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ABSTRACT

This work studies cycles in 2-faetorizations of K n (undireeted complete graph with n vertices) and gives
a complete solution (with three possible exceptions) of the problem of constructing 2-factorizations of K n

containing a specified number of 8-cycles, for both n even and odd.
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TAM GRAFLARIN ÖZEL PARÇALANIŞLARINDAKiDÖNGÜLER

öz

Bu çalışmada n köşeli tam graflardaki döngüler problemi işlenmekte, tek ve çift köşeli tam graflardaki
8-döngü sayısı problemine (üç olası istisna ile) çözüm
verilmektedir.

Anahtar Kelimeler: Tam graf, 2-faktör örtülüşü, Döngü

ı. INTRODUCTION
A 2-factor of the complete undirected graph K n

is a colleetion of vertex disjoint cycles which span
the vertex set of K n . A 2-factorization of order n is
a pair (S, F), where F is a collection of edge disjoint
2-factors of K n (with vertex set S) which partitions
the edge set of K n .

Of course, a 2-factorization of K n exists if and
only if n is odd and in this case the number of 2­
faetors is (n - 1)/2.

A smallest cycle in K n is a 3-cycle and a largest
cycle is a Hamiltonian cycle (a cycle of length n).
The most extensively studied 2-factorizations are
Kirkman Triple systems (in which all cycles have
length 3) and Hamiltonian decompositions (in which
all cycles have length n). it is well known that Kirk­
man triple systems exist precisely when n == 3 (mod
6) (Ray-Chaudri and Wilson, 1971) and Hamil­
tonian decompositions exist for all odd n (Lucas,
1983).
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In (Dejter et aL, 1997) ı. J. Dejter, F. Franek,
E. Mendelsohn, and A. Rosa looked at the problem
of constructing 2-faetorizations of Kı; containing a
specified number of 3-cyCıes. Modulo a few excep­
tions they gaye a complete solution for n == 1 or 3
(mod 6). The problem remains open for n == 5 (mod
6).

In (Dejter et al., 1998) I.J. Dejter, C.C. Lind­
ner, and A. Rosa gaye a complete solution of the
problem of constructing 2-factorizations of K n con­
taining a specified number of 4-cycles. In (Adams
and Billington) P. Adams and E. J. Billington gaye
a complete solution of the problem of construeting
2-factorizations of K n containing a specified number
of 6-cycles.

Of course K Zn can not be 2-factored, for the sim­
ple reason that each vertex has odd degree. How­
ever, if we remove a 1-factor from the edge set of
K zn, things are different. Hence we have the follow­
ing definition. A 2-factorization of K Zn is a triple
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(S, F, 1), where i is a l-factor of the edge set of K 2n

and F is a collection of edge disjoint 2-factors of K 2n

which partitions E(K2n ) \ I, with vertex set S.
In (Adams et aL.) P. Adams, E. J. Billington, i.

J. Dejter, and C. C. Lindner gaye a complete solu­
tion of the problem of construeting 2-factorizations
of K 2n containing a specified number of 4-cycles.

In (Adams and Billington) P. Adams and E. J.
Billington gaye a complete solution of the problem
of constructing 2-factorizations of K 2n containing a
specified number of 6-cycles.

The next unsettled case of constructing 2­
faetorizations of K n containing a specified number of
cycles of even length is for 8-cycles. In this work we
give a complete solution (with 3 possible exceptions)
of the problem of constructing 2-factorizations of K n

containing a specified number of 8-cycles. To be spe­
cific let Q(n) denote the set of all x such that there
exists a 2-factorization of K n containing x 8-cycles
and let

{0,ı, ,8k(2k-ı)} ifn=ı6k+ı,

{O, ı, ,2k(8k + ı)} if n = ı6k + 3,
{O, ı, , 2k(8k + 2)} if n = ı6k + 5,
{O, ı, , 2k(8k + 3)} if n = ı6k + 7,
{O, ı, , 8k(2k + ı)} if n = ı6k + 9,
{O, ı, , (2k + ı)(8k + 5)} if n = ı6k + 11,
{O, ı, , (2k + ı)(8k + 6)} if n = ı6k + l S,
{O, ı, , (2k + ı)(8k + 7)} if n = ı6k + Lô.

