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ÖZET

Yüksek Lisans Tezi

STONELEY ARAYÜZ DALGALARI İÇİN

ASİMPTOTİK MODEL

HACER BOZDAĞ

Anadolu Üniversitesi

Fen Bilimleri Enstitüsü

Matematik Anabilim Dalı

Danışman : Doç. Dr. Barış ERBAŞ

2015, 45 Sayfa

Bu master tezi, dinamik ortamlarda Stoneley dalgasının katkısını hesapla-

mada kullanılan asimptotik modeli elde edebilmek için arayüz dalgaları ile

çalışılmıştır. Bu arayüz dalgaları yükler tarafından uyarılmış veya üzerinde

yayıldığı arayüz süreksizliğe sahip olabilir.

Bu çalışmada, Stoneley arayüz dalgaları için yavaş zaman pertürbasyonuna

dayanan açık bir model elde edilmiştir. Bu model homojen, izotropik ve elastik

ortamlarda geçerlidir. Stoneley arayüz dalgası genelleştirilmiş bir Rayleigh dal-

gası olarak da bilinir. 2006 yılında, Kaplunov et al. tarafından Rayleigh yüzey

dalgası için bir açık model geliştirilmiştir. Asimptotik model çeşitli dinamik

yüzey problemleri için oldukça kullanışlıdır. Bu sebep ile Stoneley arayüz dal-

gası için asimptotik bir modelin geliştirilebileceği düşünülmüştür. Bu model

sayesinde, sürekli olmayan yerdeğiştirme ve stress bileşenlerinin etkisiyle or-

taya çıkan dalganın yayılımı tanımlanabilir ve analiz edilebilir.

Bu çalışmada farklı sınır şartları ile arayüz problemleri incelenmiştir. Önerilen

model arayüz üzerinde geçerli olan bir hiperbolik denklem ve ortamın iç kısmında

geçerli olan eliptik denklemler yardımıyla ifade edilir. Poisson integral formülü

kullanılarak, normal yüklenme durumu için açıklayıcı bir örnek verilmiştir.

Anahtar Kelimeler: Stoneley dalgası, asimptotik model, yavaş zaman

pertürbasyonu
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ABSTRACT

Master of Science Thesis

AN ASYMPTOTIC MODEL FOR

THE STONELEY INTERFACIAL WAVES

HACER BOZDAĞ

Anadolu University
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Mathematics Department

Supervisor : Asst. Prof. Dr. Barış ERBAŞ

2015, 45 Pages

This M.Sc. thesis is focused on studying interfacial waves for an asymp-

totic model evaluating the contribution of the Stoneley wave to the overall

dynamic field.These interfacial waves are excited by loads or discontinuities on

the interface.

The work deals with the explicit model for Stoneley wave which are based

on slow time perturbation. The model is developed in homogeneous, isotropic,

elastic media. Stoneley wave is a generalised Rayleigh wave. For the Rayleigh

wave, the explicit model was constructed by Kaplunov et al. in 2006. The

asymptotic model has been useful to deal with various surface dynamics prob-

lems. Therefore we aim to construct an asymptotic model for Stoneley in-

terfacial wave. In essence the model describes propagation of the wave by

hyperbolic equation on the interface. The decay over the interior is governed

by elliptic equations.

We investigated interfacial problems with different boundary conditions,

including the discontinuity in stresses or displacements. The proposed model

consist of hyperbolic equation on the interface and elliptic equations on the

inside. An illustrative example is presented for the case of normal loading with

the solution obtained through the Poisson’s integral formula.

Keywords: Stoneley wave, asymptotic model, slow time perturbation
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February 2015

iii



Contents
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1 INTRODUCTION

The mathematical theory of elasticity is one of the active interest areas of

applied mathematics. Dating back as far as Galileo’s work on [1], the prop-

agation of mechanical disturbances in solids is of interest in many branches

of the physical sciences and engineering [2]. It is occupied with an attempt

to reduce to calculation the state of strain, or relative displacement, within a

solid body which is subject to the action of an equilibrating system of forces,

or is in a state of slight internal relative motion [3]. The treatment necessar-

ily involves considerable mathematical analysis [2]. In continuum mechanics,

problems of the motion and deformation of substances are rendered amenable

to mathematical analysis by introducing the concept of a continuum or con-

tinuous medium [2]. Linear elasticity is a simplification of the more general

nonlinear theory of elasticity and is a branch continuum mechanics. Among

the problems considered in the linearised theory, we can name surface and

membrane waves, as well as coated surfaces, moving load problems as areas of

interests. In recent years, near-surface characterisations have been the focus

of interest as well. With many applications in applied mathematics and engi-

neering problems, this vivid area, either directly or indirectly, contributes to

the understanding of natural and technical processes.

The history of the study of wave and vibration phenomena goes back hun-

dreds of years. The first mathematician to consider the nature of rupture was

Galileo [1]. After the Galileo’s studies, the science of vibrations and waves

progressed rapidly. The two great landmarks are the discovery of Hooke’s

Law in 1660 [4], and the formulation of the general equations by Navier in

1821 [5]. Robert Hooke formulated the law of proportionality between stress

and strain for elastic bodies [6]. This law is known as the basis for static and

dynamic theory of elasticity. The general equations of equilibrium represented

one of the most important developments in mechanics [7]. By the Autumn of

1822 Cauchy had discovered most of the elements of pure theory of elastic-

ity [3]. Poisson investigated the propagation of waves through an elastic solid

and he found the longitudinal and transverse wave types [8]. He also devel-

oped approximate theories for the vibrations of rods [8]. In 1883, Kirchhoff

held that the equations of equilibrium or motion of such a portion could be

simplified, for a first approximation, by the omission of kinetic reactions and

forces distributed through the volume [9]. In 1888, Rayleigh and Lamb devel-

oped the frequency equation for waves in a plate according to exact elasticity

theory [10], [11].

Lamb made the first investigation of pulse propagation in a semi infinite
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solid [12]. In 1914, Hopkinson performed experiments on the propagation

of elastic pulses in bars [13]. Many scientists have been interested in wave

propagation and made major contributions. Recent activities in the field of

wave propagation have dealt with formulating various approximate theories

for plates and rods and with the analysis of transient loading situations [7].

Over many decades, surface waves have been investigated by a lot of math-

ematicians and physicists. For bodies with a surface of material discontinuity

there are, however, plane waves which are not uniform in planes of constant

phase [2]. These waves, which are called surface waves, propagate parallel

to the surface of discontinuity [2]. The first known surface wave is Rayleigh

wave [14]. The possibility of a wave traveling along the free surface of an elastic

half space such that the disturbance is largely confined to the neighbourhood of

the boundary was considered by Rayleigh [15] . The criterion for surface waves

is that the displacement decays exponentially with distance from the free sur-

face [2]. Lord Rayleigh showed that their effect decreases rapidly with depth

and that their velocity of propagation is smaller than that of body waves [14].

Rayleigh waves are of a particular importance in seismology, since it is these

waves that are most destructive in earthquakes [7]. Love waves (1911) were a

consequence of a layered construction of the earth, and that they consisted of

SH waves trapped in a superficial layer and propagated by multiple reflections

within the layer [16]. Discovered by Horace Lamb in 1917, Lamb waves can

exist in plate-like thin plate with parallel free boundaries [17], [18]. Interfacial

waves propagate between the two different media. If these medium are solid-

solid, Stoneley waves appear at the interface [19]. If these mediums are fluid-

solid, these waves are named as Schölte waves [20].

The interfacial waves, that propagate along the boundary of two different

media, have attracted the attention of scientists. Rayleigh in his famous work

considered, for example, the surface waves occuring on the surface of an elas-

tic isotropic half-space (vacuum-solid interaction) and proved the existence of

such waves, now named after him [15]. It is well-known that in isotropic solids

the particle motion is elliptical and retrograde, for shallow depths, with respect

to the direction of propagation [21]. This type of wave finds many applications

in industry and technology even today. Propagating disturbances confined to

the neighbourhood of a surface occur not only in the vicinity of a free surface

but also at the interface of two half-spaces filled with different materials which

are called Stoneley interfacial waves [2]. Scholte showed that the range of ex-

istence of simple Stoneley waves has been determined by the evaluation of the

boundary curves of these waves [20]. Chadwick and Captain [22] treated the

propagation of Rayleigh type surface waves on a half spaces of inextensible lin-
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ear elastic material and the same authors [23] examine the existence of Stone-

ley type waves at the interface between two media [24]. In linear elasticity,

time-harmonic waves guided by a traction-free surface (Rayleigh waves), waves

travelling along the interface between two elastic media (Stoneley waves) and

waves at a fluid-solid interface (Schölte-Gogoladze waves) are non-dispersive,

since each is a solution to a boundary-value problem that contains no natural

scale of length or time [25].

Stoneley wave is a generalised Rayleigh wave [19]. The two media will be

distinguished by suffixes 1 and 2, and will be supposed in “welded contact”

along an infinite plane face and otherwise extending to infinity, so that there

is no slipping at the interface, in which an origin and a set of axes of x and y

are taken [19].

Over the years, many developments have occurred in this field, with var-

ious approaches used [7]. Rayleigh, Love, Timoshenko and other scientists

made approximations in the equations of motion and Chree, Morse, Kynch

and Green contributed solutions of the exact equations which only approxi-

mately satisfy the boundary conditions [7].Poisson’s theory is verified as an

approximate theory by an application of Kirchhoff’s result [3].

In his paper of 1948 [26], Friedlander has given a solution of the surface

wave problem in terms of two harmonic functions related through a Hilbert

transform. This work has later been advanced by Chadwick (1976) [27], who

showed that only a single harmonic function was enough to obtain the solu-

tion, where the second harmonic function could be obtained through a relation

on the surface to the first one. He also presented a similar formulation for

Stoneley wave. Kiselev and Parker showed that the disturbance at all depths

may be represented at each instant in terms of a single function harmonic in

a half-space [25]. Kiselev and Parker showed, also, how waves that are not

time-harmonic have a compact representation provided that they are surface

waves [25]. Kaplunov et al. The explicit asymptotic model for the Bleustein-

Gulyaev wave are derived [28] . Kaplunov et al. obtained the solution of a

surface wave problem (both for Rayleigh and Bluestein-Gulyaev waves) with

the use of the mentioned relation between the harmonic functions [29] . The

approach used in the mentioned paper exploits a slow time perturbation of the

self-similar solutions. In the literature, we took as an example some studies for

instance [30]- [33] etc.. Dasgupta [34] examined the Stoneley wave propagation

with incompressible medium. Dowaikh and Ogden examined the propagation

of interfacial (Stoneley) waves along the boundary between two half-spaces

of pre-stressed incompressible isotropic elastic material [35]. Destrade and

Fu used the surface-impadence matrix method for the interfacial waves polar-
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ized in a plane of symmetry of anisotropic elastic materials [36]. Mendez et

al. focused on canonic models for interfacial waves (Rayleigh, Stoneley and

Schölte) [21]. It was then thought that a similar approach might be applied

to the Stoneley interfacial waves, the main topic of this thesis. Due to two

different media with different material properties, it turns out that similar re-

lations between the potentials are more complicated in the case of Stoneley

wave. Considering several boundary conditions on the surface of interaction,

different problems may be considered. Taking into account the principle of

superposition an arbitrary boundary value problem may be solved separately

and the solutions may be added to give the full solution. As soon as hyper-

bolic equations on the boundary are solved, the Poisson’s formula may then be

applied to obtain the inner solutions in terms of potentials for both of the me-

dia. Finally, the stresses and displacements can be obtained using the elastic

potentials. Apart from the difficulties in algebraic calculations, the method is

straightforward, and gives a better physical understanding of the phenomena

considered, even though the obtained solutions are asymptotic ones.

The structure of the thesis is as follows: In the second chapter, we present

some background material needed for the foregoing discussions. In the third

chapter, the main part of the thesis, we construct an asymptotic model for the

Stoneley interfacial wave. The problem will be examined under different types

of boundary conditions, namely normal and tangential loading, and horizontal

and vertical displacement conditions. Each boundary condition will be inves-

tigated separately, and a hyperbolic-elliptic formulation will be obtained. An

illustrative example of an impulse point load problem will be presented. The

thesis ends with some concluding remarks and ideas of future works.
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2 BACKGROUND

In following pages, we present this overview as a reminder that it relies on

the linearised theory of elasticity, asymptotic methods and some other con-

cepts. An overview of asymptotic approach for obtaining the explicit model

from Stoneley waves is given. Finally, we mention basic information which

we use including the Cauchy-Riemann identities for plane harmonic function

and the Poisson’s integral formula for the Dirichlet problem for the Laplace

equation.

2.1 The Linearized Theory of Elasticity

The theory of elasticity is a branch of continuum mechanics dealing with

deformable solid bodies having physical properties analyse the influence and

predict the outcomes of the action of external forces on the body. The fun-

damental “linearising” assumptions of linear elasticity are small displacement

from a given deformation and linear relationships between the components of

stress and strain.

