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ABSTRACT

In this study, time series of Poisson count model was investigated. In real situations, mean-variance equality,
which is the basic property of Poisson data, cannot be provided. Generally, in such data variance exceeds mean,
this is called overdispersion. When the overdisperison is detected, then there may be autocorrelation in latent proc-
ess for Poisson regression model.

Correlation is assumed to result from a latent process which is added to the linear predictor in a Poisson regres-
sion model. A quasi-likelihood approach is used as a parameter estimation technique. Tests for the presence of the
latent process and autocorrelation of the latent process are examined. Asymptotic properties of the regression coef-
ficients are investigated by using a simulation study.

As an illustration, monthly number of deathes who were infected by pulmonary tuberculosis for the years 1996
to 2002 in Izmir are 1nvest1gated as a parameter-driven model and the asymptotic properties of the regression coef-
ficients are investigated, then a suitable model is constructed for forecasting.

Keywords: Quasi-Likelihood method, Latent process, Poisson regression, Overdispersion, Autocorrelation.

POISSIN REGRESYON MODELINDE GiZLi SUREC
0z
Bu caligmada, Poisson sayimlarinin zaman serisi modeli incelendi. Poisson dagilan bir verinin temel 6zellikle-
rinden olan ortalama-varyans esitligi uygulamada saglanamaz. Genellikle, asir1 yayilim olarak adlandirilan varyans

degerinin ortalamay1 astigi durum s6z konusu olur. Asir1 yayilimin s6z konusu oldugu durumda, Poisson regresyon
modeli i¢in gizli siiregte otokorelasyonun varligindan s6z edilebilir.

Poisson regresyon modelinde dogrusal tahmin ediciye eklenen gizli siiregten kaynaklanan bir korelasyon duru-
munun oldugu varsayilir. Bu durumda yari-olabilirlilik yontemi, parametre tahmin yontemi olarak kullanilabilir.
Gizli siirecin varhiginin testi ve gizli siirecin otokorelasyon yapisi bu ¢aligmada incelenmistir. Ayni1 zamanda reg-
resyon katsayilarinin asimptotik 6zellikleri yapilan simulasyon ¢alismasiyla arastirtlmistir.

Yapilan uygulamada, 1996°dan 2002’ye kadar izmir’deki akciger tiiberkulozu 6liimleri aylik olarak incelenmis-
tir. Yapilan ¢oziimleme sonucunda katsayilarin asimptotik 6zellikleri saptanarak uygun bir model olusturulmaya
calisilmustir.
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1. INTRODUCTION

In the last recent years, there has been a great inter-
est in the analysis of time series of counts. In order to
get satisfactory modeling in the integer-valued charac-
teristic of the data, time series of count analysis meth-
ods are used. The Poisson Regression Model is the
basic member in such count data models. Although
Poisson Regression Model has the charecteristic prop-
erty that the expected values and the variances are
equal, generally the variance exceeds the mean in
count data in real situations. This is overdispersion in
the Poisson Model, so with some empirical support,
there may be autocorrelation in such data.

There are many techniques in order to identify a
suitable model for the correlation structure in the ‘la-
tent” process. To decide including a latent process in
the specification of the mean of the Poisson counts,
there is a need for diagnostic techniques in linear re-
gression with correlated errors. It is needed to know
modeling of time series of counts.

The model
y, =x,B+e, 1.1)

is a linear model with time series errors while Y, ’s are

continuous variable. While working with such series,
first of all autocovariance structure of the time series

errors €, 1s determined. 1,...,Bn) parameters are

estimated by regressing the data vector (Yl,...,Yn )
onto the (Xl,...,Xn) using Ordinary Least Squares
(OLS) Method. These estimates ignore the dependence
structure of the €, . In this condition, these OLS esti-

mate has the same asymptotic efficiency as the Maxi-
mum Likelihood estimate. The asymptotic covariance
matrix of the OLS and ML estimate depends on the

covariance structure of the ¢,. If B is the consistent
estimator, then Autocovariance Function (ACVF) of
€, can be consistently estimated from the sample
ACVF of the residuals which is defined as

ét Y -XtB'

2. TIME SERIES OF COUNT DATA
REGRESSION MODEL

It is a little different from the time series of count data
model. Let the outcomes {Y, : t = 1,..,n} are time
series of counts. Log-linear models can be used to

describe p, = E(Yt)Z e*® as a function of a pxl

vector of covarites X, with independent observations.

