model has a parametric and smooth (nonparametric) components; X; is i'" row
of a model matrix for the parametric component with @ being its vector of parameters,

whereas, f; is smoother of the predictor variable, x;.

In literature, different approaches of GAM estimating method were proposed.
Here, the smoothing spline basis approach which is a method incorporated in mgcv::gam
[28] will be addressed.

One approach to estimate a GAM model is by choosing a basis for the smoothing
function and a wiggliness measure. In this approach, model estimation implies
estimation of smoothing parameter as well as model coefficients for a penalized
likelihood maximization objective. This section puts forth the representation of a
smoothing function using a basis and turn the GAM model into a penalized GLM, in

which then the estimation will be accomplished in a similar way.

As discussed in section 2, given a basis function bj; is chosen, a smoother, f;, can

be written as;
5
fi(a;) = Biibsi(;) (3.7)
i=1

where, [3;;’s are parameters which need to be estimated. To construct the model matrix,
let f] be a vector where its j'" element is given by fh = f;(x;;) and vector of parameters
of the j* smoother be given by Bj = [Bj1. Bj2, -, Bjq,]. Combining all together, it is easy

to see that the model matrix for the j* smoother is given by,

fi = XiB; (3.8)

where, X jik = i (x ;). As discussed in section 2.2.3, for bivariate additive model, Eq:3.6

suffers from identifiability problem. This can be avoided by constraining the sum or
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mean of fJ to zero [4].

1"X,8; =0
By re-parameterization in concept of constraining [4], a matrix Z which satisfies
the condition,
1"X;Z =0
and has the property that its ¢; — 1 columns are orthogonal can be found. Writing
,éj = Z(3;, by re-parameterizing the smooth in terms of ¢; — 1 new parameters, 3;, a new
model matrix for the j** smoothing function given by X ; = X jZ,such that f; = X;3;

that satisfies the centering constraint will be obtained.

Once the model matrices of each smoothing function are centered (matrix), Eq:3.6

1s written as

where, 87 = [(67,8],87,...] and X = [X*:X;:X; : ...], a binded matrix of the

parametric model matrix and all the centered ones.

3.2.1 Model parameter estimation

It can be seen now that Eq:3.9 is a GLM form, and its likelihood, say [(3) can be written

down in the same way as that of its GLM counterpart.

However, as it was discussed in section 2, if large ¢; (number of knots) are used
to represent the smoothers, f;, and the method of maximum likelihood is used to
estimate 3, the model parameters, then, there is possibility of over-fitting. This is the
reason why penalized likelihood maximization is preferred over the ordinary likelihood

maximization to estimate GAMs [4].

Given the roughness measure of each smoother, 35;3, the penalized likelihood is

written as;

L(B) =1(8) - 5 S ABTS;6, .10
J

Assuming the );, smoothing parameters, are known, estimates of 3, 8, can be found by

maximizing Eq:3.10 [4, 29].

For notational easiness, Eq:3.10 can be written as,

L(8) = 1(8) - 5675

where, S = 3, \;S;. Now, by setting its derivatives with respect to 3 to zero, [,(3) can
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be maximized.

o, _ ol
96 9B;

‘ Yi = i Opi o
)~ 05y 2 o 05, 157

In a similar way to that in section 3.1, the above system equation are those that
would have to be solved to maximize the penalized non-linear least square optimization

problem;
Z( ) + B7Ssa (3.11)

Again, assuming V' (y;) are known, Eq:3.11 can be approximated as [4],

2
Sy~ |[VWH(H - X 8)|| +87S3 (3.12)

where the vector of pseudo-data, z[¥] and values of the diagonal weight matrix wlkl

are respectively given by,

5 (k] (k] 1
= Q(Hz )(yz My ) +x;8  and w;; =
V(g (ui)?

Thus, given the smoothing parameters, );’s, the maximum penalized likelihood

estimates, 3, are obtained by repeating the following steps [4];

1. Given B[k], find z[*] and wl[f].

A[k+1
2. To find B[ ’ ], minimize Eq:3.12 with respect to 3. Repeat until convergence.

The same initial values are considered as that of IRLS method presented in section 3.1.

3.2.2 Degrees of freedom

Given the parameters are identifiable based on the data, degrees of freedom in ordinary
linear regression model is equal to ¢r(A) where A is the influence matrix, and that of
the error termis tr(I - A) =n - tr(A) [17]

In GAMs, the size of smoothing parameters involved in the process of penalized
regression affects how many degrees of freedom a model will have. If the smoothing
parameters (since there are several smoothing parameters in additive models) are all
equal to zero then the fitted model would have degrees of freedom equal to the dimension

of 3, on the other end, if the smoothing parameters are all too large, then the model will
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be over smoothed and this in turn results to a somewhat an inflexible model with few

degrees of freedom [4].

Here, the so called effective degrees of freedom of a fit can be defined in various
ways, one of which is using ¢r(A) where A is the influence matrix. For the reason
that different smoothing parameters would be used to smooth the penalty functions
differently and affects the degrees of freedom differently, it is natural to look at the
effective degrees of freedom by breaking down for each smooth. And this could be seen
as equivalent to find the degrees of freedom for each model parameter, f3;, since they are

affected differently by the smoothing too.

From section 2.2.2, if we let D = (XTX + )\S)_lXT, then it follows that ,@ = Dy
and A = X D which implies that tr(A) = tr(X D). Now, let D! be equal to D when
all it rows except the i*" row are zeroed. As a result, the elements of the vector DYy will

be all zero except the i*" value which is Bi. Consequently, trace of A can be written as;

tr(A) = itr(XD?)

i=1

Therefore, tr(X DY) can be regarded as the effective degrees of freedom associated
with the 3;. However, tr(X DY) = (DX); ;. Now, if we define

R=DX =(XTX +S5)'XTX,

it can be seen that the leading diagonal of R is the vector of effective degrees of freedom
of the model parameters and ¢r(R) = tr(A). Therefore, similar to that of the parametric
models, the effective degrees of freedom of the model is given by ¢r(A) and that of the
residuals is tr(I - A) [4, 17].

