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ABSTRACT

This work studies cycles in 2-factorizations of K, (undirected complete graph with n vertices) and gives
a complete solution (with three possible exceptions) of the problem of constructing 2-factorizations of K,
containing a specified number of 8-cycles, for both n even and odd.
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TAM GRAFLARIN OZEL PARCALANISLARINDAKI DONGULER

Bu ¢aligmada n kogeli tam graflardaki dongiiler problemi iglenmekte, tek ve cift kogeli tam graflardaki

8-dongii sayist problemine (ii¢ olas: istisna ile) ¢bziim

verilmektedir.
Anahtar Kelimeler:

Tam graf, 2-faktor ortiliisi, Déngi

1. INTRODUCTION

A 2-factor of the complete undirected graph X,
is a collection of vertex disjoint cycles which span
the vertex set of K,. A 2-factorization of order n is
a pair (S, F'), where F' is a collection of edge disjoint
2-factors of K, (with vertex set S) which partitions
the edge set of K.

Of course, a 2-factorization of K, exists if and
only if n is odd and in this case the number of 2-
factors is (n — 1)/2.

A smallest cycle in K, is a 3-cycle and a largest
cycle is a Hamiltonian cycle (a cycle of length n).
The most extensively studied 2-factorizations are
Kirkman Triple systems (in which all cycles have
length 3) and Hamiltonian decompositions (in which
all cycles have length n). It is well known that Kirk-
man triple systems exist precisely when n = 3 (mod
6) (Ray-Chaudri and Wilson, 1971) and Hamil-
tonian decompositions exist for all odd n (Lucas,
1983).
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In (Dejter et al., 1997) 1. J. Dejter, F. Franek,
E. Mendelsohn, and A. Rosa looked at the problem
of constructing 2-factorizations of K,, containing a
specified number of 3-cycles. Modulo a few excep-
tions they gave a complete solution for n =1 or 3
(mod 6). The problem remains open for n = 5 (mod
6).

In (Dejter et al., 1998) I1.J. Dejter, C.C. Lind-
ner, and A. Rosa gave a complete solution of the
problem of constructing 2-factorizations of K, con-
taining a specified number of 4-cycles. In (Adams
and Billington) P. Adams and E. J. Billington gave
a complete solution of the problem of constructing
2-factorizations of K, containing a specified number
of 6-cycles.

Of course K»,, can not be 2-factored, for the sim-
ple reason that each vertex has odd degree. How-
ever, if we remove a 1-factor from the edge set of
Ky, things are different. Hence we have the follow-
ing definition. A 2-factorization of Ks, is a triple

Accepted: 02 December 2002.
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(S, F,I), where I is a 1-factor of the edge set of K»,
and F'is a collection of edge disjoint 2-factors of K3,
which partitions E(K5,) \ I, with vertex set S.

In (Adams et al.) P. Adams, E. J. Billington, 1.
J. Dejter, and C. C. Lindner gave a complete solu-
tion of the problem of constructing 2-factorizations
of K5, containing a specified number of 4-cycles.

In (Adams and Billington) P. Adams and E. J.
Billington gave a complete solution of the problem
of constructing 2-factorizations of K5, containing a
specified number of 6-cycles.

The next unsettled case of constructing 2-

factorizations of K, containing a specified number of

cycles of even length is for 8-cycles. In this work we
give a complete solution (with 3 possible exceptions)
of the problem of constructing 2-factorizations of K,
containing a specified number of 8-cycles. To be spe-
cific let Q(n) denote the set.of all z such that there
exists a 2- factorlzatlon of K, containing z 8-cycles
and let

{0,1,...,8k(2k~1)} ifn=16k+1,
{0,1,...,2k(8k + 1)} if n = 16k + 3,

{0,1, ..., 2k(8k + 2)} if n =16k +5,

_ {0,1, ..., 2k(8k + 3)} ifn =16k +7,

FC(n) = {0,1, ..., 8k(2k + 1)} ifn =16k +9,
{0,1,...,(2k + 1)(8k + 5)} ifn = 16k + 11,
{0,1,...,(2k + 1)(8k + 6)} if n = 16k + 13,

{0,1, ,..,(2k+1)(8k+7)} if n = 16k + 15.

