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ABSTRACT 

 

DETERMINATION OF TREE HEIGHTS  

USING UNMANNED AIR VEHICLES 

 

Anıl Can BİRDAL 

Department of Remote Sensing and Geographic Information Systems 

Graduate School of Sciences, July, 2016 

 

Supervisor: Assist. Prof. Dr. Uğur AVDAN 

 

(Co-Supervisor: Assoc. Prof. Dr. Tarık TÜRK) 

 

Unmanned aerial vehicles (UAV) have been widely used in a variety of fields in 

the last decade. In forestry, with different sensors, they have been used to estimate tree 

heights and crowns. This approach with a consumer-grade camera onboard system is 

becoming popular because it is cheaper and faster than traditional photogrammetric 

methods and UAV-Light Detecting and Ranging (UAV-LiDAR) systems. In this study, 

UAV-based imagery reconstruction, processing, and local maximum filter methods are 

used to obtain individual tree heights from an urban forest area which consists mostly of 

coniferous trees as scots and black pines and considered as very opened canopy. A low-

cost onboard camera and a UAV with a 96-cm wingspan made it possible to acquire high 

resolution aerial images (6.41 cm average ground sampling distance), ortho-images, 

Digital Elevation Models (DEM), and point clouds in one flight. Canopy Height Models 

(CHM), obtained by extracting the Digital Surface Model (DSM) from the Digital Terrain 

Model (DTM), were filtered locally based on the pixel-based window size using the 

provided algorithm. For accuracy assessment, ground-based tree height measurements 

were made. There was a high 94 per cent correlation and a root mean square error of 28 

cm. This study highlights the accuracy of the method and compares favorably to more 

expensive methods. 

 

Keywords: Unmanned Aerial Vehicles; Tree Height Detection; Photogrammetry; 

Image Processing; Local Maximum Filter; Consumer-grade Cameras  
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ÖZET 

 

AĞAÇ YÜKSEKLİKLERİNİN BELİRLENMESİNDE 

 İNSANSIZ HAVA ARAÇLARININ KULLANIMI  

(ESKİŞEHİR KENT ORMANI ÖRNEĞİ) 

 

Anıl Can BİRDAL 

 

Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Anabilim Dalı 

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Temmuz, 2016 

 

Danışman: Yrd. Doç. Dr. Uğur AVDAN 

 

İkinci Danışman: Doç. Dr. Tarık TÜRK 

 

 Geçtiğimiz on yıl içinde insansız hava araçları, çeşitli çalışma alanlarında sıkça 

kullanılmaya başlamıştır. Ormancılık sektöründe, çeşitli alıcılar ile ağaç yüksekliklerinin 

hesaplanması ve taçlarının kestirimi için kullanılmaktadırlar. Bu tezde kullanılan yöntem 

olan tüketici sınıfı bir kameranın insansız hava aracı sistemlerine monte edilip 

kullanılması diğer klasik fotogrametrik yöntemler ve insansız hava araçlarına monte 

edilmiş lazer tarayıcı sistemlerine göre gittikçe daha çok popülerleşmektedir. Bu 

çalışmada insansız hava araçlarına monte edilmiş alıcılardan elde edilen hava 

fotoğraflarının yeniden düzenlenmesi, işlenmesi ve lokal maksimum yöntemi ile 

filtrelenmesi sonucunda konifer yapıya sahip ağaçların bulunduğu bir kent ormanındaki 

ağaçların tekil yüksekliklerinin bulunması gerçekleştirilmiştir. Tüketici sınıfı bir kamera 

ve 96 cm genişliğe sahip bir İnsansız Hava Aracı (İHA) platformu ile yapılan bir uçuşta 

6.41 cm yer örnekleme aralığına sahip hava fotoğrafları çekilmiş, daha sonra bu 

fotoğraflardan orto-görüntü, sayısal yükseklik modelleri ve nokta bulutu verisi elde 

edilmiştir. Sayısal yüzey modelinden sayısal arazi modelinin çıkarılması ile elde edilen 

kanopi yükseklik modeli, piksel tabanlı pencere büyüklüğüne dayalı olarak lokal 

maksimum ile filtrelenmiştir. Doğruluk analizi için, seçilmiş olan ağaçların yükseklikleri 

yersel lazer-metre ile ölçülmüştür. Bu ölçümler ile İHA yardımıyla elde edilen ağaç 

yüksekliklerinin karşılaştırılması sonucunda %94 lük bir korelasyon ve 28 cm’lik karesel 

ortalama hata elde edilmiştir. Bu çalışma kullanılan yöntemin doğruluğunu desteklemekte 

ve diğer pahalı yöntemlere göre olumlu ve olumsuz yönleri değerlendirilmektedir. 

 

Anahtar kelimeler: İnsansız Hava Araçları, Ağaç Yüksekliği Kestirimi, 

Fotogrametri, Görüntü İşleme, Lokal Maksimum Filtreleme, Tüketici Sınıfı Kameralar 
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1. INTRODUCTION 

 

Let them fly and they will create a new market, as Colomina and Molina (2014, 

p.79) said in their great review of Unmanned Aerial Vehicle (UAV) systems [1] , they 

flew and created a new market. UAV systems have been developing so fast that they are 

taking classical Photogrammetry and Remote Sensing (PaRS) methods’ places by storm. 

Not only in strict PaRS applications, these systems are used in a variety of fields, such as 

agricultural and environmental applications [2], intelligence, surveillance and 

reconnaissance missions [3], aerial monitoring [4], cultural heritage [5], conventional 

mapping, photogrammetry and also cadastral applications [6]. According to a technical 

report [7] prepared by MarketsandMarkets, UAV market was valued at USD 10.1 billion 

in 2015 and is expected to value at USD 14.9 billion in 2020. Regulations all over the 

world are being prepared for this new kind of aerial technology to be legally used for 

PaRS applications. 

Combined together, computer vision and geomatics technologies have created a 

new sensation for PaRS and conventional mapping with low altitude and large scales [8-

11]. An UAV system usually consists of an unmanned aerial vehicle with related payload, 

a ground control station for early mission planning and real time navigation and 

communication link between station and vehicle. Without an onboard pilot, UAVs can 

maintain a flight pattern above the ground.  

 

1.1. Photogrammetric History and Evolution of Unmanned Aerial Vehicle 

Systems 

 

For aerial observations mankind used variety of objects including balloons, rockets, 

planes, kites and even pigeons. Early photogrammetric studies were based on taking 

photographs from rooftops or hot-air balloons (Fig 1.1). In 1858, French photographer 

named Gaspard-Félix Tournachon probably took the first photogrammetric photographs 

recorded in history. E.D Archibald used flying kites as aerial vehicles in 1882 and Alfred 

Nobel used rockets in 1897 to carry out aerial photography. In 1897, Julius Gustav 

Neubronner invented probably the most exciting and also the hardest way to take aerial 

photographs, pigeon photographer method (Fig 1.2) [1].  
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Figure 1.1. The camera platform below the balloon with the balanced holder of the camera and 

the ropes [12] 

 

 

Figure 1.2. Top left: Aerial photographs of Schlosshotel Kronberg. Bottom left and 

center: Frankfurt. Right: Pigeons fitted with cameras [13].  

 

Putting aside rooftop and hot-air manned balloon photography, mankind always 

relied on an unmanned remote system to take aerial photographs before the first manned 

aerial platform was invented by Wright brothers. They took the first photographs from a 

manned aerial system in 1909 [1]. From then on, traditional photogrammetric application 

were based on manned aerial platforms with experienced personnel. In late twentieth 

century with the development of radio-controlled systems, modern UAVs were used for 

https://en.wikipedia.org/wiki/Schlosshotel_Kronberg
https://en.wikipedia.org/wiki/Frankfurt
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PaRS applications for the first time. Pryzybilla and Wester-Ebbinghaus carried out an 

aerial photographic application with a radio controlled, 3m fixed-wing UAV with an 

optical camera [1, 14]. Later, same team used a model helicopter to perform a second test 

with a medium-format camera [1, 15]. These studies were the first time that a UAV 

platform was used. 