To have an intuitive understanding about the effective degrees of freedom, it’s
worthy of relating it with that of an unpenalized estimates. It can be recalled from simple

regression that the estimate of an unpenalized model is given by,
B=(XTX)' X"y
whereas, estimates of penalized model are given by

B=(XTX +8)XTy
=(XTX +S) ' XTX(XTX +8) ' XTy
=R

Here, R is a mapping matrix between the unpenalized estimates and their corresponding
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penalized ones. Since, the unpenalized parameters have one degrees of freedom each,

the term ggf = R;; is the change in the penalized parameter, $3;, for a unit change of the

K3

unpenalized parameter, f3;. This means that the penalty involved in the model dwindles
the degrees of freedom of the i** term by a value of R;;, thus, R;; is regarded as the

effective degrees of freedom of the /' model parameter.

3.2.3 Smoothing parameter selection

The problem of choosing an appropriate smoothing parameter is omnipresent in fitting
a curve. Choosing the degree, in polynomial regression estimation and setting the basis
dimension in regression spline are equivalent to the choice of a smoothing parameter.
Figure 3.1 shows the effect of smoothing parameter in the penalized regression spline
estimation technique at different values. If A is too small, the fit will be too wiggly and
if A is too large, it will be over smoothed where in both cases the estimated spline f
can’t approximate the true function f. Instead of arbitrarily picking value of \, it would
be good to use some techniques to find the optimum value so that f will be as close as

possible to f yet a better one though there are other suggested estimators.

1.5

1.0

.5 0.0 0.5

-1.5

Figure 3.1. Effect of smoothing parameter in model fitting using penalized regression
spline (as the value of the smoothing parameter increases, the fit approaches
to a straight line)

34



There are two different and somehow opposing philosophical approaches into the
smoothing parameter choosing problem [17]. The first one is a subjective choice of
the parameter which hypothetically allows to explore the features of the data, and the
second approach is that there should be an automatic method by which the data chooses
the smoothing parameter by itself. Cross-validation is one of the most commonly used

automatic ways of selecting a smoothing parameter.

3.2.3.1 Ordinary cross validation

In curve estimation, taking into consideration that the error term has zero mean, the best
predictor of y; is f(x;), where f(z) is the ideal curve. Consequently, the best estimator
(f(z) of the true curve is the one that minimizes the term (y — f(x))? for a “new value”
y at a given point x. This is the fundamental motivation for using cross-validation to
choose smoothing parameter [17]. Theoretically, acceptable criteria to obtain A so that
f minimizes

n

Z(fi_fi)2~ (3.13)

i=1

M =

SRS

In reality, there is no "new value/observation” when a smoothing is applied to the
whole dataset. In cross validation, however, the smoothing curve is estimated by leaving
one observation (y;, x;) out in order to have that "new observation” used for prediction
and this one-leave-out estimator is denoted by f -1, As in every other regression models,
how good f~! in predicting a new observation is possibly determined by how close it is

to y;.

Now, let f~! be the model fitted to the remaining data when y; is left out. Ordinary
cross validation (OCV) is then given by,

Vo= % i (ft-u) (3.14)

Replacing y; by f; + €;,

IR QYT SRR

Vo n;(z fz Ez)
L i( it - fz)2 - 2( - fz)ez + €2,
i

For the fact that F(¢;) = 0 and ¢; and fi‘l are independent, the expected value of the
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second term is zero. Consequently,

B = 15 $ (- 1) )

i=1

With the concept of large sample, it’s fairly true that f -1 ~ f which in turn results to
the conclusion that F(v,) ~ E(M) + o2. Thus, it is a reasonable approach to choose A

that minimizes v,,.

Calculating v, appears to be tedious for the reason that n separate smoothing
curves ( f ~1) have to be fitted in order find the OCV score value. However, there is
a simplified way of obtaining v, using the influence or hat matrix of the penalized

regression model [17, 30] which is given by,

A\ 2
L& (yi—fi

b= — _— 3.15

: ”¢:1(1—Aii) ( )

where, A = X (X TX+\S )_1X T is the influence matrix and f is the smoothing spline
obtained from all the data. Detailed proof of Eq:3.15 can be found in Green and Silverman
[17] and Wahba [30].

In Eq:3.14, given the diagonal values, A;;, are provided, OCV score can easily be
calculated from the residuals, (y — f ), of the spline obtained by smoothing all the data.

3.2.3.2 Generalized cross validation

The problem with ordinary cross validation is that, firstly it is computationally expensive

especially in the additive case where there are more than one smoothing

parameters to be estimated and another is, given the penalized regression

optimization problem for additive models which is given by
2. % T
ly - X8|+ > XiB" S:B,
i=1

it normally should have identical solutions in terms of 3 even when for any orthogonal

matrix @), it is rotated as,
R T
1Qy-QXB|*+ > \B"S:B.
i=1

However, these two optimization problems generally results in different OCV scores,

which is labeled as invariance problem of OCV [30].
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Figure 3.2. Optimal smoothing parameter using ordinary cross validation and
generalized cross validation; A = 1.5% x 1078
Source: Wood, 2006; p. 131

The approach of generalized cross validation (GCV) is an extension of the ordinary
cross validation technique in which the weights (1 — A;;) are replaced by their average
value, tr(I — A)/n. The GCV score is then obtained as,

3 Y1 (yi - f)Q
“"erI- A

Ve [tr

(3.16)

Figure 3.2 shows that v, and v, were optimized at different iterations. And, the
smoothing parameters, )\, from the two methods were used to fit smoothing splines
shown in Figure 3.3 in which a slightly differing models were obtained for the univariate

dataset used.