Mean function is specified by a linear predictor modi-
fied by a ‘latent’ process.

If Y, is Poisson, likelihood methods can be used to
estimate 3 in the case Var(Yt ): L, . Quasi-likelihood

methods which allow a variety of variance-mean rela-
tions are appropriate in the case of Var(Yt)> i, . The
two common assumptions are

i) var(Y,)=p,o

ii) var(Y,)=p, +n2o’

where ¢ and ©° are unknown scale parameters.
(Zeger, 1988)

If there is no overdispersion, then there is no serial
correlation and there will be no need for correcting the
covariance matrix estimator of the Poisson. (Brannas
ve Johansson, 1994) In time series data, neighbouring
observations are dependent. Two classes of models
time-dependent data are characterized by Cox (1981):

i ) Observation-driven : The conditional distribution
of Y, is specified as a function of past observations,

Y, ., Y;. As an example autoregressive models for

Markov chains for discrete data. Assume that Y, ‘ p, is
Poisson, then the model
logp, =xp+a, (2.1)

where o, is a function of past observations Y, s <t

s

Le.a, =y, Y, +..ty Y,

ii ) Parameter-driven : A latent process is thought as
generating autocorrelation in these kind of models.

LetO0, =logp, be the canonical parameter for the log-
linear model. Here, 0, is assumed to depend on an
process (g,), SO
0, :e(ist.1>--->Y1)- If Y, given g, is Poisson,
then it is

unobservable noise

E(Ye,)= explxpe. 2.2)

The latent process, €,, introduces both overdispersion

and autocorrelation in y,. (Zeger, 1988) The parame-

ter-driven models has the advantage of incorparating
both overdisperison and autocorrelation and the model
specifies an unobserved latent process. It is only as-

sumed that €, is a non-negative strictly stationary time
series with mean 1 and autocovariance function

(ACVF)
v, =Ele., -1e, -1)] 2.3)

Assume that Y, ‘ut is Poisson, then the model

logp, =xp+a,

where o, is assumed as a stationary Gaussian AR(1)
latent process, i.e. o, =po,, + €, where ‘p‘ <1, e

are i.i.d. N(O, 02). As a property of this kind of
model,



E(Y, )= exp(x,B)E(expla, )) = explxp), if
Elexpla, ))=1

3. THE MODEL

Let the Poisson probability density function is de-
fined as

pry, )= ”ty% (t=1,...n) G.1)

N
where y, is the count or frequency variable at time .

Non-negative time series has the form
X,
Yt‘gﬁxt NP(e ﬁgt

X{B

where pu, = ¢ is the mean function and

B= (Bl ,K ,BP)T is p x 1 parameter vector, X, is ex-
planotory variable vector.

Conditional on €, is assumed as stationary latent

process. The marginal moments of y, is determined as
a function of the log-linear coefficients and the pa-
rameters of € since y, follows a log-linear model.
(Zeger,1988)

To introduce both overdispersion and autocorrela-
tion, conditional on a latent process €,, y, is a se-
quence of independent counts with properties

E(ut\et)=8tut = explx e,

varlY Je, )=, =explx B, (3.2)

Suppose that the €, is a stationary process with
E(st)z 1 and COV(St ,SHk): o’p, (k) where c° is
the variance and p, (k) the autocorrelation function at

lag k of the €&, process. (Brannas and Johansson,
1994) Then,

E(Y,)=p, =explxp), Var(Y,)=p, +o%u2 (3.3)
and the autocorrelation of y, is given by
(k)
(t.k) = corr(Y,. Y., )= it
S S
k#0 34

Autocorrelation function p (t, k) varies with t and
k. The autocorrelation in y, must be less than or equal
tog, . The degree of autocorrelation in y, relative to

2
€, decreases as |, and ¢~ decrease.

3

A consistent estimation procedure for the regres-
sion coefficient vector is needed since the existence of
latent process should be tested and its correlation
structure should be identified. An easy way to compute
this type of estimates is obtained from performing the
generalized linear model (GLM) analysis Quasi-
Likelihood (QL) analysis.

