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Bu master tezi, dinamik ortamlarda Stoneley dalgasinin katkisini hesapla-
mada kullanilan asimptotik modeli elde edebilmek icin arayiiz dalgalar: ile
caligilmigtir. Bu arayiiz dalgalar1 yiikler tarafindan uyarilmig veya tizerinde
yayildigi araytiz stireksizlige sahip olabilir.

Bu calismada, Stoneley arayiiz dalgalari i¢in yavasg zaman pertiirbasyonuna
dayanan acik bir model elde edilmistir. Bu model homojen, izotropik ve elastik
ortamlarda gecerlidir. Stoneley araytiz dalgasi genellestirilmis bir Rayleigh dal-
gasi olarak da bilinir. 2006 yilinda, Kaplunov et al. tarafindan Rayleigh yiizey
dalgast i¢in bir agik model gelistirilmistir. Asimptotik model cesitli dinamik
yuzey problemleri i¢in oldukca kullanighdir. Bu sebep ile Stoneley arayiiz dal-
gasl i¢in asimptotik bir modelin geligtirilebilecegi diigiiniilmiistiir. Bu model
sayesinde, siirekli olmayan yerdegistirme ve stress bilegenlerinin etkisiyle or-
taya cikan dalganin yayilimi tanimlanabilir ve analiz edilebilir.

Bu calismada farkl siir sartlari ile arayiiz problemleri incelenmistir. Onerilen
model arayiiz tizerinde gegerli olan bir hiperbolik denklem ve ortamin i¢ kisminda
gecerli olan eliptik denklemler yardimiyla ifade edilir. Poisson integral formiilii

kullanilarak, normal yiiklenme durumu i¢in aciklayici bir érnek verilmistir.

Anahtar Kelimeler: Stoneley dalgasi, asimptotik model, yavag zaman

pertiirbasyonu
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This M.Sc. thesis is focused on studying interfacial waves for an asymp-
totic model evaluating the contribution of the Stoneley wave to the overall
dynamic field. These interfacial waves are excited by loads or discontinuities on
the interface.

The work deals with the explicit model for Stoneley wave which are based
on slow time perturbation. The model is developed in homogeneous, isotropic,
elastic media. Stoneley wave is a generalised Rayleigh wave. For the Rayleigh
wave, the explicit model was constructed by Kaplunov et al. in 2006. The
asymptotic model has been useful to deal with various surface dynamics prob-
lems. Therefore we aim to construct an asymptotic model for Stoneley in-
terfacial wave. In essence the model describes propagation of the wave by
hyperbolic equation on the interface. The decay over the interior is governed
by elliptic equations.

We investigated interfacial problems with different boundary conditions,
including the discontinuity in stresses or displacements. The proposed model
consist of hyperbolic equation on the interface and elliptic equations on the
inside. An illustrative example is presented for the case of normal loading with

the solution obtained through the Poisson’s integral formula.

Keywords: Stoneley wave, asymptotic model, slow time perturbation
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1 INTRODUCTION

The mathematical theory of elasticity is one of the active interest areas of
applied mathematics. Dating back as far as Galileo’s work on [1], the prop-
agation of mechanical disturbances in solids is of interest in many branches
of the physical sciences and engineering [2]. It is occupied with an attempt
to reduce to calculation the state of strain, or relative displacement, within a
solid body which is subject to the action of an equilibrating system of forces,
or is in a state of slight internal relative motion [3]. The treatment necessar-
ily involves considerable mathematical analysis [2]. In continuum mechanics,
problems of the motion and deformation of substances are rendered amenable
to mathematical analysis by introducing the concept of a continuum or con-
tinuous medium [2]. Linear elasticity is a simplification of the more general
nonlinear theory of elasticity and is a branch continuum mechanics. Among
the problems considered in the linearised theory, we can name surface and
membrane waves, as well as coated surfaces, moving load problems as areas of
interests. In recent years, near-surface characterisations have been the focus
of interest as well. With many applications in applied mathematics and engi-
neering problems, this vivid area, either directly or indirectly, contributes to
the understanding of natural and technical processes.

The history of the study of wave and vibration phenomena goes back hun-
dreds of years. The first mathematician to consider the nature of rupture was
Galileo [1]. After the Galileo’s studies, the science of vibrations and waves
progressed rapidly. The two great landmarks are the discovery of Hooke’s
Law in 1660 [4], and the formulation of the general equations by Navier in
1821 [5]. Robert Hooke formulated the law of proportionality between stress
and strain for elastic bodies [6]. This law is known as the basis for static and
dynamic theory of elasticity. The general equations of equilibrium represented
one of the most important developments in mechanics [7]. By the Autumn of
1822 Cauchy had discovered most of the elements of pure theory of elastic-
ity [3]. Poisson investigated the propagation of waves through an elastic solid
and he found the longitudinal and transverse wave types [8]. He also devel-
oped approximate theories for the vibrations of rods [8]. In 1883, Kirchhoff
held that the equations of equilibrium or motion of such a portion could be
simplified, for a first approximation, by the omission of kinetic reactions and
forces distributed through the volume [9]. In 1888, Rayleigh and Lamb devel-
oped the frequency equation for waves in a plate according to exact elasticity
theory [10], [11].

Lamb made the first investigation of pulse propagation in a semi infinite



solid [12]. In 1914, Hopkinson performed experiments on the propagation
of elastic pulses in bars [13]. Many scientists have been interested in wave
propagation and made major contributions. Recent activities in the field of
wave propagation have dealt with formulating various approximate theories
for plates and rods and with the analysis of transient loading situations [7].

Over many decades, surface waves have been investigated by a lot of math-
ematicians and physicists. For bodies with a surface of material discontinuity
there are, however, plane waves which are not uniform in planes of constant
phase [2]. These waves, which are called surface waves, propagate parallel
to the surface of discontinuity [2]. The first known surface wave is Rayleigh
wave [14]. The possibility of a wave traveling along the free surface of an elastic
half space such that the disturbance is largely confined to the neighbourhood of
the boundary was considered by Rayleigh [15] . The criterion for surface waves
is that the displacement decays exponentially with distance from the free sur-
face [2]. Lord Rayleigh showed that their effect decreases rapidly with depth
and that their velocity of propagation is smaller than that of body waves [14].
Rayleigh waves are of a particular importance in seismology, since it is these
waves that are most destructive in earthquakes [7]. Love waves (1911) were a
consequence of a layered construction of the earth, and that they consisted of
SH waves trapped in a superficial layer and propagated by multiple reflections
within the layer [16]. Discovered by Horace Lamb in 1917, Lamb waves can
exist in plate-like thin plate with parallel free boundaries [17], [18]. Interfacial
waves propagate between the two different media. If these medium are solid-
solid, Stoneley waves appear at the interface [19]. If these mediums are fluid-
solid, these waves are named as Schélte waves [20].

The interfacial waves, that propagate along the boundary of two different
media, have attracted the attention of scientists. Rayleigh in his famous work
considered, for example, the surface waves occuring on the surface of an elas-
tic isotropic half-space (vacuum-solid interaction) and proved the existence of
such waves, now named after him [15]. It is well-known that in isotropic solids
the particle motion is elliptical and retrograde, for shallow depths, with respect
to the direction of propagation [21]. This type of wave finds many applications
in industry and technology even today. Propagating disturbances confined to
the neighbourhood of a surface occur not only in the vicinity of a free surface
but also at the interface of two half-spaces filled with different materials which
are called Stoneley interfacial waves [2]. Scholte showed that the range of ex-
istence of simple Stoneley waves has been determined by the evaluation of the
boundary curves of these waves [20]. Chadwick and Captain [22] treated the

propagation of Rayleigh type surface waves on a half spaces of inextensible lin-



ear elastic material and the same authors [23] examine the existence of Stone-
ley type waves at the interface between two media [24]. In linear elasticity,
time-harmonic waves guided by a traction-free surface (Rayleigh waves), waves
travelling along the interface between two elastic media (Stoneley waves) and
waves at a fluid-solid interface (Scholte-Gogoladze waves) are non-dispersive,
since each is a solution to a boundary-value problem that contains no natural
scale of length or time [25].

Stoneley wave is a generalised Rayleigh wave [19]. The two media will be
distinguished by suffixes 1 and 2, and will be supposed in “welded contact”
along an infinite plane face and otherwise extending to infinity, so that there
is no slipping at the interface, in which an origin and a set of axes of x and y
are taken [19].

Over the years, many developments have occurred in this field, with var-
ious approaches used [7]. Rayleigh, Love, Timoshenko and other scientists
made approximations in the equations of motion and Chree, Morse, Kynch
and Green contributed solutions of the exact equations which only approxi-
mately satisfy the boundary conditions [7].Poisson’s theory is verified as an
approximate theory by an application of Kirchhoff’s result [3].