3.2.4 Model deviance

Model evaluation plays a fundamental role in regression analysis; comparisons can be
made between models to obtain the better of them. In linear regression, mean square

error (MSE) is regarded as the building blocks of most model evaluation techniques
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Figure 3.3. GCV and OCV optimal fit

and inferences made for it measures how far the model estimations from the actual
observations are. In GLMs and GAMs, it is necessary to have a quantity which is
equivalent in importance and interpretation to residual sum of squares for ordinary

linear modeling [4].

As minimizing MSE is to least square fits, in models fitted using maximum
likelihood estimation (MLE), the quantity to be minimized is the deviance. Maximizing
the likelihood in those models corresponds to minimizing the deviance of the model [27].
Model deviance is defined as twice the difference in log-likelihood between the saturated
model and the full model (model of interest) [2, 31, 32]. It is given by,

D =2[(Byae) = UB)]0

=i2wi[y¢(§i —0:) = b(6;) + b(6,)] (3.17)

1

where [ (B)mm is maximum likelihood of the saturated model: the model which have
separate parameter for each observation and a perfect fit, fi=y [4, 27]. 0 and 0
are respectively the maximum likelihood estimates of canonical parameters which are

provided in Table 3.1 for the saturated model and model of interest [4]. w is a constant
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which in most cases is equal to 1. Deviance of a model can be regarded as the lack of
fit between the model and the data points. It is used for model adequacy checking; the

smaller the deviance is the better the model.

3.3 Multicollinearity

In multiple regression analysis, if the predictor variables are orthogonal, then inference
can relatively be easily done. By orthogonality, it means that the regressors have no
linear relationship. However, multicollinearity, the presence of near-linear dependencies
among the predictors, has serious effects on the least square estimates of the model.
Montgomery et al., 2012 puts forth the effects of multicollinearity; it overestimates the

variance of the estimators, V' ( B) as well as the absolute values of the estimators.

Consider a linear model of y with two regressors, x; and xs which is given by;

y = i1 + Poxa + €, (3.18)

and let all the variables are scaled to a unit length [2]. The normal equations of the

least-squares approach are

(X'X)B=X"y

I 1o Bl _ 1y
ra 1 || 5 Ty

where 5 is correlation coefficient between z; and x5. Similarly, the correlation between
y and the predictors are respectively given by 1, and ry,,. The inverse of the matrix X’X

is

1 -r12
C=(X'X)"'=|1" |

Hence, the estimates of the model coefficient are given by

N Tl =TT N Tgy =TT
B = ly 122 2y and By = 2y 122 ly (3.19)

1-ry 1-ry,
In matrix form, the variance of model coefficients is V(3) = 02(X'X)"! = Co2.
Thus, the individual variance of 3; and j, are respectively given by V(1) = Ci102 and

V( BQ) = (3902, In general, the variance of Bz in a linear regression model with multiple
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predictors is written as V' ( BZ) = ;02 and covariance of 3; and Bj is Cov( B, BJ) = Cj;02

In the existence of multicollinearity, the correlation between x; and x5, 115, will
be large which in turn affects the variance of model coefficients. if |ro] — 1 then
V(B) - o0, V(2) - oo and |Cov(5;, ;)| - co. This makes clear that existence
of multicollinearity produces model coefficients with inflated variance. Furthermore,
Montgomery et al., 2012 put forth that the least-square estimates, Bj, are too large in

absolute value if multicollinearity exists.

3.4 Outlier

Outlier is an abnormal observation which differ greatly from the rest of the data.
In parametric regression analysis, presence of outliers in dataset disturbs the quality
of least-square estimates [2] because the optimization is to minimize the squared
deviations. Least-square estimates can be influenced by abnormal observations both in
the response variable as well as in the predictor variables. Data points which are remote
from the rest of the data in terms of some values of the regressors while the value of the
response variable is consistent are referred as leverage points. In this paper, only outliers
(extreme points in the response variable) and the consequence they have in regression

analysis will be considered.
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4. SIMULATION

This section discusses the simulation studies performed to explore the performance of
GAM models based on three different smoothing spline bases under multicollinearity
and outliers. Specifically, data were generated with and without outliers with different
predictor functions and proportion and location of outliers and different degrees of

multicollinearity.

4.1 Data with Outliers

In this section, a simulation study is provided to compare the performance of GAM
models for binomial and Poisson response variables. Recall that for data {(z;,y;),Jj =

1,2,...,n}, univariate additive model is given by

yj = f(x5) + € (4.1)

where f is one of cubic spline, p-spline or thin-plate spline.

Four scenarios were considered to generate the data {(z;,y,),j = 1,2, ...,n} using
the functions adopted from [11] and [12].

Scenario 1: The covariate X follows a uniform distribution X ~ U(0,1). The response
variable, Y, was simulated from the distribution, Y/X ~ Poisson(A(X)), where
AMX) =g (h1(X)). Here, g is a log-link function.

hi(X) = 4cos(2m(1 - X)?) (4.2)

For a specified outlier proportion value given by ¢ : 0,0.1,0.2, a total of nd were
randomly selected to be changed to outliers in the following manner. The randomly
selected Y'-values were multiplied by u;? as given in Eq:4.3, and the result was rounded

to the nearest integer.
Y =Yul? (4.3)

where, u; ~ U(2,5) and up € (-1, 1).

Scenario 2: Here, a binomial response variable was generated from the distribution
Y /X ~ Binomial(1,p(X)) with p(X) = g7*(h1(X)) where g is the logit-link function.
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Covariate X is generated as given in scenario 1. The proportion of outliers given in
scenario 1 are also applied here without any change. Outliers were included to the
response variable in such a way that if the randomly selected value of Y is 1, then it

is replaced by 0 otherwise by 1.

Scenario 3: In this scenario, the covariate is givenby X =ifor¢ =1,2,...,n and response
variable is generated from the distribution
Y /X ~ Poisson(A(X)) where A(X) = g7'(ho(X)) and g is a log-link function.

ho(X) = sin(2X/120) + cos(7X/60) + 1 (4.9)
In this case, outliers was included into the response variable by using Eq:4.5.
yi=(1-z)yj+zw;, 7=12,..,n (4.5)

where z; ~ Binomial(1,6) and w; ~ Poisson(30).