We will show that Q(n) = FC(n) for all odd n,
with the possible exceptions 47 E FC(33). Now,let

{O, ı, , 2k(8k - l j} if n = ı6k,

{O, ı, , 8k(2k - ı)} if n = ı6k + 2,
{O, ı, , 2k(8k + ı)} if n = ı6k + 4,
{O, ı, , 2k(8k + 2)} if n = ı6k + 6,
{O, ı, , (2k + ı)(8k + 3)} if n = ı6k + 8,
{O, ı, , 8k(2k + ı)} if n = ı6k + ıo,

{O, ı, , (2k + ı)(8k + 5)} if n = ı6k + ı2,

{O, ı, , (2k + ı)(8k + 6)} if n = ı6k + ı4.

Then we will show that Q(n) = FC(n) for all even
n, with the possible exceptions 45 E FC(34) and
47 E FC(34).

We will organize our results into 6 sections: a
general recursive construetion for n :::: 9,11, ı3, and
ı5 (mod Ifi), a general recursive construction for
n :::: ı, 3, 5, and 7 (mod Ifi), a general recursive con­
struction for n:::: Oor 8 (mod Ifi), a general recursive
construction for n :::: ıo (mod l ô}, a general recur­
sive construction for n :::: 2,4,6, ı2 or ı4 (mod Ifi),
and a conclusion.

2. n= 9,11,13 or 15 (mod 16)

The following construction is the principal tool
used in this section.

Coııstructioıı A:
Write n = tv + 1', where t is odd and v is

even and r E {ı, 3, 5, 7}. Let X = {ı, 2, ... , t},
V = {l , 2, ... , v}, and Z be a set of size r . Further,
let (X, o) be an idempotent commutative quasi-
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group of order t (Lindner and Rodger, ı997) and
set S = Z U (X x V).

Define a collection F of 2-factors of K tv+r as fol­
lows:

(1) Let (Z U ({ı} x {ı, 2, ... ,v}), Fı ) be a 2-facto­
rization of K v+r , where

Fı = {!ı1,!ı2' ..., f(v+r-l)/d

(2) For each x E X \ {ı}, let (Z U ({x} x
{ı, 2, ... ,v}), Fx ) be a 2-factorization of K v+r con­
taining either O or maxFC(v + 1') 8-cycles and
containing a sub-2-factorization of order 1', where
maxFC(v + 1') is the largest value in the set
FC(v + 1'). Let F; = {fXI' fX2' ..., fX(v+r-I)/2}'
where the last (1' - ı)/2 2-factors contain the sub­
2-factorization of order r.

(3) For each pair a =i- b E X such that aob = boa =
x, let (Ka,b,fx(a,b)) be any 2-factorization of K v v
with parts {a} x {ı,2, ... ,v} and {b} x {ı,2, ... ,v},
where fx(a,b) = {fxl(a,b),fx2(a,b), ...,fxv/2(a,b)}.

(4) Each of {fx,} U {fxi (a, b)la o b = b o a = x},
where i = 1,2, ... , v/2 is a 2-faetor of K tv+r .

(5) Piece together the remaining (1' - ı)/2 2­
factors of Fı , along with the remaining (1' - ı) / 2 2­
faetors of each Fx , for x = 2,3, ... , t, making sure to
delete the cycles belonging to the sub-z-factorization
from each of the remaining 2-factors in each Fx .

(6) For each x E X, place the v/2 2-factors in (4)
in F as well as the 2-factors in (5).

The union of the 2-faetors in (6) gives a total of
LXEX(v/2) + (1' - ı)/2 = (tv + r - ı)/2 2-factors
which form a 2-faetorization of K tv+r with vertex
set S.

Corollary ı. Construetion A gives a 2-factori­
zation of K tv+r containing exactly Lt~ı-ı)/2 ni +

t ı-

Li=ı mi 8-cycles, where ni E Q(Kv,v), mı E Q(v+
1'), and mi E {O, maxFC(v + r)} for i = 2,3, ... , t.

it is easy to see that Q(n) ç FC(n) for odd n.
Now, with Construction A and Corollary ı we will
show that FC(n) ç Q(n) for the cases n :::: 9,11, ı3,

and ı5 (mod l ô). In each of the following cases we
will take t = 2k + ı and v = 8.

