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ABSTRACT 

 
 In this study, time series of Poisson count model was investigated. In real situations, mean-variance equality, 
which is the basic property of Poisson data, cannot be provided. Generally, in such data variance exceeds mean, 
this is called overdispersion. When the overdisperison is detected, then there may be autocorrelation in latent proc-
ess for Poisson regression model.  
 
 Correlation is assumed to result from a latent process which is added to the linear predictor in a Poisson regres-
sion model. A quasi-likelihood approach is used as a parameter estimation technique. Tests for the presence of the 
latent process and autocorrelation of the latent process are examined. Asymptotic properties of the regression coef-
ficients are investigated by using a simulation study. 
 
 As an illustration, monthly number of deathes who were infected by pulmonary tuberculosis for the years 1996 
to 2002 in Izmir are investigated as a parameter-driven model and the asymptotic properties of the regression coef-
ficients are investigated, then a suitable model is constructed for forecasting. 
 
 Keywords: Quasi-Likelihood method, Latent process, Poisson regression, Overdispersion, Autocorrelation. 
 
 

POISSIN REGRESYON MODELİNDE GİZLİ SÜREÇ 
 

ÖZ 
 

 Bu çalışmada, Poisson sayımlarının zaman serisi modeli incelendi. Poisson dağılan bir verinin temel özellikle-
rinden olan ortalama-varyans eşitliği uygulamada sağlanamaz. Genellikle, aşırı yayılım olarak adlandırılan varyans 
değerinin ortalamayı aştığı durum söz konusu olur. Aşırı yayılımın söz konusu olduğu durumda, Poisson regresyon 
modeli için gizli süreçte otokorelasyonun varlığından söz edilebilir. 
 
 Poisson regresyon modelinde doğrusal tahmin ediciye eklenen gizli süreçten kaynaklanan bir korelasyon duru-
munun olduğu varsayılır. Bu durumda yarı-olabilirlilik yöntemi, parametre tahmin yöntemi olarak kullanılabilir. 
Gizli süreçin varlığının testi ve gizli sürecin otokorelasyon yapısı bu çalışmada incelenmiştir. Aynı zamanda reg-
resyon katsayılarının asimptotik özellikleri yapılan simulasyon çalışmasıyla araştırılmıştır. 
 
 Yapılan uygulamada, 1996’dan 2002’ye kadar İzmir’deki akciğer tüberkulozu ölümleri aylık olarak incelenmiş-
tir. Yapılan çözümleme sonucunda katsayıların asimptotik özellikleri saptanarak uygun bir model oluşturulmaya 
çalışılmıştır. 
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1. INTRODUCTION 
 
  In the last recent years, there has been a great inter-
est in the analysis of time series of counts. In order to 
get satisfactory modeling in the integer-valued charac-
teristic of the data, time series of count analysis meth-
ods are used. The Poisson Regression Model is the 
basic member in such count data models. Although 
Poisson Regression Model has the charecteristic prop-
erty that the expected values and the variances are 
equal, generally the variance exceeds the mean in 
count data in real situations. This is overdispersion in 
the Poisson Model, so with some empirical support, 
there may be autocorrelation in such data.  
 
 There are many techniques in order to identify a 
suitable model for the correlation structure in the ‘la-
tent’ process. To decide including a latent process in 
the specification of the mean of the Poisson counts, 
there is a need for diagnostic techniques in linear re-
gression with correlated errors. It is needed to know 
modeling of time series of counts. 
 
 The model 

t
T
tt xy ε+β=                                                    (1.1) 

 
is a linear model with time series errors while ’s are 
continuous variable. While working with such series, 
first of all autocovariance structure of the time series 
errors  is determined. 

tY

tε ( )nβ,...,β1  parameters are 

estimated by regressing the data vector (  
onto the 

)'
1 ,..., nYY

( )nxx ,...,1  using Ordinary Least Squares 
(OLS) Method. These estimates ignore the dependence 
structure of the . In this condition, these OLS esti-
mate has the same asymptotic efficiency as the Maxi-
mum Likelihood estimate. The asymptotic covariance 
matrix of the OLS and ML estimate depends on the 
covariance structure of the . If β  is the consistent 
estimator, then Autocovariance Function (ACVF) of 

 can be  consistently estimated from the sample 
ACVF of the residuals which is defined as 