Scenario 4: The covariate X used in scenario 3 was also used here as it is.

However, here a binomial response variable was simulated from the distribution Y/ X ~
Binomial(10,p(X)). The parameter p is given by p(X) = g~'(h3(X)) where g is the

logit link function.
h3(X) = -sin(5X/120)/0.8 - 1 (4.6)

For including outliers in the response variable, the procedure given by Eq:4.5 was used.

All the settings used in scenario 3 for outlier inclusion were kept fixed except w; = 10.

Table 4.1. Generating parameter for Poisson and binomial response variables

Distribution Parameter

Poisson A=exp(hi(x)) i=1,2
Binomial p= % i=1,3

In scenarios 3 and 4, the number of outliers included in the response variables is

random which is controlled by the values of § [11].
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4.2 Data with Multicollinearity

This section presents a simulation study for generating data with varying degrees of
multicollinearity between covariate variables. To generate data with a desired degrees
of multicollinearity, the simulation design given by McDonald and Galarneau, 1975 is

adopted.

First, independent standard normal pseudo random numbers, z;; fori=1,2,...,n
and j = 1,2,...,5 were generated. Then, Eq:4.7 was used to generate a total of four

covariates with a specified degree of linear relationship.
zij= (1= )22+ pris, i=1,2,..,m; j=1,2,34. (4.7)

where p is specified so that the correlation between any two covariates will be
approximately equal to p?. Here, three different values of p (0.9, 0.99, 0.999) were

considered.

The response variable is then generated using
Y =2+5X;+3X5+4X3+8X +¢ (4.8)

where ¢ is the error term which is generated from N (0, ¢?). In this study, four values of
the error variance (02 = 1,9, 25 and 100) were used. The coefficients given in Eq:4.8 are

arbitrary.

In order to understand how these techniques behave with varying sample size,
data with size of n = 50, 100, 500 were simulated under the above specified constraints
of degrees of linear relationship and error variances. Here, it is important to note that
the reason for not using a smaller sample size (n < 50) is that the number of parameters

to be estimated are exceeding the sample size.

4.3 Data with Both Outliers and Multicollinearity

This section addresses a simulation study for generating data with linearly related
covariates and a response variable containing outliers. All the settings used in section 4.2
are carried over to this section except that outliers are included to the response variable,
Y. The inclusion of outliers was achieved by randomly selecting 10% of response values
and multiplying them by 20 in order to inflate them in their absolute values. For the

same reason discussed in section 4.2, the sample sizes used here are n = 50,100, 500.
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5. RESULTS AND DISCUSSION

This section presents the results of the analysis conducted in the study. Data generated
using the procedures discussed in section 4 were used to evaluate the performance of
the three smoothing splines; cubic regression, p-spline and thin plate spline. For the
analysis and model building procedures, the mgcv package [28] in R statistical software

was used.

It is important to note that, in each scenario mentioned in section 4.1, sample
sizes of 20, 50, 100, 200, and 500 were simulated and for each sample size a total of 500
repetitions were generated. Each of the three smoothing splines were used to fit a GAM
model for all the samples. Then after, the mean and standard deviation of the model
deviances for each smoother were obtained. In addition, the proportion of the number

of times a model resulting in the smallest deviance was obtained.

5.1 Performance of Models in the Presence of Outlier

Mean and standard deviation of deviances of the models fitted using cubic regression
spline(cr), p-spline (ps) and thin-plate spline (tp) bases are presented in Table 5.1 and
Table 5.2. Additionally, proportion of the number of times each model produced smaller
deviance is provided. In cases where response variable is Poisson, data generated using
scenario 1 and scenario 3 of section 4 are used, whereas, for the binomial response case

data are simulated using the procedures given in scenarios 3 and 4.

For the cases where Poisson response variable is considered, the results of the
experiments are provided in Table 5.1. The results show that an increase in the number
of outliers included in the response variable has inflated the mean deviances of all the
models. To illustrate this, one sample size (e.g n = 20) can be considered for comparison
of the outcomes when different number of outliers are included in the data. In cases
where an outlier is not included, the mean deviances of cubic, p and thin plate splines are
respectively 9.09,9.17, and 8.91, however, when some outliers (9 = 0.1) are introduced
in the response variable their respective mean deviances are 37.62,36.3, and 35.37
respectively. Similarly, for § = 0.2 as well, the mean deviances are seen to be increasing.

Similarly, results obtained using scenario 3 supports this argument.

Results from scenario 1 demonstrate that for n = 20 thin plate spline produced
a smaller mean deviance regardless of the outlier proportion included. For larger

sample sizes (n # 20) however, p-spline performed better in all combinations of outlier
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Table 5.1. Mean, standard deviation and proportion of the number of times a model

resulted in a small deviance for a Poisson response variable with outliers

cr pPs tp cr Ps tp

5§ n | MD SD MD SD MD SD | P

Scenario 1
20 9.09 4.35 9.17 4.32 8.91 434 {033 029 0.38
50 | 33.21 9.41 33.01 9.05 33.08 947 ]032 039 0.29
0 100 | 74.63 1338 7295 12,51 7443 1327 | 0.21 059 0.2
200 | 1599 1946 15548 1838 159.75 19.33 | 0.11 0.79 0.09
500 | 414.72  29.71  402.13  28.05 414.58 29.64 | 0.03 093 0.04
20 | 37.62  44.29 36.3 4553 3537 4351 | 034 036 03
50 | 187.22 12695 181.54 124.81 18395 125.08 | 0.27 0.44 0.29
0.1 100 | 456.72 224.2 443.83 215.01 451.23 21991 | 0.17 053 0.3
200 | 971.63 32734 956.48 323.52 967.13 32573 | 0.14 0.65 0.21
500 | 2609.78 552.51 2583.97 548.34 260596 551.26 | 0.09 0.76 0.15
20 | 6437 6485 61.78 7041 5938 6398 | 0.3 036 0.33
50 | 325.57 173.34 316.41 175.07 320.13 174.73 | 0.21 0.44 0.35
0.2 100 | 797.04 284.76 777.25 279.71 78855 284.35 | 0.15 0.58 0.27
200 | 1767.44 437.71 1741.02 434.11 175891 437.08 | 0.13 0.64 0.23
500 | 4690.62 705.33 4653.87 698.59 4683.45 70491 | 0.13 0.71 0.16
Scenario 3