ıı::::9 (mod16)

Lemma 2. Q(9) = FC(9).

Proof. S. Küçükçifçi, 2000.

Lemma 3. Ka,a can be 2-factorized into

{0,ı,2,3,4,5,6,7,8}

8-cycles.

Proof. S. Küçükçifçi, 2000.
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Lemma 4. FC(16k + 9) ç Q(16k + 9).

Proof. Take r = 1 in Construction A. Sinee
Q(Ks,s) = {O, 1,2,3,4,5,6,7, 8} Corollary 1 gives
FC(16k + 9) ç Q(16k + 9).

ns.I l (mod16)

Lemma 5. Q(ll) = FC(ll), where the 2­
faetorizations of Kıı having O S-eye/es and 5 S­
eye/es eontain a eye/e of length 3.

Proof. S. Küçükçifçi, 2000.

Lemma 6. FC(16k + 11) ç Q(16k + 11).

Proof. Take r = 3 in Construction A. Sinee
Q(Ks,s) = {O, 1,2,3,4,5,6,7, 8}, Q(ll) = FC(ll)
and mi E {0,5} for i = 2,3, ... , t, Corollary 1 gives
FC(16k + 11) ç Q(16k + 11).

ıı::::13 (mod16)

Lemma 7. Q(13) = FC(13), where the 2­
faetorizations ofKı3 having O and 6 S-eye/es eontain
sub-2-faetorizations of order 5.

Proof. S. Küçükçifçi, 2000.

Lemma 8. FC(16k + 13) ç Q(16k + 13).

Proof. Take r = 5 in Construction A. Sinee
Q(Ks,s) = {O, 1,2,3,4,5,6,7, 8}, Q(13) = FC(13)
and mi E {0,6} for i = 2,3, ... , t, Corollary 1 gives
FC(16k + 13) ç Q(16k + 13).

ıı::::15 (mod16)

Lemma 9. Q(15) = FC(15), where the 2­
faetorizations of Kı5 having O or 7 S-eye/es eontain
a sub-2-faetorization of order 7.

Proof. S. Küçükçifçi, 2000.

Lemma 10. FC(16k + 15) ç Q(16k + 15).

Proof. Take r = 7 in Construction A. Sinee
Q(Ks,s) = {O, 1, 2, 3, 4, 5, 6, 7, 8}, Q(15) = FC(15)
and mi E {0,7} for i = 2,3, ... , t, Corollary 1 gives
FC(16k + 15) ç Q(16k + 15).

3. "= 1,3,5 or 7 (mod 16)
We will begin with the following construction,
CoııstructioııB:
Write n = tv + r, where v and t are even and r E

{I, 3, 5, 7}. Let X = {I, 2, ... , t}, V = {l, 2, ... ,v},
and Z be a set of size r . Further, let (X, o) be a
eommutative quasigroup of order t 2 6 with holes
H = {hı, hz, ..., ht/z} of size 2 (Lindner and Rodger,
1997) and set S = Z U (X x V).

Define a collectiorı F of 2-factors of K tv+r as fol­
lows:

(1) For the hole hı E H, let (Z U (hı x
{I, 2, ... ,v} ),Fı) be any 2-faetorization of K Zv+r,

where Fı = {!ıI,!ı21 ...,!ı v+(r-I)/2}'
(2)For eaeh hole hi E H \ {hı}, let (Z U (hi X

{I, 2, ... ,v} ), Fi ) be any 2-faetorization of K Zv+r

having either O or maxFC(2v + r) 8-eycles and
containing a sub-2-faetorization of order r , where
maxFC(2v + r) is the largest value in the set
FC(2v +r). Let F; = {!iı, !i2' ... , fi v+(r_I)/2}' where
the last (r - 1) /2 2-faetors contain the sub-2­
faetorization of order r.

(3) For eaeh x E X, set F(x) = {{a,b}la -::j:.

b,a o b = b o a = x, and a and b do not belong to
the hole eontaining x}. Denote by (Ka,b, f x(a,b)),
{a,b} E F(x), any 2-factorization of Kv,v with
parts {a} x {1,2, ...,v} and {b} x {ı,2, ... ,v}, where
fx(a, b) = {fxı (a, b), fX2(a, b), ..., fXv/2(a, bn.