We will show that Q(n) = FC(n) for all odd n,
with the possible exceptions 47 € FC(33). Now, let

(0,1, ..., 2k(8k — 1)} if n = 16k,
{0,1,....8k(2k — 1)} if n = 16k + 2,
(0,1, ... 2k(8k + 1)} if n = 16k + 4,
) {0, 2k(8k + 2)) ifn = 16k +6,
FCn) = 9 o1, (2k+ 1)k +3)} ifn=16k+8,
(01,.... 8k(2k + 1)} if n = 16k + 10,
(0,1, 2k + 1)(8k +5)}  if n = 16k + 12,
(0.1, . (2k + 1)(8k + 6)}  ifn = 16k + 14.

Then we will show that Q(n) = FC(n) for all even
n, with the possible exceptions 45 € FC(34) and
47 € FC(34).

We will organize our results into 6 sections: a
general recursive construction for n = 9,11, 13, and
15 (mod 16), a general recursive construction for
n = 1,3,5, and 7 (mod 16), a general recursive con-
struction for n = 0 or 8 (mod 16), a general recursive
construction for n = 10 (mod 16), a general recur-
sive construction for n = 2,4,6,12 or 14 (mod 16),
and a conclusion.

2. n= 9,11,13 or 15 (mod 16)

The following construction is the principal tool
used in this section.

Construction A:

Write n = tv + r, where ¢ is odd and v is
even and r € {1,3,5,7}. Let X = {1,2,...,t},
V ={1,2,...,v}, and Z be a set of size r. Further,
let (X,0) be an idempotent commutative quasi-
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group of order ¢ (Lindner and Rodger, 1997) and
set S=ZU (X xV).

Define a collection F' of 2-factors of Kyyy, as fol-
lows:

(1) Let (ZU ({1} x {1,2,..
rization of K+, where

Fl = {fluflz: ) f(1l+r—1)/2}

., v}), F1) be a 2-facto-

(2) For each z € X \ {1}, let (Z U ({=} x
{1,2,...,v}), F}) be a 2-factorization of Ky, con-
taining either 0 or mazFC(v + r) 8-cycles and
containing a sub-2-factorization of order r, where
mazFC(v + r) is the largest value in the set
FC(v +71). Let Fo = {far, four oo Fopuronya )
where the last (r — 1)/2 2-factors contain the sub-
2-factorization of order r.

(3) For each pair a # b € X such that acb = boa =
z, let (K, fz(a,b)) be any 2-factorization of K, ,
with parts {a} x {1,2,...,v} and {b} x {1,2,...,v},
where fz(a’ b) = {fwl (aa b)v f:l:2 (a” b)a cees fzv/z (a” b)}

(4) Each of {fz;} U {fe:(a,b)]lacb=boa = z},
where 1 = 1,2,...,v/2 is a 2-factor of Kyyyr.

(5) Piece together the remaining (r — 1)/2 2-
factors of F, along with the remaining (r —1)/2 2-
factors of each Fy, for z = 2,3, ..., t, making sure to
delete the cycles belonging to the sub-2-factorization
from each of the remaining 2-factors in each F.

(6) For each z € X, place the v/2 2-factors in (4)
in F as well as the 2-factors in (5).

The union of the 2-factors in (6) gives a total of
Yeex®/2) +(r=1)/2 = (tv +r —1)/2 2-factors
which form a 2-factorization of Kj,4, with vertex
set S.

Corollary 1. Construction A gives a 2-factori-
zation of Kyyyr containing exactly Zt(t L/2 n; +

Z:Zl m; 8-cycles, wheren; € Q(K, ), m1 € Qv+
), and m; € {0,mazFC(v+r)} fori=2,3,...,¢

It is easy to see that Q(n) C FC(n) for odd n.
Now, with Construction A and Corollary 1 we will
show that F'C(n) C @Q(n) for the cases n = 9,11,13,
and 15 (mod 16). In each of the following cases we
will take t =2k + 1 and v = 8.

n=9 (mod16)

Lemma 2. Q(9) = FC(9).

Proof. S. Kiiciikgifci, 2000.

Lemma 3. Ky g can be 2-factorized into
{0,1,2,3,4,5,6,7,8}

8-cycles.

Proof. S. Kiigiikgifci, 2000.
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Lemma 4. FC(16k +9) C Q(16k + 9).