20 | 16.35 5.79 16.66 5.85 17.14 6.19 | 031 039 03
50 | 48.04 9.65 48.21 9.57 48.04 9.64 | 032 0.37 031
0 100 | 98.12 14.7 98.39 1458  98.15  14.73 | 0.37 0.34 0.28
200 | 24333 246 34327 328 209.8 21.5 0 0 1
500 | 1565.1 70.98 15599 70.69 1564.21 70.88 | 0.05 0.72 0.23
20 | 46.72  28.19  48.07 2932 4644 2749 | 041 035 0.24
50 | 240.68 85.29  249.89 89.56 24149 85.76 | 0.45 0.27 0.28
0.1 100 | 49437 11559 49791 11638 494.7 115.56 | 0.41 0.37 0.23
200 | 1123.61 185.11 1194.98 188.11 1100.93 186.17 | 0.13 0.04 0.83
500 | 3992.12 316.7 3994.41 31641 3992.6 316.65 | 033 04 0.27
20 | 77.48 3815 79.11 3716 7718  37.83 | 04 0.37 0.23
50 | 37856 9191 391.63 91.87 380.52 9215 | 0.48 0.25 0.28
0.2 100 | 756.26 113.98 761.37 112.19 75698 113.46 | 04 036 0.24
200 | 1670.21 164.73 1717.14 163.7 1655.21 164.64 | 0.21 0.08 0.72
500 | 5419.24 271.15 5420.84 269.46 5419.02 271.62 | 0.3 042 0.29

MD: Mean deviance; SD: Standard Deviation
P: proportion of the number of times a model produced smaller deviance.

proportion () and sample sizes. In addition to this, the results obtained from p-spline

where more consistent; In most cases standard deviation of model deviances produced

using p-spline are found to be smaller. Furthermore, the proportion of smaller deviance

scored by each method is another evidence that p-spline outperformed the others. The

proportion of p-spline is higher in all the cases except for the combination of 6 = 0 and

n = 20. Moreover, it can be noted that dominance of p-spline increases with the increase
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of sample size. For example, for § = 0.1, p-spline produced smaller deviance only 36%
of the times, however, for n = 500 and § = 0.1, 76% of the time it produced a smaller

deviance.

On the contrary, results from scenario 3 do not show the same trend as that of
scenario 1, rather, p-spline seems to be outperformed by both cubic and thin plate splines.
Almost in all the cases, the mean deviance obtained from it was found to be larger than
that of the others. Despite this, it produced the smallest standard deviation in majority
of the cases which indicates that the models fitted using p-spline for the 500 samples
were more consistent among each other than those fitted using either cubic regression

spline or thin plate spline.

Looking at the proportions of scenario 3, the number of small deviances produced
by each method is almost the same when there is no outlier and n < 100, where as, in
the presence of outliers, proportion of "smaller deviance” of cubic regression is larger in
most cases. Nevertheless, when a sample size of n = 200 is considered, thin plate spline
dominates the others in an exceptional way; it produced smaller deviance 100% when
0 =0, 83% when ¢ = 0.1 and 72% of the times when 6 = 0.2 .

Figure 5.1 and Figure 5.2 display the models fitted for Poisson data simulated with
an without outliers using scenarios 1 and 3 respectively for n = 100. In both cases, the fit
of the three models have similar trend. It is however important to note that the presence
of outliers have an impact on the model fit. All the models tend to depart from the true

mean in positions where outlier is present.

Table 5.2 shows the mean deviances of the three models of interest along with the
proportions of their small deviance when a binomial response variable is considered.
The first block under Scenario 2 provides the outputs when the models are applied to
fit data generated using Scenario 2 of section 4 while, the second block is for the results

obtained when the data simulated using Scenario 4 is used.

As in the case of Poisson response variable, presence of abnormal observations in
binomial response inflates the deviance of the models. For elaboration, take the case for
n = 20 under scenario 2 of Table 5.2. When data free of outliers are used, the obtained
mean deviances in order of their occurrence in the table are 2.53, 3.69, and 3, 45, whereas
for n = 20 and 9 = 0.2, model deviances are 8.88, 13.23 and 14.38 respectively. Similarly,
in the case of the second simulation, for the same combinations of n and ¢, the mean
deviation increased from 15.67,15.78, and 16.12 at § = 0 to 32,34.25 and 34.16 for
0 = 0.2. It is important however not to compare the magnitude of the change in cases of

Poisson and binomial response variables for they have different units.

In situations where no outlier is included for data simulated using scenario 2, the
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Figure 5.1. GAM models fitted using cubic regression, p-spline and thin-plate spline for
data with Poisson response which is generated using Scenario 1

proportion of the models are close to each other regardless of the size of n. With the

increase of outlier proportion and sample size however, the frequency of p-spline looks

inferior to that of the rest spline techniques under consideration. Cubic regression and
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Figure 5.2. GAM models fitted using cubic regression, p-spline and thin-plate spline for
data with Poisson response which is generated using Scenario 3

thin plate splines produced relatively similar deviances in most cases. If the case of

scenario 4 is considered, remarkably, cubic regression outperformed both p-spline and

thin plate spline in the sense of producing smaller mean deviance. Generally speaking,
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despite producing better results in the case of Poisson response, p-spline was found to

be the least best when a binomial response is used.