(4) For eaeh hole hi = {x,y} E H, eaeh of the
following is a 2-factor of K t v+r :

{

{fij} U {fXj(a,b)l{a,b} EP(x)}, j=ı,2, ,v/2,
{Jik} u {fYj(c,d)l{c,d} E P(y)}, j = ı,2, ,v/2 and

k = v/2, (v/2) + ı, ... ,v.
(5) Pieee together the remaining (r - 1)/2 2­

factors of F1 , along with the remaining (r - 1)/2 2­
faetors of eaeh Fx , for x = 2,3, ... , t, making sure to
delete the eycles belonging to the sub-2-faetorization
from eaeh of the remaining 2-faetors in eaeh Fx .

(6) For eaeh hole in H, plaee the v 2-faetors in
(4) in F as well as the 2-faetors in (5).

The union of the 2-faetors in (6) gives a total of
LhEH(v) +(r- 1)/2 = (tv+r- 1) /2 2-factors whieh
form a 2-faetorization of Ktv+r with vertex set S.

Corollary lL. Construetion B gives a 2-faetoriza­
tion of K tv+r eontaining exaetly
",t(t-Z)/Z ",t/Z
L..i=ı ni + L..i=l mi S-eye/es, where ni E
Q(Kv,v), mı E Q(2v + r), and
mi E {O, maxFC(2v + rn for i = 2,3, ... , t/2.

We will now use Constructiorı B and Corollary 11
to show that FC(n) ç Q(n) for the eases n :::: ı, 3, 5
and 7 (mod 16).

ıı::::1 (mod16)

Lemma 12. Q(17) = FC(17).
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Proo]. S. Küçükçifçi, 2000.

Lemma 13. Kıo,ıo can be 2-factorized into O or 10
8-cycles.

Proo]. S. Küçükçifçi, 2000.

Lemma 14. K 33 can be 2-factorized into FC(33) \
{47} 8-cycles.

Proo]. S. Küçükçifçi, 2000.

Lemma 15. FC(16k + 1) ç Q(16k + 1), with the
possible exception of 47 E FC(33).

Proo]. Take r = 1, t = 2k and v = S in Construc­
tion B. Since Q(KB,B) = {0,1,2,3,4,5,6,7,S} and
Q(17) = FC(17), Corollary 11 gives FC(16k + 1) ç
Q(16k + 1) for k ~ 3. Lemmas 12 and 14 complete
the proof.

ıı=:3 (mod16)

Lemma 16. K 6 ,6 can be 2-factorized into 0,1, or 3
8-cycles.

Proo]. S. Küçükçifçi, 2000.

Lemma 17. Q(19) = FC(19).

Proo]. S. Küçükçifçi, 2000.

Lemma 18. FC(16k + 3) ç Q(16k + 3).

Proo]. Take r = 3, t = 4k and v = 4 in Con­
struction B. Since ni E {0,2}, mı E Q(l1) and
mi E {0,5} for i = 2,3, ... , 2k, Corol!ary 11 gives
FC(16k + 3) ç Q(16k + 3) for k ~ 2. Lemma 17
completes the proof.

ıı=:5 (mod16)

Lemma 19. Q(21) = FC(21).

Proo]. S. Küçükçifçi, 2000.

Lemma 20. FC(16k + 5) ç Q(16k + 5).

Proo]. Take r = 5, t = 4k and v = 4 in Con­
struction B. Since ni E {0,2}, mı E Q(13) and
mi E {0,6} for i = 2,3, ... , 2k, Corollary 11 gives
FC(16k + 5) ç Q(16k + 5) for k ~ 2. Lemma 19
completes the proof.

ıı=:7 (mod16)

Lemma 21. Q(23) = FC(23), where the 2­
factorizations of K 23 having O and 22 8-cycles con­
tain sub-2-factorizations of ortler 7.
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Proo]. S. Küçükçifçi, 2000.

Lemma 22. Kı2 , ı 2 can be 2-factorized into O or IS
8-cycles.

Proo]. S. Küçükçifçi, 2000.

Lemma 23. Q(39) = FC(39).

Proof. S. Küçükçifçi, 2000.

Lemma 24. FC(16k + 7) ç Q(16k + 7).