Proof. Take r = 1 in Construction A. Since
Q(Kss) = {0,1,2,3,4,5,6,7,8} Corollary 1 gives
FC(16k +9) C Q(16k + 9).

n=11 (mod16)

Lemma 5. Q(11) = FC(11), where the 2-

factorizations of Ki1 having 0 8-cycles and 5 §-
cycles contain a cycle of length 3.

Proof. S. Kiiciikgifci, 2000.

Lemma 6. FC(16k + 11) C Q(16k + 11).

Proof. Take r = 3 in Construction A. Since
Q(K8,8) = {07 1,2,3,4,5,6,7, 8}7 Q(ll) = FC(ll)
and m; € {0,5} for i = 2,3,...,¢, Corollary 1 gives
FC(16k + 11) C Q(16k + 11).

n=13 (mod16)

Lemma 7. Q(13) = FC(13), where the 2-
factorizations of K13 having 0 and 6 8-cycles contain
sub-2-factorizations of order 5.

Proof. S. Kigiikgifci, 2000.

Lemma 8. FC(16k + 13) C Q(16k + 13).

Proof. Take r = 5 in Construction A. Since
Q(Kszs) = {0,1,2,3,4,5,6,7,8}, Q(13) = FC(13)
and m; € {0,6} for i = 2,3, ...,t, Corollary 1 gives
FC(16k + 13) C Q(16k + 13).

n=15 (mod16)

Lemma 9. Q(15) = FC(15), where the 2-
factorizations of K15 having O or 7 8-cycles contain
a sub-2-factorization of order 7.

Proof. S. Kiiciikgifci, 2000.

Lemma 10. FC(16k + 15) C Q(16k + 15).

Proof. Take r = 7 in Construction A. Since
Q(Kss) = {0,1,2,3,4,5,6,7,8}, Q(15) = FC(15)
and m; € {0,7} for i = 2,3,...,t, Corollary 1 gives
FC(16k + 15) C Q(16k + 15).

3. n= 1,35 or 7 (mod 16)

We will begin with the following construction.

Construction B:

Write n = tv + r, where v and t are even and r €
{1,3,5,7}. Let X = {1,2,...,t}, V = {1,2,...,v},
and Z be a set of size r. Further, let (X,0) be a
commutative quasigroup of order ¢ > 6 with holes
H = {hy, ha,...,hy/2} of size 2 (Lindner and Rodger,
1997) and set S = Z U (X x V).

Define a collection F' of 2-factors of Ky, as fol-
lows:

(1) For the hole hy € H, let (Z U (hy x
{1,2,...,v}), F1) be any 2-factorization of Kayir,
where Fl = {fll s flzv ceey f1u+(r_1)/2}.

(2)For each hole h; € H \ {h1}, let (Z U (h; %
{1,2,...,v}), F;) be any 2-factorization of Koyip
having either 0 or mazFC(2v + r) 8-cycles and
containing a sub-2-factorization of order r, where
mazFC(2v + r) is the largest value in the set
FC2u+r). Let F; = {f,’l, Fins oo fiv+(r~1)/2 }, where
the last (r — 1)/2 2-factors contain the sub-2-
factorization of order r.

(3) For each z € X, set F(z) = {{a,b}|a #
baob =boa =z, and a and b do not belong to
the hole containing z}. Denote by (K, s, fz(a,b)),
{a,b} € F(z), any 2-factorization of K,, with
parts {a} x {1,2,...,v} and {b} x {1,2,...,v}, where
fe(a,b) = {fz(a,b), fz,(a,b), .., fw,,/g (a,b)}.

(4) For each hole h; = {z,y} € H, each of the
following is a 2-factor of Kiyqr:
{ {flj} U {fﬂﬁJ (a,b)l{a,b} € F(z)}, j=1,2,..,9/2,

{fin YU {fy; (e, d){c,d} € F(y)}, §=1,2,..,0/2 and

k=v/2,(v/2)+1,...,v.

(5) Piece together the remaining (r — 1)/2 2-
factors of Fy, along with the remaining (» — 1)/2 2-
factors of each F,, for z = 2,3, ..., ¢, making sure to
delete the cycles belonging to the sub-2-factorization
from each of the remaining 2-factors in each F.

(6) For each hole in H, place the v 2-factors in
(4) in F as well as the 2-factors in (5).