At the beginning of 19th century the foundations of the elastic wave prop-

agation was developed by many scientists among which are Cauchy, Poisson,

Kirchhoff, Stokes, and Rayleigh.

The Stoneley wave, the subject of this thesis, is a generalised surface wave,

propagating along the interface of two different media. A bare minimum of

background information is therefore given in the following sections.

2.1.1 Strain

Consider a continuous medium of volume V and surface S that undergoes

deformation. Before deformation, point P0 is located by the vector Xi and

P1, a neighbouring point of P0 is located by the vector dXi from P0. After

deformation, P0 goes into P ′0 and is located by the vector xi and P1 goes into

P ′1 and is located by the vector dxi relative to P ′0. The displacement of P0 to P ′0
is measured by the vector ui. The displacement of P1 to P ′1 is measured by ûi.

The final volume and surface of the deformed body are V ′ and S ′, respectively.

These quantities are shown in Fig.1.1.

The relationships between these quantities are given by

xi = Xi + ui, ui + dxi = ûi + dXi.

But, from the first equation we deduce that dxi = dXi + dui. Substituting it
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Figure 1. Deformation of continuum of volume V into the volume V ′

in the second equation, we have

ûi = ui + dui

To first order, we may express dui as

dui = ui,jdxj,

which may be presented in the form

dui =
1

2
(ui,j + uj,i) dxi +

1

2
(ui,j − uj,i) dxi. (1)

We then define the infinitesimal strain and rotation tensors respectively as

εij =
1

2
(ui,j + uj,i) , ωij =

1

2
(ui,j − uj,i) (2)

The result (1) emphasises that the kinematics of an arbitrary neighbouring

point of P0 is governed by the local strain-gradient field ui,j and that the

motion is a combination of local distortion effects εij and also local rigid-body

rotation effects ωij [7].

2.1.2 Stress

Consider a continuum of volume V and surface S that is acted upon by

various forces as shown Fig. 1.2(a). As a result of these forces, tractive forces

will act on an arbitrary surface element within the body, as shown in Fig.

1.2(b). The traction vector is given by

t = tjij, (3)
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Figure 2. (a) A continuum subjected to forces, and (b) a trihedral element of that

continuum.

where the traction components tj serve to define the stress tensor τij by

ti = τijnj (4)

where ~n = (n1, n2, n3) is the normal vector and l, m, n are unit vectors in

directions x, y, z respectively. In Cartesian frame, these equations take form

tx = τxxl + τxym+ τxzn,

ty = τyxl + τyym+ τyzn, (5)

tz = τzxl + τzym+ τzzn.

Now, we will present the basic elasticity equations, scalar and vector potential

equations. In addition we will mention dilatational and distortional waves

which can propagate in an infinite medium, with each being characterised by

a specific velocity [7].

2.2 Stress-Strain Relations

In general form, the linear relation between the components of the stress

tensor and the components of strain tensor (Hooke’s law) is

τij = Cijklδijεkl, (6)

where

Cijkl = Cjikl = Cklij = Cijlk. (7)
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It follows that 21 of the 81 components of the tensor Cijkl are indepented. the

solid is homogeneous if the coefficients Cijkl do not depend on x. It is isotropic

when there are no preferred directions. It can be shown that elastic isotropy

implies that the constants Cijkl may be expressed as

Cijkl = λδijδkl + µ(δikδjl + δilδjk), (8)

where δij is the Kronecker delta, whose components are

y =

{
1 if i = j,

0 if i 6= j.

Hooke’s law then assumes the well-known form

τij = λεkkδij + 2µεij, (9)

where λ and µ are known as the Lamé constants, µ being the shear modulus

[37]. By assuming homogeneity and isotropy, the number of constants reduces

from 21 to 2 [7].

2.2.1 The Governing Equations

The equations for a homogeneous isotropic elastic solid may be summarised

in Cartesian tensor notation as

τij,j + ρfi = ρüi,

τij = λεkkδij + 2µεij, (10)

εij =
1

2
(ui,j + uj,i) ,

where τij is the Cauchy stress tensor, ui is the displacement vector and f is

the body force. The stress tensor is symmetric, so that τij = τji. The mass

density per unit volume of the material is ρ, and fi is the body force per unit

mass of material, εij is the strain tensor that is given by (see eqn.(2)) [7].

Both of elastic constants may be expressed in terms of the other elastic

constants that often appear in linear elasticity which are Young’s modulus E,

the Bulk modulusK and the Poisson’s ratio v. A number of useful relationships

among the isotropic constants are summarized in Table 1.1 [37].

The governing equations in terms of displacements are obtained by sub-

stituting the expression for strain into the stress-strain relation (9) and that

8



Table 1. Relationship among isotropic elastic constants

E, v E, µ λ, µ

λ
Ev

(1 + v)(1− 2v)

µ(E − 2µ)

3µ− E
λ

µ
E

2(1 + v)
µ µ

E E E
µ(3λ+ 2µ)

λ+ µ

K
E

3(1− 2v)

µE

3(3µ− E)
λ+

2

3
µ

v v
E − 2µ

2µ

λ

2(λ+ µ)

result into the stress equations of motion, giving Navier’s equations for the

media

(λ+ µ)uj,ji + µui,jj + ρfi = ρüi i = 1, 2, 3, (11)

where a dot over the displacement components represent a time derivative.

The vector equivalent of this expression is

(λ+ µ)∇∇ · u + µ∇2u + ρf = ρü (12)

where u(u, v, w) is displacement vector. In terms of rectangular scalar nota-

tion, this represents three equations

(λ+ µ)

(
∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z

)
+ µ∇2u + ρfx = ρ

∂2u

∂t2
,

(λ+ µ)

(
∂2u

∂y∂x
+
∂2v

∂y2
+

∂2w

∂y∂z

)
+ µ∇2u + ρfy = ρ

∂2v

∂t2
, (13)

(λ+ µ)

(
∂2u

∂z∂x
+

∂2v

∂z∂y
+
∂2w

∂z2

)
+ µ∇2u + ρfz = ρ

∂2w

∂t2
,

where u, v, w are the particle displacements in the x, y, z, directions, respec-

tively. Returning to the vector notation, we note that the dilatation of material

is defined by

∆ = ∇ · u = εx + εy + εz = εkk, (14)

so that (12) may also be written as

(λ+ µ)∇∆ + µ∇2u + ρf = ρü. (15)

9



The results (12) and (15) are the most commonly employed forms of the

equations. Substituting ∇2u in (12) gives

(λ+ 2µ)∇∇ · u− µ∇×∇× u + ρf = ρü. (16)

Recalling that the rotation vector ω is defined by

ω =
1

2
∇× u,

and again using the dilatation ∆, we may express the last result (16) as

(λ+ 2µ)∇∆− 2µ∇× ωu + ρf = ρü.

One of the advantages of the last form is that it explicitly displays the di-

latation and rotation. A greater advantage is that the result is valid in any

curvilinear coordinate system, whereas the results (12) and (15) are valid only

in rectangular coordinates.

A decomposition of a vector field into the gradient of a scalar and the curl

of a zero-divergence vector is performed due to a theorem by Helmholtz [7].

u = ∇Φ +∇×Ψ, ∇ ·Ψ = 0 (17)

The condition∇·Ψ = 0 provides the necessary additional condition to uniquely

determine the three components of u from the four components of Φ,Ψ. We

also express

f = ∇f +∇×B, ∇ ·B = 0. (18)

Thus, the following equations may be written

(λ+ 2µ)∇2Φ + ρf = ρΦ̈, (19)

µ∇2Ψ + ρB = ρΨ̈, (20)

where Φ and Ψ are the so-called scalar and vector potentials, respectively

[7].

2.2.2 Dilatational and Distortional Waves

Consider the governing displacement equations in the absence of body

forces, given by

(λ+ µ)∇∇ · u + µ∇2u = ρü. (21)

If the vector operation of divergence is performed on the above, we obtain

(λ+ µ)∇ · (∇∇ · u) + µ∇ · (∇2u) = ρ∇ · ü. (22)
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Since ∇ · ∇ ∼ ∇2, ∇ · (∇2u) = ∇2(∇ · u) and ∇ · u = ∆, the dilatation,(22)

reduces to

(λ+ 2µ)∇2∆ = ρ
∂2∆

∂t2
. (23)

This is recognised as the wave equation, expressible in the form

∇2∆ =
1

c21

∂2∆

∂t2
, (24)

where the propagation velocity c1 is given by

c1 =

√
λ+ 2µ

ρ
. (25)

We thus conclude that a change in volume, or dilatational disturbance, will

propagate at the velocity c1.

We now perform the operation of curl on the governing equation (22). Since

the curl of the gradient of scalar is zero, this gives

µ∇2ω = ρ
∂2ω

∂t2
, (26)

where ω = ∇× u/2 is the previously defined rotation vector. This result is in

the form of the vector wave equation and may be expressed as

∇2ω =
1

c22

∂2ω

∂t2
, (27)

where the propagation velocity c2 is given by

c2 =

√
µ

ρ
. (28)

Thus, rotational waves propagate with a velocity c2 in the medium.

Finally we refer to (19)-(20), the equations that resulted from introducing

the scalar and vector potentials Φ and Ψ. If the body forces are zero, we have

f = B = 0, and the two equations again give the scalar and vector wave equa-

tions and contain the velocities c1 and c2. The significance of the Helmholtz

resolution of u becomes even more apparent at this stage. The scalar potential

is seen to be associated with the dilatation part of the dieturbance, and the

vector potential is associated with the rotational part [7].

We have thus found that waves may propagate in the interior of an elastic

solid at two different speeds c1 and c2. The ratio of the two wave speeds may

be expressed as

k =
c1
c2

=

√
λ+ 2µ

µ
=

√
2− 2v

1− 2v
. (29)
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Since 0 ≤ v ≤ 1/2 always, we see that c1 > c2.

A variety of terminology exist for the two wave-types. Dilatational waves

are also called irrotational and primary (P) waves. The rotational waves are

also called distortional and secondary (S) waves. Other designations frequently

used are longitudinal and shear waves [7].

2.2.3 Plane Waves

Let us now discuss plane waves which propagate in an infinite elastic solid.

A plane displacement wave propagating with phase velocity c in a direction

defined by the unit propagating vector n is represented by

u = Af(n · x− ct) (30)

or, in index notation,

ui = Aif(ni · xi − ct).

In this equation A and n are unit vectors defining the directions of motion

and propagation, respectively. The vector x denotes the position vector and

n.x = constant describes a plane normal to the unit vector n equation (2.2.3),

thus represents a plane wave whose planes of constant phase are normal to

n and propagate with velocity c [2]

The expression for a plane wave, equation (21), is substituted into the

homogeneous form of the displacement equation of motion given by equation

. By employing the relations (21). By employing the relations, we obtain

[µn + (λ+ µ)(n.A)n− ρc2n]f
′′
(nx− ct) = 0

or

(µ− ρc2)A + (λ+ µ)(n.A)n = 0. (31)

Since n and A are two different unit vectors, equation (31) can be satisfied

in two ways only: either A = ±n, or n.A = 0. If A = ±n, we have A.n = ±1

and equation (31) yields

c = c1 =

√
λ+ 2µ

ρ
.

In this case the motion is parallel to the direction of propagation, and the wave

is therefore called a longitudinal (dilatational) or L wave.
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If A 6= ±n, both terms in (31) have to vanish independently, yielding

n.A = 0 and

n.A = 0 and c = c2 =

√
µ

ρ
.

Now the motion is normal to the direction of propagation, and the wave is

called a transverse (distortional) or T wave [37]. Thus, plane waves propagate

at one or the other velocity in a media [7].

2.2.4 Plane Strain

In two-dimensional problems the body forces and components of the stress

tensor are independent of one of the coordinates, say x3. The stress equations

of motion can be derived from (10) by setting ∂/∂x3 = 0. We find that the

system of equations splits up into two uncoupled systems. These are

τ3β,β + ρf3 = ρü3 (32)

and

ταβ,β + ρfα = ρüα (33)

where Greek indices can assume the values 1 and 2 only.

It follows from eqn. (33) that the in-plane displacements uα depend on

x1, x2 and t only, with regard to the dependence of u3 on the spatial coordinates

and time, two separate cases that is plane stress and plane strain are described

by eqn. (33). Here we restrict our attention to the plane strain case.

In plane strain case all field variables are indepented of x3 and the dis-

placement in the x3−direction vanishes identically. Hooke’s law then yields

the following relations:

ταβ =λuγ,γδαβ + µ(uα−β + uβ,α), (34)

τ33 = λuγ,γ, (35)

where Greek indices can assume the values 1 and 2 only. Elimination of ταβ

from (33) and (34) leads to

µuαββ + (α + µ)uβ,βα + ρfα = ρüα (36)

[37].
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2.2.5 Boundary Conditions

On the surface S of the undeformed body, boundary conditions must be

prescribed. The following boundary conditions are most common:

Displacement boundary conditions the three components ui are prescribed

on the boundary.