 

1.2. General Aspects of Unmanned Aerial Vehicles in Photogrammetry and 

Remote Sensing 

 

As it is highlighted in the thesis before, UAV systems consist of unmanned aerial 

platforms, ground stations and communication links. They are considered as the 

fundamental components of UAV systems. However there are also other parts such as 

navigation and imaging sensors, mechanical servos and wireless systems [1].  

Without an onboard pilot, UAVs can maintain a level flight pattern above the 

ground [16, 17]. Launch methods like autonomous, air, hand and mechanical, depends on 

the size and type of UAV (Fig 1.3, Fig 1.4). The size of the UAV can limit the type of 

application and the sensor carried onboard. Sensor development within consumer digital 

camera markets has seen many technological advances resulting in much smaller, 

affordable and effective sensors for smaller UAV platforms. Technological advances in 

digital cameras, Global Navigation Satellite Systems (GNSS), and autopilots extensively 

allowed the use of smaller UAV’s as platforms for remote sensing. Autopilots with 

integrated GNSS aid in flight control, collection of camera positions and also landing, 

resulting in easy use and autonomous flight. Aerial data collected while UAV is in flight, 

can be stored directly on the aircraft or camera memory or it can be sent back to ground 

control station. [16, 18]. 
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Figure 1.3. UAV platform is being launched on a rampart [19]. 

 

Figure 1.4. UAV platform is being launched with bare hands (Top left: Waiting for propeller to 

work, top right: preparing for launching with hands, bottom left: throwing the UAV forward). 

 

Sensors onboard UAV can produce a wide variety of remotely sensed results like 

true color UAV ortho-images with higher resolution (1-5 cm) compared to traditional 

photogrammetric methods, hyperspectral or multi-spectral images, thermal sensed 

images, Light Detecting and Ranging (LiDAR) sensed point clouds and even full motion 

videos [16, 20] with real time data gathering. 
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Eisenbess (2009) [21] provided a valuable report on UAV classification based on 

many attributes like heavy or light weight platforms, price, weather and wind resistances, 

powered or non-powered, payload etc. Also in van Blyenburgh’s (2013) [22] work, a 

mass inventory of UAV is presented. Figure 1.5 shows an UAV of each category 

accordingly. 

 

 

Figure 1.5. From top to bottom, left to right, each picture shows UAVs of each category in [1,22]: 

AeroVironment, USA-Nano-Hummingbird; Ascending Technologies GmbH, Germany-Falcon 8, CATUAV, 

Spain-Argos, Swiss UAV, Switzerland-Neo s300; Schiebel Austria-Camcopter S100, MMIST, Canada-

Snowgoose; Thales, UK-Watchkeeper; Selex ES, Italy-Nibbio; Insitu Inc., USA-Integrator; General Atomic 

Aeronautical Systems, USA-Predator A; QinetiQ UK-Zephyr; Lockheed Martin, USA-Morphing UAS. 

  

UAV are classified into many different classes based on their Maximum Take-Off 

Weights (MTOW), Operating Range (OR), payloads etc. As described in Colomina and 

Molina (2014, p.81), Medium Range Endurance to Exo-Stratosferic UAV ecosystem is 

the largest groups that operates at the highest altitude. But these UAVs are commonly are 

authorized to fly under certain situations decided by military units generally. Next, there 
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are close-short-medium-range UAVs, and they are characterized as their MTOW is 

between 150 and 1250 kg and OR between 10 and 70 km. And lastly, there comes nano-

micro-mini UAV class which is defined as their MTOW under 30 kg, and operation range 

less than 10 km. Table 1.1 gives examples of most commonly UAVs used for PaRS 

applications. 

 

Table 1.1. Examples of most commonly used UAVs for PaRS applications [1] 

Name Manufacturer Weight (kg) Endurance (h) 

Integrated 

payload (i) or 

Payload weight 

(w) 

Common fixed-wing unmanned aircraft 

SwingletCAM SenseFly 0.5 0.5 

16 Mpx Red, 

Green, Blue 

(RGB) camera (i) 

GeoScan101 GeoScan 2 1 
24.3 Mpx RGB 

camera (i) 

UX5 Trimble 2.5 0.83 
16.1 Mpx MILC 

RGB camera (i) 

Pteryx FotoMapy 5 2 
1 kg w/o batteries 

(w) 

Sirius I MAVinci 3 0.91 
16 Mpx RGB 

camera (i) 

Kahu Skycam 4 2 

Double-head 16 

Mpx MILC RGB 

cameras (i) 

Common rotary-wing unmanned aircraft 

Geocopter IGI 90 2 30 kg (w) 

Scout B1-100 Aeroscout 75 1.5 30 kg (w) 

R-MAX, type II Yamaha 100 1 28 kg (w) 

Common multi-rotor unmanned aircraft 

Md4-1000 Microdrones 3 1.46 1.2 kg (w) 

HT-8-2000 Height-Tech 2.4 0.28 2 kg (w) 

Aibot x6 Aibotix 2.4 30 2.5 kg (w) 
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Table 1.1. (Continuing) Examples of most commonly used UAVs for PaRS applications [1] 
 

Falcon 8 
Ascending 

technologies 
1.45 0.33 0.75 kg (w) 

HexaKopter MikroKopter 1.2 0.6 1 kg (w) 

  

 

In UAV based PaRS applications, once the requirements of the application are set, 

a combination of aerial vehicle and sensing payload should be defined with the best 

interest for the studies. This combination is not an easy task to be carried out, while 

considering attributes such as payload’s weight, UAV’s MTOW, UAV weight, UAV and 

payload’s power requirements etc [1]. Table 1.2 summarizes common small and medium 

format visible band cameras for UAV systems. Information about multispectral cameras 

for UAV is provided in Table 1.3. Table 1.4 presents commonly used hyperspectral 

cameras for UAV systems. Lastly, Table 1.5 describes thermal cameras suitable for UAV 

mapping. 

 

Table 1.2.Commonly used small and medium format visible band cameras for UAV systems [1] 

(Mpx: megapixel, fp: focal plane shutter, ls: leaf shutter, fps: frame per second) 

Manufacturer, 

Model 

Format 

type 

Resolution 

(Mpx) 

Size 

(mm2) 

Pixel 

size 

(µm) 

Weight 

(kg) 

Frame 

Rate 

(fps) 

Speed 

(s-1) 

Phase One, 

iXA 180 
MF 

CCD 

sensor 80 

53.7 x 

40.4 
5.2 1.70 0.7 

4000 (fp) 

1600 (ls) 

Trimble, IQ180 MF 
CCD 

sensor 80 

53.7 x 

40.4 
5.2 1.50 - 1000 (ls) 

Hasselblad, 

H4D-60 
MF CCD 60 

53.7 x 

40.4 
6.0 1.80 0.7 800 (ls) 

Sony, NEX-7 SF 
CMOS 

24.3 

23.5 x 

15.6 
3.9 0.35 2.3 4000 (fp) 

Ricoh, GXR 

A16 
SF 

CMOS 

16.2 

23.6 x 

15.7 
4.8 0.35 3 3200 (fp) 
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Table 1.3. Commonly used multispectral cameras for UAV systems [1] 

Manufacturer, Model 
Resolution 

(Mpx) 
Size (mm2) 

Pixel size 

(µm) 

Weight 

(kg) 

Spectral 

range (nm) 

Tetracam, MiniMCA-6 CMOS 1.3 6.66 x 5.32 5.2 x 5.2 0.7 450-1050 

Quest Innovations, 

Condor-5 UAV-285 
CCD 1.4 10.2 x 8.3 7.5 x 8.1 0.8 400-1000 

 