The union of the 2-factors in (6) gives a total of
Yheg(V)+(r—=1)/2 = (tv+r-1)/2 2-factors which
form a 2- factorlzatlon of Kiy4r with vertex set S.

Corollary 11. Construction B gives a 2-factoriza-
tion of Ky, containing exactly
Zl(_t 22, Zf/zl m;  8-cycles,
QHKov), m1 € Q(2v+7), and

m; € {0,mazFC(2v+r)} fori=2,3,...,t/2.

where n; €

We will now use Construction B and Corollary 11
to show that FFC(n) C Q(n) for the casesn =1,3,5
and 7 {mod 16).

n=1 (mod16)

Lemma 12. Q(17) = FC(17).
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Proof. S. Kiiciikgifci, 2000.

Lemma 13. Kg,10 can be 2-factorized into O or 10
8-cycles.

Proof. S. Kiiciikgifci, 2000.

Lemma 14. K33 can be 2-factorized into FC(33)\
{47} 8-cycles.

Proof. 8. Kiiglikgifci, 2000.

Lemma 15. FC(16k + 1) C Q(16k + 1), with the
possible exception of 47 € FC(33).

Proof. Taker =1, t = 2k and v = 8 in Construc-
tion B. Since Q(Kss) = {0,1,2,3,4,5,6,7,8} and
QQ7) = FC(17), Corollary 11 gives FC(16k+1) C
Q(16k + 1) for k > 3. Lemmas 12 and 14 complete
the proof.

n=3 (modl16)

Lemma 16. Ks¢ can be 2-factorized into 0,1, or 3
8-cycles.

Proof. S. Kiigiitkgifci, 2000.
Lemma 17. Q(19) = FC(19).

Proof. S. Kiigiikgifci, 2000.

Lemma 18. FC(16k + 3) C Q(16k + 3).

Proof. Take r = 3, t = 4k and v = 4 in Con-
struction B. Since n; € {0,2}, m; € Q(11) and
m; € {0,5} for i = 2,3,...,2k, Corollary 11 gives
FC(16k + 3) C Q(16k + 3) for k > 2. Lemma 17
completes the proof.

n=5 (mod16)

Lemma 19. Q(21) = FC(21).

Proof. S. Kiigiikgifci, 2000.
Lemma 20. FC(16k + 5) C Q(16k + 5).

Proof. Take r = 5, t = 4k and v = 4 in Con-
struction B. Since n; € {0,2}, m; € Q(13) and
m; € {0,6} for i = 2,3,...,2k, Corollary 11 gives
FC(16k + 5) C Q(16k + 5) for k > 2. Lemma 19
completes the proof.

n=7 (mod16)

Lemma 21. Q(23) = FC(23), where the 2-
factorizations of K3 having 0 and 22 8-cycles con-
tain sub-2-factorizations of order 7.
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Proof. S. Kiiciikgifci, 2000.

Lemma 22. K312 can be 2-factorized into 0 or 18
8-cycles.

Proof. S. Kiciikeifci, 2000.

Lemma 23. Q(39) = F(C(39).

Proof. S. Kiiglikcifci, 2000.
Lemma 24. FC(16k +7) C Q(16k + 7).

Proof. Taker = 7,t = 2k and v = 8 in Construction
B. Sincen; € {0,1,2,3,4,5,6,7,8}, my € Q(23) and
m; € {0,22} for i = 2,3,...,k, Corollary 11 gives
FC(16k + 7) C Q(16k + 7) for k > 3. Lemmas 21
and 23 complete the proof.

Now in the next three sections we will solve the
problem when n is even.

4. n= 0 or 8 (mod 16)

We will begin with the following construction.

Construction C:

Write n = 4¢, where t is even. Let X = {1,2,...,¢}
and set S = X x {1,2,3,4}. Let F be a 1-
factorization of K, (Lindner and Rodger, 1997),
where F' = {f1, fo, .-y ft—-1}

Define a collection F* of 2t — 1 2-factors of Ky
as follows:

(1) For each {z,y} € f1, let
{1,2,3,4},f1(x,y),1(:v,y)) be
tion of Ky (Example 2.2),
{f1.(z,v), flz(m Y),

({z,y} x
any 2-factoriza-
where fi(z,5) =

fla(m?y)} and I(ZIJ,y) =

{{ , }1} (0, D} {(=,2), (5,2)}{(=,3), (y,3)}, {(2,4),
( ) For each (a,b) € f;, 7 = 2,3,...,t — 1, let
( ab>fzab —“{fnab

fiz(a,b)} be any 2-factorization of K, 4 with parts
{a} x {1,2,3,4} and {b} x {1,2,3,4}.