Traction boundary conditions the three traction components ti are pre-

scribed on the boundary at a position with unit normal n. Through Cauchy’s

formula

ti = τji · nj

this case actually corresponds to conditions on three components of the stress

tensor.

Mixed boundary conditions are prescribed displacements and traction on

different parts of the boundary [2].

2.2.6 Surface Waves

A surface (interfacial) wave is a mechanical wave that propagates along the

interface of differing media. For example wind waves are generated between

the atmosphere and ocean and they propagate at the interface. Rayleigh wave

which was investigated by Lord Rayleigh is a surface wave. Rayleigh showed

that their effect decreases rapidly with depth and their velocity of propagation

is smaller than that of body waves [7]. When there is a boundary, as in the

half plane problem, a third type of wave may exist whose effects are confined

closely to the surface.

We encounter surface waves in a variety of natural phenomena as well as en-

gineering applications. The most famous of these are the Rayleigh, Lamb,Love,

Stoneley and Schölte waves [2]. Rayleigh waves propagate near the surface of

solid. While Rayleigh wave propagates at the interface of vacuum-solid, Schölte

waves is surface waves created dynamic load at an interface between a solid

and a fluid medium. Lamb and Love waves propagate in solids, Love waves

are horizontally polarized surface waves, Lamb waves move in the direction

perpendicular to the plate it acts on.

A Stoneley wave is a high-amplitude interface wave named after the British

seismologist Robert Stoneley in 1924 [19]. The wave is of maximum intensity

at the interface and decreases exponentially away from it. The two media will

be distinguished by suffixes 1 and 2. It will be supposed in “welded contact”

along an infinite plane face (no slipping) [19].
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We may consider displacement components of the form,

u1 = Ae−by exp[ik(x− ct)]
u1 = Be−by exp[ik(x− ct)]
u1 = 0.

The real part of b is supposed to be positive, so that the displacements decrease

with increasing y and tend to zero as y increases beyond bounds [2].

Given suitable generating conditions, surface waves as well as body waves

are generated at a bounding surface. For a two-dimensional geometry the sur-

face waves are essentially one-dimensional, but the body waves are cylindrical

and undergo geometrical attenuation. Thus at some distance from the source

the disturbance due to the surface wave becomes predominant [2].

2.3 Asymptotic Approximation

It is not always possible to find exact analytical solutions for most dif-

ferential and integral equations. Asymptotic analysis is concerned with both

developing techniques and obtaining approximate analytical solutions to such

problems.

In 1886, Poincaré gave a precise definition of what is called an asymptotic

expansion and laid the foundations of modern asymptotic analysis [38].

Many scientists used several asymptotic expansion methods to evaluate

integrals for mathematical and physical problems such as Watson lemma, sta-

tionary phase, steepest descent etc. It is allowing an explicit solution in terms

of elementary functions [39].

The derivations that will be given in the next chapter are based on perturb-

ing in slow time the self-similar solutions for a homogeneous surface wave [29].

Therefore we give some definitions related to this subject.

Definition 2.3.1. If f(z) and g(z), two functions of a complex number z,

which may be parameter of the problem or an independent variable defined on

some domain D, f(z) = O(g(z)) as z → z0 means that there are constants K

and δ such that

|f | ≤ K|g| for 0 < |z − z0| < δ.

We say that f is ”big Oh” of g as z → z0 [38].

Definition 2.3.2. If f(z) and g(z), two functions of a complex number z,

which may be parameter of the problem or an independent variable defined on

15



some domain D, f(z) = o(g(z)) as z → z0 means that for every positive ε

there is a δ (independent of ε) such that

|f | ≤ ε|g| for 0 < |z − z0| < δ.

We say that f is ”little Oh” of g as z → z0 [38].

Thus as long as g(z) is not zero in a neighbourhood of z0, other than

possibly z0, f(z) = O(g(z)) implies that f/g → 0 as z → z0, while f(z) =

o(g(z)) implies that f/g is bounded.

We say that f(z) is asymptotically equivalent or equal to g(z) under

the limit z → z0 if f and g are such that lim
z→z0

f/g = 1. We write

f(z) ∼ g(z) as z → z0 if lim
z→z0

f(z)

g(z)
= 1.

Definition 2.3.3. A finite or infinite sequences of functions {φn(z)}, n = 1, 2, ·

is an asymptotic sequence as z → z0 if, for all n,

φn+1(z) = o(φn(z)) as z → z0

that is, lim
z→z0

φn+1/φn = 0 [38].

Definition 2.3.4. If {φn(z)} is an asymptotic sequence of functions as z →

z0, we say that
∑
n=1

anφn(z), where the an are constant (with the upper limit

omitted), is an asymptotic expansion or asymptotic approximation of

the function f(z) if for each N

f(z) =
N∑
n=1

anφn(z) + o(φN(z)) as z → z0

[38].

Asymptotic methods are frequently used in differential equations, evalu-

ation of certain integrals, obtaining approximate analytical solution to such

problems etc. In this thesis, the solution in terms of potentials are sought in

terms of asymptotic expansions in the slow time perturbation parameter.
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2.4 Other Basic Concepts

2.4.1 Harmonic Functions, Cauchy-Riemann Equations

If f(z) is defined in finite domain G ⊂ C, and is differentiable with respect

to z at each point of G, then f(z) is said to be an analytic function in G.

A function f(z) = u(x, y)+iv(x, y) is analytic in a domainG if the functions

u(x, y) and v(x, y) are differentiable throughout G and the Cauchy-Riemann

differential equations

ux = vy, uy = −vx

are satisfied [40].

2.4.2 Solution of the Dirichlet Problem for a Half Space

Let us consider the case when the domain D is a half-space; for definiteness,

let D be the half-space x2 > 0. Here we shall require that the sought-for

solution of the Dirichlet problem should be bounded. Let x(x1, x2) and ξ(ξ1, ξ2)

be two points belonging to that half-space and let us take the point ξ′ =

(ξ1,−ξ2) symmetric to the point ξ about the plane ξ2 = 0. We will assume that

in the case under consideration the sought-for u(x) of the Dirichlet problem

can be represented in form

u(x) =
x2
π

∫
ξ2=0

φ(ξ1)

(ξ1 − x1)2 + x22
dξ1 (37)

for ξ2 > 0.

Formula (38) expresses the solution of the Dirichlet problem with the

boundary condition

lim
x→y

u(x) = φ(y1); x2 > 0, y2 = 0 (38)

for the half space x2 > 0; this formula is also called Poisson’s formula [41],

[42].
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3 ASYMPTOTIC MODEL FOR THE STONELEY WAVE

In this chapter, we construct the asymptotic model for the Stoneley wave.

As it is already mentioned in the Introduction, after the discovery of Rayleigh

surface wave, Friedlander [26] suggested a solution in terms of a pair of har-

monic functions. Over thirty years later, Chadwick [27] demonstrated that the

solution may actually be obtained using a single potential, the second of which

can be obtained through a relation on the surface.

In our study, we derive an asymptotic model for interfacial Stoneley wave.

In 2006, the asymptotic model for Rayleigh surface waves was obtained by

Kaplunov et. al, being applied to a member of dynamic problems and allowing

significant simplifications of the analysis [29]. In [31], [32] and [43], papers, they

derived asymptotic model and used asymptotic model for different problems.

Thus we intend to derive an asymptotic model for the interfacial Stoneley

wave with the understanding that the model will provide notable simplification,

reducing a vector problem of elasticity to a scalar one. We should also mention

that the proposed method provides an estimate of the contribution of Stoneley

wave to the overall dynamic response and is therefore accurate provided that

the interfacial wave is dominant, which would be true for a variety of near-

resonant problems.

3.1 Statement of the Problem

We consider a plane strain problem for two elastic isotropic half planes

assumed to be in contact along an infinite straight line, with the Cartesian

axes Ox along the interface (See, Fig. 3.1). The governing equations of motion

are written in terms of Lamé elastic potentials as

∂2ϕi
∂x2

+
∂2ϕi
∂y2

− 1

c21i

∂2ϕi
∂t2

= 0, (39)

∂2ψi
∂x2

+
∂2ψi
∂y2

− 1

c22i

∂2ψi
∂t2

= 0, i = 1, 2 (40)

where ϕi and ψi denote wave potentials, c1i and c2i are longitudinal and shear

wave speeds, respectively, which are represented in terms of elastic constants

λi, µi, and density ρi in case of medium i as

c21i =
λi + 2µi

ρi
, c22i =

µi
ρi
, i = 1, 2

[7].
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Figure 3. Geometry of the problem

The boundary conditions on the interface y = 0 are written in the form

(u1 − u2)
∣∣
y=0

= q1(x, t), (41)

(w1 − w2)
∣∣
y=0

= q2(x, t), (42)(
σ
(1)
12 − σ

(2)
12

)∣∣∣∣
y=0

= p1(x, t), (43)(
σ
(1)
22 − σ

(2)
22

)∣∣∣∣
y=0

= p2(x, t), (44)

where the functions qi(x, t), i = 1, 2, correspond to a jump in the displacements

ui and wi along the interface, and pi(x, t), i = 1, 2 are the normal and tangential

loads, respectively. The displacements ui, wi and the stresses σ
(i)
jk for medium

i are expressed in terms of the elastic potentials as

ui =
∂ϕi
∂x

+
∂ψi
∂y

, wi =
∂ϕi
∂y
− ∂ψi

∂x
, (45)

σ
(i)
12 = µi

(
2
∂2ϕi
∂x∂y

− ∂2ψi
∂x2

+
∂2ψi
∂y2

)
, (46)

σ
(i)
22 = λi

∂2ϕi
∂x2

+ (λi + 2µi)
∂2ϕi
∂y2

− 2µi
∂2ψi
∂x∂y

, i = 1, 2. (47)
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The interfacial boundary conditions are then presented in the form[
∂ϕ1

∂x
− ∂ϕ2

∂x
+
∂ψ1

∂y
− ∂ψ2

∂y

]∣∣∣∣
y=0

= q1(x, t), (48)[
∂ϕ1

∂y
− ∂ϕ2

∂y
− ∂ψ1

∂x
+
∂ψ2

∂x

]∣∣∣∣
y=0

= q2(x, t), (49)[
2µ1

∂2ϕ1

∂x∂y
− 2µ2

∂2ϕ2

∂x∂y
+ µ1

(
∂2ψ1

∂y2
− ∂2ψ1

∂x2

)
−

−µ2

(
∂2ψ2

∂y2
− ∂2ψ2

∂x2

)]∣∣∣∣
y=0

= p1(x, t), (50)[
λ1
∂2ϕ1

∂x2
+ (λ1 + 2µ1)

∂2ϕ1

∂y2
− λ2

∂2ϕ2

∂x2
− (λ2 + 2µ2)

∂2ϕ2

∂y2
−

−2µ1
∂2ψ1

∂x∂y
+ 2µ2

∂2ψ2

∂x∂y

]∣∣∣∣
y=0

= p2(x, t). (51)

It is convenient to separate the boundary conditions ((48)-(51)) into those

for a normal load (q1 = q2 = p1 = 0, p2 6= 0), a tangential load (q1 = q2 = p2 =

0, p1 6= 0), a vertical jump (p1 = p2 = q2 = 0, q1 6= 0) and a horizontal jump

(p1 = p2 = q1 = 0, q2 6= 0).

3.2 Model for the Stoneley Wave

The asymptotic model provides better physical understanding of the sur-

face wave phenomena and also allows significant simplifications for boundary

problems with given surface loading [39]. The self-similar solution in the vari-

ables

ξ = x− cst, y = y, (52)

(where cs denotes the Stoneley wave speed) has been constructed by Chadwick

(1976). To incorporate the effect of surface (interfacial) loading, we perturb

below this self similar solution in the slow time τ = εt (ε � 1). This per-

turbation allows us to evaluate Stoneley wave contribution into the overall

dynamic response. Here and below we assume that the condition of existence

of Stoneley wave [20], are satisfied. The governing equations may be written

in terms of the new variables as

∂2ϕi
∂y2

+

(
1− c2s

c21i

)
∂2ϕi
∂ξ2

+ 2ε
cs
c21i

∂2ϕi
∂ξ∂τ

− ε2

c21i

∂2ϕi
∂τ 2

= 0, (53)

∂2ψi
∂y2

+

(
1− c2s

c22i

)
∂2ψi
∂ξ2

+ 2ε
cs
c22i

∂2ψi
∂ξ∂τ

− ε2

c22i

∂2ψi
∂τ 2

= 0 (54)

20



and the boundary conditions with regard to variables ξ and τ are[
∂ϕ1

∂ξ
− ∂ϕ2

∂ξ
+
∂ψ1

∂y
− ∂ψ2

∂y

]∣∣∣∣
y=0

= q1(ξ, t), (55)[
∂ϕ1

∂y
− ∂ϕ2

∂y
− ∂ψ1

∂ξ
+
∂ψ2

∂ξ

]∣∣∣∣
y=0

= q2(ξ, t), (56)[
2µ1

∂2ϕ1

∂ξ∂y
− 2µ2

∂2ϕ2

∂ξ∂y
+ µ1

(
∂2ψ1

∂y2
− ∂2ψ1

∂ξ2

)
−

−µ2

(
∂2ψ2

∂y2
− ∂2ψ2

∂ξ2

)]∣∣∣∣
y=0

= p1(ξ, t), (57)[
λ1
∂2ϕ1

∂ξ2
+ (λ1 + 2µ1)

∂2ϕ1

∂y2
− λ2

∂2ϕ2

∂ξ2
− (λ2 + 2µ2)

∂2ϕ2

∂y2
−

−2µ1
∂2ψ1

∂ξ∂y
+ 2µ2

∂2ψ2

∂ξ∂y

]∣∣∣∣
y=0

= p2(ξ, t). (58)

We now search for asymptotic solutions of (53) and (54), along with the bound-

ary conditions (55)-(58) with respect to the wave potentials in the form of

asymptotic series

ϕi =
P∗
εµ∗

(
ϕ
(i)
0 (ξ, y, t) + ε(ϕ

(i)
1 (ξ, y, t) + ...)