Proo]. Take r = 7, t = 2k and v = S in Construction
B. Since ni E {O, 1,2,3,4,5,6,7, S}, mı E Q(23) and
mi E {0,22} for i = 2,3, ... ,k, Corollary 11 gives
FC(16k + 7) ç Q(16k + 7) for k ~ 3. Lemmas 21
and 23 complete the proof.

Now in the next three sections we will solve the
problem when n is even.

4. "= O or 8 (mod 16)

We will begin with the fol!owing construction.
Construetioıı C:
Write n = 4t, where t is even. Let X = {I, 2, ... , t}

and set S = X x {I, 2,3, 4}. Let F be a 1­
factorization of K, (Lindner and Rodger, 1997),
where F = {fı, hı ...,ft-ı}.

Define a collection F* of 2t - 1 2-factors of K 4t
as fol!ows:

(1) For each {x,y} E fı, let ({x,y} x
{I,2,3,4},/ı(x,y),I(x,y)) be any 2-factoriza­
tion of KB (Example 2.2), where /ı(x,y)

{/ıı(x,y),/ı2(x,y), fıs(x,yn and I(x,y)
{{(x,I), (y, ın, {(x, 2), (y,2)}, {(x,3), (y,3n, {(x,4),
(y,4n}·

(2) For each (a,b) E fi, i = 2,3, ...,t-I, let
(Ka,b, fi(a, b)) = {!it (a, b),
li 2 (a ,bn be any 2-factorization of K 4,4 with parts
{a} x {1,2,3,4} and {b} x {1,2,3,4}.

(3) Each of {/ıi(x,y)l{x,y} E fı, i = 1,2,3} is a
2-factor of K 4t .

(4) Each of {Ii; (a, b)l{a, b} E fi, i E {2, 3, ... ,t­
I}, j E {1,2}} is a 2-factor ofK4t .

(5) Place the 3 2-factors in (3) and the 2(t - 2)
2-factors in (4) in F*.
(F* contains 2(t - 2) + 3 = 2t - 1 2-factors.)

(6) Let i = {I(x,y)l{x,y} E fı}.

Then (S, F*, i) is a 2-factorization of K 4t .

Corollary 25. Construction C gives a 2-facto­
rizaiion of K 4t containing exactly ı:~~~2)/2 ni +
"t/26i=ı mi 8-cycles, where ni E Q(K4,4), mi E Q(S).
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it is easy to see that Q(n) ç FC(n) for even n.
Now, with Construction C and Corollary 25 we will
show that FC(n) ç Q(n) for the cases n = O and
8 (mod 16). In order to do this we will need the
following example.

Lemma 26. Q(8) = FC(8).

Proo]. So Küçükçifçi.

ıı=O (mod16)

Lemma 27. FC(I6k) ç Q(I6k).

Proo]. Take t = 4k in Construction Co Since Q(8) =
{O, 1,2, 3} and Q(K4,4) = {0,2}, Corollary 25 gives
FC(I6k) ç Q(I6k)0

ıı=8 (mod16)

Lemma 28. FC(I6k + 8) ç Q(I6k + 8).

Proo]. Take t = 4k+2 in Construction C. Corollary
25 gives FC(I6k + 8) ç Q(I6k + 8)0

5. "= 10 (mod 16)
The following construction will take care of the

case n = 10 (mod 16)0
Coııstructioıı D:
Write n = tv +r, where t is odd and v is even and

r E {2, 4, 6}0 Let X = {I, 2, ..o, t}, V = {L, 2, ... ,v},
and Z be a set of size r. Further, let (X,o) be
an idempotent commutative quasigroup of order t
(Lindner and Rodger, 1997) and set S = ZU(XxV).