Table 1.4. Commonly used hyperspectral cameras for UAV systems [1] 

Manufacturer, 

Model 

Resolution 

(Mpx) 

Size 

(mm2) 

Pixel size 

(µm) 

Weight 

(kg) 

Spectral 

range 

(nm) 

Spectral 

bands and 

resolution 

Rikola Ltd., 

Hyperspectral 

Camera 

CMOS 
5.6 x 

5.6 
5.5 0.6 500 - 900 40, 10 nm 

Headwall Photonics, 

Micro-Hyperspec X- 

series NIR 

InGaAs 
9.6 x 

9.6 
30 1.025 

900 - 

1700 
62, 12.9 nm 

  

Table 1.5. Commonly used thermal cameras for UAV systems [1] (mK: millikelvin) 

Manufacturer, 

Model 
Resolution (Mpx) 

Size 

(mm2) 

Pixel 

size 

(µm) 

Weight 

(kg) 

Spectral 

range 

(µm) 

Thermal 

sensitivity 

(mK) 

FLIR, TAU 2 640 

Uncooled VOx 

Microbolometer, 

640 x 512 

10.8 x 

8.7 
17 0.07 7.5 – 13.5 ≤ 50 

Thermoteknix 

Systems Ltd., 

Miricle 307K-25 

Amorphous Silicon, 

640 x 480 

16 x 

12.8 
25 0.105 8 - 12 ≤ 50 

 

 

Not only cameras are applied to UAV for PaRS applications. There are also LiDAR 

scanners [1, 23, 24] and Synthetic Aperture Radars (SAR) [1, 25-27] suitable for UAV, 

but still remains challenging in most ways due to cost, size, flight dynamics etc. Table 

1.6 provides some information about successfully integrated LiDAR systems onboard 

UAVs and Table 1.7 describes successfully integrated SAR systems onboard UAVs. 
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Table 1.6. Integrated laser scanner for UAV systems [1] (A: automotive, MM: terrestrial mobile 

mapping, H: hydrography, deg: degree, app: application) 

Manufactur

er, Model 

Scanning 

Pattern 

Range 

(m) 

Weight 

(kg) 

Angular 

res. 

(deg) 

FOV 

(deg) 

Laser 

class 

and λ 

(nm) 

Frequency 

(kp/s) 
App. 

Ibeo 

Automotive 

Systems, 

IBEO LUX 

4 Scanning 

Parallel 

lines 

200 1 

(H) 

0.125 

(V) 0.8 

(H) 

110 

(V) 

3.2 

Class 

A, 905 
22 A 

Velodyne, 

HDL-32E 

32 

Laser/detec

tor Pairs 

100 2 
(H) – 

(V) 1.33 

(H) 

360 

(V) 

41 

Class 

A, 905 
700 MM 

RIEGL, VQ-

820-GU 

1 Scanning 

Line 

≥ 1000 

 

 

- 
(H) 0.01 

(V) N/A 

(H) 

60 

(V) 

N/A 

Class 

3B, 

532 

200 H 

 

 

Table 1.7. Integrated synthetic aperture radars for UAV systems [1] (NanoSAR B weight doesn’t 

account for antenna and Inertial Measurement Unit) 

Manufacturer, 

Model 
Spectral Bands Weight (kg) 

Transmitted 

power (W) 
Resolution (m) 

IMSAR, 

NanoSAR B 
X and Ku 1.58 1 

Between 0.3 and 

5 

Fraunhofer FHR, 

MIRANDA 
W - 0.1 0.15 

NASA JPL, 

UAVSAR 
L 200 2000 2 

SELEX Galileo, 

PicoSAR 
X 10 - 1 
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1.3. Research Objectives 

 

In this study, a low-cost UAV system is used to derive tree heights and crowns. A 

consumer-grade RGB camera on a lightweight UAV (< 0.70 kg) was used to generate 

ortho-images, which were then used to construct a DSM and DTM of the study area. By 

subtracting the DSM from the DTM, real height model (which contains the heights based 

on the ground surface), known as CHM, is used to be filtered with the local maximum 

filter algorithm to obtain the individual crown points and heights of the trees. Afterwards, 

tree heights were measured in the field with a laser distance meter and compared to tree 

heights estimated by a local maximum filter. 
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2.  LITERATURE SURVEY 

 

Mini-UAV platforms are suited well for urban forest applications. UAV generated 

products for urban forestry can be used in many ways (Table 1.8). A spatial tree inventory 

is needed when it comes to understanding how people manages urban forests and 

surrounding areas. Urban forest inventories include information like species, diameter, 

condition, maintenance needs, location, height, growing class etc. which requires an 

update in specified time intervals. An indirect benefit of inventory analysis with the UAV 

platform is the collection and archiving of aerial imagery for future temporal comparison. 

To complete spatiotemporal analysis to detect changes over time, small UAV applications 

presents an affordable repeatability of acquiring aerial imageries. Multi-temporal data 

collected by the UAV platform will provide effective comparisons to understand 

landscape change and monitoring [28]. Inventory and spatial comparisons will provide 

valuable information of urban forest structure and that will lead to more effective 

management decisions [16]. 

 

Table 1.8. UAV products related to urban forestry uses [16] 

UAV Products Urban Forestry Uses 

Color aerial photography 

Land cover/use mapping 

Historical documentation 

Tree inventory 

Vegetation analysis (crown density) 

Temporal comparison 

Planning 

Maintenance 

Planting 

Wildlife corridors 

Landscape fragmentation 

Near Infrared (NIR) photography 

Vegetation analysis 

Tree monitoring 

Vegetation health monitoring 
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Table 1.8. (Continuing) UAV Products related to urban forestry uses [16] 

LiDAR 

Tree heights 

Topographic analysis 

Watershed analysis 

Infrastructure analysis 

Soil moisture 

Forest structure 

Digital Elevation Model (DEM) 

Three Dimensional (3D) Modeling 

Contours 

Road/trail desing 

Slope/aspect 

Elevation 

Thermal Imaging 

Vegetation analysis 

Insect/disease monitoring 

Drought sensitivity 

 

 

Calculating the canopy and individual tree heights of a forest with remote sensing 

techniques is highly accurate and reduces time and cost compared to traditional 

approaches. Airborne LiDAR is the most commonly used system for deriving metrics 

from a forest area. A summary of how LiDAR returns occur is presented in Fig 1.6. There 

have been several studies on the use of airborne LiDAR platforms in forest areas that 

show accurate results [29, 30] with the use of UAV-LiDAR platforms [31, 32] and even 

with spaceborne LiDAR platforms [33]. However, despite these highly accurate results, 

short flight sessions and the high cost of these surveys with experienced personnel prevent 

continuous studies [23, 34]. Imagery obtained from UAVs can be used to obtain point 

clouds similar to LiDAR point clouds that results in creating DEM, DTM and CHM 

products [16, 35]. There have also been studies with the satellite images [36, 37] based 

on forest structure and the spatial resolution of the satellite images; the results are less 

precise but useful for large areas. 
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Figure 1.6. An explanation of how LiDAR returns occur [38] 

 

In recent years, UAVs equipped with consumer-grade cameras have provided the 

most convenient approaches for inventory, monitoring, and modeling applications [33, 

34]. Lightweight UAV platforms (< 2 kg) can fly longer than Airborne LiDAR and UAV-

LiDAR platforms, which helps to reduce survey costs. 

In order to estimate individual tree metrics, high resolution DEMs and 

photogrammetric point clouds must be generated to create CHMs. With photogrammetric 

point clouds, virtual tree models can be generated [39]. Classification of these point 

clouds based on their geometric characteristics can prove useful in avoiding detection 

errors and the interpolation of the terrain beneath the forest structures [40]. However, 

generating only a few points from the ground surface in dense forest may be problematic 

when interpolating the terrain [23]. Therefore forest structure types become significant 

when it comes to detecting tree crowns or real tree heights [41].  