4. ESTIMATION

4.1 Estimation of 3

There are at least two options for the estimation of
the regression parameters. The Poisson Maximum
Likelihood estimator is consistent even if the autocor-
relation is not accounted for. In such cases Quasi-
Likelihood estimator is used. The conventional covari-
ance matrix of ML estimator is inconsistent. (Brannas
and Johansson, 1994)

Zeger (1988) used the quasi-likelihood method in
estimating such equation which is a time series of
independent counts. If the likelihood function is in
complex form, with the help of mean-variance rela-
tions, quasi-likelihood approach that is based on only
the first and the second moments of the distributions
is suggested. The only assumptions on the distribution
of the data are first and second moments and some
additional regularity conditions relating to the regres-

sion equation E(Y)=p= H(B)

Log quasi-likelihood considered as a function of
mean W, and its variance Var( [, ) and y, the vector of
random variables:

4 _
O, y,)=du | 22 4 £ (3, @.1)
y, Var(u,)t

where since each 1, is a known function of B, pa-

rameters, Var( L, )is also a known function.

The sum of this function gives the log quasi-likelihood
function such as

O(u; )= iQ(ﬂt ) 4.2)

Log-likelihood function and log quasi-likelihood
function have the similar properties and 3 parameters

are asymptotically normal. (McCullagh, 1983). For
single-parameter exponential family distributions,
Log-likelihood function and log quasi-likelihood func-
tion are the same, so it is valid for single-parameter
distribution Poisson. But in real data, variance-mean
equality assumption is violated, generally variance
exceeds the mean, so it causes overdispersion. Al-
though this excess variation has little effect on parame-
ter estimates, standard errors, tests and confidence
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intervals may be wrong unless it is appropriately taken
into account. (Dean,1992) The variance in this case is
considered as

Var(y, )= pVarly, )= ou, 4.3)

where ¢ is an unknown dispersion parameter

1 n (yt _ﬂt )2
= ! (4.4)
¢ N_p; Var(,u,)

In the quasi-likelihood approach, variance ($p, ) of

the Poisson Regression model is equal to the variance
of the Generalized Poisson Regression Model, so the
log quasi-likelihood functions of the Poisson Regres-
sion and the Generalized Poisson Regression are the
same, then the quasi-likelihood estimates for both
function will be the same. However, the log-likelihood
functions of the Poisson Regression and the General-
ized Poisson Regression are different, so the maximum
likelihood estimates are also different.

Quasi-likelihood estimates of the parameters can be
obtained by taking first derivative of the log quasi-

likelihood function according to p; and then equaliz-
ing to 0. Since W, ’s depend on regression parameters
i

QA wy) 5 {GMJ V-4

q. ————=0 j=1,..p 4.5)
w

Var(Y)
5. ABOUT THE LATENT PROCESS

Before finding again the parameter estimates, it is
needed to test for the existence of a latent process.
Once a latent process is detected, then autocorrelation
should be tested. While covariance estimates are often
biased, the standard estimates of correlation proposed
by Zeger are in use.

5.1 Test for a Latent Process

There are tests that are used to detect overdisper-
sion in Poisson distribution. Brannas and Johansson
(1994) used the following statistic,

n 2
; [(yt -m) 'yl‘]
§=E=l — (.1)
> my
=1

under the hypothesis Lagrange multiplier test of the
Poisson distribution against Negative Binomial or
more general Katz distribution. Dean and Lawless
(1989) improved this test statistic for the small sam-
ples

(5.2)

where #, is the tth diagonal element of the saf ma-
frix. “Hat” matrix is H=A"?X(XTAX) 'XTA"2,
where A= diag(ul,...,},tn) and X = (Xl,...,xn)T is
the design matrix. (Fahrmeir &Tutz, 1994) Both of

these test statsitic asymptotically distributed as N(0,1)
under “there is no latent process” hypothesis.