Table 5.2. Mean, standard deviation and proportion of the number of times a model
resulted in a small deviance for a binomial response variable with outliers

cr pPs tp cr pPs tp
5 n | MD SD MD SD MD | SD P
Scenario 2
20 2.53 3.85 3.69 4.66 3.45 452 037 034 0.29
50 16.63 10.31 17.65 10.18 16.15 10.56 0.33 0.35 0.32
0 100 | 42.98 13.89 43.56 13.53 42.67 14.02 034 033 0.34
200 | 94.84 17.7 95.73 17.64 94.99 17.58 0.33 0.35 0.32
500 | 247.74 28.56  248.28  28.52  247.71 | 28.43 0.35 035 0.3
20 5.38 6.54 8.54 7.1 8.6 7440 0.44 034 0.22
50 34.22 10.32 36.03 9.47 34.73 10.62 0.39 0.33 0.28
0.1 100 | 81.61 9.51 82.1 9.46 81.55 9.76 033 032 0.35
200 | 170.89  13.02 171.82 12,79 170.81 | 12.96 0.37 0.26 0.37
500 | 435.27 18.54 436.46 18.76  435.16 | 18.74 0.37 0.21 0.42
20 8.88 8.4 13.23 8.25 14.38 839 048 037 0.15
50 48.21 8.5 49.31 8.09 49.09 8.4 031 041 0.28
0.2 100 | 105.94 7.62 106.44 7.47 106.07 7.7 03 0.33 0.37
200 | 218.04 9.45 218.73 9.49 217.95 948 035 0.25 0.39
500 | 554.97 1445 556.41 14.13 55491 14.4 04 0.19 0.42
Scenario 4
20 15.67 4.75 15.78 4.76 16.12 487 032 041 0.27
50 47.2 7.54 47.39 7.57 47.82 7.69  0.26 0.47 0.26
0 100 | 87.77 11.37 87.98 11.45 87.88 11.42 0.27 042 0.31
200 | 164.9 15.7 165.21 1571 164.86 | 15.69 0.28 0.44 0.28
500 | 414.93 2457 481.06 28.29 411.01 | 24.67 0.19 0 0.81
20 23.97 9.37 25.81 10.74 25.75 1037 04 034 0.26
50 | 108.31 26.7 11091 2791 110.52 | 2738 045 03 0.25
0.1 100 | 202.99 3534 206.29 35.78 204.47 | 35.65 046 0.25 0.29
200 | 387.06 47.63 387.18 47.63 387 4756 0.34 038 0.28
500 | 942.57 68.78 98495 68.93 939.87 | 68.74 0.31 0.02 0.67
20 32 12.28 34.25 13.97 34.16 14.04 04 034 0.26
50 | 150.18 2793 15336 29.47 152.04 | 2924 04 034 0.27
0.2 100 | 279.8 35.9 283.17 35.75 281.12 | 36.11 0.44 0.28 0.28
200 | 526.96 41.88 526.15 42.27 526.79 | 41.82 0.31 0.43 0.25
500 | 5419.24 271.15 5420.84 269.46 5419.02 | 271.62 03 0.42 0.29
MD: Mean deviance; SD: Standard Deviation
P: proportion of the number of times a model produced smaller deviance

Figure 5.3 and Figure 5.4 show GAM models fitted using cubic regression (cr),
p-spline (ps) and thin-plate spline (ps) for data simulated using Scenarios 2 and 4

respectively. For the sake of illustration only the case when n = 100 and 6 = 0.2 is
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shown here.
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Figure 5.3. GAM models fitted using cubic regression spline, p-spline and thin-plate
spline for data with binomial response which is generated using Scenario 2
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Figure 5.4. GAM models fitted using cubic regression, p-spline and thin-plate spline for
data with binomial response which is generated using Scenario 4
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Predictions of the fitted models and the true mean are (black-colored line). From
these figures, one can see that all the three methods are pulled away from the true
mean at positions where outliers exist which makes clear that existence of abnormal
observations somehow inflates GAM model deviances. Particularly, p-spline shows more

fluctuations because of outliers.

5.2 Performance of Models in the Presence of Multicollinearity

Before proceeding with modeling the datasets, the presence of multicollinearity was
checked using VIF method. From Table 5.3, it can be seen that it is less likely the
generated data to suffer from multicollinearity when p is less than 0.9 which is why

greater values are considered in the simulation.

Table 5.3. VIF values of a simulated sample forn = 100 and 02 = 1

P Z1 T2 T3 Ta

0.8 2.27 2.28 2.07 2.04
0.9 5.52 4.74 6.36 5.42
0.99 40.00  49.55 37.89 47.73
0.999 | 347.51 341.81 396.64 309.72

Summary of the experiments of fitting GAM models using the three smoothing
spline bases to datasets of varying size and different degree of collinearity are provided
in Table 5.4. In addition, performance measures of GLM model is provided. The results
in all the cases show that the GAM models have resulted in a smaller mean deviance
compared to GLM. Only in a very few situations (6 = 0.99, 0.999 and n = 50), GLM
scored few small deviances. Inexplicably, this result shows that penalized regression

spline based GAM models are less prone to the effect of multicollinearity than GLMs.

When the case of multicollinearity is taken into consideration to compare GAMs
fitted using the three penalized regression splines, cubic regression spline was found to
be the dominant which in all the cases has produced smaller mean deviance. More than
40% of the times, model produced using cubic regression showed smaller deviance. This
being the fact, the standard deviation of model deviances using cubic regression spline
are found larger than the others which indicates that this method is less consistent than
the others. As it was presented in section 5.1, in the presence of multicollinearity too,

p-spline was found fit models which are more close to each other.