. 

tε

tε

tε

β̂-=ε̂ '
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2. TIME SERIES OF COUNT DATA  

REGRESSION MODEL 
 
It is a little different from the time series of count data 
model. Let the outcomes {  : t = 1,...,n} are time 
series of counts. Log-linear models can be used to 
describe  as a function of a p x 1 
vector of covarites  with independent observations. 
Mean function is specified by a linear predictor modi-
fied by a ‘latent’ process.  

tY

( ) β'==μ tX
tt eYE

tx

 
If  is Poisson, likelihood methods can be used to 
estimate  in the case 

tY
β ( ) ttY μ=var . Quasi-likelihood 

methods which allow a variety of variance-mean rela-
tions are appropriate in the case of ( ) ttY μ>var . The 
two common assumptions are  
i ) ( ) φμ=var ttY  
ii) ( ) 22σμ+μ=var tttY  
where  and  are unknown scale parameters. 
(Zeger, 1988) 

φ 2σ

 
If there is no overdispersion, then there is no serial 
correlation and there will be no need for correcting the 
covariance matrix estimator of the Poisson. (Brannas 
ve Johansson, 1994) In time series data, neighbouring 
observations are dependent. Two classes of models 
time-dependent data are characterized by Cox (1981): 
 
i ) Observation-driven : The conditional distribution 
of  is specified as a function of past observations, 

. As an example autoregressive models for 

Markov chains for discrete data. Assume that 

tY

11- ,..., YYt

ttY μ  is 
Poisson, then the model 

ttt x α+β=μlog ' ,                                             (2.1) 
where  is a function of past observations  s < t 
i.e.  

tα ,sY
ptptt YY -1-1 γ+...+γ=α

 
ii ) Parameter-driven : A latent process is thought as 
generating autocorrelation in these kind of models. 
Let  be the canonical parameter for the log-
linear model. Here,  is assumed to depend on an 
unobservable noise process ( ), so 

tt μlog=θ

tθ

tε
( )11- ,...,,εθ=θ YYttt . If   given  is Poisson, 

then it is 
tY tε

 
 ( ) ( ) tttt xYE εβexp=ε '                                         (2.2) 
 
 The latent process, , introduces both overdispersion 
and autocorrelation in . (Zeger, 1988) The parame-
ter-driven models has the advantage of incorparating 
both overdisperison and autocorrelation and the model 
specifies an unobserved latent process. It is only as-
sumed that  is a non-negative strictly stationary time 
series with mean 1 and autocovariance function 
(ACVF) 

tε

ty

tε

( ) ( )( )[ ]1-ε1-ε=γ +ε tktEk                                    (2.3) 

Assume that ttY μ  is Poisson, then the model 

ttt x α+β=μlog ' ,    
where  is assumed as a stationary Gaussian AR(1) 

latent process, i.e.  where 
tα

ttt e+ρα=α 1- 1<ρ ,  
are i.i.d. . As a property of this kind of 
model, 

te

( 2σ,0N )
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( ) ( )( ) ( ),βexp=αexp)βexp(= ''
tttt xExYE  if 

( )( ) 1=αexp tE  
 
3. THE MODEL 
  
 Let the Poisson probability density function is de-
fined as 

 ( )
!

μ
=Pr

μ

t

y
t

t y
e

y
tt

  (t=1,...,n)                     (3.1) 

 
where  is the count or frequency variable at time t. ty
  
 Non-negative time series has the form 
 ttt xy ,ε ~ ( )t

XteP εβ
'

 
 
where  is the mean function and β=μ

T
tX

t e
( )T

pβ,,β=β 1 Κ is p x 1 parameter vector,  is ex-
planotory variable vector. 

tx

  
 Conditional on  is assumed as stationary latent 
process. The marginal moments of  is determined as 
a function of the log-linear coefficients and the pa-
rameters of  since  follows a log-linear model. 
(Zeger,1988) 

tε

ty

tε ty

 
 To introduce both overdispersion and autocorrela-
tion, conditional on a latent process ,  is a se-
quence of independent counts with properties 

tε ty

 
( ) ( ) tttttt xE εβexp=με=εμ '    