Miniaturized UAV payloads, including consumer-grade cameras, GNSS, and 

embedded computer systems provide poorer quality images with geometrical 

deformations, as compared to traditional metric systems used on airborne platforms [34, 

42]. Several methodologies like Structure-from-motion (SfM) and Multiview-stereo 
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(MVS) should be performed to correct for these issues [34,43-48]. Traditionally, airborne 

photogrammetric acquisition of images has been used to obtain canopy heights [49,50] 

with onboard Digital Mapping Cameras (DMC). These surveys produce promising data, 

but with high time and cost requirements.  

 

2.1. Previous Works 

 

All the related literature publications are examined carefully in order to select the 

best method to obtain tree heights in a human-made forestry area. Some of the researchers 

that are listed below had the advantage of studying in tree fields that are created for 

research purposes. Some of them had spacing between trees 2 to 10 meters so that main 

objects of the study can be identified and modeled easily without merging or blending 

with other trees surrounding. Some of them studied within natural forest areas but most 

of their aim was not to single out individual trees but classifying them in a whole manner. 

These publications can prove that tree crown detection and height estimation is 

solely based on the characteristics of individual trees and forest areas. Longer spacing 

between the trees can solve the problem, but no researcher can expect that natural forest 

areas would form according to this idea.  

Colomina et al. [1] provided a great review of all unmanned aerial systems used till 

February 2014 for photogrammetry and remote sensing. They discussed UAV platforms, 

all kinds of sensors onboard UAV systems and also their application to a variety of fields. 

Also Remondino et al. [48] discussed the current status and future perspectives of UAV 

photogrammetry till 2011 September. They presented UAV image processing methods 

for photogrammetric application, mapping and 3D modeling. 

Küng et al. [43] discussed the accuracy of automatic photogrammetric processes of 

ultra-light UAV imageries with several datasets also analyzed their accuracies. They 

proved that the accuracy highly is dependent on flying height of the UAV platform. A 

comparison of the robust and fully automated process of UAV image processing systems 

and traditional photogrammetric processing systems in their publication. Also Vallet et 

al. [46] provided a photogrammetric performance evaluation publication for Swinglet 

UAV from Sensefly, Parrot Company. 

Popescu et al. [51] used airborne LiDAR technology to estimate tree heights in their 

study. High density and small-footprint LiDAR data was acquired from coniferous, 
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deciduous and some other mixed stands in order to justify the effects of tree types. Not 

only the used airborne LiDAR to estimate the tree heights with filtering methods, but they 

also used ground truth data to investigate how ground measurements can help to the 

processing stage. As a result, they achieved 85 and 90% correlation with two different 

methods. They concluded with stating the variable window size algorithm performed 

better for estimating the tree heights of dominant and co-dominant trees. 

Gougeon et al. [37] applied tree crown approach to Ikonos images in a coniferous 

plantation area. They used two base Ikonos images with 1 m (panchromatic) and 4 m 

(multispectral) spatial resolutions and also used same approach in winter and summer 

seasons. Panchromatic images were resampled and smoothed using a 3x3 kernel mean 

filter. In study area, trees were counted to estimate the accuracy of tree crown delineation. 

Also, on smoothed images, a local maxima was used with a 3x3 sized window for 

comparison. Individual tree crown and local maxima approach were off from ground 

validation data with a percentage of 15 for both season. They performed an individual 

tree crown based classification by using multispectral Ikonos images to generate an 

overall accuracy test. With the classification results compared to trees with known-

species, accuracy was 59 percent. They claimed confusion with classification results were 

mostly within white and red spruces. 

Packalên et al. [52] used k Most Similar Neighbor (k-MSN) method on airborne 

laser scanning data to predict forest variables like volume, stem number, basal area, basal 

area median diameter and tree height. They used a non-parametric k-MSN method to a 

combination of airborne laser scanning data and aerial photographs to predict the 

variables for Scots pine, Norway spruce and deciduous other tree species. They used the 

vegetation returns of the laser beams to predict tree heights. They claimed this method 

worked best for Scots pine and Norway produces than other deciduous trees, also better 

than related field inventory ground measurements. 

Monnet et al. [53] investigated tree top detection algorithm with several parameter 

combinations to evaluate its performance. Their algorithm consisted of digital elevation 

model reconstruction, Gaussian smoothing, morphological filtering and local maxima 

selection and extraction. Detection rates are achieved over 42.9% with 4.1% false 

positives for Silver fir, Norway spruce and European beeches. They used the optimal 

settings in one study area and tested it in the other areas. They claimed that optimized 
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parameters are dependent on the laser data, mostly point density and also forest structures 

and species. 

Vauhkonen et al. [41] used airborne laser scanning data to derive height, intensity 

and alpha shape metrics like diameter at breast height, stem volume etc. They tested 

nearest neighbor imputation by k-MSN method and also used the Random Forest method 

for the estimation of species, diameter at breast, height and stem volume. Random Forest 

method proved valuable asset to classify Scots pine, Norway spruce and deciduous trees, 

with handling 1846 predictors without the need to reduce them. They achieved 13%, 3% 

and 31% root mean square errors for diameter at breast, height and volume attributes 

respectively. 

A comparison between individual tree and height detection algorithms has been 

made by Vauhkonen et al. [54]. Their results showed that forest structure, in particular 

tree density and clustering affects the performance of all the algorithm regardless, also 

training with local data helped to improve the results. They provided a good summary of 

all algorithms used to derive tree metrics to guide the user to choose the according method 

to their interest. 

Wallace et al. [23] discussed the development of UAV-LiDAR systems with 

application to forest inventories and also modified a processing workflow to improve the 

horizontal accuracy of the point cloud by including a GNSS, an inertial measurement unit 

and a high definition video camera from 0.61m to 0.34m as root mean square error. With 

higher density data such as 62 point per m2, they achieved root mean square error of 

0.15m. They claimed horizontal accuracy of point data was mostly affected due to 

including a video camera in the system. Wallace et al. [31, 32] also discussed the current 

tree detection algorithms with UAV-LiDAR systems. 

Wallerman et al. [49] investigated the usage of digital elevation models acquired 

from aerial imagery taken with digital mapping cameras onboard photogrammetric suited 

planes (4800 m above ground, 60% stereo overlap in along-track and 30% in across-

track). They applied a single tree modeling approach similar to individual tree crown 

method commonly used in airborne laser scanning. A simplified individual tree crown 

method was used to estimate tree height and their root mean square error was 34% (of the 

true mean maximum tree height). They provided an alternative to LiDAR approach to 

forest inventories.  
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Waser et al. [50] studied high resolution DSM from infrared colored images to 

obtain shrub/tree cover in open mire lands. Two different types of forest masks were 

gathered from the DSM with a multi-resolution segmentation and a fuzzy classification. 

They claimed that for future mire protection, modeling small shrubs and trees with high 

accuracy by using this technique would prove great value and also eliminate the question 

of forest/non-forest area.  

Waser et al. [55] also studied classification of tree species in different forest 

ecosystems with images taken with line-scanning sensor airborne digital sensor 40 

(ADS40) and aerial row camera (RS30) which provided overlap up to 90% and higher 

radiometric resolution. Within two study areas, 517 trees had been visited in the field and 

detected in the images were evaluated. Classification results provided an overall accuracy 

between 0.76 and 0.83 while classifying dominant tree species. Lower accuracies were 

obtained for small and non-dominant tree species in study areas. Their study shows the 

potential of multi-resolution image segmentation applied on CHMs for forest inventories. 