Despite the fact that an increase in error variance increases the model deviances,
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Table 5.4. Mean, standard deviation and proportion of the number of times a model

resulted in a small deviance in the presence of multicollinearity

glm cr ps tp glm cr ps tp
p o> ][ MD SD MD SD MD SD MD SD |
n =50
1 [ 4521 9.24 3167 1188 3545  10.63  36.49 107 [ 0 053 03 017
0.9 406.91 8317 28533 10728 31911 9577 32841 9628 | 0 054 031 015
25 | 11303 23102 79287 29769 88633 26598 91219 26745 | 0 054 031 015
100 | 45212 92408 318044 120532 3547.06 106418 3649.8 107079 | 0  0.54 032 0.14
1| 4521 9.21 3333 1237 3766 1093 3837 1094 | 0 05 028 022
099 9 | 40688 8287 30237 113.29  340.66  99.99 34542 9855 | 0.01 048 0.28 0.23
25 | 113023 23019 84123 31493 94584  278.01  959.69 27366 | 0 047 029 0.24
100 | 4520.93  920.76  3365.54 1266.69 3787.68 1112.85 3838.7 1094.66 | 0.01 048 029 0.23
1| 4521 9.2 37.03 1309 4039 1104 4119 1071 [0.02 039 028 031
0.999 9 | 40686 8278 334 117.85 36468 10001 37145 9682 | 0.06 0.38 0.28 0.29
25 | 113018 229.93 92973 32745 101037 276.18 103282 269.24 | 0.06 038 0.27 0.29
100 | 45207 919.74 37121 131218 404348 110566 4130  1076.04 | 0.07 039 027 0.28
n =100
1 [ 9526 1296 8334 1454 8624 1438  87.1 1461 | 0 048 03 022
09 9 | 85733 11666  750.05 130.85 77619 12943  783.87 13159 | 0 049 03 0.22
25 | 238148 32406 208376 363.55 2156.07 359.54 217741 36553 | 0 049 031 0.2
100 | 9525.94 1296.25 8338.95 1458.85 862528 1440.24 8709.62 146211 | 0 049 031 02
1 | 9527 1297 8547 1529 8822 1443 8886 1449 | 0 044 031 0.24
099 9 | 85746 11676 7738 14155 79431  129.92 79977 13042 | 0 043 032 0.24
25 | 2381.83 32434 214952 3919 220603 361.03 222156 36221 | 0 042 034 023
100 | 9527.32 129737 8596.86  1563.1 8825.63 144527 8886.22 1449.08 | 0 042 036 0.22
1 | 9528 1298  88.03 16.1 90.24 1447 9154 1424 | 0 038 029 033
0999 9 | 8751 1168  793.08  143.84 81413 13044 82405 12814 | 0 037 031 032
25 | 238197 32443  2207.08 40365 226432  365.1  2289.04 35587 | 0 036 029 0.34
100 | 9527.89 1297.72 8819.16 160472 905143 1457.74 9155.99 14231 | 0 036 028 036
n =500
1 [ 49236 3463 48122 3511 4824 3484 4838 3495 | 0 042 036 0.22
0.9 9 | 443124 31168 433135 31651 43416 31357 435423 31456 | 0 042 036 0.22
25 | 12309 86578 12031.52 879.2 12059.99 871.03 120951 87379 | 0 042 037 0.21
100 | 49235.99 3463.12 48127.12 3519  48239.97 3484.13 48380.38 3495.15 | 0 043 036 0.21
1 | 49238 3463 48238 3554 48404 3527 48567 3551 | 0 04 033 027
099 9 | 443139 31164 4341.66 32026 435634 31739 4371.04 319.61 | 0 041 036 0.24
25 | 1230943 865.68 1206312 889.66 12100.94 881.63 12141.78 88781 | 0 04 035 0.25
100 | 492377 346272 4825471 3563  48403.76 3526.53 48567.11 355124 | 0 043 038 0.2
1 | 49238 3463 48368 3559 48531 35 48852 3547 | 0 039 03 031
0999 9 | 443144 31164 4359.66 32216 436811 31497 439672 31929 | 0 036 035 0.29
25 | 1230957 865.67 12109.08 894.94 1213298 87473 1221311 8869 | 0 037 033 03
100 | 49238.27 3462.68 48436.13 3577.02 48534.62 3500.11 4885245 3547.61| 0 036 035 0.29

MD: Mean deviance; SD: Standard Deviation
P: proportion of the number of times a model produced smaller deviance

the proportion of “smaller deviance” of a model for different values of 0 was found to

be similar for a given sample size and correlations coefficient.

5.3 Performance of Models in the Presence of both Outliers and

Multicollinearity

In addition to checking for the presence of multicollinearity as in section 5.2, the

existence of abnormal observations was also checked using boxplot method. Figure 5.5

shows the existence of abnormal observations in one random sample of the simulation.

It assures that there exists outliers as desired.
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In this section, a data with multi-collinear covariates and outlier containing
response variable were used to evaluate the performance of the penalized regression
spline smoothers. All the settings used in section 5.2 are carried over to this section

except that outliers (6 = 0.1) are introduced to the response variable, y.

Table 5.5. Mean, standard deviation and proportion of the number of times a model
resulted in a small deviance in the presence of multicollinearity and outliers