( ) ( ) tttttt xY εβexp=με=εvar '                            (3.2) 
 
 Suppose that the  is a stationary process with tε

( ) 1=ε tE  and ( ) ( )kCov ktt ε
2

+ ρσ=ε,ε  where  is 
the variance and  the autocorrelation function at 
lag k of the  process. (Brannas and Johansson, 
1994) Then, 

2σ
( )kερ

tε

 
( ) ( )βexp=μ= '

ttt xYE , ( ) 22μσ+μ= tttYVar    (3.3) 
and the autocorrelation of  is given by ty

( ) ( ) ( )
( ){ } ( ){ }[ ] 2/11

+
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ε
+

μσ+1μσ+1

ρ
=,=,ρ

ktt

ktty

k
YYcorrkt

0≠k                                                                        (3.4) 
 
 Autocorrelation function ( )kty ,ρ  varies with  t and 
k. The autocorrelation in  must be less than or equal 
to . The degree of autocorrelation in  relative to 

 decreases as  and  decrease. 

ty

tε ty

tε tμ
2σ

 

 A consistent estimation procedure for the regres-
sion coefficient vector is needed since the existence of 
latent process should be tested and its correlation 
structure should be identified. An easy way to compute 
this type of estimates is obtained from performing the 
generalized linear model (GLM) analysis Quasi-
Likelihood (QL) analysis. 
 
4. ESTIMATION 
 
4.1 Estimation of β  
 
 There are at least two options for the estimation of 
the regression parameters. The Poisson Maximum 
Likelihood estimator is consistent even if the autocor-
relation is not accounted for. In such cases Quasi-
Likelihood estimator is used. The conventional covari-
ance matrix of  ML estimator is inconsistent. (Brannas 
and Johansson, 1994)  
 
 Zeger (1988) used the quasi-likelihood method in 
estimating such equation which is a time series of  
independent counts. If the likelihood function is in 
complex form, with the help of mean-variance rela-
tions, quasi-likelihood approach that is based on only 
the first and the second moments of the distributions  
is suggested. The only assumptions on the distribution 
of the data are first and second moments and some 
additional regularity conditions relating to the regres-
sion equation ( ) ( )βμ=μ=YE . 
 
 Log quasi-likelihood considered as a function of  
mean  and its variance Var( ) and y, the vector of 
random variables: 

tμ tμ

 

( ) )(
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; t

ty t

tt
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t

t

+
−

= ∫
μ

μ                     (4.1) 

 
where since each  is a known function of   pa-
rameters, Var( )is also a known function. 

tμ jβ

tμ
 
The sum of this function gives the log quasi-likelihood 
function such as 
 

( ) ∑
=

=
n

t
tt yQyQ

1
);(; μμ                                          (4.2) 

 
 Log-likelihood function and log quasi-likelihood 
function have the similar properties and β  parameters 
are asymptotically normal. (McCullagh, 1983). For 
single-parameter exponential family distributions, 
Log-likelihood function and log quasi-likelihood func-
tion are the same, so it is valid for single-parameter 
distribution Poisson. But in real data, variance-mean 
equality assumption is violated, generally variance 
exceeds the mean, so it causes overdispersion. Al-
though this excess variation has little effect on parame-
ter estimates, standard errors, tests and confidence 
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intervals may be wrong unless it is appropriately taken 
into account. (Dean,1992) The variance in this case is 
considered as 
 

( ) ( ) ttt VarYVar φμ=μφ=                                (4.3) 
 
where φ  is an unknown dispersion parameter 

( )
( )

2

1

ˆ-1
ˆ-

n
t t

t t

y
N p Var

μ
φ

μ=

= ∑                                         (4.4) 

 
 In the quasi-likelihood approach, variance ( tφμ ) of 
the Poisson Regression model is equal to the variance 
of the Generalized Poisson Regression Model, so the 
log quasi-likelihood functions of the Poisson Regres-
sion and the Generalized Poisson Regression are the 
same, then the quasi-likelihood estimates for both 
function will be the same. However, the log-likelihood 
functions of the Poisson Regression and the General-
ized Poisson Regression are different, so the maximum 
likelihood estimates are also different. 
 