Zarco-Tejada et al. [34] investigated the pixel resolution matter for UAV imagery 

used to obtain tree heights. They used a 2m wingspan fixed-wing platform with 5.8kg 

take-off weight and obtained Very High Resolution (VHR) imagery to generate ortho-

mosaics and DSMs. Their study yielded an overall root mean square error for tree heights 

as 35 cm. They also claimed that pixel resolution lower than 35 cm degraded the accuracy 

of the application. Zarco-Tejada et al. [56] studied leaf carotenoid content estimation, also 

[36] water stress detection of canopy with micro-hyperspectral imager and a thermal 

camera. 

Fritz et al. [47] compared UAV based photogrammetric point clouds to terrestrial 

laser scanning with application of tree stem mapping. Data collection were done in leaf-

off state in April 2013 which is a big advantage that can eliminate the negative effects of 

overgrowth foliage. UAV platform had a Panasonic G3 consumer grade camera with 16.6 

megapixel sensor which took over 1000 images with a tilt angle of 45°. The results were 

compared to data obtained with terrestrial laser scanner point cloud. They claimed that 

two point clouds surprisingly correlated well with each other with a Pearson’s correlation 

coefficient of 0.696.  

Takahashi et al. [36] used remote sensed images from Panchromatic Remote-

sensing Instrument for Stereo Mapping (PRISM) onboard Advanced Land Observing 

Satellite (ALOS). They extracted the digital terrain model from digital surface model in 
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order to obtain CHM of the study area. Over 1000 trees were individually ground 

measured with an aim to be compared to resulting data obtained from the satellite images. 

They claimed there was positive correlation between two data sets and also the next part 

of the study will be in natural forest areas with higher trees. 

Chen et al. [57] used watershed segmentation method on CHMs in order to locate 

tree heights in a savanna woodland. They used small footprint LiDAR data point cloud 

to create CHMs. The treetops were located by searching a local maxima in canopy 

maxima model. They combined variable parameters in order to get the best results to 

isolate individual trees. Their results showed that absolute accuracy of the tree isolation 

was 64.1%. 

Kattenborn et al. [40] used UAV based point clouds to detect single palm trees. 

They provided the algorithm parameters with ground-based measurements in order to 

obtain the best results. They also evaluated the pixel resolution matter like Zarco-Tejada 

et al. [44] with two flight campaigns at 70 and 100m. The point clouds were classified as 

three classes of palm (1), other vegetation (2) and ground (3). Their results provided a 

good amount of 86.1% for the entire study area and also 98.2% for dense growing palm 

stands. 

Sperlich et al. [39] used UAV based point clouds data with LiDAR data processing 

software and evaluated the potential of UAV based photogrammetric point clouds for 

single tree detection and height derivation. As reference data, they used terrestrial laser 

scanning point cloud data. Their results clearly showed that tree detection accuracy were 

dependent of reference tree height and tree density. They claimed that unreliable tree 

crown formations could results in detecting more than one crowns belonging to an 

individual tree. 

The approach used in this thesis is similar to “Adaptive filtering based on CHM 

height values” method which will be explained later in “Materials and Methods” chapter. 

Advantages of this study would clearly be the ease of data acquisition and fully-automated 

processing stage. Raster reconstruction part is the most complex and user-defined stage 

of this process, because it’s highly dependent on training data which are Above Ground 

Level (AGL) height measurements and positions of these trees.  
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2.2. Methodologies for Estimating Tree Heights 

 

There are several methodologies for single-tree detections. A comparative testing 

between some of these LiDAR data based methods can be found in Vauhkonen et al.’s 

[54] work. Their results showed that forest structure deeply affects the performance of all 

algorithms. Tree detection success was especially based on density and clustering of trees 

in study areas. These algorithms significantly differenced from each other particularly in 

tree detection rather than height estimation. In this study, point clouds obtained from 

UAV aerial imagery will be processed with LiDAR methods used to obtain individual 

tree heights in a forest area. A summary of the applied methods are given below. 

Kaartinen and Hyyppä’s (2008) [58] report gives far more detailed information about 

wider range of algorithms used for this type of studies. 

Cluster formation using modified k-means approach: By using ground based 

training data, a Euclidian distance criteria is used to eliminate unwanted local maximums. 

Wanted local maximums were pretended as seed points. According to these points, a k-

means vector quantization algorithm is used to cluster the point data. Training data based 

height reduction factor is used to lower the bias to improve the clustering of similar 

objects [53, 59]. 

A voxel layer single tree modelling algorithm: This algorithm works on density 

images which are calculated from consecutive height layers that are extracted from point 

data projected into a voxel space. These images are then traced with a hierarchical 

morphological algorithm from top to down, assuming there occurs a tree crown when 

higher amounts of points are traced [53, 60]. 

Adaptive segmentation based on Poisson forest stand model: A pit-filling algorithm 

for the CHM and then a low-pass filter with a binominal kernel is used based on the 

expected nearest neighbor distances between trees. According to each ground training 

data CHMs are interpolated to various resolutions suitable for extracting smallest tree 

crown in forest areas [53, 61, 62]. 

Local maxima detection with residual height adjustment: The first return of point 

cloud data is interpolated into a DSM with various resolutions depending on the training 

data. This DSM is smoothed by running a 3x3 Gaussian filter by a number of times, 

assuming the DSM is pit-free eventually. First return heights of the DSM is calculated 

using a percentile residual height distribution. The window size, the number of Gaussian 
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runs and the residual height percentile adjustment is set specifically for each study areas, 

based on the ground measured tree height and positions [53, 63]. 

Segmentation based on geometric tree crown models: Calculating the correlation 

between the point cloud data height and a geometric tree crown model that is placed at 

the center of a pixel is the basis of this algorithm. An image created with this correlation 

is used in tree detection with marking each raster cell with a non-zero CHM value and a 

positive correlation value as seed points. Until a local maximum is found where a seed 

doesn’t have a high correlation with neighbor seeds, these seed points are updated to 

neighbor cell that has highest correlation. The final seed is characterized as tree crown 

segment [50, 64-66]. 

Adaptive filtering based on CHM height values: In this method, CHMs are low-

pass filtered using Gaussian kernels. After the filter process, CHMs are interpolated into 

a grid of desired value i.e. 0.5m by using the maximum of the first return in the related 

grid. The empty cells in the CHM are filled by filtering the CHM with a defined window 

size by taking the average of pixels within the window. This algorithm needs a pre 

requirement of defining window sizes and height classes in order to produce results [53, 

67]. 

The methods mentioned above uses two kinds of input data which are point clouds 

and CHMs. Also, these methods are highly dependent on training data based on ground 

measurements. Results of these methods can be significantly improved with better 

training data as it is obtained with better ground measurement tools [50].   

The approach used in this thesis is similar to “Adaptive filtering based on CHM 

height values” method. Point cloud derived from aerial images will be the base data for 

this study. After point clouds are obtained, a raster reconstruction stage comes next. In 

this stage, highest point heights, which are assumed to be first returns of laser pulses, are 

diffused into pre-defined pixel sizes which are highly dependent on training data and 

calculated from them. A pit-free CHM is the best raster data can be used for this approach, 

so a filter is used to fill the empty pixels, which have no point cloud data at all, with the 

average heights of the neighbor pixels. Highest returns from user-defined pixel sizes will 

be tagged as tree tops or crown respectively. These tags will be checked up as if they are 

the highest points can be identified as tree tops with a circular window defined according 

to the height of trees. If any higher point is tagged while the circular window is being 

searched, the original point would be untagged as tree top. User-defined pixel size is 
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based on how many pixels a tree would fit in i.e. with 0.5m x 0.5m pixel size, we can 

assume a tree can fit in a 3x3 pixel size which would mean the foliage of the tree is 3x3 

pixels wide (1.5m x 1.5m).  
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3. MATERIALS AND METHODS 

 

3.1.  Study Workflow 

 

Forestry work with UAV platforms started off in the 2000s with model planes and 

helicopters [46, 68, 69]. Recently they have been used with consumer-grade cameras and 

low-cost systems in order to make surveys more efficient. Workflow used in this thesis 

on how to generate individual tree heights and positions is shown in Figure 3.1. This 

workflow is semi-automated. Ground Control Point (GCP) measurements, ground based 

tree height and position measurements are obtained through manual labor. Reconstruction 

of DSM and CHM is highly dependent on local training data, therefore they also require 

user interactions. 