(3) Each of {fli(x7y)l{$ay} € f].v 1= 1:2a3} is a
2-factor of Ky;.

(4) Each of {f;(a,b)|{a,b} € fi, i € {2,3,....,t —
1}, 5 € {1,2}} is a 2-factor of Ky;.

(5) Place the 3 2-factors in (3) and the 2(t — 2)
2-factors in (4) in F™*.
(F* contains 2(t —2) + 3 =2t — 1 2-factors.)

(6) Let T = {I(z,1)l{z,} € fi}.

Then (S, F*,I) is a 2-factorization of Ky.

Corollary 25. Construction C gives a 2-facto-
rization of K4 containing exactly Zt(t 2/ ni +

Zt/ LMy 8-cycles, where n; € Q(K4q4), m; € Q(8).
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It is easy to see that Q(n) C FC(n) for even n.
Now, with Construction C and Corollary 25 we will
show that FIC(n) C Q(n) for the cases n = 0 and
8 (mod 16). In order to do this we will need the
following example.

Lemma 26. Q(8) = FC(8).
Proof. S. Kiigiikgifci.

n=0 (mod16)
Lemma 27. FC(16k) C Q(16k).

Proof. Taket = 4k in Construction C. Since Q(8) =
{0,1,2,3} and Q(K4,4) = {0,2}, Corollary 25 gives
FC(16k) C Q(16k).

n=8 (mod16)
Lemma 28. FC(16k + 8) C Q(16k + 8).

Proof. Take t = 4k+2 in Construction C. Corollary
25 gives FC(16k + 8) C Q(16k + 8).

5. n= 10 (mod 16)
The following construction will take care of the
case n = 10 (mod 16).

Construction D:

Write n = tv +7, where ¢ is odd and v is even and
r € {2,4,6}. Let X = {1,2,...,t}, V = {1,2,...,v},
and Z be a set of size r. Further, let (X,0) be
an idempotent commutative quasigroup of order ¢
(Lindner and Rodger, 1997) and set S = ZU(X x V).

Define a collection F of 2-factors of Ky, as fol-
lows:

(1) Let (ZU({1} x{1,2,...,v}), F1) be a 2-factori-
zation of Ky, where F1 = {f1,, f1,, - flotr)2-1}
and the edges of the 1-factor of Z belong to I;.

(2) For each z € X \ {1}, let (Z U ({z} x
{1,2,...,v}), Fi, I;) be a 2-factorization of Ky,
having either 0 or mazFC(v + r) 8-cycles and
containing a sub-2-factorization of order r, where
maz F'C(v+r) is the largest value in the set FC(v+
). Let Fy = {fu,, faas--s fo(yinyja-1}, Where the
last r/2—1 2-factors contain the sub-2-factorization
of order r and the edges of the 1-factor of Z belong
to I,.

(3) For each pair a # b € X such that aob = boa =
z, let (Ko, f2(a,b)) be any 2-factorization of K, ,
with parts {a} x {1,2,...,v} and {b} x {1,2,...,v},
where fz(aa b) = {fan (a‘a b)’ fzz(a‘v b)? ) fwu/z(a7 b)}

(4) Each of {fz,} U{fe.(a,;b)Jacb =boa = z},
where 1 = 1,2,...,v/2 is a 2-factor of Kyyyp.

(5) Piece together the remaining r/2~1 2-factors
of Fy, along with the remaining r/2 — 1 2-factors

of each Fy, for ¢ = 2,3,...,t, making sure to delete
the cycles belonging to the sub-2-factorization from
each of the remaining 2-factors in each F.

(6) For each z € X, place the v/2 2-factors in (4)
in F as well as the 2-factors in (5).

(7) Let I = {I|z € X}.

The union of the 2-factors in (6) gives a total of
Yeex®/2) +7/2 -1 = (tv+r—2)/2 2-factors
which form a 2-factorization of Kyy4, with vertex
set S. ‘

Corollary 29. Construction D gives a 2-factori-
zation of Ky, containing eractly Z:(:tl"l)ﬂ n; +
Zle m; &-cycles, wheren; € Q(K, ), m1 € Qv+
r), and m; € {0,mazFC(v+r)} fori=2,3,..,t.