In his paper of 1948 [26], Friedlander has given a solution of the surface
wave problem in terms of two harmonic functions related through a Hilbert
transform. This work has later been advanced by Chadwick (1976) [27], who
showed that only a single harmonic function was enough to obtain the solu-
tion, where the second harmonic function could be obtained through a relation
on the surface to the first one. He also presented a similar formulation for
Stoneley wave. Kiselev and Parker showed that the disturbance at all depths
may be represented at each instant in terms of a single function harmonic in
a half-space [25]. Kiselev and Parker showed, also, how waves that are not
time-harmonic have a compact representation provided that they are surface
waves [25]. Kaplunov et al. The explicit asymptotic model for the Bleustein-
Gulyaev wave are derived [28] . Kaplunov et al. obtained the solution of a
surface wave problem (both for Rayleigh and Bluestein-Gulyaev waves) with
the use of the mentioned relation between the harmonic functions [29] . The
approach used in the mentioned paper exploits a slow time perturbation of the
self-similar solutions. In the literature, we took as an example some studies for
instance [30]- [33] etc.. Dasgupta [34] examined the Stoneley wave propagation
with incompressible medium. Dowaikh and Ogden examined the propagation
of interfacial (Stoneley) waves along the boundary between two half-spaces
of pre-stressed incompressible isotropic elastic material [35]. Destrade and

Fu used the surface-impadence matrix method for the interfacial waves polar-



ized in a plane of symmetry of anisotropic elastic materials [36]. Mendez et
al. focused on canonic models for interfacial waves (Rayleigh, Stoneley and
Schélte) [21]. It was then thought that a similar approach might be applied
to the Stoneley interfacial waves, the main topic of this thesis. Due to two
different media with different material properties, it turns out that similar re-
lations between the potentials are more complicated in the case of Stoneley
wave. Considering several boundary conditions on the surface of interaction,
different problems may be considered. Taking into account the principle of
superposition an arbitrary boundary value problem may be solved separately
and the solutions may be added to give the full solution. As soon as hyper-
bolic equations on the boundary are solved, the Poisson’s formula may then be
applied to obtain the inner solutions in terms of potentials for both of the me-
dia. Finally, the stresses and displacements can be obtained using the elastic
potentials. Apart from the difficulties in algebraic calculations, the method is
straightforward, and gives a better physical understanding of the phenomena

considered, even though the obtained solutions are asymptotic ones.

The structure of the thesis is as follows: In the second chapter, we present
some background material needed for the foregoing discussions. In the third
chapter, the main part of the thesis, we construct an asymptotic model for the
Stoneley interfacial wave. The problem will be examined under different types
of boundary conditions, namely normal and tangential loading, and horizontal
and vertical displacement conditions. Each boundary condition will be inves-
tigated separately, and a hyperbolic-elliptic formulation will be obtained. An
illustrative example of an impulse point load problem will be presented. The

thesis ends with some concluding remarks and ideas of future works.



2 BACKGROUND

In following pages, we present this overview as a reminder that it relies on
the linearised theory of elasticity, asymptotic methods and some other con-
cepts. An overview of asymptotic approach for obtaining the explicit model
from Stoneley waves is given. Finally, we mention basic information which
we use including the Cauchy-Riemann identities for plane harmonic function
and the Poisson’s integral formula for the Dirichlet problem for the Laplace

equation.

2.1 The Linearized Theory of Elasticity

The theory of elasticity is a branch of continuum mechanics dealing with
deformable solid bodies having physical properties analyse the influence and
predict the outcomes of the action of external forces on the body. The fun-
damental “linearising” assumptions of linear elasticity are small displacement
from a given deformation and linear relationships between the components of
stress and strain.

At the beginning of 19th century the foundations of the elastic wave prop-
agation was developed by many scientists among which are Cauchy, Poisson,
Kirchhoff, Stokes, and Rayleigh.

The Stoneley wave, the subject of this thesis, is a generalised surface wave,
propagating along the interface of two different media. A bare minimum of

background information is therefore given in the following sections.

2.1.1 Strain

Consider a continuous medium of volume V' and surface S that undergoes
deformation. Before deformation, point Py is located by the vector X; and
Py, a neighbouring point of P, is located by the vector dX; from F,. After
deformation, Py goes into P and is located by the vector z; and P, goes into
P| and is located by the vector dx; relative to Bj. The displacement of P to F)
is measured by the vector u;. The displacement of P, to P| is measured by ;.
The final volume and surface of the deformed body are V' and S, respectively.
These quantities are shown in Fig.1.1.

The relationships between these quantities are given by

But, from the first equation we deduce that dx; = dX; + du;. Substituting it



X3

Figure 1. Deformation of continuum of volume V into the volume V'

in the second equation, we have
To first order, we may express du; as
dU,i = ui,jdl'jy

which may be presented in the form

1 1
dui = 5 (Um’ —+ Uj’i) dl‘l + 5 (ui,j — 'LL]"Z') dl’z (1)
We then define the infinitesimal strain and rotation tensors respectively as
1 1
gy = 5 (g tuii),  wig =5 (Wi — ) (2)

The result (1) emphasises that the kinematics of an arbitrary neighbouring
point of Fj is governed by the local strain-gradient field u;; and that the
motion is a combination of local distortion effects €;; and also local rigid-body

rotation effects w;; [7].

2.1.2 Stress

Consider a continuum of volume V' and surface S that is acted upon by
various forces as shown Fig. 1.2(a). As a result of these forces, tractive forces
will act on an arbitrary surface element within the body, as shown in Fig.

1.2(b). The traction vector is given by

t — tjij, (3)



Figure 2. (a) A continuum subjected to forces, and (b) a trihedral element of that

continuum.

where the traction components ¢; serve to define the stress tensor 7;; by
ti = Tijn; (4)

where 77 = (ny,ng,n3) is the normal vector and [, m, n are unit vectors in

directions z, y, z respectively. In Cartesian frame, these equations take form

ty = Tpal + Toym + Tp2n,
ty = Tyzl +71yym 4+ 7y2m, (5)
t, = Tul+Tym+ 1.0

Now, we will present the basic elasticity equations, scalar and vector potential
equations. In addition we will mention dilatational and distortional waves
which can propagate in an infinite medium, with each being characterised by

a specific velocity [7].

2.2 Stress-Strain Relations

In general form, the linear relation between the components of the stress

tensor and the components of strain tensor (Hooke’s law) is
Tij = Cijri0ijen, (6)
where

Cijkl = Cjikl = Cklij = Uik (7)



It follows that 21 of the 81 components of the tensor Cj;i; are indepented. the
solid is homogeneous if the coefficients Cjj; do not depend on x. It is isotropic
when there are no preferred directions. It can be shown that elastic isotropy

implies that the constants Cj;i; may be expressed as
Cijir = NijOky + p1(0irdji + dadjn), (8)

where d;; is the Kronecker delta, whose components are

1 if 1 =7,

YZYo i+

Hooke’s law then assumes the well-known form
Tij = Agkk(h] + 2,“/51']‘7 (9)

where A and p are known as the Lamé constants, 1 being the shear modulus
[37]. By assuming homogeneity and isotropy, the number of constants reduces
from 21 to 2 [7].

2.2.1 The Governing Equations

The equations for a homogeneous isotropic elastic solid may be summarised

in Cartesian tensor notation as

Tijj + pfi = pus,
Tij = Nekrlij + 20Ei;, (10)

€ij = 3 (uij +ujq),

where 7;; is the Cauchy stress tensor, u; is the displacement vector and f is
the body force. The stress tensor is symmetric, so that 7;; = 7;;. The mass
density per unit volume of the material is p, and f; is the body force per unit
mass of material, ¢;; is the strain tensor that is given by (see eqn.(2)) [7].
Both of elastic constants may be expressed in terms of the other elastic
constants that often appear in linear elasticity which are Young’s modulus F,
the Bulk modulus K and the Poisson’s ratio v. A number of useful relationships

among the isotropic constants are summarized in Table 1.1 [37].

The governing equations in terms of displacements are obtained by sub-

stituting the expression for strain into the stress-strain relation (9) and that



Table 1. Relationship among isotropic elastic constants

E.v E p A
Ev u(E —2p)
A S A A
(1+v)(1—2v) 3u—FE
E
a 2(1 +v) a a
A+
E J) 2
K . S A+ =
3(1— 20) 331 — E) G
E—2u A
v v — T
20 2N+ p)

result into the stress equations of motion, giving Navier’s equations for the
media

()‘ + N)Uj,ji + p 5+ pli=pi; 1=1,2,3, (11)
where a dot over the displacement components represent a time derivative.

The vector equivalent of this expression is
A+ p)VV - u+ pV?u + pf = pii (12)

where u(u, v, w) is displacement vector. In terms of rectangular scalar nota-

tion, this represents three equations

Pu v *w ) 0*u

(A+p) <8x2 + 8x8y+8m82> eVt ol = P o
Pu v Q*w ) 0*v

0%u v w ) 0*w
At ) (8,28:1: * 020y * 822> eVl = Por

where u, v, w are the particle displacements in the z,v, z, directions, respec-
tively. Returning to the vector notation, we note that the dilatation of material
is defined by

A=V -u=¢,+¢ey+¢,=¢cp, (14)

so that (12) may also be written as

(A + @) VA + uV?u + pf = pii. (15)



The results (12) and (15) are the most commonly employed forms of the
equations. Substituting VZu in (12) gives

(A4+21)VV -u —uV x V x u+ pf = pii. (16)
Recalling that the rotation vector w is defined by
1
W = §V X u,
and again using the dilatation A, we may express the last result (16) as
(A +2u)VA = 2uV x wu + pf = pii.