 Quasi-likelihood estimates of the parameters can be 
obtained by taking first derivative of the log quasi-
likelihood function according to  and then equaliz-
ing to 0. Since ’s depend on regression parameters 

, 

iμ
tμ

jβ

( )
( )1

; -
0

n
t t t

j
tj j

Q y y
q

Var Y
μ μ μ
β μ=

⎛ ⎞∂ ∂
= = ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∑
t

=   j=1,..,p     (4.5) 

 
5. ABOUT THE LATENT PROCESS 
 
 Before finding again the  parameter estimates, it is 
needed to test for the existence of a latent process. 
Once a latent process is detected, then autocorrelation 
should be tested. While covariance estimates are often 
biased, the standard estimates of correlation proposed 
by Zeger are in use.  
 
5.1 Test for a Latent Process 
 
 There are tests that are used to detect overdisper-
sion in Poisson distribution. Brannas and Johansson 
(1994) used the following statistic, 
 

ˆ

n 2[(y - m) - y ]t ti=1S = n 2mtt=1

∑

∑
                                   (5.1) 

 
 under the hypothesis Lagrange multiplier test of the 
Poisson distribution against Negative Binomial or 
more general Katz distribution. Dean and Lawless 
(1989) improved this test statistic for the small sam-
ples 

( )2 ˆˆ ˆ- -
1

2ˆ2
1

n
y y ht t t t ttSa n

tt

μ μ

μ

+∑
==

∑
=

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

                              (5.2) 

 
 where  is the tth diagonal element of the hat ma-

trix. “Hat” matrix is , 
where 

th

( ) 2/112/1 ΛΛΛ= TT XXXXH
( )ndiag μ,...,μ=Λ 1  and  is 

the design matrix. (Fahrmeir &Tutz, 1994)  Both of 
these test statsitic asymptotically distributed as N(0,1) 
under “there is no latent process” hypothesis. 

( )T
nxxX ,...,= 1

 
 Davis, et al. (1998) introduced an alternative test 
specifically designed for overdisperison in the case of 
latent process in Poisson process. Since this test uses 
higher moment properties of Poisson observation, it is 
more powerfull than . aS
Under the null hypothesis that there is no latent proc-
ess ( ). ., 1ti e ε ≡  the Pearson residuals, 
 

t

tt
t

y
e

μ̂
μ̂-

=                                                          (5.3) 

 
have approximately zero mean and unit variance.  
 

 

n
2

t=1

1 -1

ˆ

t

Q

e
nQ

σ

⎛ ⎞
⎜ ⎟
⎝=
∑

⎠                                              (5.4)  

 
where  
 

 2

1

1 1 1ˆ 2
ˆ

n

Q
t tn n

σ
μ=

⎛ ⎞
= +⎜

⎝ ⎠
∑ ⎟                                      (5.5) 

 
 may be used to test the presence of a latent process.  
(Davis et al., 1998) Q statistic is distributed as N(0,1) 
approximately under the hypothesis that the variance 
of a latent process is zero. 
 
5.2 Estimation of the Autocorrelation Function 

and Autocovariance Function of the Latent 
Process 

  
 In literature, there are many suggestions on various 
estimates of the autocovariances. Zeger (1988) ob-
tained the estimation of nuisance paramaters with the 
help of  moments method. In this method,  is esti-
mated as  

2σ

( ){ }2

2 1

2

1

ˆ ˆ- -
ˆ

ˆ

n

t t t
t

n

t
t

y μ μ
σ

μ

=

=

=
∑

∑
                                  (5.6) 
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where ( ) 22μσ+μ=var tttY . 
Similarly, the autocorrelation function of  (latent 
process) can be estimated by 

tε

( ) ( ) ( ){ } ( )- --2
2

1
-

1

ˆ- - ˆ
ˆ ˆ

ˆˆ ˆ

n
t t t k t k

n
t k

t t k
t k

y y k
k ε

ε

μ μ γ
ρ σ

σμ μ= +

= +

= ∑
∑

=

)

  (5.7) 

where autocovariance function of  (latent process) is 
given by 

tε

 

( )
( ) ({ }- -

1

-
1

ˆ ˆ- -
ˆ

ˆ ˆ

n

t t t k t k
t

n

t t k
t k

y y
k τ

ε

μ μ
γ

μ μ

= +

= +

=
∑

∑
  (Zeger, 1988)    (5.8) 

  
 There are several alternative residuals for the Pois-
son regression model. One of them is Pearson residual 
given by 
 

( )
μ̂
μ̂-

=ε t
tP

y
                                                         (5.9) 

which has an autocorrelation at lag k depends on 
 as well as on . ktt -μ̂,μ̂ 2σ̂

 
 The pattern of the estimated autocorrelations is 
useful for the identification of basic autoregressive 
moving average (ARMA) model. 
 