We will now use Costruction D and Corollary 29
to show that FC(n) C Q(n) for the case n = 10
(mod 16).

Lemma 30. FC(16k + 10) C Q(16k + 10).

Proof. Take r = 2, ¢t = 2k + 1 and v =
8 in Construction B. Since any 2-factorization
of Ko contains 0 8-cycles and Q(Kss) =
{0,1,2,3,4,5,6,7,8} (Kiiciik¢if¢i, 2000), Corollary
29 gives FC(16k + 10) C Q(16k + 10).

6. n= 2,4,6,12 or 14 (mod 16)

The following construction will take care of the
remaining cases.

Construction E:

Write n = tv + r, where v and t are even and
r € {2,4,6}. Let X = {1,2,...,t}, V ={1,2,...,v},
and Z be a set of size r. Further, let (X,0) be a
commutative quasigroup of order ¢ > 6 with holes
H = {hy,ha,...,hy/3} of size 2 (Lindner and Rodger,
1997) and set S=Z U (X x V).

Define a collection F' of 2-factors of Ky, , as fol-
lows:

(1) For the hole hy € H, let (Z U (hy x
{1,2,...,v}), F1,I1) be any 2-factorization of Koy,
where F1 = {f1,, fi,--s f1,(r_s»} @nd the edges
of the 1-factor of Z belong to I;.

(2)For each hole h; € H \ {h}, let (Z U (h; x
{1,2,...,v}), F}, I,) be any 2-factorization of Ka,
having either 0 or mazFC(2v + r) 8-cycles and
containing a sub-2-factorization of order r. Let
Fy = {fir, fizs s Fivpirnyyn }» Where the last, (r—2)/2
2-factors contain the sub-2-factorization of order r
and the edges of the 1-factor of Z belong to I;.

(3) For each ¢ € X, set F(z) = {{a,b}la #
baob=boa =z, and a and b do not belong to
the hole containing z}. Denote by (K, s, fz(a,b)),
{a,b} € F(z), any 2-factorization of K, ., with
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parts {a} x {1,2,...,v} and {b} x {1,2,...,v}, where
fe(a,b) = {fz,(a,b), fos(a;b), ..., fwv/z (a,b)}.

(4) For each hole h; = {z,y} € H, each of the
following is a 2-factor of Kyy4r:

{fi;}U{fz;(a,)/{a,b} € F(x)}, =
{ {fisU{fy;(c,d{c,d} e Fy)}, 5=

k=v/2,(v/2)+1,..,v.

(5) Piece together the remaining (r — 2)/2 2-
factors of Fy, along with the remaining (r —2)/2 2-
factors of each Fy, for x = 2,3, ..., ¢, making sure to
delete the cycles belonging to the sub-2-factorization
from each of the remaining 2-factors in each F,.

(6) For each hole in H, place the v 2-factors in
(4) in F as well as the 2-factors in (5).

(7) Let I ={I|lxz € X}.

The union of the 2-factors in (6) gives a total of
Yohea W)+ (r—2)/2 = (tv+r—2)/2 2-factors which
form a 2-factorization of Ky, with vertex set S.

Corollary 31. Construction E gives a 2-factori-
zation of Kyyyr containing exactly Zf(ztl_z)m n; +
Zifl m; 8-cycles, where n; € Q(Ky.), m €
Q(2v +r), and m; € {0,mazFCQ2u +r)} fori =
2,3, ...,t/2.

Now with Construction E and Corollary 31 we will
show that FC(n) C Q(n) for the casesn = 2,4, 6,12
and 14 {(mod 16).

n=2 (mod16)
Lemma 32. @(18) = FC(18).
Proof. 8. Kiigiikgifci.

Lemma 33. K34 can be 2-factorized into FC(34)\
{45,47} 8-cycles.

Proof. S. Kiiglikgifci.

Lemma 34. FC(16k + 2) C Q(16k + 2), with
the possible exceptions of 45 € FC(34) and 47 €
FC(34).