One of the advantages of the last form is that it explicitly displays the di-
latation and rotation. A greater advantage is that the result is valid in any
curvilinear coordinate system, whereas the results (12) and (15) are valid only
in rectangular coordinates.

A decomposition of a vector field into the gradient of a scalar and the curl

of a zero-divergence vector is performed due to a theorem by Helmholtz [7].
U=V LV XU, V.U =0 (17)

The condition V-¥ = 0 provides the necessary additional condition to uniquely
determine the three components of u from the four components of &, . We

also express

f=Vf+VxB, V-B=0. (18)

Thus, the following equations may be written

A+20)Ve+pf = pd, (19)
uV* +pB = p¥, (20)
where ® and W are the so-called scalar and vector potentials, respectively

7).

2.2.2 Dilatational and Distortional Waves

Consider the governing displacement equations in the absence of body
forces, given by
A+ u)VV -u+ pVia = pii. (21)

If the vector operation of divergence is performed on the above, we obtain

A+ )V - (VV-u) +uV - (V) = pV - i (22)

10



Since V-V ~ V2, V- (V?u) = V3(V -u) and V- u = A, the dilatation,(22)
reduces to

0*A
A+ 2u)V2A = p—. 2
(A +20)V P 5 (23)
This is recognised as the wave equation, expressible in the form
1 9’°A
N=S— 24
v c o2’ (24)

where the propagation velocity ¢, is given by

q:,/hf“. (25)

We thus conclude that a change in volume, or dilatational disturbance, will

propagate at the velocity c;.
We now perform the operation of curl on the governing equation (22). Since
the curl of the gradient of scalar is zero, this gives
0w
Viw = p—\ 26
1T P o (26)
where w = V x u/2 is the previously defined rotation vector. This result is in
the form of the vector wave equation and may be expressed as
1 0%w

2
- 7v p
Vw 2o (27)

where the propagation velocity ¢, is given by

cy = \/% (28)

Thus, rotational waves propagate with a velocity ¢y in the medium.

Finally we refer to (19)-(20), the equations that resulted from introducing
the scalar and vector potentials ® and W. If the body forces are zero, we have
f = B = 0, and the two equations again give the scalar and vector wave equa-
tions and contain the velocities ¢; and cy. The significance of the Helmholtz
resolution of u becomes even more apparent at this stage. The scalar potential
is seen to be associated with the dilatation part of the dieturbance, and the
vector potential is associated with the rotational part [7].

We have thus found that waves may propagate in the interior of an elastic

solid at two different speeds ¢; and cy. The ratio of the two wave speeds may

c1 [A+2u 2 —2v
k=—= = . 2
Ca 7 1—-2v (29)

11

be expressed as




Since 0 < v < 1/2 always, we see that ¢; > c¢s.

A variety of terminology exist for the two wave-types. Dilatational waves
are also called irrotational and primary (P) waves. The rotational waves are
also called distortional and secondary (S) waves. Other designations frequently

used are longitudinal and shear waves [7].

2.2.3 Plane Waves

Let us now discuss plane waves which propagate in an infinite elastic solid.
A plane displacement wave propagating with phase velocity ¢ in a direction

defined by the unit propagating vector n is represented by
u=Af(n-x—ct) (30)
or, in index notation,
u; = A f(n; - x; — ct).

In this equation A and n are unit vectors defining the directions of motion
and propagation, respectively. The vector z denotes the position vector and
n.x = constant describes a plane normal to the unit vector n equation (2.2.3),
thus represents a plane wave whose planes of constant phase are normal to
n and propagate with velocity ¢ [2]

The expression for a plane wave, equation (21), is substituted into the
homogeneous form of the displacement equation of motion given by equation

. By employing the relations (21). By employing the relations, we obtain
[im + (A + 1) (n.A)n — pénlf (nx — ct) = 0
or
(= p*)A + (A + p)(n.A)n = 0. (31)

Since n and A are two different unit vectors, equation (31) can be satisfied
in two ways only: either A = +n, or n.A = 0. I[f A = +n, we have A.n = +1
and equation (31) yields

A+ 2p
C=C = .
P

In this case the motion is parallel to the direction of propagation, and the wave

is therefore called a longitudinal (dilatational) or L wave.

12



If A # +n, both terms in (31) have to vanish independently, yielding

n.A =0 and
nA =0 and C:CQI\/E.
P

Now the motion is normal to the direction of propagation, and the wave is
called a transverse (distortional) or T wave [37]. Thus, plane waves propagate

at one or the other velocity in a media [7].

2.2.4 Plane Strain

In two-dimensional problems the body forces and components of the stress
tensor are independent of one of the coordinates, say x3. The stress equations
of motion can be derived from (10) by setting 0/dz3 = 0. We find that the

system of equations splits up into two uncoupled systems. These are

T3p,8 + pf3 = plis (32)

and

Taps + Pfa = plia (33)

where Greek indices can assume the values 1 and 2 only.

It follows from eqn. (33) that the in-plane displacements wu, depend on
x1, 9 and t only, with regard to the dependence of u3 on the spatial coordinates
and time, two separate cases that is plane stress and plane strain are described
by eqn. (33). Here we restrict our attention to the plane strain case.

In plane strain case all field variables are indepented of x3 and the dis-
placement in the zz—direction vanishes identically. Hooke’s law then yields

the following relations:

ToB :Auwéag + ,M(Ua_g + U5,a), (34)
T33 — )\U%’y, (35)

where Greek indices can assume the values 1 and 2 only. Elimination of 7,4
from (33) and (34) leads to

HUagp + (a + M)uﬁ,ﬂa + pfa = pua (36)

137).
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2.2.5 Boundary Conditions

On the surface S of the undeformed body, boundary conditions must be
prescribed. The following boundary conditions are most common:
Displacement boundary conditions the three components u; are prescribed
on the boundary.
Traction boundary conditions the three traction components ¢; are pre-
scribed on the boundary at a position with unit normal n. Through Cauchy’s

formula
ti = sz‘ . nj

this case actually corresponds to conditions on three components of the stress
tensor.

Mixed boundary conditions are prescribed displacements and traction on
different parts of the boundary [2].

2.2.6 Surface Waves

A surface (interfacial) wave is a mechanical wave that propagates along the
interface of differing media. For example wind waves are generated between
the atmosphere and ocean and they propagate at the interface. Rayleigh wave
which was investigated by Lord Rayleigh is a surface wave. Rayleigh showed
that their effect decreases rapidly with depth and their velocity of propagation
is smaller than that of body waves [7]. When there is a boundary, as in the
half plane problem, a third type of wave may exist whose effects are confined
closely to the surface.

We encounter surface waves in a variety of natural phenomena as well as en-
gineering applications. The most famous of these are the Rayleigh, Lamb,Love,
Stoneley and Scholte waves [2]. Rayleigh waves propagate near the surface of
solid. While Rayleigh wave propagates at the interface of vacuum-solid, Scholte
waves is surface waves created dynamic load at an interface between a solid
and a fluid medium. Lamb and Love waves propagate in solids, Love waves
are horizontally polarized surface waves, Lamb waves move in the direction
perpendicular to the plate it acts on.

A Stoneley wave is a high-amplitude interface wave named after the British
seismologist Robert Stoneley in 1924 [19]. The wave is of maximum intensity
at the interface and decreases exponentially away from it. The two media will
be distinguished by suffixes 1 and 2. It will be supposed in “welded contact”

along an infinite plane face (no slipping) [19].
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We may consider displacement components of the form,

uy = Ae” % explik(z — ct)]
u; = Be ™™ explik(z — ct)]

u1:0.

The real part of b is supposed to be positive, so that the displacements decrease
with increasing y and tend to zero as y increases beyond bounds [2].

Given suitable generating conditions, surface waves as well as body waves
are generated at a bounding surface. For a two-dimensional geometry the sur-
face waves are essentially one-dimensional, but the body waves are cylindrical
and undergo geometrical attenuation. Thus at some distance from the source

the disturbance due to the surface wave becomes predominant [2].

2.3 Asymptotic Approximation

It is not always possible to find exact analytical solutions for most dif-
ferential and integral equations. Asymptotic analysis is concerned with both
developing techniques and obtaining approximate analytical solutions to such
problems.

In 1886, Poincaré gave a precise definition of what is called an asymptotic
expansion and laid the foundations of modern asymptotic analysis [38].

Many scientists used several asymptotic expansion methods to evaluate
integrals for mathematical and physical problems such as Watson lemma, sta-
tionary phase, steepest descent etc. It is allowing an explicit solution in terms
of elementary functions [39].