)
, (59)

ψi =
P∗
εµ∗

(
ψ

(i)
0 (ξ, y, t) + ε(ψ

(i)
1 (ξ, y, t) + ...)

)
, i = 1, 2. (60)

where P∗ = max{p1(ξ, t), p2(ξ, t), q1(ξ, t), q2(ξ, t)} and µ∗ = max{µ1, µ2} .

Substituting (59), (60) into (53) and (54), we arrive at the leading order,

at elliptic equations

∂2ϕ
(i)
0

∂y2
+

(
1− c2s

c21i

)
∂2ϕ

(i)
0

∂ξ2
= 0, (61)

∂2ψ
(i)
0

∂y2
+

(
1− c2s

c22i

)
∂2ψ

(i)
0

∂ξ2
= 0. (62)

Equations (61) and (62) are satisfied by plane harmonic functions of the form

ϕ
(i)
0 = ϕ

(i)
0 (ξ, αiy, τ), ψ

(i)
0 = ψ

(i)
0 (ξ, βiy, τ) (63)

where

α2
i = 1− c2s

c21i
, β2

i = 1− c2s
c22i
.

The functions appearing in (63) may also be assumed to contain the scaled

variable τ as a parameter.
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At next order, governing equations reduce to the inhomogeneous equations

given by

∂2ϕ
(i)
1

∂y2
+ α2

i

∂2ϕ
(i)
1

∂ξ2
= −2

(
1− α2

i

cs

)
∂2ϕ

(i)
0

∂ξ∂τ
, (64)

∂2ψ
(i)
1

∂y2
+ β2

i

∂2ψ
(i)
1

∂ξ2
= −2

(
1− β2

i

cs

)
∂2ψ

(i)
0

∂ξ∂τ
. (65)

The solution of these inhomogeneous equations may be represented by

ϕ
(i)
1 = ϕ

(i)
10 + yϕ

(i)
11 , ψ

(i)
1 = ψ

(i)
10 + yψ

(i)
11

where ϕ
(i)
10 , ϕ

(i)
11 , ψ

(i)
10 and ψ

(i)
11 are harmonic functions. Inserting ϕ

(i)
1 and ψ

(i)
1

into equations (64) and (65), we obtain the following equations:

∂ϕ
(1)
11

∂y
= −

(
1− α2

1

cs

)
∂2ϕ

(1)
0

∂ξ∂τ
,

∂ψ
(1)
11

∂y
= −

(
1− β2

1

cs

)
∂2ψ

(1)
0

∂ξ∂τ
, (66)

∂ϕ
(2)
11

∂y
= −

(
1− α2

2

cs

)
∂2ϕ0

(2)

∂ξ∂τ
,

∂ψ
(2)
11

∂y
= −

(
1− β2

2

cs

)
∂2ψ

(2)
0

∂ξ∂τ
. (67)

Here and below, we employ the Cauchy-Riemann identities

∂f

∂ξ
=

1

k

∂f

∂y
,

∂f

∂y
= −k∂f

∂ξ
, f = −f, y > 0, (68)

∂f

∂ξ
= −1

k

∂f

∂y
,

∂f

∂y
= k

∂f

∂ξ
, f = −f, y < 0 (69)

where f = f(ξ, ky) is an arbitrary plane harmonic function and f is its har-

monic conjugate.

Utilizing the Cauchy-Riemann equations in (66) and (67) the asymptotic

expansions may now be written in the form

ϕ1 =
P∗
εµ∗

(
ϕ
(1)
0 + ε

(
ϕ
(1)
10 − y

(
1− α2

1

csα1

)
∂ϕ

(1)
0

∂τ

))
, (70)

ψ1 =
P∗
εµ∗

(
ψ

(1)
0 + ε

(
ψ

(1)
10 − y

(
1− β2

1

csβ1

)
∂ψ

(1)

0

∂τ

))
, (71)

ϕ2 =
P∗
εµ∗

(
ϕ
(2)
0 + ε

(
ϕ
(2)
10 + y

(
1− α2

2

csα2

)
∂ϕ

(2)
0

∂τ

))
, (72)

ψ2 =
P∗
εµ∗

(
ψ

(2)
0 + ε

(
ψ

(2)
10 + y

(
1− β2

2

csβ2

)
∂ψ

(2)

0

∂τ

))
. (73)

The obtained solutions, equations (70)-(73), over the interior allow sepa-

rate consideration of four different boundary conditions, including the cases of

normal, tangential loading, along with vertical and horizontal jumping.
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3.2.1 Normal Loading

We begin with consideration of the case of normal loading, implying that

q1, q2 and p1 vanish[
∂ϕ1

∂ξ
− ∂ϕ2

∂ξ
+
∂ψ1

∂y
− ∂ψ2

∂y

]∣∣∣∣
y=0

= 0, (74)[
∂ϕ1

∂y
− ∂ϕ2

∂y
− ∂ψ1

∂ξ
+
∂ψ2

∂ξ

]∣∣∣∣
y=0

= 0, (75)[
2µ1

∂2ϕ1

∂ξ∂y
− 2µ2

∂2ϕ2

∂ξ∂y
+ µ1

(
∂2ψ1

∂y2
− ∂2ψ1

∂ξ2

)
−

−µ2

(
∂2ψ2

∂y2
− ∂2ψ2

∂ξ2

)]∣∣∣∣
y=0

= 0, (76)[
λ1
∂2ϕ1

∂ξ2
+ (λ1 + 2µ1)

∂2ϕ1

∂y2
− λ2

∂2ϕ2

∂ξ2
− (λ2 + 2µ2)

∂2ϕ2

∂y2
−

−2µ1
∂2ψ1

∂ξ∂y
+ 2µ2

∂2ψ2

∂ξ∂y

]∣∣∣∣
y=0

= p2(ξ, t). (77)

Substituting the asymptotic solution (70)-(73) into the boundary condi-

tions (55)-(58) we obtain at the leading order on the interface y = 0[
∂ϕ

(1)
0

∂ξ
+
∂ψ

(1)
0

∂y
− ∂ϕ

(2)
0

∂ξ
− ∂ψ

(2)
0

∂y

]∣∣∣∣
y=0

= 0, (78)[
∂ϕ

(1)
0

∂y
− ∂ψ

(1)
0

∂ξ
− ∂ϕ

(2)
0

∂y
+
∂ψ

(2)
0

∂ξ

]∣∣∣∣
y=0

= 0, (79)[
2α1µ1

∂2ϕ
(1)
0

∂ξ2
+ 2α2µ2

∂2ϕ
(2)
0

∂ξ2
− µ1(1 + β2

1)
∂2ψ

(1)
0

∂ξ2
+

+µ2(1 + β2
2)
∂2ψ

(2)
0

∂ξ2

]∣∣∣∣
y=0

= 0, (80)[
−µ1(1 + β2

1)
∂2ϕ

(1)
0

∂ξ2
+ µ2(1 + β2

2)
∂2ϕ

(2)
0

∂ξ2
+ 2β1µ1

∂2ψ
(1)
0

∂ξ2
+

+2β2µ2
∂2ψ

(2)
0

∂ξ2

]∣∣∣∣
y=0

= 0. (81)

Now, we apply Cauchy-Riemann equations for the boundary conditions and

take the derivative of the boundary conditions which is related to displacements
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with ξ[
∂2ϕ

(1)
0

∂ξ2
− β1

∂2ψ
(1)

0

∂ξ2
− ∂2ϕ

(2)
0

∂ξ2
− β2

∂2ψ
(2)

0

∂ξ2

]∣∣∣∣
y=0

= 0, (82)[
α1
∂2ϕ

(1)
0

∂ξ2
− ∂2ψ

(1)

0

∂ξ2
+ α2

∂2ϕ
(2)
0

∂ξ2
+
∂2ψ

(2)

0

∂ξ2

]∣∣∣∣
y=0

= 0, (83)[
2α1µ1

∂2ϕ
(1)
0

∂ξ2
+ 2α2µ2

∂2ϕ
(2)
0

∂ξ2
− µ1(1 + β2

1)
∂2ψ

(1)

0

∂ξ2
+

+µ2(1 + β2
2)
∂2ψ

(2)

0

∂ξ2

]∣∣∣∣
y=0

= 0, (84)[
−µ1(1 + β2

1)
∂2ϕ

(1)
0

∂ξ2
+ µ2(1 + β2

2)
∂2ϕ

(2)
0

∂ξ2
+ 2β1µ1

∂2ψ
(1)

0

∂ξ2
+

+2β2µ2
∂2ψ

(2)

0

∂ξ2

]∣∣∣∣
y=0

= 0. (85)

From (82), (83) and (84), we deduce the following relations for the potentials

∂ψ
(1)

0

∂ξ

∣∣∣∣
y=0

=
δ1
δ2

∂ϕ
(1)
0

∂ξ

∣∣∣∣
y=0

, (86)

∂ψ
(2)

0

∂ξ

∣∣∣∣
y=0

=
δ3
δ4

∂ϕ
(2)
0

∂ξ

∣∣∣∣
y=0

, (87)

∂ϕ
(2)
0

∂ξ

∣∣∣∣
y=0

= −δ4
δ2

∂ϕ
(1)
0

∂ξ

∣∣∣∣
y=0

, (88)

where

δ1 = 2α1(µ1 − µ2)(1− α2β2) + ρ2c
2
s(α1 + α2), (89)

δ2 = (2(µ1 − µ2)− ρ1c2s)(1− α2β2) + ρ2c
2
s(1 + α2β1), (90)

δ3 = 2α2(µ1 − µ2)(1− α1β1)− ρ1c2s(α1 + α2), (91)

δ4 = −(2(µ1 − µ2) + ρ2c
2
s)(1− α1β1) + ρ1c

2
s(1 + α1β2). (92)

Equations (82)-(85) constitute a homogeneous system in the wave potential

variables and has nontrivial solution only when the determinant of coefficients

is zero. The determinant of the system then gives the well-known Stoneley

equation (see, Stoneley 1924), i.e,

c4s
[
(1− α2β2)ρ

2
1 − (2 + α2β1 + α1β2)ρ1ρ2 + (1− α1β1)ρ

2
2

]
+

+ 4c2s [(µ1 − µ2)((1− α1β1)ρ2 − (1− α2β2)ρ1)] +

+ 4(1− α1β1)(1− α2β2)(µ1 − µ2)
2 = 0 (93)

24



When ρ2 = 0, this equation reduces to the ordinary equation for Rayleigh

waves

(1 + β2
1)2 − 4α1β1 = 0

(see, Kaplunov et al., 2006).