5.3 Testing for Autocorrelation 
 
 The aim is to detect the autocorrelation for the 
analysis; but for this, firstly overdispersion should be 
determined to examine the autocorrelation. On detect-
ing the overdispersion,  we need to see whether this 
overdispersion is generated by  which has an auto-
correlation. 

tε

 
 By using any of the estimators, autocorelation coef-
ficients for tε  can be estimated from the residulas. The 
test hypothesis is ‘There is no autocorrelation (white 
noise)’. For this Brannas and Johansson (1994) sug-
gested   the following test statistics given by 
 

2

1

k

BP k
k

Q T r
=

= ∑  (Box and Pierce (1970))            (5.10) 

2

1

( 2)
-

k
k

LB
k

rQ T T
T k=

= + ∑   (Ljung and Box (1978))       (5.11) 

where  is the estimated autocorrelation at lag k. kr
 
 Davis, Dunsmur and Wang (1998) suggested an-
other test statistic, since there is problem with the cor-
related Poisson model. This problem is that the vari-
ance and covariances have different forms of depend-

ence on the mean function  and there is no single 
normalization of residuals. These normalization elimi-
nate the dependence from the variance and from the 
covariance terms required to construct autocorrela-
tions. So, the usual normalization procedure in the 
Box-Pierce and Ljung-Box portmanteau statistics will 
be incorrect. 

tμ

 

( )
( )( )

2

2

1

ˆ
ˆ. .

L

k

k
H

s e k
ε

ε

γ
γ=

⎡ ⎤
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⎢ ⎥⎣ ⎦
∑                                     (5.12) 

 
 where L is the maximum lag, is proposed for testing 
for serial correlation in the mean of the observed count 
time series. It is analogous to the Box-Jenkin’s sta-
titics. Under the hypothesis of independence  will 
have an approximate  distribution on L degrees of 
freedom. 

2H
2χ

 
6. ILLUSTRATION 
 
 As an illustration, monthly number of  deathes  who 
were infected by pulmonary tuberculosis, for the years 
1996 to 2002 in İzmir are investigated as a parameter-
driven model. These data are reported by Health Direc-
torate of İzmir Administrative Province. Our interest is 
to determine a long-term decrease in the rate of  pul-
monary tuberculosis infection.  
 
 Since there is seasonality, monthly number of  
deathes is regressed on a linear trend with sine and 
cosine pairs at the annual and semi-annual frequencies. 
Figure1 shows the trend analysis of  the response vari-
able. 
 

 
 

Figure 1 Trend Analysis for Monthly Number of Deathes 
 
 Our aim is to identify the β  parameters. For the 
Poisson model 

( )
( ) ( )

!y
,xe,xYf

y,x- βμ
=β

βμ

 

where 
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( ) ( ) ( )β=β=βμ ,xexp,xYE,x '  
The MLE of the parameter β  is obtained by maximiz-
ing the log-likelihood function 

( ) ( ) ( ) (
1

log , - , - log !
n

t t t
i

)tL y x x yβ μ β μ β
=

=∑  

 
 On specifiying correct conditional mean function 
and conditional Poisson distribution of Y, the MLE is 
consistent, efficient and asymptotically normally dis-
tributed, with variance matrix consistently estimated 
with 

( )
( ) ( )

( )

-1

1

, ,

ˆ
,

n

i

x x

Var
x

μ β μ β
β ββ
μ β

=

∂ ∂⎛ ⎞
⎜ ⎟∂ ∂⎜=
⎜
⎜ ⎟
⎝ ⎠

∑
⎟
⎟

 

 
 In the case of rejection of the mean-variance equal-
ity assumption, the model is misspecified. Here the 
Poisson estimator may also interpreted as a quasi-
likelihood estimator (QLE). These QLEs are robust in 
the sense of producing consistent estimates of the pa-
rameters of a correctly specified conditional mean, 
even whether the distribution is incorrectly specified. 
For these QL models, only a correct spesification of 

( )β,μ x  is needed for consistency. 
 