Davis, et al. (1998) introduced an alternative test
specifically designed for overdisperison in the case of
latent process in Poisson process. Since this test uses
higher moment properties of Poisson observation, it is

more powerfull than S, .
Under the null hypothesis that there is no latent proc-
ess (z'.e.,e‘t = l) the Pearson residuals,

Y. -h
e (53)
Ly
have approximately zero mean and unit variance.
1 n
o=t~ (5.4)
e
where
A I[1& 1
Sp=—| =D —+2 (5.5)
n\n . /ut

may be used to test the presence of a latent process.
(Davis et al., 1998) Q statistic is distributed as N(0,1)
approximately under the hypothesis that the variance
of a latent process is zero.

5.2 Estimation of the Autocorrelation Function
and Autocovariance Function of the Latent
Process

In literature, there are many suggestions on various
estimates of the autocovariances. Zeger (1988) ob-
tained the estimation of nuisance paramaters with the

help of moments method. In this method, 6° is esti-
mated as

< A2 A

Z{(yt '/Ut) _/ut}

6t =1 (5.6)




where Var(Yt)= p, + quf .
Similarly, the autocorrelation function of €, (latent
process) can be estimated by

(k) _ OA'-Z i {(yt _I[lt)(yt—k _/uz-k)} _ 7;5 (k)
& n ~2
Y Ay 76

t=k+1

where autocovariance function of €, (latent process) is
given by

n

z {(yz - /&;)(yz.k o )}

7,}5 (k) = — n
2 id

t=k+1

(Zeger, 1988)  (5.8)

There are several alternative residuals for the Pois-
son regression model. One of them is Pearson residual
given by

-0 59

8tP \/E

which has an autocorrelation at lag k depends on
i,,0,, aswellason G,

The pattern of the estimated autocorrelations is
useful for the identification of basic autoregressive
moving average (ARMA) model.

5.3 Testing for Autocorrelation

The aim is to detect the autocorrelation for the
analysis; but for this, firstly overdispersion should be
determined to examine the autocorrelation. On detect-
ing the overdispersion, we need to see whether this
overdispersion is generated by €, which has an auto-

correlation.

By using any of the estimators, autocorelation coef-
ficients for ¢, can be estimated from the residulas. The
test hypothesis is ‘There is no autocorrelation (white
noise)’. For this Brannas and Johansson (1994) sug-
gested the following test statistics given by

k
Oy =T 17 (Box and Pierce (1970)) (5.10)

k=1
L2
=T(T+2)> —*— (Li .
Q, =TT+ );T_k (Ljung and Box (1978))  (5.11)

where 1, is the estimated autocorrelation at lag k.

Davis, Dunsmur and Wang (1998) suggested an-
other test statistic, since there is problem with the cor-
related Poisson model. This problem is that the vari-
ance and covariances have different forms of depend-

5

ence on the mean function p, and there is no single
normalization of residuals. These normalization elimi-
nate the dependence from the variance and from the
covariance terms required to construct autocorrela-
tions. So, the usual normalization procedure in the
Box-Pierce and Ljung-Box portmanteau statistics will
be incorrect.

SR A
" _; s.e.(ﬁg(k))

where L is the maximum lag, is proposed for testing
for serial correlation in the mean of the observed count
time series. It is analogous to the Box-Jenkin’s sta-

titics. Under the hypothesis of independence H? will
have an approximate 7y’ distribution on L degrees of
freedom.

(5.12)

6. ILLUSTRATION

As an illustration, monthly number of deathes who
were infected by pulmonary tuberculosis, for the years
1996 to 2002 in Izmir are investigated as a parameter-
driven model. These data are reported by Health Direc-
torate of [zmir Administrative Province. Our interest is
to determine a long-term decrease in the rate of pul-
monary tuberculosis infection.

Since there is seasonality, monthly number of
deathes is regressed on a linear trend with sine and
cosine pairs at the annual and semi-annual frequencies.
Figurel shows the trend analysis of the response vari-
able.