At the next order, the boundary conditions take the form[
∂ϕ

(1)
10

∂ξ
− ∂ϕ

(2)
10

∂ξ
− β1

∂ψ
(1)

10

∂ξ
− β2

∂ψ
(2)

10

∂ξ
− 1− β2

1

csβ1

∂ψ
(1)

0

∂τ
−

−1− β2
2

csβ2

∂ψ
(2)

0

∂τ

]∣∣∣∣
y=0

= 0, (94)[
α1
∂ϕ

(1)
10

∂ξ
+ α2

∂ϕ
(2)
10

∂ξ
− ∂ψ

(1)

10

∂ξ
+
∂ψ

(2)

10

∂ξ
+

1− α2
1

csα1

∂ϕ
(1)
0

∂τ
+

+
1− α2

2

csα2

∂ϕ
(2)
0

∂τ

]∣∣∣∣
y=0

= 0, (95)[
2µ1α1

∂2ϕ
(1)
10

∂ξ2
+ 2µ2α2

∂2ϕ
(2)
10

∂ξ2
− (2µ1 − c2sρ1)

∂2ψ
(1)

10

∂ξ2
+ (2µ2 − c2sρ22)

∂2ψ
(2)

10

∂ξ2
+

+2µ1
1− α2

1

csα1

∂2ϕ
(1)
0

∂ξ∂τ
− 2µ1

1− β2
1

cs

∂2ψ
(1)

0

∂ξ∂τ
+

+2µ2
1− α2

2

csα2

∂2ϕ
(2)
0

∂ξ∂τ
+ 2µ2

1− β2
2

cs

∂2ψ
(2)

0

∂ξ∂τ

]∣∣∣∣
y=0

= 0, (96)[
−(2µ1 − c2sρ1)

∂2ϕ
(1)
10

∂ξ2
+ (2µ2 − c2sρ2)

∂2ϕ
(2)
10

∂ξ2
+ 2µ1β1

∂2ψ
(1)

10

∂ξ2
+ 2µ2β2

∂2ψ
(2)

10

∂ξ2
−

−2µ1
cs
c221

1− α2
1

cs

∂2ϕ
(1)
0

∂ξ∂τ
+ 2µ1

cs
c221β1

∂2ψ
(1)
0

∂ξ∂τ
+

+2µ2
cs
c222

1− α2
2

cs

∂2ϕ
(2)
0

∂ξ∂τ
+ 2µ2

cs
c222β2

∂2ψ
(2)

0

∂ξ∂τ

]∣∣∣∣
y=0

=
p2µ∗
P∗

, (97)

which, using the relations (86) and (87) between the potentials, may be rewrit-

ten as[
∂2ϕ

(1)
10

∂ξ2
− ∂2ϕ

(2)
10

∂ξ2
− β1

∂2ψ
(1)

10

∂ξ2
− β2

∂2ψ
(2)

10

∂ξ2
− csδ1
c221β1δ2

∂2ϕ
(1)
0

∂ξ∂τ
−

− csδ3
c222β2δ4

∂2ϕ
(2)
0

∂ξ∂τ

]∣∣∣∣
y=0

= 0, (98)[
α1
∂2ϕ

(1)
10

∂ξ2
+ α2

∂2ϕ
(2)
10

∂ξ2
− ∂2ψ

(1)

10

∂ξ2
+
∂2ψ

(2)

10

∂ξ2
+

cs
c211α1

∂2ϕ
(1)
0

∂ξ∂τ
+
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+
csδ3

c212α2δ4

∂2ϕ
(2)
0

∂ξ∂τ

]∣∣∣∣
y=0

= 0, (99)[
2µ1α1

∂2ϕ
(1)
10

∂ξ2
+ 2µ2α2

∂2ϕ
(2)
10

∂ξ2
− (2µ1 − c2sρ1)

∂2ψ
(1)

10

∂ξ2
+

+(2µ2 + c2sρ2)
∂2ψ

(2)

10

∂ξ2
+ 2µ1

(
cs

c211α1

− csδ1
c221δ2

)
∂2ϕ

(1)
0

∂ξ∂τ
+

+2µ2

(
cs

c212α2

+
csδ3
c222δ4

)
∂2ϕ

(2)
0

∂ξ∂τ

]∣∣∣∣
y=0

= 0,

(100)[
−(2µ1 − c2sρ1)

∂2ϕ
(1)
10

∂ξ2
+ (2µ2 + c2sρ2)

∂2ϕ
(2)
10

∂ξ2
+ 2µ1β1

∂2ψ
(1)

10

∂ξ2
+

+2µ2β2
∂2ψ

(2)

10

∂ξ2
− 2µ1

(
cs
c221
− csδ1
c221β1δ2

)
∂2ϕ

(1)
0

∂ξ∂τ
−

−2µ2

(
csδ4
c222δ2

+
csδ3

c222β2δ2

)
∂2ϕ

(2)
0

∂ξ∂τ

]∣∣∣∣
y=0

=
p2µ∗
P∗

.

(101)

Hence, employing the relation between φ
(1)
10 and φ

(2)
10 (see, eqn. (88)), (98)-(101)

further reduce to[
∂2ϕ

(1)
10

∂ξ2
− ∂2ϕ

(2)
10

∂ξ2
− β1

∂2ψ
(1)

10

∂ξ2
− β2

∂2ψ
(2)

10

∂ξ2
−

−
(

csδ1
c221β1δ2

− csδ3
c222β2δ2

)
∂2ϕ

(1)
0

∂ξ∂τ

]∣∣∣∣
y=0

= 0, (102)[
α1
∂2ϕ

(1)
10

∂ξ2
+ α2

∂2ϕ
(2)
10

∂ξ2
− ∂2ψ

(1)

10

∂ξ2
+
∂2ψ

(2)

10

∂ξ2
+

+

(
cs

c211α1

− csδ4
c212α2δ2

)
∂2ϕ

(1)
0

∂ξ∂τ

]∣∣∣∣
y=0

= 0, (103)[
2µ1α1

∂2ϕ
(1)
10

∂ξ2
+ 2µ2α2

∂2ϕ
(2)
10

∂ξ2
− (2µ1 − c2sρ1)

∂2ψ
(1)

10

∂ξ2
+

+(2µ2 − c2sρ2)
∂2ψ

(2)

10

∂ξ2
+

+

[
2µ1

(
cs

c211α1

− csδ1
c221δ2

)
− 2µ2

(
csδ4

c122α2δ2
+

csδ3
c222δ2

)]
∂2ϕ0

(1)

∂ξ∂τ

]∣∣∣∣
y=0

= 0,

(104)[
−(2µ1 − c2sρ1)

∂2ϕ
(1)
10

∂ξ2
+ (2µ2 − c2sρ2)

∂2ϕ
(2)
10

∂ξ2
+ 2µ1β1

∂2ψ
(1)

10

∂ξ2
+

26



+2µ2β2
∂2ψ

(2)

10

∂ξ2
+

+

[
−2µ1

(
cs
c221
− csδ1
c221β1δ2

)
− 2µ2

(
csδ4
c222δ2

+
csδ3

c222β2δ2

)]
∂2ϕ

(1)
0

∂ξ∂τ

]∣∣∣∣
y=0

=
p2µ∗
P∗

.

(105)

Equation (102) may now be written in terms of the derivatives of φ
(1)
10 , φ

(2)
10 , ψ

(2)

10

and φ
(1)
0 upon solving the linear system (102)-(105):

∂2ψ
(1)

10

∂ξ2

∣∣∣∣
y=0

=

[
1

β1

∂2ϕ
(1)
10

∂ξ2
− 1

β1

∂2ϕ
(2)
10

∂ξ2
− β2
β1

∂2ψ
(2)

10

∂ξ2
−

−
(

csδ1
c221β

2
1δ2
− csδ3
c222β1β2δ2

)
∂2ϕ

(1)
0

∂ξ∂τ

]∣∣∣∣
y=0

, (106)

The potential ψ
2

10 is

∂2ψ
(2)

10

∂ξ2

∣∣∣∣
y=0

=

[
1− α1β1
β1 + β2

∂2ϕ
(1)
10

∂ξ2
− 1 + α2β1

β1 + β2

∂2ϕ
(2)
10

∂ξ2
−

− β1
β1 + β2

[
csδ1

c221β
2
1δ2
− csδ3
c222β1β2δ2

+
cs

c211α1

− csδ4
c212α2δ2

]
∂2ϕ

(1)
0

∂ξ∂τ

]∣∣∣∣
y=0

(107)

Inserting relations (106) and (107) into (104) we get, after straightforward but

lengthy calculations,[
2µ1α1β1 − 2µ1 + c2sρ1

β1
+

((2µ2 − c2sρ2)β1 + (2µ1 − c2sρ1)β2)(1− α1β1)

β1(β1 + β2)

]
∂2ϕ

(1)
10

∂ξ2
+

+

[
2µ2α2β1 + 2µ1 − cs2ρ1

β1
−

−((2µ2 − c2sρ2)β1 + (2µ1 − c2sρ1)β2)(1 + α2β1)

β1(β1 + β2)

]
∂2ϕ

(2)
10

∂ξ2
−

−
[

(2µ2 − c2sρ2)β1 + (2µ1 − c2sρ1)β2
(β1 + β2)

]
×

×
[

csδ1

c221β1
2δ2
− csδ3
c222β1β2δ2

+
cs

c211α1

− csδ4
c212α2δ2

]
∂2ϕ

(1)
0

∂ξ∂τ
+

+

[
(2µ1 − c2sρ1)

(
csδ1

c221β1
2δ2
− csδ3
c222β1β2δ2

)
+ 2µ1

(
cs

c211α1

− csδ1
c221δ2

)
−

−2µ2

(
csδ4

c122α2δ2
+

csδ3
c222δ2

)]
∂2ϕ

(1)
0

∂ξ∂τ
= 0. (108)
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Hence, the quantity ∂2ϕ
(2)
0 /∂ξ2 can now be given at the surface y = 0 as

∂2ϕ
(2)
10

∂ξ2
=

− (2µ1α1β1 − 2µ1 + c2sρ1)(β1 + β2) + ((2µ2 − c2sρ2)β1 + (2µ1 − c2sρ1)β2)(1− α1β1)

(2µ2α2β1 + 2µ1 − c2sρ1)(β1 + β2)− ((2µ2 − c2sρ2)β1 + (2µ1 − c2sρ1)β2)(1 + α2β1)

∂2ϕ
(1)
10

∂ξ2
+

+
β1((2µ2 − c2sρ2)β1 + (2µ1 − c2sρ1)β2)

(2µ2α2β1 + 2µ1 − c2sρ1)(β1 + β2)− ((2µ2 − c2sρ2)β1 + (2µ1 − c2sρ1)β2)(1 + α2β1)
×

×
(

csδ1
c221β

2
1δ2
− csδ3
c222β1β2δ2

+
cs

c211α1

− csδ4
c212α2δ2

)
∂2ϕ

(1)
0

∂ξ∂τ
+

+
β1 + β2

(2µ2α2β1 + 2µ1 − c2sρ1)(β1 + β2)− ((2µ2 − c2sρ2)β1 + (2µ1 − c2sρ1)β2)(1 + α2β1)
×

×
[
(2µ1 − c2sρ1)

(
csδ1

c221β
2
1δ2
− csδ3
c222β1β2δ2

)
+ 2µ1

(
cs

c211α1

− csδ1
c221δ2

)
−

−2µ2

(
csδ4

c212α2δ2
+

csδ3
c222δ2

)]
∂2ϕ

(1)
0

∂ξ∂τ
. (109)

Repeating the same procedure for equation (105), we find[
c2sρ1(β1 + β2) + 2β2(µ2 − µ1)(1− α1β1)

β1 + β2

∂2ϕ
(1)
10

∂ξ2
+

+
(2µ2 − 2µ1 − c2sρ2)(β1 + β2)− 2β2(µ2 − µ1)(1 + α2β1)

β1 + β2

∂2ϕ
(2)
10

∂ξ2
−

−
[

2β2(µ2 − µ1)

β1 + β2

(
csδ1

c221β1δ2
− csδ3
c222β2δ2

+
csβ1
c211α1

− csβ1δ4
c212α2δ2

)
+

+2µ1

(
csδ1

c221β1δ2
− csδ3
c222β2δ2

)
+ 2µ1

(
cs
c221
− csδ1
c221β1δ2

)
+

+2µ2

(
cs
c222

+
csδ3

c222β2δ2

)]
∂2ϕ0

(1)

∂ξ∂τ

]∣∣∣∣
y=0

=
p2µ∗
P∗

. (110)

If we now substitute ∂2ϕ
(2)
10 /∂ξ

2 from equation (109) into equation (110) and

rearrange the terms, we get

c2sρ1(β1 + β2) + (2µ2β2 − 2µ1β2)(1− α1β1)

β1 + β2

∂2ϕ
(1)
10

∂ξ2
−

−
[

(2µ2 − 2µ1 − c2sρ2)(β1 + β2)− (2µ2β2 − 2µ1β2)(1 + α2β1)

β1 + β2

]
×

×
[
(2µ1α1β1 − 2µ1 + c2sρ1)(β1 + β2)+((2µ2 − c2sρ2)β1 + (2µ1 − c2sρ1)β2)(1− α1β1)

(2µ2α2β1 + 2µ1 − c2sρ1)(β1 + β2)−((2µ2 − c2sρ2)β1 + (2µ1 − c2sρ1)β2)(1 + α2β1)

]
×

× ∂2ϕ10
(1)

∂ξ2
+

+
(2µ2 − 2µ1 − c2sρ2)(β1 + β2)− (2µ2β2 − 2µ1β2)(1 + α2β1))

(2µ2α2β1 + 2µ1 − c2sρ1)(β1 + β2)− ((2µ2 − c2sρ2)β1 + (2µ1 − c2sρ1)β2)(1 + α2β1)
×
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×
[

β1
β1 + β2

]
×

×
{

((2µ2 − c2sρ2)β1 + (2µ1 − c2sρ1)β2)
[

csδ1

c221β1
2δ2
− csδ3
c222β1β2δ2

+
cs

c211α1

− csδ4
c212α2δ2

]
+

−(2µ1 − c2sρ1)(β1 + β2)