 
 

 Hovewer, the estimated standard errors won’t be 
consistent unless the conditional distribution of Y is 
correctly specified. But, it is possible to get the robust 
standard errors in order to make valid inferences even 
whether the distribution is incorrectly specified by 
using QL standard errors. But it doesn’t posess any 
efficiency properties. 
 
 An intercept term, a linear trend, and harmonics of 
6 and 12 months are used as regressors. The design 
matrix is 
 

( ) ( ) ( ) ( )( )' ' ' 'x = 1,t /1000,cos 2πt /12 ,sin 2πt /12 ,cos 2πt /6 ,sin 2πt /6t
'  

 
where  is the intercept term at January 
1999. 

37-=' tt

 
 A simulation study was done to investigate these 
estimates over many trails, and 1000 realizations on 
the parameter-driven model fitted to the data were 
generated and this is also repeated 1000 times. On 
using the correct standard errors for the trend term it is 
concluded that the trend term is significant. A simula-
tions column of the Table 1 gives the true regression 
parameters. The latent process in this simulation was 
assumed to be a LogNormal AR(1) with . 
On comparing the true value of the parameters, it can 
be concluded that there is no significant bias.  

80.0=φ

 

Table1. Coefficients and Standard Errors of Regression Parameters 
 

 QML PML Asym Simulations 
 Coeff. Std. 

Error Coeff Std. 
Error 

s.e. (Co-
eff) 

Ave (Co-
eff) 

s.d. (Co-
eff) 

Intercept 1.259704 0.069613 1 .259704 0.059526 0.059951 1.258452 0.060632 
310Trendx −  -11.00053 3.050726 -11.00053 2.471986 2.472688 -10.58603 2.513145 

( 12/t2cos )π  0.247722 0.096764 0 .247722 0.082393 0.082619 0.234196 0.082685 
( 12/t2sin )π  -0.087644 0.103449 -0.087644 0.086066 0.086446 -0.074159 0.087014 
( 6/t2cos )π  0.082642 0.093502 0 .082642 0.083067 0.083324 0.083165 0.086735 
( 6/t2sin )π  0.073830 0.10719 0 .07383 0.083638 0.083871 0.072462 0.084761 

        
 
 Since φ  (Dispersion Parameter = 

df
Pearson 2χ_ ) = 

1.525 > 1 then we can conclude that there is overdis-
persion. When overdipserion is detected then we in-
vsestigate the presence of latent process. With the help 
of Q statistics we decide that there is latent process.  
 
 Since Pearson residuals have the same correlation 
structure as tε  (Zeger, 1988), it is assumed that there 
is lag one autoregressive correlation structure with 
E( tε )=1. The latent process has a lognormal distribu-
tion as depicted Table 2. 
 
 
 

 
 

Figure2  Descriptive Statistics of the Pearson Residuals 
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Table 2 Descriptive Statistics of the Simulation 
 

 0β  1β  2β  3β  4β  5β  
Mean 1.258452 -10.58603 0.234196 -0.074159 0.083165 0.072462 

Median 1.261703 -10.66275 0.233171 -0.071803 0.086023 0.075050 
Maximum 1.448640 -2.913805 0.553063 0.171008 0.351765 0.388515 
Minimum 1.026540 -18.69673 -0.024499 -0.350561 -0.219456 -0.201225 
Std. Dev. 0.060632 2.513145 0.082685 0.087014 0.086735 0.084761 
Skewness -0.154144 -0.121542 0.017149 -0.136640 -0.102956 -0.049945 
Kurtosis 3.132887 2.986629 3.078314 3.053805 3.389450 3.192151 

       
Jarque-Bera 4.695835 2.469523 0.304563 3.232361 8.086281 1.954178 
Probability 0.095568 0.290904 0.858747 0.198656 0.017542 0.376405 

       
Observations 1000 1000 1000 1000 1000 1000 

 
 

 
 

 
 

Figure 3 Probability Plot of the Latent Process 
 
 The quasi-likelihood estimator is consistent and 
asymptotically normal. This is a robust approach in 
making consistent inferences about β only that 

( ) ttYE μ=  whether or not equal to ( )tYvar  . 
 