Trend Analysis for Y

Linear Trend Madel

+ Al
“«  Fiz
— Azl
— = Fiz

WaPE: eaeyr]
LoD 19240
L= [y

Figure 1 Trend Analysis for Monthly Number of Deathes

Our aim is to identify the S parameters. For the
Poisson model

-u(x,B) y
x,B)="C u(x.p)

y!
where

f(y
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h(x.B)=E(Y}x,B) = explx',B)
The MLE of the parameter § is obtained by maximiz-
ing the log-likelihood function

L(B)=3 v, log t(x,, f)2(x,, )-log(», )

i=1

On specifiying correct conditional mean function
and conditional Poisson distribution of Y, the MLE is
consistent, efficient and asymptotically normally dis-
tributed, with variance matrix consistently estimated
with

Z”: 8,u(x,,6’) a,u(x,ﬂ) B

In the case of rejection of the mean-variance equal-
ity assumption, the model is misspecified. Here the
Poisson estimator may also interpreted as a quasi-
likelihood estimator (QLE). These QLEs are robust in
the sense of producing consistent estimates of the pa-
rameters of a correctly specified conditional mean,
even whether the distribution is incorrectly specified.
For these QL models, only a correct spesification of

u(x, B) is needed for consistency.

Hovewer, the estimated standard errors won’t be
consistent unless the conditional distribution of Y is
correctly specified. But, it is possible to get the robust
standard errors in order to make valid inferences even
whether the distribution is incorrectly specified by
using QL standard errors. But it doesn’t posess any
efficiency properties.

An intercept term, a linear trend, and harmonics of
6 and 12 months are used as regressors. The design
matrix is

xt=(1,t'/1(m,oos(2m'/1z) ,sin(m'/lz) ,005(2311'/6) ,sin(m'/é))

where t =t-37 is the intercept term at January
1999.

A simulation study was done to investigate these
estimates over many trails, and 1000 realizations on
the parameter-driven model fitted to the data were
generated and this is also repeated 1000 times. On
using the correct standard errors for the trend term it is
concluded that the trend term is significant. A simula-
tions column of the Table 1 gives the true regression
parameters. The latent process in this simulation was
assumed to be a LogNormal AR(1) with ¢ = 0.80.

On comparing the true value of the parameters, it can
be concluded that there is no significant bias.

Tablel. Coefficients and Standard Errors of Regression Parameters

QML PML Asym Simulations
Std. Std. s.e. (Co- Ave(Co- s.d. (Co-
Coeff. Error Coeff Error eff) eff) eff)
Intercept 1.259704  0.069613 1.259704 0.059526 0.059951 1.258452  0.060632
Trendx10~ -11.00053  3.050726 -11.00053 2.471986 2.472688 -10.58603 2.513145
COS(ZﬂT/IZ) 0.247722  0.096764 0.247722 0.082393 0.082619 0.234196  0.082685
sin(27zt/12) -0.087644  0.103449 -0.087644 0.086066 0.086446 -0.074159 0.087014
cos(2m‘/6) 0.082642  0.093502 0.082642 0.083067 0.083324 0.083165  0.086735
sin(27n‘/6) 0.073830 0.10719 0.07383 0.083638 0.083871  0.072462  0.084761
Since ¢ (Dispersion Parameter = PELOH—XZ) = 12
df ) .
1.525 > 1 then we can conclude that there is overdis- 10 Ef,fﬁli;ignﬁs'“gf”“m
persion. When overdipserion is detected then we in-
vsestigate the presence of latent process. With the help B Mean 0000754
of Q statistics we decide that there is latent process. med!a” o7
B admum 3272556
. . . 1 Minimum 2527035
Since Pearson residuals have the same correlation St Dev. 1126984
structure as g, (Zeger, 1988), it is assumed that there 4 Ekiwﬂess g;;‘;&mﬂ
. . . . UIMosis |
is lag one autoregressive correlation structure with ) K
E( &, )=1. The latent process has a lognormal distribu- 1 ﬁ;ﬁﬁ::ﬁ:':'z‘ B Jartue-Bers 2889762
tion as depicted Table 2. o B ] i Sl
2 4 0 123

Figure2 Descriptive Statistics of the Pearson Residuals
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Table 2 Descriptive Statistics of the Simulation

By B

Mean 1.258452 -10.58603
Median 1.261703 -10.66275
Maximum 1.448640 -2.913805
Minimum 1.026540 -18.69673
Std. Dev. 0.060632 2.513145
Skewness -0.154144 -0.121542
Kurtosis 3.132887 2.986629
Jarque-Bera  4.695835 2.469523
Probability 0.095568 0.290904