(
csδ1

c221β1
2δ2
− csδ3
c222β1β2δ2

)
− 2µ1(β1 + β2)

(
cs

c211α1

− csδ1
c221δ2

)
−

+2µ2(β1 + β2)

(
csδ4

c212α2δ2
+

csδ3
c222δ2

)
∂2ϕ

(1)
0

∂ξ∂τ

}
−

−
[

2β2(µ2 − µ1)

β1 + β2

(
csδ1

c221β1δ2
− csδ3
c222β2δ2

+
csβ1
c211α1

− csβ1δ4
c212α2δ2

)
+

+2µ1

(
csδ1

c221β1δ2
− csδ3
c222β2δ2

)
+ 2µ1

(
cs
c221
− csδ1
c221β1δ2

)
+

+2µ2

(
csδ4
c222δ2

+
csδ3

c222β2δ2

)]
∂2ϕ

(1)
0

∂ξ∂τ

∣∣∣∣
y=0

=
p2µ∗
P∗

(111)

It is easy to see that the coefficient of ∂2ϕ
(1)
10 /∂ξ

2 is the Stoneley equation

(93) with a nonzero denominator, and, therefore, is zero. The remaning terms

can be rewritten to give

∂2ϕ
(1)
0

∂ξ∂τ

∣∣∣∣
y=0

=
δ2

2csB
p2µ∗
P∗

(112)

where δ2 is given by (90) and the material coefficient

B = 2

[
β2
2c

2
22 + α2

2c212
c222c

2
12α2β2

(1− α1β1) +
β2
1c

2
21 + α2

1c
2
11

c211c
2
21α1β1

(1− α2β2)

]
(µ1 − µ2)

2+

+
1

2
c4s

[
β2
2c

2
22 + α2

2c
2
12

c222c
2
12α2β2

ρ21 +

(
β2
1c

2
21 + α2

2c
2
12

c221c
2
12α2β1

+
β2
2c

2
22 + α2

1c
2
11

c211c
2
22α1β2

)
ρ1ρ2+

+
β2
1c

2
21 + α2

1c
2
11

c211c
2
21α1β1

ρ22

]
+ (113)

+ 2c2s((1− α2β2)ρ
2
1 − (2 + α2β1 + α1β2)ρ1ρ2 + (1− α1β1)ρ

2
2)+

+ 2c2s(µ1 − µ2)

(
−β

2
2c

2
22 + α2

2c
2
12

c222c
2
12α2β2

ρ1 +
β2
1c

2
21 + α2

1c
2
11

c221c
2
11α1β1

ρ2

)
+

+ 4(µ1 − µ2)((1− α1β1)ρ2 − (1− α2β2)ρ1).

From (112) we finally have

2ε

cs

∂2ϕ
(1)
a

∂ξ∂τ

∣∣∣∣
y=0

=
δ2
c2sB

p2 (114)

where ϕ
(1)
a is an approximate solution

ϕ(i)
a =

P∗
εµ
ϕ
(i)
0 , ψ(i)

a =
P∗
εµ
ψ

(i)
0 , (115)
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Changing back to the original variables, we can easily write down the leading

order operator identity as

∂2

∂x2
− 1

c2s

∂2

∂t2
=

2ε

cs

∂2

∂ξ∂τ
, (116)

Then, transforming equation (114) to original variables, we obtain

∂2ϕ
(1)
s

∂x2
− 1

c2s

∂2ϕ
(1)
s

∂t2
=

δ2
c2sB

p2. (117)

where ϕ
(i)
s = ϕ

(i)
a

∣∣
y=0

. This hyperbolic equation corresponds to propagation of

Stoneley wave along the interface. The boundary condition for the second pair

of potentials ψ(i) can be found from equation (114)

∂ψ
(1)
a

∂x

∣∣∣∣
y=0

=
δ1
δ2α1

∂ϕ
(1)
a

∂y

∣∣∣∣
y=0

,

∂ϕ
(2)
a

∂x

∣∣∣∣
y=0

= −δ4
δ2

∂ϕ
(1)
a

∂x

∣∣∣∣
y=0

, (118)

∂ψ
(2)
a

∂x

∣∣∣∣
y=0

= − δ3
δ4α2

∂ϕ
(1)
a

∂y

∣∣∣∣
y=0

.

These equations show that the potentials are related to each other. This

equation also shows that the wave potentials are related to each other by

means of a Hilbert transforms as has been shown in Chadwick (1976). To

obtain the interior field we use equations (61) and (62)

∂2ϕ
(1)
a

∂y2
+ α2

1

∂2ϕ
(1)
a

∂x2
= 0

∂2ϕ
(2)
a

∂y2
+ α2

2

∂2ϕ
(2)
a

∂x2
= 0

∂2ψ
(1)
a

∂y2
+ β2

1

∂2ψ
(1)
a

∂x2
= 0 (119)

∂2ψ
(2)
a

∂y2
+ β2

2

∂2ψ
(2)
a

∂x2
= 0

The obtained equations will simplify the further investigations in that as

the governing equation is solved in terms of one of the potentials the remain-

ing potentials may easily be found using the obtained relations (118). Using

equations (86)-(87) displacement components can be given explicitly once the

potentials are found. Therefore in order to obtain the full solution of the con-

sidered problem it suffices to solve a single equation for one of the potentials

along the interface of the two media.
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Thus, the asymptotic model for normal loading is obtained with hyperbolic

equation on the interface and elliptic equations for the interior. If we solve a

Drichlet problem, we may find the interior field.

3.2.2 Tangential Loading

In this section we will consider the case of tangential loading only, i.e. we

will take the normal stress (cf. eqns. (55)-(58)) to be zero with continuous

displacements which correspond to q1 = q2 = 0, that[
∂ϕ1

∂ξ
− ∂ϕ2

∂ξ
+
∂ψ1

∂y
− ∂ψ2

∂y

]∣∣∣∣
y=0

= 0, (120)[
∂ϕ1

∂y
− ∂ϕ2

∂y
− ∂ψ1

∂ξ
+
∂ψ2

∂ξ

]∣∣∣∣
y=0

= 0, (121)[
2µ1

∂2ϕ1

∂ξ∂y
− 2µ2

∂2ϕ2

∂ξ∂y
+ µ1

(
∂2ψ1

∂y2
− ∂2ψ1

∂ξ2

)
−

−µ2

(
∂2ψ2

∂y2
− ∂2ψ2

∂ξ2

)]∣∣∣∣
y=0

= p1(ξ, t), (122)[
λ1
∂2ϕ1

∂ξ2
+ (λ1 + 2µ1)

∂2ϕ1

∂y2
− λ2

∂2ϕ2

∂ξ2
− (λ2 + 2µ2)

∂2ϕ2

∂y2
−

−2µ1
∂2ψ1

∂ξ∂y
+ 2µ2

∂2ψ2

∂ξ∂y

]∣∣∣∣
y=0

= 0. (123)

In what follows, the calculations are very similar to the case of normal load-

ing and therefore only the necessary will be presented here. Employing the

asymptotic approach, the boundary conditions at the leading order along the

interface y = 0 reduce to the same equations as for the normal loading case

(see, eqns. (82)-(85)). The relations between the potentials can therefore be

rewritten as

∂ϕ
(1)
0

∂ξ

∣∣∣∣
y=0

=
δ2
δ1

∂ψ
(1)

0

∂ξ

∣∣∣∣
y=0

, (124)

∂ϕ
(2)
0

∂ξ

∣∣∣∣
y=0

=
δ4
δ3

∂ψ
(2)

0

∂ξ

∣∣∣∣
y=0

, (125)

∂ψ
(2)
0

∂ξ

∣∣∣∣
y=0

= −δ3
δ1

∂ψ
(1)
0

∂ξ

∣∣∣∣
y=0

. (126)

where on the left hand sides the potentials ψ(i), i = 1, 2 are preferred and

δi, i = 1, ..., 4 are given (see, eqns. (89)-(92)) which are equivalent to (86)-

(88).
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At next order, boundary equations differ from the normal loading case in

the normal and tangential components. We arrive at the following equations:[
∂2ϕ

(1)
10

∂ξ2
− ∂2ϕ

(2)
10

∂ξ2
− β1

∂2ψ
(1)

10

∂ξ2
− β2

∂2ψ
(2)

10

∂ξ2
− 1− β2

1

csβ1

∂2ψ
(1)

0

∂ξ∂τ
−

−1− β2
2

csβ2

∂2ψ
(2)

0

∂ξ∂τ

]∣∣∣∣
y=0

= 0, (127)[
α1
∂2ϕ10

(1)

∂ξ2
+ α2

∂2ϕ
(2)
10

∂ξ2
− ∂2ψ

(1)

10

∂ξ2
+
∂2ψ

(2)

10

∂ξ2
+

1− α2
1

csα1

∂2ϕ
(1)
0

∂ξ∂τ
+

+
1− α2

2

csα2

∂2ϕ
(2)
0

∂ξ∂τ

]∣∣∣∣
y=0

= 0, (128)[
2µ1α1

∂2ϕ
(1)
10

∂ξ2
+ 2µ2α2

∂2ϕ
(2)
10

∂ξ2
− µ1(1 + β2

1)
∂2ψ

(1)

10

∂ξ2
+ µ2(1 + β2

2)
∂2ψ

(2)

10

∂ξ2
+

+2µ1
1− α2

1

csα1

∂2ϕ
(1)
0

∂ξ∂τ
− 2µ1

1− β2
1

cs

∂2ψ
(1)

0

∂ξ∂τ
+

+2µ2
1− α2

2

csα2

∂2ϕ
(2)
0

∂ξ∂τ
+ 2µ2

1− β2
2

cs

∂2ψ
(2)

0

∂ξ∂τ

]∣∣∣∣
y=0

=
p1µ∗
P∗

, (129)[
−µ1(1 + β2

1)
∂2ϕ

(1)
10

∂ξ2
+ µ2(1 + β2

2)
∂2ϕ

(2)
10

∂ξ2
+ 2µ1β1

∂2ψ
(1)

10

∂ξ2
+ 2µ2β2

∂2ψ
(2)

10

∂ξ2

−2(λ1 + 2µ1)
1− α2

1

cs

∂2ϕ
(1)
0

∂ξ∂τ
+ 2µ1

1− β2
1

csβ1

∂2ϕ
(1)
0

∂ξ∂τ
+

−2µ1
cs
c221

∂2ϕ
(2)
0

∂ξ∂τ
+ 2µ2

cs
c222

∂2ψ
(2)

0

∂ξ∂τ

]∣∣∣∣
y=0

= 0. (130)

On using the relations (89)-(92) between the potentials ϕ
(1)
0 , ϕ

(2)
0 and ψ

(2)

0 the

latter equations may be reduced to[
∂2ϕ

(1)
10

∂ξ2
− ∂2ϕ

(2)
10

∂ξ2
− β1

∂2ψ
(1)

10

∂ξ2
− β2

∂2ψ
(2)

10

∂ξ2

+

(
− cs
c221β1

+
csδ3

c222β2δ1

)
∂2ψ

(1)

0

∂ξ∂τ

]∣∣∣∣
y=0

= 0, (131)[
α1
∂2ϕ

(1)
10

∂ξ2
+ α2

∂2ϕ
(2)
10

∂ξ2
− ∂2ψ

(1)

10

∂ξ2
+
∂2ψ

(2)

10

∂ξ2

+

(
csδ2

c211α1δ1
− csδ4
c212α2δ1

)
∂2ψ

(1)

0

∂ξ∂τ

]∣∣∣∣
y=0

= 0, (132)[
2µ1α1

∂2ϕ
(1)
10

∂ξ2
+ 2µ2α2

∂2ϕ
(2)
10

∂ξ2
− (2µ1 − c2sρ1)

∂2ψ
(1)

10

∂ξ2
+
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+(2µ2 − c2sρ2)
∂2ψ

(2)

10

∂ξ2
−

−
[
2µ1

(
cs
c221
− csδ2
c211α1δ1

)
+ 2µ2

(
csδ3
c222δ1

+
csδ4

c212α2δ1

)]
∂2ψ

(1)

0

∂ξ∂τ

]∣∣∣∣
y=0

=
p1µ∗
P∗

, (133)[
(c2sρ1 − 2µ1)

∂2ϕ
(1)
10

∂ξ2
+ (2µ2 − c2sρ2)

∂2ϕ
(2)
10

∂ξ2
+ 2µ1β1

∂2ψ
(1)

10

∂ξ2
+ 2µ2β2

∂2ψ
(2)

10

∂ξ2
+

+

[
2µ1

(
cs

c221β1
− csδ2
c221δ1

)
− 2µ2

(
csδ3

c222β2δ1
+

csδ4
c222δ1

)]
∂2ψ

(1)

0

∂ξ∂τ

]∣∣∣∣
y=0

= 0. (134)

Following the same steps for the case of normal loading, equations (131)-(134)

may be solved for the variables φ
(1)
10 and ψ

(1)

0 . The coefficient of φ
(1)
10 turns

out to give the Stoneley equation and therefore is zero. The solution in the

transformed variables is thus obtained as

∂2ψ
(1)

0

∂ξ∂τ

∣∣∣∣
y=0

=
δ2

2csB
p1µ∗
P∗

. (135)

Equation (135) is transformed to the original variables, and we obtain after

some manipulation

∂2ψ
(1)
s

∂x2
− 1

c2s

∂2ψ
(1)
s

∂t2
=

δ2
c2sB

p1. (136)

which leads to the following hyperbolic equation for the potential. In the

tangential case, similarly we get elliptic equations (119).