 

 

Figure 3.1. Study workflow 

 

In “Ground Exploratory” stage, which took about half a day, a take-off and a 

landing area has been evaluated to reduce the landing and take-off damages might be 

caused to UAV platform. Also, types of trees were identified to understand their growing 

classes and foliage structure. In “Flight Planning” stage, preliminary parameters of UAV 

flight, which are explained later in “Study Area and Flight Session” section, were 

evaluated based on area covered by the test area, wind velocity, atmospheric conditions 
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etc. During “Flight Session” stage, only 28 minutes were spent for flying the UAV and 

GCP measurements took approximately 1 hour, which made preliminary field survey took 

less than 1.5 hour in total.  

“Ground Measurements” stage was the most tiring and time-consuming part of this 

study. In total, 91 trees were measured. Trees were selected for measurement, based on 

how clear they can be identified from nadir imagery. Only 53 of these trees were located 

in the test area. A whole day was spent for this stage with only one person, including 

measuring and recording in the field with pen and paper and also transferring data to 

computer environment. In “Generating Ortho-Images, DSM and Point Clouds” stage, a 

fully automated process was conducted. Details of this part is explained in the 

corresponding section. This stage only took only half a day with a high end computer. 

Performance of processing computer may change time-consume of this part. “Obtaining 

Above Ground Measurement” stage was associated with reconstruction of the point cloud 

data to obtain AGL height of the test area. This stage only took about 10 minutes, due to 

having a small test area with point count lower than one million.  

In “Creating Canopy Height Model” stage, a raster was created based on point cloud 

data which will be named as CHM. Ground training data were used for this stage in a 

significant manner. “Local Maximum Filtering” part was associated with filtering process 

of the CHM created on the previous section. This stage only took about 10 minutes, but 

based on the capacity of the data, time spent for the stage may rise.  “Validation with 

Ground Measurements” stage was the second most time-consuming part of this study, as 

it involves matching ground measured and algorithm-obtained tree heights not only by 

locations but also in paper sheet process. Matched heights were then analyzed statistically 

to understand the relation between them. This stage took approximately one day.   

In total, less than 3 days were spent to obtain individual tree height of the test area. 

This time-consume may depend on the area covered by the study area, performance of 

the processing computer and also the experience of the personnel. 

 

3.2. Unmanned Aerial Vehicle Platform 

 

A lightweight UAV platform (eBee), which is developed by senseFly, a Parrot 

company, was used throughout this study. The eBee is a fixed-wing UAV that weighs 

less than 0.70 kg with the camera and has a wingspan of 96 cm (Figure 3.2). Its cruising 
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speed ranges from 40 to 90 km/h, which makes it suitable for mapping up to 12 km2 (1200 

ha) with a maximum flight time of 50 minutes. Technical specifications of eBee can be 

found in Appendix 4. The camera was a Canon IXUS 127 HS with a 4608 x 3456 pixel 

detector that captured images at f/2.7 and 1/2000 s. Technical specifications of the camera 

can be found in Appendix 2. According to Directorate of General of Civil Aviation 

regulations about UAV’s usage in Turkey (which was accessed on August, 2016), UAV 

used in this study is classified as İHA0. These classes are identified based on MTOWs of 

the UAVs. İHA0 limits the MTOW of the UAV between 0,5-4 kg, İHA1 limits it between 

4-25 kg, İHA2 limits it between 25-150 kg, while İHA3 classifies UAVs over 150 kg 

MTOW. 

 

 
Figure 3.2. eBee UAV platform with the supplied camera. 

 

 

3.3. Study Area and Flight Session 

 

The study area was a human-made forest called the Urban Forest of Eskişehir City, 

Turkey (Fig 3.3). This forest area has a recreation and hiking areas which are used 

frequently by the local people. A portion of the forest is planted to be used as fire fuel 

when they are grown into eligible sizes for pruning. The forest consists of mostly black 

and scots pines which were planted in 1960 and covers approximately 15 ha, of which we 

studied roughly 1 ha. Test area is a small part of the forest to the south. The main reason 

behind using a small test area is to work on a seamlessly ortho-image. Wind resistance of 

mini UAVs are not considered at their best, so in our image acquisition stage, some aerial 
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images were not taken in smooth conditions. Therefore test area is selected based on the 

seamless parts of the ortho-image of the study area.  Flight sessions’ day and time were 

selected based on the low wind speed occurring over the study area. Also, military 

services were alerted about the time of the flight was going to occur to prevent any crushes 

or panics if the UAV would be considered as unidentified flying objects. During the 28-

minute flight, 133 images (Figure 3.4a) were taken from 150 m AGL with 6.41 cm 

Ground Sampling Distance (GSD). High overlapping parameters were used between each 

image, %80 forward lap and %70 side lap respectively. Based on Zarco-Tejada et al.’s 

work in 2014 GSD has been selected around 6 cm in order to get the best results for the 

CHM. They tried reconstructing the CHM of their study area in order to get the best GSD 

related to their study purpose. Aerial imagery were stored on a memory card embedded 

in the supplied camera. Communication with ground control unit was provided with using 

2.4 GHz radio link and a Universal Serial Bus (USB) computer connection (Fig 3.5). A 

hand launch system was used at the beginning of flight which was fully automated from 

taking off to landing. Six three-dimensional Ground Control Points (GCP) were used, 

obtained via GNSS through Real Time Kinetic (RTK) technique. Technical specifications 

of the GNSS used in this study can be found in Appendix 5. The UAV operated with high 

effectiveness and provided high resolution aerial images. Based on these images, ortho-

images (Figure 3.4b), DSMs, and point clouds were produced. For visualization purposes, 

ArcGIS software developed by Environmental System Research Institute (ESRI) [70] was 

used.   
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Figure 3.3. Study area of Eskişehir Urban Forest 
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Figure 3.4. Ortho-image of the test area 

 

 

Figure 3.5. UAV and ground control station 
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3.4.  Field Measurements for Tree Height Validation 

 

In total, 53 trees were selected for field measurements to validate the heights 

estimated from imagery. Measurements were taken with a laser distance meter platform 

(±1 mm) (Figure 3.6) and the trees’ positions were recorded with GNSS. Technical 

specifications of the laser distance meter can be found in Appendix 3. The reason a laser 

distance meter was used is because of its cost and working speed. Although there are 

more accurate devices like laser scanners or total stations theodolites, the purpose of this 

study is to prove the low cost of this methodology thus making laser distance meter more 

suitable for this study. Ground measurements were made the day after the flight. 

Measurements were made from the bottom, where the stem base meets the ground, to the 

tree top, which rises above other branches. In dense forest areas, a ladder set against 

another tree was used to spot the crown of the trees if it could not be seen from the ground. 

Then the laser distance meter was placed on the ground with a visible point of view to the 

tree top before measuring. Collected heights were recorded with pen and paper. Because 

the GNSS did not work in areas with dense foliage, trees selected for validation were near 

clearings, which could also be more easily measured. The GNSS recordings were not the 

precise position of each tree, considering the algorithm processed positions couldn’t 

match with locations of tree bodies (stems) due to detecting maximum canopy height 

point’s position, but they were easily paired with the correct tree in the processing stage. 