glm cr ps tp glm cr ps tp
P o> | MD SD MD SD MD SD MD SD | P
n =50
1 | 517272 281082.1 208930.1 152117 184011.1 141645.6 213666 159647.1 | 0 035 0.4 0.25
09 9 |531121.2 287580.2 222386.2 1654385 195637.5 149765  224407.3 166229.7 | 0 035 0.4 025
25 | 559605.7 303409.1 242757.9 1814622 216131.4 1625654 248508.6 1844948 | 0 035 042 023
100 | 694846.2 383903.6 337406.8 256052.3 325533.8 240610.5 360383.4 2637128 | 0 04 037 0.23
1
0.99 9 | 606551.2 322717.6 257337.5 198589.6 231280.8 180014.7 256090.3 207382.5| 0 03 039 03
25
100 | 768214.1 419584.9 373753 2817357 3578245 271167.6 3884367 291616.8 | 0.01 0.32 0.35 0.32
1 | 6018285 3195643 291836.2 214038.6 253975.4 202350.5 335633.1 253379.2 | 0.03 026 043 0.28
0.999 9 | 614941.4 325758.4 302522 224347.3 2649242 209010 350831.8 266307.5 | 0.04 0.27 0.4 0.29
25 | 642683.7 341598 326311 2432053 286354.5 224546 3727887 281339.9 | 0.04 026 039 03
100 | 776043.2 422774.5 430559.1 323636.1 398028.1 303840.9 492275.8 3619843 | 0.04 0.28 0.38 0.3
n =100
1 | 1039693 435334.4 690920.8 276243.3 571711.2 2424005 615236.8 255431.9| 0 0.16 0.58 0.26
0.9 9 | 1073763 4526683 718051.2 290205.4 599539.9 261785.1 6428252 2704432 | 0 0.18 058 0.24
25 | 1138978 483395.7 7730083 3197317 656419.8 294378.1 701056.4 302359.5| 0 021 055 025
100 | 1438268 618015.7 1030875 4449485 920297 434962.8 972294.6 450249.8 | 0 027 05 0.24
1 | 1187865 4921163 788311.3 320400.5 639734.5 278077.5 7013289 307867.4| 0 0.16 0.57 0.27
0.99 9 | 1221594 507637.6 816830.7 337033.1 674028.7 301376.7 7297445 3284051 | 0 0.17 053 03
25 | 1286474 536655.2 8711059 363237.3 730138.3 328053.1 7840782 3666548 | 0 02 05 03
100 | 1584954 667887.4 1125960 485262.9 996720.1 461848.9 1054633 4924372 | 0  0.23 049 0.28
1 | 1204589 4976659 8254248 336694 685864.1 3190139 795739 3768989 | 0  0.15 0.58 0.28
9 | 1238168 512657 861077.3 365384 7149952 335129.9 825148.2 3898295 | 0 0.16 0.56 0.28
25 | 1302898 541129.8 917778.7 393644.5 772964.4 364406.1 884510.2 4155208 | 0  0.18 057 0.25
100 | 1601014 671098.7 1180302 525893.6 1049903 494016.7 1175404 5437483 | 0 021 0.52 0.27
n =500
1 | 5605144 994099.6 5141729 849183 4651736 765800.4 4913665 798060.2 | 0  0.03 0.82 0.15
0.9 9 | 5764672 1030860 5298754 889697.4 4809807 801570.8 5072344 8373342 | 0 003 08 0.17
25 | 6083831 1098075 5612594 959166.2 5127225 863057.7 5389632 908623 | 0 0.03 0.8 0.18
100 | 7580117 1392780 7083469 1256762 6608243 1143752 6870437 1199873 | 0  0.06 0.75 0.19
1 | 6366311 1121806 5880103 964508.1 5271732 849479.1 5620942 910032.7 | 0  0.02 0.83 0.15
0.99 9 | 6528053 1159690 6039524 1007990 5437500 891081 5785616 955548.7 | 0  0.02 0.82 0.16
25 | 6849422 1228252 6354631 1080549 5752976 953712.3 6106812 1027134 | 0  0.03 0.83 0.14
100 | 8351220 1526513 7826701 1378739 7249060 1247056 7595846 1322976 | 0  0.05 0.79 0.15
1 | 6443169 1132450 5971687 979141.2 5421672 891407.2 5809956 951467.4 | 0  0.02 0.84 0.13
0.999 9 | 6605561 1170367 6132023 1022491 5584804 9173955 5968423 9895747 | 0  0.02 0.85 0.12
25 | 6927581 1239039 6449151 1096999 5906202 986484.6 6291122 1063839 | 0  0.03 0.84 0.14
100 | 8430996 1537732 7928056 1403790 7407992 1274173 7796092 1383570 | 0  0.04 0.8 0.16

MD: Mean deviance; SD: Standard Deviation
P: proportion of the number of times a model produced smaller deviance

Table 5.5 provides mean, standard deviation and proportion of smaller deviances
of models fitted using glm and the three smoothing splines for situations where both

outliers and multicollinearity are present in the dataset.

The results show that in all the situations, p-spline produced a smaller mean
deviance. Moreover, this method was found to be more consistent in the performance of

the model fitted for different samples. Considering the proportions of how many times a
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model produced a smaller deviance, the most striking result was emerged from p-spline
method. It is remarkable that with the increase of sample size the number of times the
p-spline method produced a smaller deviance has increased drastically. To illustrate this
consider the combinations (n = 50, p = 0.9) and (n = 500, p = 0.999): in the first case
approximately 40% of the times a smaller deviance was attained using p-spline whereas,
in the later case p-spline produced smaller deviance more than 80% of the times. On the
other hand, cubic regression loses its dominance of producing smaller mean deviance
when outliers are included to the data. More essentially, it is demonstrated that the mean
deviance of all the models increased with the increase of the degree of linear relationship

given n and o? are kept fixed.
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6. CONCLUSION

In this thesis, three penalized regression spline smoothers are evaluated in fitting
generalized additive model for a simulated data which contain outliers in the response
variable or have predictor variables with linear relationship among them. The first
is cubic spline, a curve made up of sections of cubic polynomials which are joined
together and are continuous up to second derivatives. Another is the p-spline, which
is fitted using b-spline with penalty. With cubic or p-splines, on top of defining the basis
functions, knots have to be specified in order to operate the fitting procedure. The third
is the thin-plate spline which avoids selection of basis functions and specifying knots

positions.

In this thesis, three main studies have been performed; the first is a comparative
study to find out a better performing method based on their model deviance when
outliers are included in response variable. In general, in cases where outliers are present,

p-spline is found to perform least best.

The second part of the study is performed under the existence of multicollinearity.
In this study, model fitted using the smoothing splines of interest are compared with
that of generalized linear model. Here, cubic regression was found to produce a better

models.

In the last part of the study where existence of both multicollinearity and outliers
were taken into consideration, models fitted using p-spline resulted in a smaller mean

deviance.

By way of conclusion, the results seem to demonstrate that penalized smoothing
splines could be used instead of generalized linear models when multicollinearity and

outliers are present in a dataset.
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