The derivations that will be given in the next chapter are based on perturb-
ing in slow time the self-similar solutions for a homogeneous surface wave [29].

Therefore we give some definitions related to this subject.

Definition 2.3.1. If f(z) and g(z), two functions of a complex number z,
which may be parameter of the problem or an independent variable defined on
some domain D, f(z) = O(g(z)) as z — zy means that there are constants K
and § such that

lf] < Klg| for  0<|z— 2] <4

We say that f is "big Oh” of g as z — zy [38].

Definition 2.3.2. If f(z) and g(z), two functions of a complex number z,

which may be parameter of the problem or an independent variable defined on

15



some domain D, f(z) = o(g(z)) as z — zy means that for every positive €

there is a 0 (independent of €) such that
|f] < elg] for 0<|z—z| <é.

We say that f is "little Oh” of g as z — z [38].

Thus as long as g(z) is not zero in a neighbourhood of zy, other than
possibly zp, f(z) = O(g(z)) implies that f/g — 0 as z — 2, while f(z) =
0(g(z)) implies that f/g is bounded.

We say that f(z) is asymptotically equivalent or equal to g(z) under
the limit z — 2o if f and ¢ are such that lim f/g = 1. We write

Z—r20

= 1.

f(z) ~g(z) as z— 2z if zlgrzlo ;Eg

Definition 2.3.3. A finite or infinite sequences of functions {¢,(z)},n =1,2,-

1s an asymptotic sequence as z — zy if, for all n,

Pnt1(2) = 0(dn(2)) as z— z
that is, 1i_>m Gnt1/dn =0 [38].

Definition 2.3.4. If {¢,(2)} is an asymptotic sequence of functions as z —

20, we say that Zan¢n(z), where the a, are constant (with the upper limit
n=1
omitted), is an asymptotic expansion or asymptotic approrimation of

the function f(z) if for each N

Mz

andn(z) +o(pn(2)) as z— z

/38].

Asymptotic methods are frequently used in differential equations, evalu-
ation of certain integrals, obtaining approximate analytical solution to such
problems etc. In this thesis, the solution in terms of potentials are sought in

terms of asymptotic expansions in the slow time perturbation parameter.
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2.4 Other Basic Concepts

2.4.1 Harmonic Functions, Cauchy-Riemann Equations

If f(z) is defined in finite domain G C C, and is differentiable with respect
to z at each point of G, then f(z) is said to be an analytic function in G.

A function f(z) = u(z,y)+iv(z,y) is analytic in a domain G if the functions
u(z,y) and v(z,y) are differentiable throughout G and the Cauchy-Riemann

differential equations
Uy = Uy, Uy = —Uy

are satisfied [40].

2.4.2 Solution of the Dirichlet Problem for a Half Space

Let us consider the case when the domain D is a half-space; for definiteness,
let D be the half-space x5 > 0. Here we shall require that the sought-for
solution of the Dirichlet problem should be bounded. Let x(x1, z5) and £(&;, &2)
be two points belonging to that half-space and let us take the point & =
(&1, —&) symmetric to the point & about the plane £ = 0. We will assume that
in the case under consideration the sought-for u(x) of the Dirichlet problem

can be represented in form

_ % 9(&1)
u(z) = /&0 ( dé& (37)

T &1 —x1)? + 73

for & > 0.
Formula (38) expresses the solution of the Dirichlet problem with the

boundary condition

lim u(x) = ¢(y1); x2 >0, y2=0 (38)

T—Y

for the half space x5 > 0; this formula is also called Poisson’s formula [41],
[42].

17



3 ASYMPTOTIC MODEL FOR THE STONELEY WAVE

In this chapter, we construct the asymptotic model for the Stoneley wave.
As it is already mentioned in the Introduction, after the discovery of Rayleigh
surface wave, Friedlander [26] suggested a solution in terms of a pair of har-
monic functions. Over thirty years later, Chadwick [27] demonstrated that the
solution may actually be obtained using a single potential, the second of which
can be obtained through a relation on the surface.

In our study, we derive an asymptotic model for interfacial Stoneley wave.
In 2006, the asymptotic model for Rayleigh surface waves was obtained by
Kaplunov et. al, being applied to a member of dynamic problems and allowing
significant simplifications of the analysis [29]. In [31], [32] and [43], papers, they
derived asymptotic model and used asymptotic model for different problems.
Thus we intend to derive an asymptotic model for the interfacial Stoneley
wave with the understanding that the model will provide notable simplification,
reducing a vector problem of elasticity to a scalar one. We should also mention
that the proposed method provides an estimate of the contribution of Stoneley
wave to the overall dynamic response and is therefore accurate provided that
the interfacial wave is dominant, which would be true for a variety of near-

resonant problems.

3.1 Statement of the Problem

We consider a plane strain problem for two elastic isotropic half planes
assumed to be in contact along an infinite straight line, with the Cartesian
axes Oz along the interface (See, Fig. 3.1). The governing equations of motion
are written in terms of Lamé elastic potentials as

Poi | Poi 1 0% _ 0. (39)
ox?  oy* 3, o2
i n P 1 Y

9x2 ' 0yr & o

—0, i=12 (40)

where @; and 1; denote wave potentials, ¢y; and c¢y; are longitudinal and shear
wave speeds, respectively, which are represented in terms of elastic constants
i, 1ti, and density p; in case of medium ¢ as

C%i: - Iu) Cgi:lu—, 221,2

Pi Pi
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P2, Az, C12, Co2 Medium 2
> x

Medium 1

s A1, €11, Cot
'y
Figure 3. Geometry of the problem
The boundary conditions on the interface y = 0 are written in the form
(up — ug |y o = alzt), (41)
—w)|, Ly = ala), (42)
2)

<012 - U§2 ) = N (*1'7 t)a (43)
(o8 — o ) = m(a.1), (44)

where the functions ¢;(x,t),7 = 1,2, correspond to a jump in the displacements

u; and w; along the interface, and p;(x,t),7 = 1,2 are the normal and tangential

loads, respectively. The displacements u;, w; and the stresses J](Q for medium

1 are expressed in terms of the elastic potentials as

“i:a 8y YTy T ar
i ¢ O O*Y
()_M<2 © ¢+ ¢>7

%12 = dxdy 02 0y?
_ 8 QDZ a Pi 821/}1
= \i—— Tz + (A +2u )8 5 2'u2—8x8y’
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The interfacial boundary conditions are then presented in the form

(01 Opa Oy Oy o
I 8.17 8.17 + ay ay_ y—:gl ($7 t)v (48)
_8901 3902 Oy 8¢2- N
I 8y ay 8:10 + 895_ y—:Oq2<I7 t)7 (49)

2#1 1 2t % ) (321/11 B 32%) B
0xy 0x0y Oy? ox?
(e
Al(i;;il + (A1 + 2mm) 882;1 ~ 22 ax — (Ao +2 uQ)a;
) 132? 24 g;g] p2 ,t). (51)

It is convenient to separate the boundary conditions ((48)-(51)) into those
for a normal load (¢; = g2 = p1 = 0, pa # 0), a tangential load (¢ = go = p2 =
0, p1 # 0), a vertical jump (p; = p2 = g2 = 0, ¢; # 0) and a horizontal jump
(Pr=p=q=0,6#0).

3.2 Model for the Stoneley Wave

The asymptotic model provides better physical understanding of the sur-
face wave phenomena and also allows significant simplifications for boundary
problems with given surface loading [39]. The self-similar solution in the vari-

ables

{=z—ct, Y=y, (52)

(where ¢4 denotes the Stoneley wave speed) has been constructed by Chadwick
(1976). To incorporate the effect of surface (interfacial) loading, we perturb
below this self similar solution in the slow time 7 = et (¢ < 1). This per-
turbation allows us to evaluate Stoneley wave contribution into the overall
dynamic response. Here and below we assume that the condition of existence
of Stoneley wave [20], are satisfied. The governing equations may be written
in terms of the new variables as
1i 1i

0*Y; 4 (1_C_§> 1 426 &32% _ 5_252%'
0y? 0¢? c2, 00T 3 02

2
C1;

=0 (54)

2
€y
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and the boundary conditions with regard to variables £ and 7 are

[0p1 Dy | Oy Oy -
[0p1 Opa  OYr | OYal]|

32@1 82802 82% 32¢1
2 -2 —
M agay ~ Hacoy T ( )

Oy o€
)\18;—? + (A +2u1) 8;;;1 - AQ?;? — (Mo + 20) a;;’f _
—21y gzg; + 2419 gzg?ﬂ yzzopz(& t). (58)

We now search for asymptotic solutions of (53) and (54), along with the bound-
ary conditions (55)-(58) with respect to the wave potentials in the form of

asymptotic series

P, i i
pi= o (@6 +elel (€t + ). (59)
P,

b= (W€ ) +e@l G +.) . =12 (60)