Observations 1000 1000

B
0.234196
0.233171
0.553063
-0.024499
0.082685
0.017149
3.078314

0.304563
0.858747

1000

B3 By Bs
-0.074159 0.083165 0.072462
-0.071803  0.086023 0.075050
0.171008 0.351765 0.388515
-0.350561 -0.219456 -0.201225
0.087014 0.086735 0.084761
-0.136640 -0.102956 -0.049945
3.053805 3.389450 3.192151
3.232361 8.086281 1.954178
0.198656 0.017542 0.376405

1000 1000 1000

Lognarmal Dismboda
hocemoring
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Figure 3 Probability Plot of the Latent Process
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Table 4 Model with an Intercept Term, a Linear Trend, and
Harmonics of 12 Months

Table 5 Model with an Intercept Term, a Linear Trend, and

The quasi-likelihood estimator is consistent and

inferences about

Harmonics of 6 and 12 Months

Variable Coeff. Std. Error
C 1.259704  0.069613
TREND -11.00053 3.050726
COS12  0.247722  0.096764
SINI12  -0.087644 0.103449
COS6 0.082642  0.093502
SIN6 0.07383 0.10719
S.E. of regression 2.411857
Log likelihood -184.4295
LR statistic (5 df) 33.61566
Probability(LR stat) 2.84E-06
Akaike 4.534037
criterion

Schwarz 4.707666
criterion

asymptotically normal. This is a robust approach in
making consistent

E(Yt ) = n, whether or not equal to Var(Yt) .

B only that

Table3 Model with an Intercept Term, a Linear Trend, and

Table 6 Model with an intercept term and a linear trend

Variable Coeff. Std. Error
C 1.263258 0.071392
TREND -11.20847 3.046832
COS12 0.257259 0.102682
SIN12 -0.07705 0.100826
S.E. of regression 2.386169
Log likelihood -185.3152
LR statistic (3 df) 31.84426
Probability(LR stat) 5.64E-07
Akaike 4.5075
criterion

Schwarz 4.6232
criterion

Harmonics of 6 Months

Variable Coeff. Std. Error
C 1.276383  0.074122
TREND -11.01905 3.184534
COS6 0.100139  0.097493
SIN6 0.069366 0.115191
S.E. of regression 2.493434
Log likelihood -189.4683
LR statistic (3 df) 23.53815
Probability(LR stat)  3.12E-05
Akaike 4.606388
criterion

Schwarz 4.722141
criterion

Variable  Coeff. Std. Error
C 1.281134 0.075442
TREND -11.21862 3.206079
S.E. of regression 2.479241
Log likelihood -190.5601
LR statistic (1 df) 21.35459
Probability(LR stat)  3.82E-06
Akaike 4.5847
criterion

Schwarz 4.6426
criterion




According to the Akaike and Schwarz Criterions,
we choose the second model for forecasting. Then the
model will be

logY=1.263258-11.20847 ((t-37)/1000) +
0.257259 (cos2I1(t-37)/12) -
0.077050(sin2I1(t-37)/12)

This model gives very close forecasts as in the first
model. The model has the significant trend func-
tion.This means that the pulmonary tuberculosis
deathes are decreasing by the time.

Even there is latent process with autocorrelation for
this Poisson regression model, consistent coefficient
estimates and robust variance estimates can be ob-
tained by using Quasi Likelihood method, so valid
inferences can be made.

7. CONCLUSION

In order to identify the latent process and its corre-
lation structure, a consistent estimation procedure for
the regression coefficient is needed. For consistent
estimation procedure, a quasi-likelihood method which
is based on only the first and the second moments of
the distribution is suggested. In the case of rejection of
the mean-variance equality assumption, the model is
misspecified. These Quasi maximum likelihood esti-
mates are robust in the sense of producing consistent
estimates of the parameters of the correctly specified
conditional mean, even whether the distribution is
incorrectly specified. For these QML models, only a
correct specification of the mean function is needed for
consistency.

With simulation study, QMLEs asymptotic behav-
iour is examined. For this monthly pulmonary tubercu-
losis data, parameter estimates are consistent, asymp-
totically normal and asymptotically efficient. And also
since the variance estimates of the parameters are ro-
bust, we can make valid inferences about this model

only that E(Yt): p,  whether or not equal to
Var(Y,).
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