3.2.3 Vertical Jumping

In this section we assume that displacement boundary conditions (p1 and

p2 are both zero, as well as q2 = 0). In what follows, the asymptotic model

will be obtained under these boundary conditions, we have[
∂ϕ1

∂ξ
+
∂ψ1

∂y
− ∂ϕ2

∂ξ
− ∂ψ2

∂y

]∣∣∣∣
y=0

= q1(ξ, t), (137)[
∂ϕ1

∂y
− ∂ψ1

∂ξ
− ∂ϕ2

∂y
+
∂ψ2

∂ξ

]∣∣∣∣
y=0

= 0, (138)[
2µ1

∂2ϕ1

∂ξ∂y
− 2µ2

∂2ϕ2

∂ξ∂y
− µ1

(
∂2ψ1

∂y2
− ∂2ψ1

∂ξ2

)
−

+µ2

(
∂2ψ2

∂y2
− ∂2ψ2

∂ξ2

)]∣∣∣∣
y=0

= 0, (139)[
λ1
∂2ϕ1

∂ξ2
+ (λ1 + 2µ1)

∂2ϕ1

∂y2
− λ2

∂2ϕ2

∂ξ2
− (λ2 + 2µ2)

∂2ϕ2

∂y2
−
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−2µ1
∂2ψ1

∂ξ∂y
+ 2µ2

∂2ψ2

∂ξ∂y

]∣∣∣∣
y=0

= 0. (140)

Following equation (141)-(144) the boundary conditions at leading order give[
∂ϕ

(1)
0

∂ξ
− β1

∂ψ
(1)

0

∂ξ
− ∂ϕ

(2)
0

∂ξ
− β2

∂ψ
(2)

0

∂ξ

]∣∣∣∣
y=0

= 0, (141)[
α1
∂ϕ

(1)
0

∂ξ
− ∂ψ

(1)

0

∂ξ
+ α2

∂ϕ
(2)
0

∂ξ
+
∂ψ

(2)

0

∂ξ

]∣∣∣∣
y=0

= 0, (142)[
2α1µ1

∂2ϕ
(1)
0

∂ξ2
+ 2α2µ2

∂2ϕ
(2)
0

∂ξ2
− µ1(1 + β2

1)
∂2ψ

(1)

0

∂ξ2
+

+µ2(1 + β2
2)
∂2ψ

(2)

0

∂ξ2

]∣∣∣∣
y=0

= 0, (143)[
−µ1(1 + β2

1)
∂2ϕ

(1)
0

∂ξ2
+ µ2(1 + β2

2)
∂2ϕ

(2)
0

∂ξ2
+ 2β1µ1

∂2ψ
(1)

0

∂ξ2
+

+2β2µ2
∂2ψ

(2)

0

∂ξ2

]∣∣∣∣
y=0

= 0 (144)

where we made use of the Cauchy-Riemann equations. Hence, we arrive at the

same relations (86)-(88).

At next order of the boundary equations are[
∂ϕ

(1)
10

∂ξ
− ∂ϕ

(2)
10

∂ξ
− β1

∂ψ
(1)

10

∂ξ
− β2

∂ψ
(2)

10

∂ξ
− 1− β2

1

csβ1

∂ψ
(1)

0

∂τ
−

−1− β2
2

csβ2

∂ψ
(2)

0

∂τ

]∣∣∣∣
y=0

=
q1µ∗
P∗

, (145)[
α1
∂ϕ

(1)
10

∂ξ
+ α2

∂ϕ
(2)
10

∂ξ
− ∂ψ

(1)

10

∂ξ
+
∂ψ

(2)

10

∂ξ
+

1− α2
1

csα1

∂ϕ
(1)
0

∂τ
+

+
1− α2

2

csα2

∂ϕ
(2)
0

∂τ

]∣∣∣∣
y=0

= 0, (146)[
2µ1α1

∂2ϕ
(1)
10

∂ξ2
+ 2µ2α2

∂2ϕ
(2)
10

∂ξ2
− µ1(1 + β2

1)
∂2ψ

(1)

10

∂ξ2
+

+µ2(1 + β2
2)
∂2ψ

(2)

10

∂ξ2
+ 2µ1

cs
c211α1

∂ϕ
(1)
0

∂τ
−

−2µ1
cs
c221

∂ψ
(1)

0

∂ξ∂τ
+ 2µ2

cs
c212α2

∂ϕ
(2)
0

∂ξ∂τ
+ 2µ2

cs
c222

∂ψ
(2)

0

∂ξ∂τ

]∣∣∣∣
y=0

= 0, (147)[
(−2µ1 + c2sρ1)

∂2ϕ
(1)
10

∂ξ2
+ (2µ2 − c2sρ2)

∂2ϕ
(2)
10

∂ξ2
+ 2µ1β1

∂2ψ
(1)

10

∂ξ2
+
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+2µ2β2
∂2ψ

(2)

10

∂ξ2
− 2µ1

cs
c221

∂2ϕ
(1)
0

∂2τ
−

+2µ1
cs

c221β1

∂2ψ
(1)

0

∂ξ∂τ
+ 2µ2

cs
c222

∂2ϕ
(2)
0

∂ξ∂τ
+ 2µ2

cs
c222β2

∂2ψ
(2)

0

∂ξ∂τ

]∣∣∣∣
y=0

= 0. (148)

In order to simplify these equations we make use of (86)-(88) and the dipslace-

ment boundary conditions are derivatived with respect to the ξ . On doing so

we obtain as[
∂2ϕ

(1)
10

∂ξ2
− ∂2ϕ

(2)
10

∂ξ2
− β1

∂2ψ
(1)

10

∂ξ2
− β2

∂ψ
(2)

10

∂2ξ2
+

+

(
− csδ1
c221β1δ2

+
csδ3

c222β2δ2

)
∂2ϕ

(2)
0

∂ξ∂τ

]∣∣∣∣
y=0

=
µ∗
P∗

∂q1
∂ξ

, (149)[
α1
∂2ϕ

(1)
10

∂ξ2
+ α2

∂2ϕ
(2)
10

∂ξ2
− ∂2ψ

(1)

10

∂ξ2
+
∂2ψ

(2)

10

∂ξ2
+

+

(
cs

c211α1

− csδ4
c212α2δ2

)
∂2ϕ

(2)
0

∂ξ∂τ

]∣∣∣∣
y=0

= 0, (150)[
2µ1α1

∂2ϕ
(1)
10

∂ξ2
+ 2µ2α2

∂2ϕ
(2)
10

∂ξ2
− µ1(1 + β2

1)
∂2ψ

(1)

10

∂ξ2
+ µ2(1 + β2

2)
∂2ψ

(2)

10

∂ξ2
+

+

(
2µ1cs
c211α1

− 2µ1csδ1
c221δ2

− 2µ2csδ4
c212α2δ2

− 2µ2csδ3
c222δ2

)
∂ϕ

(2)
0

∂ξ∂τ

]∣∣∣∣
y=0

= 0, (151)[
(−2µ1 + c2sρ1)

∂2ϕ
(1)
10

∂ξ2
+ (2µ2 − c2sρ2)

∂2ϕ
(2)
10

∂ξ2
+ 2µ1β1

∂2ψ
(1)

10

∂ξ2
+

+2µ2β2
∂2ψ

(2)

10

∂ξ2
+

+

(
−2µ1cs

c221
+

2µ1csδ1
c221β1δ2

− 2µ2csδ4
c222δ2

− 2µ2csδ3
c222β2δ2

)
∂2ψ

(2)

0

∂ξ∂τ

]∣∣∣∣
y=0

= 0. (152)

Inserting ∂2ψ
(1)

10 /∂ξ
2 from equation (150) into the equations (149), (151) and

(152) gives[
(1− α1β1)

∂2ϕ
(1)
10

∂ξ2
− (1 + α2β1)

∂2ϕ
(2)
10

∂ξ2
− (β1 + β2)

∂2ψ
(2)

10

∂ξ2
−

−
[

csδ1
c221β1δ2

− csδ3
c222β2δ2

+ β1

(
cs

c211α1

− csδ4
c212α2δ2

)]
∂2ϕ

(2)
0

∂ξ∂τ

]∣∣∣∣
y=0

=
µ∗
P∗

∂q1
∂ξ

,

(153)[
c2sρ1α1

∂ϕ
(1)
10

∂ξ
+ (2µ2α2 − 2µ1α2 + c2sρ1α2)

∂ϕ
(2)
10

∂ξ
−
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−(2µ1 − c2sρ1 − 2µ2 + c2sρ2)
∂ψ

(2)

10

∂ξ
+

[
2µ1cs
c211α1

− 2µ1csδ1
c221δ2

− 2µ2csδ4
c212α2δ2

+

+(−2µ1 + c2sρ1)

(
cs

c211α1

− csδ4
c212α2δ2

)
− 2µ2csδ3

c222δ2

]
∂2ϕ

(2)
0

∂ξ∂τ

]∣∣∣∣
y=0

= 0, (154)[
(−2µ1 + c2sρ1 + 2µ1β1α1)

∂2ϕ
(1)
10

∂ξ2
+ (2µ1β1α2 + 2µ2 − c2sρ2)

∂2ϕ
(2)
10

∂ξ2
+

+(2µ2β2 + 2µ1β1)
∂2ψ

(2)

10

∂ξ2
+

[
2µ1β1

(
cs

c211α1

− csδ4
α2c212δ2

)
−

−2µ1cs
c221

+
2µ1csδ1
c221β1δ2

− 2µ2csδ4
c222δ2

− 2µ2csδ3
c222β2δ2

]
∂2ψ

(2)

0

∂ξ∂τ

]∣∣∣∣
y=0

= 0.

(155)

Using ∂2ψ
(2)

10 /∂ξ
2 from (154) and inserting into eqns. (153) and (155), we

obtain

(1− α1β1)(2(µ1 − µ2) + c2s(ρ2 − ρ1))− (β1 + β2)c
2
sρ1α1

2(µ1 − µ2) + c2s(ρ2 − ρ1)
∂2ϕ

(1)
10

∂ξ2
−[

(1 + α2β2) +
(β1 + β2)(2(µ2 − µ1)α2 + c2sρ1α2)

2(µ1 − µ2) + c2s(ρ2 − ρ1)

]
∂2ϕ

(2)
10

∂ξ2
−

−
{

β1 + β2
2(µ1 − µ2) + c2s(ρ2 − ρ1)

[
2µ1cs
c211α1

− 2µ1csδ1
c221δ2

− 2µ2csδ4
c212α2δ2

+

+(−2µ1 + c2sρ1)

(
cs

c211α1

− csδ4
c212α2δ2

)
− 2µ2csδ3

c222δ2

]
+[

csδ1
c221β1δ2

− csδ3
c222β2δ2

+ β1

(
cs

c211α1

− csδ4
c212α2δ2

)]}
∂2ϕ

(1)
0

∂ξ∂τ

∣∣∣∣
y=0

=
µ∗
P∗

∂q1
∂ξ

,

(156)[
(−2µ1 + c2sρ1 + 2µ1β1α1) +

2(µ2β2 + µ1β1)c
2
sρ1α1

2(µ1 − µ2) + c2s(ρ2 − ρ1)

]
∂2ϕ

(1)
10

∂ξ2
+

+

[
(2µ1β1α2 + 2µ2 − c2sρ2) +

2(µ2β2 + µ1β1)(2(µ2 − µ1) + c2sρ1α2)

2(µ1 − µ2) + c2s(ρ2 − ρ1)

]
∂2ϕ

(2)
10

∂ξ2
+{

2(µ2β2 + µ1β1)

2(µ1 − µ2) + c2s(ρ2 − ρ1)

[
2µ1cs
c211α1

− 2µ1csδ1
c221δ2

− 2µ2csδ4
c212α2δ2

+

−(2µ1 − c2sρ1)
(

cs
c211α1

− csδ4
c212α2δ2

)
− 2µ2csδ3

c222δ2

]
+

[
2µ1β1cs
c211α1

−

− csδ4
2µ1β1α2c212δ2

− 2µ1cs
c221

+
2µ1csδ1
c221β1δ2

− 2µ2csδ4
c222δ2

− 2µ2csδ3
c222β2δ2

]}
∂2ϕ

(1)
0

∂ξ∂τ

∣∣∣∣
y=0

= 0.