*

where P* = max{pl(£7 t)7p2(£7 t)? q1(£7 t)v (J2(€7 t)} and My = l'IlaX{,LLh ,u2} .
Substituting (59), (60) into (53) and (54), we arrive at the leading order,
at elliptic equations

52, 2\ 92,0
SOO _ 6_28 900 — 07 (6].)
Iy ;) 08
82¢Oi) o2 82¢Si)
1 — =5 =0. 62
o c5) 08 (62)
Equations (61) and (62) are satisfied by plane harmonic functions of the form
where ) )
2 Cs 2 Cs
N ct;’ % 3

The functions appearing in (63) may also be assumed to contain the scaled

variable 7 as a parameter.
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At next order, governing equations reduce to the inhomogeneous equations

given by
) 0% 1 —a?) 9%
. =9 L 64
o T ae (cs>awf (64)
2,/ (%) 2,/ (1) _ 32 2, (1)
oy? tog? Cs oEoT

The solution of these inhomogeneous equations may be represented by

o = oW 4yl @ =l )

(1)

where 3 gpﬁ),dj%) and @bﬁ) are harmonic functions. Inserting gol and @Z)l

into equations (64) and (65), we obtain the following equations:

oo _ (1-ad) Py’ o _ (LB P
dy Cs 0Eo0T’ oy Cs 00T’
opi) _  (1-03) Pp® ol __(1=B\ o g
dy Cs oEor ’ oy Cs 0Eo0T
Here and below, we employ the Cauchy-Riemann identities
of 1af of . af =
0 10f 0 f =
f_ L9 U YT y<o (69)

o~ koy oy Fag
where f = f(£,ky) is an arbitrary plane harmonic function and f is its har-
monic conjugate.

Utilizing the Cauchy-Riemann equations in (66) and (67) the asymptotic

expansions may now be written in the form

_bA o M %0 -0
o=\ e (v - <08a1> (70)
P (1) (1= B 9y
P = -~ g +e (%o ( e ) ))

(71)

1/1
P, 1 — a? E)
Y = 90(()2) +e (@go +y ( ! ) (72)
1/1

Oty )) (73)

The obtained solutions, equations (70)-(73), over the interior allow sepa-

o P* (2) I— 62
wQ - £l wO +e <w10 < 6362

rate consideration of four different boundary conditions, including the cases of

normal, tangential loading, along with vertical and horizontal jumping.
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3.2.1 Normal Loading

We begin with consideration of the case of normal loading, implying that

¢1,¢2 and p; vanish

[0p1 Opy | Oy Oty -
o~ oe oy ay} - ™)
[0p1 Opy Oy | Oy .
oy "y o 651 =0, (73)
[ 0? Y1 o P2 ny 82% 82%
2 agay T ' agay 2 0e?
Phy 0%y
_“Q(ayQ - 652)} o (76)
32901 2901 82902 32%02
)\1 852 +<>\1+2M1> ) 5 —/\2 @52 —()\2+2u2) ayQ _
62¢1 a2¢2 o
2 1960 +2uaa€8 ] yzopz(f,t)- (77)

Substituting the asymptotic solution (70)-(73) into the boundary condi-
tions (55)-(58) we obtain at the leading order on the interface y =0

EES N ous) ey ou] _ 0 (78)
06 oy 06 Oy |l
'a (1) 9 (1) 6 (2) o (2)]
o O Yo v —0 (79)
i ay 85 8y aé— 1 ly= 07
82 (1) 82g0(2) a2w(1)
2041,[11 852 "‘2012[1/2 862 _:u’l(l +612) 65(2) +
a2w(2)
+p2(1 + 622)8—5(2) = 0, (80)
92 S0( ) a2¢( ) aZw 1)
M1(1+/61) 868 +M2(1+5§) afg +251 H 652 +
62¢
+20a 412 agg ::(? (81)

Now, we apply Cauchy-Riemann equations for the boundary conditions and

take the derivative of the boundary conditions which is related to displacements
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with &

[ 92,0 27 52, 20Y
e e R (82)
RS 0§ o¢ 23 —0
629081) 82%(()1) (‘32@62) @2%(()2) B
M~ ge t g T g —(()), (83)
5 (1) 92,2 o
2061/111 8(22 "’2042#2 (.;22 _:ul(l_'_ﬁl) 812-}2 +
82_(2)
+p(1 + 32) 81/}3 =0, (84)
3 -0
920 52 g2
_M1(1+5f) 85(2) +u2(1+5§) 858 +251M1—a€g +
2—(2)
+2B 12 0. (85)
852 0

From (82), (83) and (84), we deduce the following relations for the potentials

oWy _ boe)
o¢ |, = 5 o (86)

—(2) (2)

9o | _ 0%
., = 5 (87)
gy 0 8900 (88)

0 |,y & 06

where

01 = 201 (p1 — pia) (1 = @af3) + paci(an + ay), (89)
0y = (2(p1 — p2) — prc2)(1 — azfBa) + paci(1 + afh), (90)
03 = 202(pu1 — pi2) (1 — e ) — prci(an + @), (91)
04 = —(2(p1 — pi2) + p2c3) (1 — a1 1) + pr2 (1 + o). (92)

Equations (82)-(85) constitute a homogeneous system in the wave potential
variables and has nontrivial solution only when the determinant of coefficients
is zero. The determinant of the system then gives the well-known Stoneley
equation (see, Stoneley 1924), i.e,

ci [(1 — agB)pt — (24 P + a1 Ba)pip2 + (1 — 06151)/93] +
+dcl [(pn — p2) (1 = arBr)pa — (1 — afa)pr)] +
+4(1 = 1) (1 — aaf) (1 — 2)* = 0 (93)
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When p, = 0, this equation reduces to the ordinary equation for Rayleigh

waves
(14 67)* — 4181 =0

(see, Kaplunov et al., 2006).
At the next order, the boundary conditions take the form

—(1 2 —(1
Oely _ PR _ 4 I, 1= B0
o€ a¢ Yo¢ 2 o¢ s O
—(2)
. 1— 522 81/}0 _ (94)
Csﬁg (97'
—(1 —(2
B N v L AL A R L
"o ST oE oE csoq 0T
1— a3 8@82) 0, (95)
csp 0T |,

62 (1) 62 (2) w 825(2)

—(1)
- O‘% 6290(81) 9 - ﬁ% 821/10

P dgor ~ e agor
—(2
'+2“214¥z%%;§§?'F2“212¥6§i;ii} =0 (%)
[—(2114 - czpl)azgi})) + (242 — 6302)33220) W 281?0 1iaB a;@%) )
e 0282 : _Cs% %253(2) 2 c%?ﬁz 825%07 y:_f ;/j*’ (97)

which, using the relations (86) and (87) between the potentials, may be rewrit-

ten as
Poly ey, P 0 e )
oE2 oE2 boe 2062 2 5oy OEOT

(98)

_ 0553 8290(()2) _
0325254 o&or N

—(1) —(2)
LT, Pe Pl P, o Py
1 oez 2 oe2 €2 &2 Ao OCoT
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2. (2)
0553 a <)00 — (99)
0%2042(54 (9537'
2 (1) 2 (2) 2.7.(1)
4 Y10 s 07Uy
[2M1041 8550 + 2p2000 D¢ — (21 — c;p1) ae? +
—(2) (1
%Y cs  co ) 0%
+(22 + 2 10 12 ( - > —+
@) 5 T2\ 200~ @5, ) deor
Cs Cs03 32%2
+2 + = 0
u2<c%2042 622 ) 0EIT | |,—o
(100)
P N Py
_(Qlul - Cipl) 352 <2M2 +Csp2) @52 +2'u161 852 +
—(2) (1)
821/}10 Cs 0861 @2(100
2420 e 2 3 b)) 9E0T
_9 0554 + 6553 829082) _ D2«
M2\ 2.5, T 2,500, ) 00T
(101)

Hence, employing the relation between gb%) and (;5%) (see, eqn. (88)), (98)-(101)
further reduce to

2

P 0
&2 &2

—(2)
5P
2 852

970y
DE?