Proof. Taker =2, t= 2k and v = 8 in Construc-
tion E. Since Q(Ks3) = {0,1,2,3,4,5,6,7,8} and
Q(18) = FC(18), Corollary 31 gives FC(16k +2) C
Q(16k + 2) for k > 3. Lemmas 32 and complete the
proof.

n=4 (mod16)

Lemma 35. Q(12) = FC(12), where the 2-
factorizations of K13 having O and 5 8-cycles con-
tain a 4-cycle.

Proof. S. Kiigiikgifci.
Lemma 36. Q(20) = FC(20).
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Proof. S. Kiiglikgifci.

Lemma 37. FC(16k + 4) C Q(16k + 4).

Proof. Taker = 4, t = 4k and v = 4 in Con-
struction E. Since K4 4 can be 2-factorized into 0 or
2 8-cycles and Q(12) = FC(12), Corollary 31 gives
FC(16k + 4) C Q(16k + 4) for k > 2. Lemmas 35
and 36 complete the proof.

n=6 (mod16)

Lemma 38. Q(14) = FC(14), where each of the
2-factorizations of Ki4 having 0 and 6 8-cycles
contains sub-2-factorizations of order 6 and the 2-
factorization of K14 having 4 8-cycles contains a
sub-2-factorization of order 4.

Proof. S. Kiiciikgifci.

Lemma 39. Q(22) = F(C(22).

Proof. S. Kiigiik¢ifci.

Lemma 40. FC(16k + 6) C Q(16k + 6).

Proof. Taker = 6, t = 4k and v = 4 in Con-
struction E. Since K4 4 can be 2-factorized into 0 or
2 8-cycles and Q(14) = FC(14), Corollary 31 gives
FC(16k + 4) C Q(16k + 4) for k > 2. Lemmas 38
and 39 complete the proof.

n=12 (mod16)
Lemma 41. FC(16k + 12) C Q(16k + 12).
Proof. Taker = 4, t = 4k +2 and v = 4 in

Construction E. Corollary 31 and Lemma 35 give
FC(16k + 12) C Q(16k + 12).

n=14 (mod16)
Lemma 42. FC(16k + 14) C Q(16k + 14).
Proof. Take r = 6, t = 4k + 2 and v = 4 in

Construction E. Corollary 31 and Lemma 38 give
FC(16k + 14) C Q(16k + 14).
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7. CONCLUSION

We summarize our results with the following the-
orem.

Theorem 43. Q(n) = FC(n) for all odd n with
the possible exceptions of 47 € FC(33) and even
n with the possible exceptions of 45 € FC(34) and
47 € FC(34).

REFERENCES

P. Adams, E. J. Billington, I. J. Dejter, and C. C.
Lindner (2000). The number of 4-cycles in 2-
factorizations of Kj, minus a l-factor, Discrete
Mathematics 220(1-3), 1-11.

P. Adams, E. J. Billington, C. C. Lindner (2002).The
number of 6-cycles in 2-factorizations of K,, n
0dd,JCMCC 41, 223-243.

I. J. Dejter, F. Franek, E. Mendelsohn, and A. Rosa
(1997). Triangles in 2-factorizations,J. Graph The-
ory 26, 83-94.

I. J. Dejter, C. C. Lindner, and A. Rosa (1998). The
number of 4-cycles in 2-factorizations of K, ,/JCMCC
28, 101-112.

S. Kiigiikgif¢i (2000). The number of 8-cycles in 2-
factorizations of K,,Australasian Journal of Com-
binatorics 22, 201-218.

S. Kiigiikcif¢i (2002). The number of 8-cycles in 2-
factorizations of K, minus a 1-factor, Utilitas Math-
ematica 61, 225-237.

C. C. Lindner and C. A. Rodger (1997). Design Theory,
CRC Press, Boca Raton.

E. Lucas (1883). Recreations mathematiques, Gauthier-
Villars, Paris.

D. K. Ray-Chaudhuri and R. M. Wilson (1971). So-
lution of Kirkman’s school-girl problem, in: Com-
binatorics, Proc. Sympos. Pure Math. 19, AMS,
187-203.

Selda KUCUKCIFCi

She received her B.S. degree
in mathematics in 1995 and

her M.S. degree in
mathematics in 1997 from
Bogazi¢i University. She

received her PhD. Degree in
Mathematics from Auburn
University, AL, USA, in
2000. She has been Assistant
Professor at Ko¢ University
since 2001. Her area of research is combinatorics with
primary emphasis on combinatorial design theory and
graph theory.

419