 

 
Figure 3.6. Ground measurements were taken with a laser distance meter platform 
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3.5.  Generation of Ortho-images, Digital Surface Models and Point Clouds 

 

Image processing started with geotagging flight information and camera parameters 

to each image accordingly. Geotagging is a process of adding geographical identity to all 

the images collected from the flight. These metadata adds related information to 

Exchangeable Image File Format (EXIF) header that contains coordinates and parameters 

of the camera. Ground control information based on GCPs were created as a text file. This 

text file contained the names and coordinates for each GCP. In all images, an analysis 

was made to determine if there was any GCPs present, later to be selected to match with 

related pixel’s x,y values. Six GCPs were used with a mean error of 0.041 m.  In a fully-

automated process, all 133 images were calibrated.  A total of 1752,447 key points were 

used for the bundle block adjustment with 58,7230 3D points. The mean reprojection 

error of the adjustment was 0.3 pixels, or approximately 2 cm. Postflight Terra 3D, 

powered by Pix4D which is developed by Swiss Federal Institute of Technology [71] was 

used in the fully-automated process and the quality report of the process can be found in 

Appendix 1. This software is based on automatically finding thousands of common points 

between images. Each characteristic point found in an image is called a keypoint. When 

2 keypoints on 2 different images are found to be the same, they are matched keypoints. 

Each group of correctly matched keypoints will generate one 3D point. The point cloud 

is a set of 3D points that reconstruct the model. The X, Y, Z position and the color 

information is stored for each point of the point cloud. The resulting DSM and point cloud 

data are shown in Figure 3.7. Detailed information can be found about creating point 

clouds from aerial imageries with SfM in Schönberger et al. (2014)’s [72] work. 
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Figure 3.7. Left: DSM of the study area. Right: Point cloud of the study area 

 

3.6.  Obtaining Above Ground Level Height 

 

In order to obtain the AGL heights of the trees, we used the point cloud data to 

interpolate the terrain beneath the forest structure. First, point cloud data were classified 

as ground points or non-ground points. Ground points were then triangulated into a 

triangulated irregular network (TIN). The most important part of interpolating the terrain 

is how many points can be gathered under the foliage. Fewer and less accurate point cloud 

data would cause problems in accuracy. Large overlapping areas of the images help create 

more accurate and denser point clouds. Average density of point cloud data used for this 

study was roughly 40 points per m3. LAStools software, developed by Rapidlosso GmbH 

[73] was used in this process. There were no trees over 8m height, so a threshold of 8m 

maximum height was used in order to eliminate abnormalities like bird hits or other 

noises. Based on the TIN, each point’s height was calculated (Figure 3.8). 
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Figure 3.8. AGL height of the test area 

 

3.7.  Creating the Canopy Height Model 

 

A canopy usually means the upper layer of a forest which is formed by tree crowns. 

CHM used in this study can be defined as above ground height model of the forest. It 

represents the real heights that can be easily interpreted by human eye, i.e. a tree’s height 

can be predicted as 5.2 m, meaning the height started from the ground. The point cloud 

data from the AGL heights needed to be gridded into a raster in order to be filtered by 

local maximum filter. A step size is chosen based on the size of the trees, which would 

fill in a desired amount of pixels.  0.3 m step size was appropriate for the study area and 

a 300x400 pixel raster was created. To eliminate empty pixels within the raster, each point 

as classified as first returns were replaced with a circle of a predefined radius. The largest 

height value from the points inside pixels was used in the gridding process, therefore only 

one height value was embedded within pixels. Thus, the CHM was ready for validation 

with the ground measurements (Figure 3.9). Detailed information about how to generate 

flawless CHMs can be found in Khosravipour et al. [74]’s work. 
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Figure 3.9. Canopy height model of the test area 
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4. RESULTS AND DISCUSSION 

 

4.1.  Filtering Process with Local Maximum 

 

The CHM was based on the highest peak of the trees in the corresponding pixel. 

Local maximum filter is based on the window size set by the user. This filter moves the 

pre-defined window over the CHM and then compares the center cell’s value with the 

surrounding pixels within a variable sized circular window in order to define the center 

pixel as a maximum [50, 75-77]. This algorithm uses the CHM to identify local 

maximums and produces a text file based result. The result can easily be imported and 

visualized by a Geographical Information Systems software like ArcGIS Desktop [70]. 

Generally, the moving window is specified as 3x3, 5x5, etc. depending on the pixel size 

of the CHM [50, 78, 79]. In this study, a window specified as 3x3 means that roughly in 

a 1m2 area the algorithm would search for a maximum due to step size defined as 0.3m 

in the previous section.  The variable sized circular window used here is based on the 

maximum height of the center pixel within the window size defined by the user: 

 

Deciduous: Crown width (m) = 3.09632 + 0.00895×ht2     (3.1) 

Pines: Crown width (m) = 3.75105 – 0.17919×ht + 0.01241×ht2    (3.2) 

Combined: Crown width (m) = 2.51503 + 0.00901×ht2     (3.3) 

  

The equations are   taken from [70] for deciduous, pines and combined tree types 

respectively.  In these equations, ht represents height of the center pixel. This algorithm 

is calculated based on stand composition equations [70]. These equations result in tree 

crown radius of a tree based on its species. Height of trees are the main component of 

these equations to estimate a tree crown radius. Based on the ground height 

measurements, users should select their own window size in order to get the best results. 

In our study, equation 3 was selected for variable window size calculation based on the 

ground surveys which led the researcher believe tree crown radius in our study area differs 

from 2.5 m to 3 m. Radius obtained from this equation is used to draw a circle, which’s 

center is the center pixel of the algorithm’s pre-defined window as it is defined as a local 

maximum. Within this circle, all the pixels’ values are compared to the center pixel in 

order to define it as the local maximum. During the process FUSION/LDV [80] software 
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was used.  Figure 3.10 shows the resulting raster with the point features as individual 

trees and AGL heights. 

 

 

 
Figure 3.10. Individual trees as point features obtained from CHM by using local maximum filter 

 

4.2.  Validation of Estimated and Measured Tree Heights 

 

Validation involved comparing two different methods of measuring tree height. The 

first method was with laser distance meter and the second was with the algorithm. In total, 

53 ground-measured heights were taken. Tree heights in the test area ranged from 1.20 m 

to 7.10 m. A paired samples t-test were conducted due to having two population means 
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in the case of two samples that are correlated. Purpose of this statistical analysis is to 

determine whether the mean of differences between two paired samples differ from zero 

[81]. Two hypotheses are evaluated: 

 

 H0: At %95 significance level, between ground measured and algorithm-estimated 

heights, there is no statistically significance (µ1-µ2=0). 

 H1: At %95 significance level, between ground measured and algorithm-estimated 

heights, there is statistically significance (µ1-µ2≠0). 

 

The following equation was used for paired samples t-test: 

 

𝑡 =
𝑑̅

√𝑠2÷𝑛
     (3.4) 

 

Where d is the mean difference between two samples, s2 is the sample variance and 

n is the sample size and t is a paired sample t-test with n-1 degrees of freedom. “t” value 

here is obtained as 1.166 which is lower than t table value defined as 2,006. Therefore we 

can’t reject H0 null hypotheses. The correlation coefficient of the two data set was 

approximately 0.94 (Figure 3.11) and the root mean square error (RMSE) was 28 cm. 

There is no statistically significance between two data sets. In Appendix 6, a detailed 

table of two data set and the details of the t-test can be found. 
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Figure 3.11. Ground-measured and algorithm-estimated tree height validation results of 53 test heights 

(Parameters of Linear Regression and Correlation Coefficient are given in the plot). 