— 5

0561 05(53 > 62@81)
a - =0, 102
(0316162 330200 ) DEDT 40 (102)

1 2 —(1) —(2)
[&1 829050) 828050) . 82¢10 82¢10

+a +

e T T e T e T

Cs 0354 82<)0§)1)
+ _ —0, 103
(c%lal 0%204252) 9E0T | |,—o (103)
2, (1) o2 2) QQE(I)
[2#1041 aggéo + 220 aﬁ; — (2m — Epr) 8550—1-
o
+(2py — Epy) 2 a¢2 +
Cs 0361 0354 0853 )1 82()00(1)]
o (S5~ S0 o + ~0,
{ & (Cfloél 05152‘) 1 <Cl2204252 .0, ) | 00T ||,
(104)
—(1)
8280%) 82901%) 1y
!—(2M1——C€01) oe? + (2u2 — Epa) - Be? + 24151 i +
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+2p2 32

Cs cs(sl 0854 6553 8290(()1) 2
—9 - —9 —
i { . (031 0315152) e (03252 " 0325252)} 3%

roP.
(105)

Equation (102) may now be written in terms of the derivatives of qb(lg), %) ) Ef))

and gb(()l) upon solving the linear system (102)-(105):

P | _[10%60 1 0% ot
98 |y P 082 By 082 B 0€
_< edi el )32908” (106)
318102 3518202 ) OEOT yzo7
The potential Eio is
0y (1B PPl 1+ asp P
08 |,y | Bi+ B2 08 B+ By 0&?
il Cs01 Cs03 Cs ey | 0%
N 2 g25 2 5 2 (107)
Br+ Ba [€5:8102 518202 ciian clpada | OEOT =0

Inserting relations (106) and (107) into (104) we get, after straightforward but

lengthy calculations,

[2M104151 — 2 + E2p . (212 — 2p2)Br + (21 — 2p1)Ba) (1 — 04151)] 9%y

B Bi(B1 + B2) &>
{2/@0@51 + 21 — ¢’y
_|_ J—
B
~ ((2p2 = Ep2)Bi + (21 — Sp1) Bo) (1 + a2/31)] oty
B1(B1 + Ba) 0&?
_ {(2;& —cap2) B+ (2 — 6301)62} y
(61 + Ba2)
[ GO el e } Py
03151252 052515252 c%1041 0%204252 o80T

cs01 cs03 ) ( Cs cs01 )
+ 2w - & ( - oy [ - S0
{( . or) C§1ﬁ1252 052/6152(52 i C%1a1 C%1(52

2. (1)
_2u2( €504 + 0353)}8% =0. (108)

612206262 05252 8587’ N
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Hence, the quantity a2g082) /OE? can now be given at the surface y = 0 as
82‘P10 _
0&?
2manBi = 2+ Ep)(B+ Bo) + (212 — o) B + (2 — 2p1)Ba) (1 — ) Dy
(2p20281 + 201 — €2p1) (B1 + B2) — (202 — c2p2) Br + (211 — ¢3p1) o) (1 + )  OE?

+

N B1((2u2 — c2p2)B1 + (241 — c2p1) o)
(2uaaf1 + 21 — ¢2p1)(Br + B2) — (212 — 2p2) 1 + (2p1 — 2p1) B2) (1 + 04251)
¢ ¢s03 Cs csdy | 0%l
(cglﬁ%g 2,515l Py 0%20(2(52) 0E0T *
B+ Ba

N X
(2uaaf1 + 211 — 2p1) (1 + B2) — ((2ue — ¢2p2) b1 + (211 — 2p1)Pa) (1 + anf5y)
) cs0 ¢ ¢s0
o oy — 2 Cs01 o 503 ) +92 <_8 _ s > —
{( 1= cip1) <c§161252 39315202 i char 30

2 (1)
—2u2( 26854 4 b )} T 199)

012042(52 03252 8687’

Repeating the same procedure for equation (105), we find

Cpr(Br + 52) + 285 — ) (1~ ) g
B+ B2 /S
. (219 — 201 — 2p2)(Br + B2) — 2B2(p2 — p1) (1 + 1) O 9010)
B+ B2 08>

_ {252(,“2—#1) ( 501 Cs03 i s _ 055154) X
B1 + B2

0316152 022/8252 Cllal C%QOQ(;Q
Csél 0563 ) < Cs Csél )
+2 ( — +9 s +
H 318102 355209 H 31 51Bi0s

Cs Cs03 32900(1) D2 s
2y [ £ -
Top <c +c22ﬁ252>] L

. (110)

If we now substitute 8290%) JOE? from equation (109) into equation (110) and

rearrange the terms, we get

c2p1(By + B2) + (222 — 2p152) (1 — a1 1) O 9010)
B+ B2 0&?
B {(2/12 — 21 — c2pa) (B + B2) — (2p2P2 — 2p162) (1 + afh)
B+ B
{(2%&151 — 21+ 1) (B1 4 B2) +((2p2 — 2p2) Bi + (21 — c2p1)Ba) (1 — cu Br)
(2poaf1 + 21 — ¢2p1)(Br + B2) — (212 — ¢2p2) B1 + (211 — c2p1)Ba) (1 + 1)
829010(1)
X oe

n (212 — 201 — E2p2)(Br + B2) — (2122 — 211 B2) (1 + a2 51)) "
(2uoaafBy + 21 — 2p1)(B1 + B2) — ((2pe — 2pa2) b1 + (2p1 — ¢2p1)B2) (1 + aaf51)
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X X
{51 + B
Cs(Sl B 0553 Cs _ 6554 :|+
%131252 C39P1P202  char (000,

—(2p1 — Cgpl)(ﬁl + 52) < €01 53 ) —2u1(B1 + Po) (L ¢s01 ) _

2¢ 2 5 - 3
3151705 3301202 oy 36,

0 3\ %0y
+2M2<51+52)( G0 + - 3> LA

X {((2M2 — 2p2)Bi + (21 — ¢ p1)B2) L

C%205262 032(52 8587'
262(:“2 - ,ul) 6551 0563 Csﬁl 056164
B 2 T2 + ) +
Bi+ B2 c518102 50200 ciian o009

55 85 S 55
+2,u1(01 C3)+2M1<CT 01)+

0515152 0525252 &3 0515152

cs04 503 0? gp(()l)
9
e (6 " 55)] dEdT

_ D2y
0 P,

Y=

(111)

It is easy to see that the coefficient of 82g0%) /OE? is the Stoneley equation
(93) with a nonzero denominator, and, therefore, is zero. The remaning terms

can be rewritten to give

0%pp”
o&or =

_ 02 Dafis
o 2¢.B P,

(112)

where ds is given by (90) and the material coefficient

53032 + 0‘220%2 %031 + 04%0%1 ] 2
B=2|——"""(1—-—f1)+—5——(1 —p — +
{ 0520%20‘252 ( ! 1> C%lcglalﬁl ( ? 2) (Iul IUQ)
+ 104 [ Sch +a3cty 4 ( tc3 + ajcl ek + Q%C%) ot
27 0320%20‘252 ! C%lc%2a2/31 0%103204162
2 92 29
+Bl§212+ Q7€ g} 4 (113)
ct1cp1 8
+2¢2((1 — a2Ba)pt — (2 + ol + 1 Ba)prp2 + (1 — an B1)p3)+
202 4 0202 202 4 0202
—I—QCi _ (_222 2012, P1C 111 )+
(11 — po) 2t T a g mE
+4(p = p2) (1 = a1fr)p2 — (1 — aafB2)p1).
From (112) we finally have
2 2oV B
e — _2p2 (114)
cs 060t |,_, ciB
where gogl) is an approximate solution
9051) = _(p(())a wé) = _w(())v (115>
gl gl
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Changing back to the original variables, we can easily write down the leading

order operator identity as

0? 1 0* 2 0

-z = 116
dx?  20t2 ¢, 00T’ (116)
Then, transforming equation (114) to original variables, we obtain
o) 102§
¥ ¥ 2 (117)

o "2 o 2B

(4)

where gpsi (

= gpai) ‘y: o- This hyperbolic equation corresponds to propagation of
Stoneley wave along the interface. The boundary condition for the second pair

of potentials 1)) can be found from equation (114)

L0 R I Y ol

Ox y:0_52041 Iy |,

oo’ | _ 040 (118)
9z |, o2 Oz |,

w8 9

ox y:O__54a2 9 |,

These equations show that the potentials are related to each other. This
equation also shows that the wave potentials are related to each other by
means of a Hilbert transforms as has been shown in Chadwick (1976). To

obtain the interior field we use equations (61) and (62)

8290511) 232(,0((11)

(3290((12) , 82g0((12)
oy "o Y
82¢C(L1) ) 821@(11)
a—y2 + ﬁl W =0 (119)
%‘(12) + 52%‘(12) =0
0y? 2 022

The obtained equations will simplify the further investigations in that as
the governing equation is solved in terms of one of the potentials the remain-
ing potentials may easily be found using the obtained relations (118). Using
equations (86)-(87) displacement components can be given explicitly once the
potentials are found. Therefore in order to obtain the full solution of the con-
sidered problem it suffices to solve a single equation for one of the potentials

along the interface of the two media.

30



Thus, the asymptotic model for normal loading is obtained with hyperbolic
equation on the interface and elliptic equations for the interior. If we solve a

Drichlet problem, we may find the interior field.