Define a collection F of 2-factors of K tv+r as fol­
lows:

(1) Let (ZU ({I} x {I, 2, "o,v}), Fı ) be a 2-factori­
zation of Kv+rı where Fı = {h" h 2, ..0,f(v+r)/2-d
and the edges of the l-factor of Z belong to Iı,

(2) For each x E X \ {I}, let (Z U ({x} x
{I,2, ...,v}),Fx'ıx) be a 2-faetorization of K v+r
having either O or maxFC(v + r) 8-cycles and
containing a sub-2-factorization of order r, where
maxFC(v+r) is the largest value in the set FC(v+
r ). Let Fx = {fx"fx2, ... , fxCv+r)/2_ı}, where the
last r /2 - 1 2-factors contain the sub-2-factorization
of order r and the edges of the l-factor of Z belong
to Ixo

(3) For each pair a i- b E X such that aob = boa =
x, let (Ka,b, fx(a, b» be any 2-factorization of Kv,v
with parts {a} x {I,2,0 ..,v} and {b} x {I,2, ...,»},
where fx(a,b) = Uxı(a,b),fx2(a,b), ..0,fx v/2(a,b)}0

(4) Each of Ux;} U UXi(a,b)la o b = b o a = x},
where i = 1,2, ..o, v /2 is a 2-factor of Ktv+ro

(5) Piece together the remaining r /2 - 1 2-factors
of Fç , along with the remaining r /2 - 1 2-factors

of each Fx , for x = 2,3, ..o, t, making sure to delete
the cyCıes belonging to the sub-2-faetorization from
each of the remaining 2-factors in each Fx o

(6) For each x E X, place the v/2 2-factors in (4)
in F as well as the 2-factors in (5)0

(7) Let i = {lxix E X},
The union of the 2-faetors in (6) gives a total of

L.xEx(v/2) + r/2 - 1 = (tv + r - 2)/2 2-factors
which form a 2-faetorization of K tv+r with vertex
set S.

Corollary 29. Construction D gives a 2-factori­
zation of K tv+r containing exactly L.~~~ı)/2 ni +
L.~=ı mi 8-cycles, where ni E Q(Kv,v), mı E Q(v+
r), and mi E {O, maxFC(v + r)} for i = 2,3, o .. , t.

We will now use Costruetion D and Corollary 29
to show that FC(n) ç Q(n) for the case n =10
(mod 16).

Lemma 30. FC(I6k + 10) ç Q(I6k + 10).

Proof. Take r = 2, t = 2k + 1 and v =
8 in Construction Bo Since any 2-factorization
of Kıo contains O 8-cycles and Q(Ks,s)
{O, 1, 2, 3, 4,5,6,7, 8} (Küçükçifçi, 2000), Corollary
29 gives FC(I6k + 10) ç Q(I6k + 10)0

6. "= 2,4,6,12 or 14 (mod 16)

The following construction will take care of the
remaining cases.

Coııstructioıı E:
Write n = tv + r, where v and t are even and

rE {2,4,6}. Let X = {l,2, ..0,t}, V = {I,2, ..0,v},
and Z be a set of size r. Further, let (X, o) be a
commutative quasigroup of order t 2: 6 with holes
H = {hı, h2, ..o, ht/ 2} of size 2 (Lindner and Rodger,
1997) and set S = Z U (X x V)o

Define a collection F of 2-factors of K tv+r as fol­
lows:

(1) For the hole hı E H, let (Z U (hı x
{I, 2, o. o, v} ), Fç; lı) be any 2-factorization of K 2v+r,
where Fı = {hı' fı2' "o, fı V+(r-2)/2} and the edges
of the 1-factor of Z belong to Iç .

(2)For each hole hi E H \ {hd, let (Z U (hi X

{I, 2, ..o, v} ), Fi'ıi) be any 2-factorization of K 2v+r
having either O or maxFC(2v + r) 8-cycles and
containing a sub-2-factorization of order ro Let
F; = {!iı, fi2, ..o, fi v+Cr-2)/2}' where the last (r-2)/2
2-factors contain the sub-2-faetorization of order r
and the edges of the I-factor of Z belong to h

(3) For each x E X, set F(x) = {{a,b}la i­
b,a o b = b o a = x, and a and b do not belong to
the hole containing z}. Denote by (Ka,b, fx(a, b»,
{a,b} E F(x), any 2-factorization of Kv,v with
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parts {a} x {1,2, ... ,v} and {b} x {1,2, ... ,v}, where
fx(a,b) = {fxı(a,b),fx2(a,b), ... ,fxv/2(a,b)}.

(4) For each hole hi = {x, Y} E H, each of the
following is a 2-factor of K tv+r :

{

{f;)U{Jxj(a,b)l{a,b}EF(x)}, j=ı,2"",v/2,

{Jik} U {JYj (c, d)i{ c, d} E F(y)}, j = ı, 2, "" v/2 and
k = v/2, (v/2) + ı, "" v.