 

4.3. Discussion 

 

Objective of this study was to evaluate UAVs for identifying tree crowns and height 

for providing information to urban forest inventories. Only one previous study was 

identified on the quantitative validation of tree heights using UAVs with consumer-grade 

cameras [34]. Hence the present study and its algorithm for estimating AGL heights and 

positions will prove useful for forestry applications such as plant breeding, agronomy, 

plant quantification etc. Specifically, individual tree heights could help with growth and 

age classification, firewood amount prediction and probably biomass calculations. This 

study’s main advantages are being cheaper and faster than other methods such as LiDAR, 

UAV-LiDAR, spaceborne LiDAR, satellite systems, and traditional photogrammetric 

methods. Given this study’s accuracy, this approach should be useful in low-height flight 

sessions in order to get the best out of aerial photographs. The quality of the sensor may 

solve the problem of low-height flying by enabling flights at higher height, thus allowing 

surveys to cover more area if needed. Even so, raising the number of low- height flights 
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performed by small UAV platforms would still make this method more beneficial 

compared to other methods. Also, a necessity of GCPs are required to obtain highly 

accurate DEMs which later in the processing chain produces more accurate tree positions 

and heights.  

Local tree morphologies would differently affect the performance of this 

methodology regardless. It is highly suggested that users should obtain their own 

parameters based on their ground training data.  Tree crown radius is one of the key 

components in this methodology. Generally, in human-made forest structures, species do 

not differ from each other a lot. This means characteristic attributes of these trees would 

be similar to each other, thus making filtering process work on each tree properly. Users 

should gather a considerable amount of information before they start their study, tree 

heights for validation, tree crown radius for filtering process, tree species information etc. 

In our test area, detection of tree tops was easy compared to denser forests. This approach 

would cause problems if it is used in areas where the tree tops could not be identified 

because of overlapping trees, which generally occurs in natural forest areas. Clearings 

between trees are very helpful when it comes to interpolating the terrain beneath the forest 

structures. Not only clearings between trees, but also clearings within tree foliage could 

enable obtaining more terrain points closer to stem base. Only in very opened canopy 

structures this methodology can result in highly accurate results. Also, oblique 

photogrammetric applications would help with the resulting data’s accuracy. Adjusting 

the interpolation process according to local parameters and obtaining more terrain points 

under the foliage could increase the accuracy of the data.  

Ground measurements weren’t homogeneously distributed over the study area. This 

is because, tree foliage generally didn’t let the GNSS system work properly. While 

recording the heights with pen and paper, location of the trees could be marked on the 

ortho-image’s paper output that has been created before ground measurements. But this 

method wouldn’t work properly because, in a nadir perspective, locating the trees on 

ortho-image would be a challenging thing to do. Due to this reason, ground measurements 

were based on the trees which were very open from the others and could easily be 

identified from UAV imagery. Locations of these trees weren’t the stem base location of 

them, but they had to be matched with the related estimated height point in order to do 

validation. If this method would be used in another open canopy, users should try to get 

as many as ground measurements as possible to validate their results.  
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UAVs are contributing towards flexible and cheaper sensor platforms used to obtain 

high quality airborne spectral and 3D-information [46]. This study proves that in human-

made forest areas characterized as study’s test area, tree position and tree height detection 

is possible through point clouds generated by image matching, thus enhancing 

management decisions. 
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5. CONCLUSIONS 

 

In this study, we used a UAV and a consumer-grade camera to obtain the individual 

heights of trees in a forested area. Compared to other approaches, it produces accurate 

results, has low cost, doesn’t require any trained specialists to use the UAV or the camera 

system and takes little time. In a 15 ha forest, we performed one flight session over 1 km2 

for 28 minutes and gathered 133 aerial images with 6.41 cm GSD. The aerial images were 

the basis for a CHM that was then filtered with a local maximum filter algorithm. The 

estimated tree heights from the algorithm were validated by field measurements, with a 

RMSE of 28 cm. Future work should focus on different types of trees and forests where 

the density of the forest will present the greatest challenge. With consumer-grade infrared 

cameras, classification of the trees should also be possible, which would provide useful 

data for forest inventories.  

Yet this study should be performed in larger forest areas than the test area (roughly 

up to 1 ha,  and according to a report from Republic of Turkey’s General Directorate of 

Forestry in 2015, Turkey’s forest presence is up to 22.3 million ha which covers 28.6 % 

of the country). This approach could prove useful when it comes to preparing inventories 

for very opened canopy structured forest areas and also monitoring them with a defined 

time interval. The highly cost effective, flexible and mobile UAV technology and with it, 

fully automatic photogrammetric processing chain can be taken into account for 

operational use. 
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APPENDIX 

Appendix 1 – Quality report of the photogrammetric process 
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Appendix 2 - Technical Specifications of Canon IXUS 127 HS 
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Appendix 3 – Technical Specifications of Leica DISTO D810 Laser Meter 

 



 

64 
 

 

Appendix   4 - Technical Specifications of eBee UAV of senseFly 
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Appendix 5 – Technical Specifications of JAVAD Triumph-1 GNSS 
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Appendix 6 – Details of the Two Data Set (B) and T-Test (A) 

 

A) T-Test 

 

Paired Samples Statistics 

 Mean N 

Std. 

Deviation 

Std. Error 

Mean 

Pair 1 VAR0000

1 
4,8847 53 1,23278 ,16933 

VAR0000

2 
4,8394 53 1,25215 ,17200 

 

Paired Samples Correlations 

 N Correlation Sig. 

Pair 1 VAR00001 & 

VAR00002 
53 ,934 ,000 

 

Paired Samples Test 

 

Paired Differences 

Mean 

Std. 

Deviation 

Std. Error 

Mean 

95% 

Confidence 

Interval of 

the 

Difference 

Lower 

Pair 1 VAR00001 - 

VAR00002 
,04528 ,28262 ,03882 -,03262 
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Paired Samples Test 

 

Paired 

Differences 

t df 

Sig. (2-

tailed) 

95% 

Confidence 

Interval of 

the 

Difference 

Upper 

Pair 1 VAR00001 - 

VAR00002 
,12318 1,166 52 ,249 

 

B) Two Data Sets 

 

Ground Measurement Based Algorithm Based 

ID Height(m) ID Height(m) 

c1 3,86 c1 4,28 

c2 5,23 c2 5,37 

c3 5,67 c3 5,69 

c4 4,16 c4 3,86 

c5 4,65 c5 4,35 

d1 4,99 d1 4,79 

d2 3,59 d2 3,53 

d4 5,54 d4 5,21 

g1 1,74 g1 1,27 

g11 5,83 g11 5,25 

g2 6,05 g2 5,75 

g3 4,87 g3 5,28 

g4 5,69 g4 5,87 

g5 2,49 g5 2,62 

g6 2,23 g6 2,34 

g7 4,37 g7 4,09 

g8 5,35 g8 5,06 

g9 5,79 g9 5,67 

h1 4,76 h1 5,03 

h3 3,59 h3 3,55 

h4 3,71 h4 3,53 
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h5 2,86 h5 2,90 

h6 3,72 h6 4,05 

h7 2,74 h7 3,21 

h8 3,91 h8 3,82 

i1 2,58 i1 2,00 

i10 7,08 i10 6,79 

i11 6,62 i11 6,47 

i12 5,70 i12 5,95 

i13 5,55 i13 5,26 

i2 5,91 i2 6,07 

i3 6,11 i3 6,11 

i4 5,72 i4 5,79 

i5 5,70 i5 5,11 

i6 5,53 i6 5,73 

i7 6,30 i7 5,84 

i8 4,71 i8 4,35 

i9 4,87 i9 4,72 

j1 5,95 j1 6,25 

j2 3,81 j2 3,61 

j3 5,46 j3 5,73 

j4 6,21 j4 5,93 

j5 4,56 j5 4,75 

j6 5,62 j6 5,78 

j7 6,12 j7 6,22 

j8 6,03 j8 5,81 

k1 3,26 k1 2,94 

k2 5,14 k2 5,32 

k3 4,82 k3 5,09 

k4 5,41 k4 5,79 

k5 4,99 k5 5,23 

k6 5,57 k6 5,35 

k7 6,17 k7 6,13 
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RESUME (in Turkish) 
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