3.2.2 Tangential Loading

In this section we will consider the case of tangential loading only, i.e. we
will take the normal stress (cf. eqns. (55)-(58)) to be zero with continuous

displacements which correspond to ¢; = g; = 0, that

-8901 Opy  OYy 8%1
_ — =0, 120
o6 "o "o oy )| (120)
_3901 Opy Oy 31#2}
2y =0, 121
oy "y oe T ae )| (121)
_2 82901 _9 32902 4 62@/)1 B 02% _
M ogay ~ ocoy T oy T o
OPhy P\ ||
- (—ay2 - )} = (&) (122)
32% 82901 (92802 32802
)\18—52 + ()\1 + 2/14) ay2 — )\2 852 — ()\2 + 2#2) ay2 _
%Yy 0%y
-2 2 = 0. 12
Ha D€y + M28§8y} y:(? (123)

In what follows, the calculations are very similar to the case of normal load-
ing and therefore only the necessary will be presented here. Employing the
asymptotic approach, the boundary conditions at the leading order along the
interface y = 0 reduce to the same equations as for the normal loading case
(see, eqns. (82)-(85)). The relations between the potentials can therefore be

rewritten as

—(1
00’ _ B0 124)
3 P T B
—(2
o _ 510y (125)
85 y=0 53 a§ y:()7
o’ b ou” (126)
85 y=0 51 af y=0

where on the left hand sides the potentials ¥/ i = 1,2 are preferred and
diyi = 1,...,4 are given (see, eqns. (89)-(92)) which are equivalent to (86)-
(88).
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At next order, boundary equations differ from the normal loading case in

the normal and tangential components. We arrive at the following equations:

—(1) —(2) —(1)
(92%0%) _ 32<P§%) ~ 8 01 _B 0%y 1= i 0%y _
oE2 oE2 boe 2 oe e OEOT
2 0y
_ = 127
CsfBo  OEOT (? (127)
— —(2)
o 810" La 82@&%) _ 32¢§0) Py | 1—aof 82900 +
T 2 oe DE2 DE2 cson  OEOT
1— a2 82g0§)2)
= 12
csay  OEOT :0’ (128)
92 (1) 6290(2) 25(1) (92@(2)
lzmal a@o +2u2a2T§0—M1(1+ﬁf) 85;0 + pa(1 4 B3) (%;“ +
2 92 (1) 2 2771
ai 0°pg 1 — B{ 0%,
2 -2
e coap 0E0T i cs  0L0T +
1 - a3 0% 1— 82020, || pa
2 27 ¥0 2 2 0 = * 129
Ty deor e, deor || b 1
o2 (1) o2 (2) w(l) aQE(Q)
[—Ml(l +61) a(gég + pa(1 4 53) a%géo + 2#151 oe2 + 2125 85;0
1 — a2 8290(1) 2 8290(1)
9 9 1 0 9 1 0
At 2) == o7 25 dear T
cs 82% cs 82@/)(2)
-9 +2 130
s, 21 o80T "z, 22 080T ( )

On using the relations (89)-(92) between the potentials go(() ) ol oY ) and wo the
latter equations may be reduced to
2 1)
[0290%) Porg 5 g

92 @/)(2)
o€z 92 —h oE2

€2

—(1)
Cs 05(53 321% ‘
(o —0, (131
( 311 0325251) 9EoT y=0 (131)

1 2 —(1) —(2)
[ 8280&)) aQQOgo) 82¢10 +32¢10

— s

MHe TN e T e T e

5—(1)
X ( 20352 . 265(54 ) (9 w (132)
011041(51 0120(251 8{87’ y
82g0(1) 2,.(2) 9~7(1)
2p00— 9ez + 2p00 agéo — (21 — E2p1) aféo +
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—(2)
Py

+(2u2 — 2p2)

0&?
—(1)
Cs 0552 6363 6864 a2¢0 D1«
o (2 - 52 ) 4o - 1
[ & (051 0%10415) e (03251 " C?za25l>} 980T ||, P’ (133)
o2 (1) o2 2) 82_(1) 9—7(2)
[(Cipl — 2p1) 8@0 + (242 — Zp2) aﬁ;o + 2151 8@0 + 2123 aﬁéo +
—(1)
Cs 0552 0853 0554 ):| 02¢0
o (= - 82 o + —0. (134
{ h (c%161 c%161> & (c%26251 20, )| aeor |20 U3

Following the same steps for the case of normal loading, equations (131)-(134)
may be solved for the variables gb%) and Eél). The coefficient of gb%) turns
out to give the Stoneley equation and therefore is zero. The solution in the

transformed variables is thus obtained as

82@81) _ 02 D1«
0&0T y=0 2c,B P,

(135)

Equation (135) is transformed to the original variables, and we obtain after
some manipulation

LT & (136)
0z? 2 or 2Bl

S

which leads to the following hyperbolic equation for the potential. In the

tangential case, similarly we get elliptic equations (119).

3.2.3 Vertical Jumping

In this section we assume that displacement boundary conditions (p; and
po are both zero, as well as ¢o = 0). In what follows, the asymptotic model

will be obtained under these boundary conditions, we have

[Op1 0y Opy Oty _

o¢ Ty T ae ay} e, o
Dy O O 8%} —0 138
oy oc oy oe y=0 .

_2 82901 _9 32902 _ 32% _ 321/11 _
acoy Mooy M\ o T o
PPy 0ty
_ — 1
o (Gt - )| o 0w
82801 82901 07y 82902
)\1 852 + ()\1 +2[1,1) ayZ — )\2 652 ()\2 —{—2,&2) 83/2 _



2 2
T, T

) 9ED

=0. (140)
y=0

Following equation (141)-(144) the boundary conditions at leading order give

_&Pél) _y 8@(()1) . 39082) _ 528E82) -0 (141)
o o o % ||,
[ —-(1) (2) —(2)
dpy) oy opy) by ||
_Ozl 85 — 85 +CV2 85 + 85 y—:(?7 (142)
3290(1) 82g0(2) 2@(1)

2001 — 5 D¢ + 20000 — 55— o€ — (1 +37) afg +

¢(2)

y=0
6290(1) 92 <p( ) GQE(D
[—m(l +/3%)3—58 + pa(1+ 3) (%3 + 281 agg +
+2 8o g~ Gillhy =0 (144)
0&? /=0

where we made use of the Cauchy-Riemann equations. Hence, we arrive at the
same relations (86)-(88).

At next order of the boundary equations are

—(1 —(2 —(1
(‘QQD%) _ 850%) _ B 8@050) iy 67/’50) 1 — b (%J(() )_
oc oc  Thoac Pag ep o7
—(2
L= B0 || e (145
cso 0T ||, P 7
1 2
Yae T ag ag 85 car or
_ 29,2
+ﬂ%] 0, (146)
csy  OT =0
92 922 52V
[2#1041 8550 + ZMQOQT;O — m(1+5) (95;0 +
aQE(Q) c (9(,0(1)
1 2 10 4 9 s 0o _
a1+ 53) 0&? Tt Ay Ot
—(1) (2)
Cs (91/10 Cs a(po CS ad}o
—9 2 2 = 14
= c3, 00T N MzC%QOQ 8587'+ e, €39 06O O’ (147)
5 (1) 2, .(2) 2,7, (D)
Y10 i oy
[(—2u1 Tap)ga e = cpa) =gt + 2
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—(2)
w 9 Cs 32900

2 _ _
+21252 RE M1~ 2, r
1) (2) 2 7(2)
Cs 32¢ Cs 82900 Cs a ¢
9 21y 2 —0. (148
TN 5 eor T, aeor T gy, aeor | o (14

In order to simplify these equations we make use of (86)-(88) and the dipslace-
ment boundary conditions are derivatived with respect to the £ . On doing so

we obtain as

Pol) PR OV O
o~ oe Do e
c5(51 0563 )8290(()2) ‘ H'* 8(]1
+ (= + 149
( 50102 C3of02 ) OEOT P 85 (149)
—(1) —(2)
o 82S0%) Ta 82@%) . 82¢10 + 82%0 +
L oez ST DE2 DE2
Cs 0554 8290[()2)
— = 1
+ (C%lal 0%2%52) e y:gL (150)
2,0 92, e 023\
[2,u10z1 52;0 +2M2a2%—ﬂl(1+ﬁ1) aﬁg +“2<1+ﬁ§) 81204_
. 2ucs 2411¢501 B 215C504 _ 2p19¢503 @SO(()Q) -0 (151)
g 3,05 2y0909 3502 ) OEOT y:07
52 1) o2 (2) 82_(1)
[(_2u1+c§p1) E;g; + (202 — Epo) (;2;0 + 216 81§§0+
82E(2)
2
+24202 oe +
(_2#105 + 2,”10351 - 2,“26354 - 2#26363) a ¢E)2) ‘: 0 (152)
3 ¢35, 5102 €320 353202 ) OEOT y:().

Inserting 02E%) JOE? from equation (150) into the equations (149), (151) and
(152) gives

2. (1) 2 (2) 27(2)
[(1 o 04151)8892;0 . (1 + a2ﬁ1>a Y10 8 ¢10

_ |: 6861 . 6553 +ﬁ ( Cs . C554 ):| 62@(()2) _ &%
03161(52 C%2ﬂ252 ! cflal C%2CY252 6587' y=0 P* 85 ’
(153)
B (1) B (2)
[cgplal géo + (2pa0 — 2p1000 + 2 pravg) géo _
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—(2)
— (21 — E2p1 — 2p0 + 0202)a¢10 {Q'UICS 20116501 2/1nCs04

O€ oy 3,09 a0
Cs Cs04 2p12C503 828082)
_2 ) B o =0, 154
+(=2p1 + ¢;p1) (0%1061 0%205252) 3,00 | 00T y=0 5

1 2
2,1 22

(=2 + Ci/?l + 21 fr1aq) al + (2 Brog + 29 — C§P2) +
0&? 0¢?
—(2)
621/110 CS 0354
2 2 2 — —
+(2p262 + 2p11) o¢ + |25 Zar s,

—(2
_2M1€s 4 2116501 _ 2p2C504 _ 2#20353] 5'2?/}(()) —0
3 c315102 C3502 C353202 | OEOT y:O.