(157)

Eliminating ∂2φ
(2)
10 /∂ξ

2 from the last two equations gives a differential equation

containing the potentials ∂2φ
(1)
10 /∂ξ

2 and ∂2φ
(1)
0 /∂ξ∂τ . As before, it is not
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difficult to verify that the coefficient of ∂2φ
(1)
10 /∂ξ

2 is a multiple is the Stoneley

equation and therefore vanishes. The remaining term is therefore

∂2φ
(1)
0

∂ξ∂τ

∣∣∣∣
y=0

=
δ2D1

2csBD2

µ∗
P∗

∂q1
∂ξ

(158)

where

D1 = (2µ1β1α2 + 2µ2 − c2sρ2)(2(µ1 − µ2) + c2s(ρ2 − ρ1))+
+ (2µ2β2 + 2µ1β1)(2(µ2 − µ1)α2 + c2sρ1α2), (159)

D2 = (1 + α2β2)(2(µ1 − µ2) + c2s(ρ2 − ρ1))+
+ (β1 + β2)(2(µ2 − µ1)α2 + c2sρ1α2). (160)

If we transform original variables and use equation (158), we may express

∂2ϕ
(1)
s

∂x2
− 1

c2s

∂2ϕ
(1)
s

∂t2
=

δ2D1

c2sBD2

∂q1
∂ξ

. (161)

This concludes our investigation of the vertical jumping case. In the interior

field, the same elliptic equations (119) are obtained . Thus, we have derived

asymptotic model consisting of hyperbolic and elliptic equations for the vertical

jumping.

3.2.4 Horizontal Jumping

The case of horizontal jumping, corresponds to taking all the functions but

q2 to be zero in the boundary conditions[
∂ϕ1

∂ξ
+
∂ψ1

∂y
− ∂ϕ2

∂ξ
− ∂ψ2

∂y

]∣∣∣∣
y=0

= 0, (162)[
∂ϕ1

∂y
− ∂ψ1

∂ξ
− ∂ϕ2

∂y
+
∂ψ2

∂ξ

]∣∣∣∣
y=0

= q2(ξ, t), (163)[
2µ1

∂2ϕ1

∂ξ∂y
− 2µ2

∂2ϕ2

∂ξ∂y
− µ1

(
∂2ψ1

∂y2
− ∂2ψ1

∂ξ2

)
−

+µ2

(
∂2ψ2

∂y2
− ∂2ψ2

∂ξ2

)]∣∣∣∣
y=0

= 0, (164)[
λ1
∂2ϕ1

∂ξ2
+ (λ1 + 2µ1)

∂2ϕ1

∂y2
− λ2

∂2ϕ2

∂ξ2
− (λ2 + 2µ2)

∂2ϕ2

∂y2
−

−2µ1
∂2ψ1

∂ξ∂y
+ 2µ2

∂2ψ2

∂ξ∂y

]∣∣∣∣
y=0

= 0. (165)

The leading order equations for the vertical jumping may be expressed as

follows:[
∂ϕ

(1)
0

∂ξ
− β1

∂ψ
(1)

0

∂ξ
− ∂ϕ

(2)
0

∂ξ
− β2

∂ψ
(2)

0

∂ξ

]∣∣∣∣
y=0

= 0, (166)
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[
α1
∂ϕ

(1)
0

∂ξ
− ∂ψ

(1)

0

∂ξ
+ α2

∂ϕ
(2)
0

∂ξ
+
∂ψ

(2)

0

∂ξ

]∣∣∣∣
y=0

= 0, (167)[
2α1µ1

∂2ϕ
(1)
0

∂ξ2
+ 2α2µ2

∂2ϕ
(2)
0

∂ξ2
− µ1(1 + β2

1)
∂2ψ

(1)

0

∂ξ2
+

+µ2(1 + β2
2)
∂2ψ

(2)

0

∂ξ2

]∣∣∣∣
y=0

= 0, (168)[
−µ1(1 + β2

1)
∂2ϕ

(1)
0

∂ξ2
+ µ2(1 + β2

2)
∂2ϕ

(2)
0

∂ξ2
+ 2β1µ1

∂2ψ
(1)

0

∂ξ2
+

+2β2µ2
∂2ψ

(2)

0

∂ξ2

]∣∣∣∣
y=0

= 0 (169)

which reduce to (86)-(88). In the case of vertical jumping, the next order

equations are written as[
∂ϕ

(1)
10

∂ξ
− ∂ϕ

(2)
10

∂ξ
− β1

∂ψ
(1)

10

∂ξ
− β2

∂ψ
(2)

10

∂ξ
− 1− β2

1

csβ1

∂ψ
(1)

0

∂τ
−

−1− β2
2

csβ2

∂ψ
(2)

0

∂τ

]∣∣∣∣
y=0

= 0, (170)[
α1
∂ϕ

(1)
10

∂ξ
+ α2

∂ϕ
(2)
10

∂ξ
− ∂ψ

(1)

10

∂ξ
+
∂ψ

(2)

10

∂ξ
+

1− α2
1

csα1

∂ϕ
(1)
0

∂τ

+
1− α2

2

csα2

∂ϕ
(2)
0

∂τ

]∣∣∣∣
y=0

= 0, (171)[
2µ1α1

∂2ϕ
(1)
10

∂ξ2
+ 2µ2α2

∂2ϕ
(2)
10

∂ξ2
− µ1(1 + β2

1)
∂2ψ

(1)

10

∂ξ2
+

+µ2(1 + β2
2)
∂2ψ

(2)

10

∂ξ2
+ 2µ1

cs
c211α1

∂2ϕ
(1)
0

∂ξ∂τ
−

−2µ1
cs
c221

∂2ψ
(1)

0

∂ξ∂τ
+ 2µ2

cs
c212α2

∂2ϕ
(2)
0

∂ξ∂τ
+ 2µ2

cs
c222

∂2ψ
(2)

0

∂ξ∂τ

]∣∣∣∣
y=0

= 0, (172)[
(−2µ1 + c2sρ1)

∂2ϕ
(1)
10

∂ξ2
+ (2µ2 − c2sρ2)

∂2ϕ
(2)
10

∂ξ2
+ 2µ1β1

∂2ψ
(1)

10

∂ξ2
+

+2µ2β2
∂2ψ

(2)

10

∂ξ2
− 2µ1

cs
c221

∂2ϕ
(1)
0

∂ξ∂τ
+

+2µ1
cs

c221β1

∂2ψ
(1)

0

∂ξ∂τ
+ 2µ2

cs
c222

∂2ϕ
(2)
0

∂ξ∂τ
+ 2µ2

cs
c222β2

∂2ψ
(2)

0

∂ξ∂τ

]∣∣∣∣
y=0

= 0,

(173)
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Performing similar procedure to boundary conditions are in the previously

considered case of horizontal jump, we result in

∂2φ
(1)
0

∂ξ∂τ

∣∣∣∣
y=0

=
δ2D4

2csBD3

µ∗
q∗

∂q2
∂ξ

, (174)

where

D3 = (1− α2β2)(2µ1 − c2sρ1 + 2µ2α2β1)−
− (1 + α2β1)(2µ2(1− α2β2)− c2sρ2), (175)

D4 = c2sρ2β2(2µ1 − c2sρ1 + 2µ2α2β1)+

+ (2µ1 − 2µ2 + c2sρ2)β2(2µ2(1− α2β2)− c2sρ2). (176)

We have for horizontal jump

∂2ϕ
(1)
s

∂x2
− 1

c2s

∂2ϕ
(1)
s

∂t2
=

δ2D4

c2sBD3

∂q2
∂ξ

. (177)

with

∂2ϕ
(1)
a

∂y2
+ α2

1

∂2ϕ
(1)
a

∂x2
= 0

∂2ϕ
(2)
a

∂y2
+ α2

2

∂2ϕ
(2)
a

∂x2
= 0

∂2ψ
(1)
a

∂y2
+ β2

1

∂2ψ
(1)
a

∂x2
= 0 (178)

∂2ψ
(2)
a

∂y2
+ β2

2

∂2ψ
(2)
a

∂x2
= 0.

The latter equations is similar to that obtained before for the normal load.

Thus we have constructed asymptotic models for four different cases of

boundary conditions. In case of an arbitrary boundary value problem, the

latter may be cast into one or more of these cases and therefore the problem

may be reduced to separate problems the solutions of which may be obtained

from the models acquired above. Through the application of the superposition

principle the full asymptotic solution may then easily be obtained.

3.3 Model Example

As an example, let us consider normal load in the form of a point instan-

taneous impulse

p2(x, t) = p0δ(x)δ(t). (179)
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In this case, the 1D wave equation on the interface is given by

∂2ϕ
(1)
s

∂x2
− 1

c2s

∂2ϕ
(1)
s

∂t2
=

δ2
c2sB

p0δ(x)δ(t) (180)

which has a well-known solution [?]

ϕ(1)
s =


δ2p0
B

1

2cs
if |x| < cst,

0 if |x| > cst,

or

ϕ(1)
s =

δ2p0
2Bcs

[H(x+ cst)−H(x− cst)] (181)

where H(x) is unit step function. The elliptic problem for equation (119)

is solved for using the poisson formula y > 0 (see [45] and [30] paper for

calculations)

ϕ(1)
a =

δ2p0
2Bcsπ

[
tan−1

(
x+ cst

α1y

)
− tan−1

(
x− cst
α1y

)]
.s (182)

Next, we calculate using equations (118) and relations (86)-(88)

ψ(1)
a = − δ1p0

4Bcsπ
[
log ((x+ cst)

2 + β2
1y

2)− log ((x− cst)2 + β2
1y

2)
]

(183)

φ(1)
a = − δ4p0

2Bcsπ

[
α1y

α2
1y

2 + (x+ cst)2
− α1y

α2
1y

2 + (x− cst)2

]
(184)

ψ(2)
a =

δ2δ3α1p0
4δ4α2Bcsπ

[
log ((x+ cst)

2 + β2
1y

2)− log ((x− cst)2 + β2
1y

2)
]
. (185)

Similar results were obtained by Kaplunov et al. [29] paper.

Thus we have derived an explicit asymptotic model for the Stoneley wave.

The decay away from the interface is described by elliptic equations (119).

The propagation of the wave along the interface in case of each type of nonho-

mogeneous boundary conditions (55)-(58) is governed by hyperbolic equation

(117), with the potential being related by (86)-(88).
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4 CONCLUSIONS AND FUTURE WORK

This M.Sc. thesis is very important with regard to analysis of elastic sur-

face waves. The asymptotic approach provides significant simplification in

comparison to obtaining exact solutions, through integral transforms, because

it reduces the vector problem of the elasticity to a scalar problem for an elliptic

equation. One of the results is in the derivation of model, demonstrating the

dual hyperbolic-elliptic nature of a interfacial wave.The formulated model con-

sist of a hyperbolic equation describing wave propagating along the interface

with cs ( Stoneley wave speed), and four elliptic equations for the interior. The

interior field may be found by solving a Dirichlet problem. The mathematical

model of an interface is more advanced than other methods, since singularities

are associated with Stoneley wave only. The model can be especially useful

for the solution of the problems with a major contributing involving interfacial

wave phenomena.

The approach allows various generalizations including those for 3D prob-

lems, anisotropic and prestressed bodies, curved surfaces and other interfacial

waves (Schölte interfacial wave etc.). It is also possible to examine the near

resonant effect of various moving loads problems.
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chaussées, Dunot Éditeur, Paris.
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resonant regimes of a moving load in a three-dimensional problem for a

coated elastic half-space, Mathematics and Mechaics of Solids, 1-12.

[33] Kaplunov J. and Prikazchikov D. (2013), Explicit models for surface, in-

terfacial and edge waves, CISM International Centre for Mechanical Sci-

ences, 547, 73-114.

[34] Dasgupta A. (1981), Effect of high initial stress on the propagation of

Stoneley waves at the interface of two isotropic elastic incompressible me-

dia, Indian J. Pure Appl. Math., 12, 919-926.

[35] Dowaikh M. A. and Ogden R.W. (1991), Interfacial waves and deforma-

tions in pre-stressed elastic media, Proc. R. Soc. Lond. A, 433, 313-328.

[36] Destrade M. and Fu Y. B. (2006), The speed of interfacial waves polarized

in symmetry plane , Int. J. Eng. Sci., 44, 26-36.

[37] Achenbach J. D. (2003), Reciprocity in Elastrodynamics, Cambridge Uni-

versity of Press, USA.

[38] Murray J. D. (1984), Asymptotic Analysis, Oxford University, Oxford.

[39] Prikazchikov D. (2010), An asymptotic model for surface wave, Days on

Diffraction 2010.

[40] Nevanlinna R. Paatero V. (1969), Introduction to Complex Analysis,

Addison-Wesley publishing company, Great Britain.

[41] Bitsadze A. V. (1980), Equations of Mathematical Physics, Mir Publish-

ers, Moscow.

[42] Courant R. and Hilbert D. (1953), Methods of Mathematical Physics ,

Volume II, A John Wiley & Sons Inc. Publication, USA.

44
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