(5) Piece together the remaining (r - 2)/2 2­
factors of Fı , along with the remaining (r - 2)/2 2­
factors of each Fx , for x = 2, 3, ... , t, making sure to
delete the cycles belonging to the sub-2-factorization
from each of the remaining 2-factors in each Fx '

(6) For each hole in H, place the v 2-factors in
(4) in F as well as the 2-factors in (5).

(7) Let i = {lxix E X}.
The union of the 2-factors in (6) gives a total of

E h EH (v )+ (r - 2)/ 2 = (tv+r-2)/2 2-factorswhich
form a 2-factorization of K tv+r with vertex set S.

Corollary 31. Construction E gives a 2-factori­

zation of K tv+r containing exactly E~~~2)/2ni +

E~~2ı mi 8-cycles, where ni E Q(Kv,v), mı E
Q(2v + r), and mi E {O, maxFC(2v + r)} for i =
2,3, ... , t/2.

Now with Construction E and Corollary 31 we will
show that FC(n) ç Q(n) for the cases n=: 2,4,6,12
and 14 (mod 16).

ıı=:2 (mod16)

Lemma 32. Q(18) = FC(18).

Proof. S. Küçükçifçi.

Lemma 33. K 34 can be 2-factorized into FC(34) \
{45,47} 8-cycles.

Proof. S. Küçükçifçi.

Lemma 34. FC(16k + 2) ç Q(16k + 2), with
the possible exceptions of 45 E FC(34) and 47 E
FC(34).

Proof. Take r = 2, t = 2k and v = 8 in Construc­
tion E. Since Q(Ks,s) = {O, 1,2,3,4,5,6,7, 8} and
Q(18) = FC(18), Corollary 31 gives FC(16k + 2) ç
Q(16k + 2) for k ~ 3. Lemmas 32 and complete the
proof.

ıı=:4 (mod16)

Lemma 35. Q(12) = FC(12), where the 2­
factorizations of K l 2 having O and 5 8-cycles con­
tain a 4-cycle.

Proof. S. Küçükçifçi.

Lemma 36. Q(20) = FC(20).
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Proof. S. Küçükçifçi.

Lemma 37. FC(16k + 4) ç Q(16k + 4).

Proof. Take r = 4, t = 4k and v = 4 in Con­
struction E. Since K 4 ,4 can be 2-factorized int o Oor
2 8-cycles and Q(12) = FC(12), Corollary 31 gives
FC(16k + 4) ç Q(16k + 4) for k ~ 2. Lemmas 35
and 36 complete the proof.

ıı=:6 (mod16)

Lemma 38. Q(14) = FC(14), where each of the
2-factorizations of K l 4 having O and 6 8-cycles
contains sub-2-factorizations of order 6 and the 2­
factorization of K l 4 having 4 8-cycles contains a
sub-2-factorization of order 4.

Proof. S. Küçükçifçi.

Lemma 39. Q(22) = FC(22).

Proof. S. Küçükçifçi.

Lemma 40. FC(16k + 6) ç Q(16k + 6).

Proof. Take r = 6, t = 4k and v = 4 in Con­
struction E. Since K 4,4 can be 2-factorized into Oor
2 8-cycles and Q(14) = FC(14), Corollary 31 gives
FC(16k + 4) ç Q(16k + 4) for k ~ 2. Lemmas 38
and 39 complete the proof.

ıı=:12 (mod16)

Lemma 41. FC(16k + 12) ç Q(16k + 12).

Proof. Take r = 4, t = 4k + 2 and v = 4 in
Construction E. Corollary 31 and Lemma 35 give
FC(16k + 12) ç Q(16k + 12).

ıı=:14 (mod16)

Lemma 42. FC(16k + 14) ç Q(16k + 14).

Proof. Take r = 6, t = 4k + 2 and v = 4 in
Construction E. Corollary 31 and Lemma 38 give
FC(16k + 14) ç Q(16k + 14).
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7. CONCLUSION
We summarize our results with the following the­

orem.

Theorem 43. Q(n) = FC(n) for all odd n with
the possible exceptions of 47 E FC(33) and even
n with the possible exceptions of 45 E FC(34) and
47 E FC(34).
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