Table3 Model with an Intercept Term, a Linear Trend, and 

Harmonics of 6 and 12 Months 
 

Variable Coeff. Std. Error 
C 1.259704 0.069613 
TREND -11.00053 3.050726 
COS12 0.247722 0.096764 
SIN12 -0.087644 0.103449 
COS6 0.082642 0.093502 
SIN6 0.07383 0.10719 
S.E. of regression 2.411857 
Log likelihood -184.4295 
LR statistic (5 df) 33.61566 
Probability(LR stat) 2.84E-06 
Akaike 
criterion 

4.534037 

Schwarz 
criterion 

4.707666 

 
 

Table 4 Model with an Intercept Term, a Linear Trend, and 
Harmonics of 12 Months 

 
Variable Coeff. Std. Error 
C 1.263258 0.071392 
TREND -11.20847 3.046832 
COS12 0.257259 0.102682 
SIN12 -0.07705 0.100826 
S.E. of regression 2.386169 
Log likelihood -185.3152 
LR statistic (3 df) 31.84426 
Probability(LR stat) 5.64E-07 
Akaike 
criterion 

4.5075 

Schwarz 
criterion 

4.6232 

 
Table 5 Model with an Intercept Term, a Linear Trend, and 

Harmonics of 6 Months 
 

Variable Coeff. Std. Error 
C 1.276383 0.074122 
TREND -11.01905 3.184534 
COS6 0.100139 0.097493 
SIN6 0.069366 0.115191 
S.E. of regression 2.493434 
Log likelihood -189.4683 
LR statistic (3 df) 23.53815 
Probability(LR stat) 3.12E-05 
Akaike  
criterion 

4.606388 

Schwarz 
criterion 

4.722141 

 
Table 6 Model with an intercept term and a linear trend 

 
Variable Coeff. Std. Error 
C 1.281134 0.075442 
TREND -11.21862 3.206079 
S.E. of regression 2.479241 
Log likelihood -190.5601 
LR statistic (1 df) 21.35459 
Probability(LR stat) 3.82E-06 
Akaike  
criterion 

4.5847 

Schwarz 
criterion 

4.6426 
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 According to the Akaike and Schwarz Criterions, 
we choose the second model for forecasting. Then the 
model will be 
 

( )( )
( )( )
( )( )

l ogY=1.263258-11.20847 t-37 /1000 +

0.257259 cos2Π t-37 /12 -

0.077050 sin2Π t-37 /12

 

 
 This model gives very close forecasts as in the first 
model. The model has the significant trend func-
tion.This means that the pulmonary tuberculosis 
deathes are decreasing by the time. 
 
 Even there is latent process with autocorrelation for 
this Poisson regression model, consistent coefficient 
estimates and robust variance estimates can be  ob-
tained by using Quasi Likelihood method, so valid 
inferences can be made. 
 
7. CONCLUSION 
 
 In order to identify the latent process and its corre-
lation structure, a consistent estimation procedure for 
the regression coefficient is needed. For consistent 
estimation procedure, a quasi-likelihood method which 
is based on only the first and the second moments of 
the distribution is suggested. In the case of rejection of 
the mean-variance equality assumption, the model is 
misspecified. These Quasi maximum likelihood esti-
mates are robust in the sense of producing consistent 
estimates of the parameters of the correctly specified 
conditional mean, even whether the distribution is 
incorrectly specified. For these QML models, only a 
correct specification of the mean function is needed for 
consistency. 
 
 With simulation study, QMLEs asymptotic behav-
iour is examined. For this monthly pulmonary tubercu-
losis data, parameter estimates are consistent, asymp-
totically normal and asymptotically efficient. And also 
since the variance estimates of the parameters are ro-
bust, we can make valid inferences about this model 
only that   whether or not equal to 

. 
( ) ttYE μ=

( )tYVar
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