(155)

Using 8%5?/852 from (154) and inserting into eqns. (153) and (155), we
obtain
(1= 1) — o) + o2 = 1) = (Br + B)Gmen i)

2(p1 = p2) + c2(p2 — p1) 0¢?

+ U1ty — 111)vs + 2pran) ] 82012
{(1+04252)+ (81 + B2) (2(p2 M;) 2+ P 2)} Pl _
2(p1 — p2) + Z(p2 — p1) 73
o { Bl + 52 |:2,U105 i 2/110351 i 2“26354
2(p1 — p2) + E(p2 — p1) [ 502 Cip00y
Cs C554 2“20563
-9 2 — —
+( ot Cspl) <C%10‘1 0%20‘252) C%252 *

|: 0351 _ 0563 +B ( Cs o 6554 )]}6290(()1) _&%
Gibide  Gfhde U \iar  chasdy) | 0607 | P, 9E
(156)
[( Yur + En + Y fran) + 22 B } P,
- 1 sM1 1
2(p — p2) +cZp2 —p1) | O€?

2(pa By + 11 1) (2(pe — 1) + C?Pl&z)} 8290%) "

+ | (21 Bravs + 2us — Eps) +
{( tprog 2z = o) 2(p1 — p2) + c2(p2 — p1) 0&?

{ 2(p2P2 + 1) FMCS B 2p1¢501 B 2p9cs04
2(p1 — p2) + Z(p2 — p1)

Aoy 3,0, 2,90y
Cg 0354 2:“/20853 2;“/15103
— (211 — 2 — — —
(2 = cp1) (0%1061 0%204252) C5902 - i
€504 2p1cs 2116501 209504 2pu9Cs03 329061)
00T

- 2 2 2 2 2
2#151 04201252 Cy 02151 P 02252 0225252

=0.
y=0

(157)

Eliminating 8%520) JOE? from the last two equations gives a differential equation
containing the potentials 92¢\}) /9¢2 and 926" /0¢dT. As before, it is not
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difficult to verify that the coefficient of 82(/5%)/ 0€? is a multiple is the Stoneley

equation and therefore vanishes. The remaining term is therefore

70| _ %Di O

9EdT |,_y  2¢BDy P, O€ (158)
where
Dy = (2p1Bre + 24 — €2pa)(2(pn — p2) + 5 (p2 — p1))+
+ (222 + 201 51) (212 — pn)ag + Epras), (159)
Dy = (14 aafa)(2(p1 — p2) + ¢3(p2 — p1))+
+ (By 4 B2)(2(pa — 1)y + Epra). (160)

If we transform original variables and use equation (158), we may express
823&9 _ 15’29021) - 02D %
ox2 2 Ot2  2BD, 9¢’

This concludes our investigation of the vertical jumping case. In the interior

(161)

field, the same elliptic equations (119) are obtained . Thus, we have derived
asymptotic model consisting of hyperbolic and elliptic equations for the vertical

jumping.

3.2.4 Horizontal Jumping

The case of horizontal jumping, corresponds to taking all the functions but

g2 to be zero in the boundary conditions

(001 01 Opo 8¢2]
o "oy "o oy )| (162)
(01 01 Oy 3¢2]

_ _ + = 1), 163
GG G e (163)

9% 5 ot (6%1 82¢1>
. —

92 _ i
ooy~ T ocoy oy o
Py PPy
— = 164
o (G -5 )|o oo
o1 d%py 9%y %o
{)\18—@ + (A1 +2p1) a7 A2 9e (A2 + 2p2) 2
Oy Py
-2 2 = 0. 1
’“agay + M@{@y} y:(? (165)
The leading order equations for the vertical jumping may be expressed as
follows:
&pél) - b 8%()1) - 8g082) — 2 8%)2) =0 (166)
o€ TR 9 ||y
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17 o¢ ae 7 o 3 N
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200 8(22 + 2000 — 55— 852 — m(1+5Y) 862 +
) 5
2 852 0
92 (1) 92 (2) 92 —(1)
[ M1(1+51) (’;gg +M2(1+ﬁ2) ggg + 201 853 +
2%
?/J
+2B 412 852 =0

which reduce to (86)-(88).

equations are written as

(1) —(2) (1)
o055 dely 5,000 _ 5 Oy 18100
o€ o€ Y oe 2 oe csby 0T
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CsBa  OT y:07
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(168)

(169)

In the case of vertical jumping, the next order

(170)

(171)

(172)

(173)



Performing similar procedure to boundary conditions are in the previously

considered case of horizontal jump, we result in

" | 5Dy p.0g
0E0T =0 "~ 2¢,8D5 g, 85

(174)

where

Dy = (1 — aafh)(2p1 — p1 + 2pi202 1) —

— (14 a2f1)(2ua(1 — aafz) — cipa), (175)
Dy = pafa(2pn — E2p1 + 2pp001)+

+ (201 = 22 + €2pa) Ba(2p0(1 — anfo) — c3pa). (176)

We have for horizontal jump

829021) 1 82909) 0Dy Ogqo

9x2 2 o2 2BDs 9¢° (177)
with

82901(11 o 8290¢(11) 0

oy? b a2
8280542 +Oé2 62(1022) 0

Oy? 2 a2
82w(1) aQw((ll)

3y2 + 61W =0 (178)
8277/)(2) 32@/)((12)

6 2 + 52 aan - 0

The latter equations is similar to that obtained before for the normal load.
Thus we have constructed asymptotic models for four different cases of
boundary conditions. In case of an arbitrary boundary value problem, the
latter may be cast into one or more of these cases and therefore the problem
may be reduced to separate problems the solutions of which may be obtained
from the models acquired above. Through the application of the superposition

principle the full asymptotic solution may then easily be obtained.

3.3 Model Example

As an example, let us consider normal load in the form of a point instan-

taneous impulse

p2(z,t) = pod(z)d(2). (179)
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In this case, the 1D wave equation on the interface is given by

Pl 1% 6,

which has a well-known solution [?]

oapo 1 .
0 if || > ¢,
or
(1) _ 92Po
oy = ——[H(z + cst) — H(x — c,t)] (181)

s 2Bc;

where H(z) is unit step function. The elliptic problem for equation (119)
is solved for using the poisson formula y > 0 (see [45] and [30] paper for

calculations)

) st — st
oW = 2P0 Nt (2 ety fan~! [ 2 —C .S (182)
2Bcgm ay ary

Next, we calculate using equations (118) and relations (86)-(88)

d1po

P =~ [log ((z + c,t)? + 2?) — log ((z — cut)? + B22)]  (183)
4Bc,m
) a a
1 _ _ 4Po 1Y _ 1y L
% 2Bcm [O‘%?JQ +(x+est)?  aZy?+ (v — cst)Q] (184)
0903
(2) — _9293NPo0 £)2 2,2 _ 1 —ed)? 2 2 185
Va 1s00Beor [log ((z + cst)® + Biy?) — log ((z — cst)* + B1y°)] . (185)

Similar results were obtained by Kaplunov et al. [29] paper.

Thus we have derived an explicit asymptotic model for the Stoneley wave.
The decay away from the interface is described by elliptic equations (119).
The propagation of the wave along the interface in case of each type of nonho-
mogeneous boundary conditions (55)-(58) is governed by hyperbolic equation
(117), with the potential being related by (86)-(88).
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4 CONCLUSIONS AND FUTURE WORK

This M.Sc. thesis is very important with regard to analysis of elastic sur-
face waves. The asymptotic approach provides significant simplification in
comparison to obtaining exact solutions, through integral transforms, because
it reduces the vector problem of the elasticity to a scalar problem for an elliptic
equation. One of the results is in the derivation of model, demonstrating the
dual hyperbolic-elliptic nature of a interfacial wave.The formulated model con-
sist of a hyperbolic equation describing wave propagating along the interface
with ¢, ( Stoneley wave speed), and four elliptic equations for the interior. The
interior field may be found by solving a Dirichlet problem. The mathematical
model of an interface is more advanced than other methods, since singularities
are associated with Stoneley wave only. The model can be especially useful
for the solution of the problems with a major contributing involving interfacial
wave phenomena.

The approach allows various generalizations including those for 3D prob-
lems, anisotropic and prestressed bodies, curved surfaces and other interfacial
waves (Scholte interfacial wave etc.). It is also possible to examine the near

resonant effect of various moving loads problems.
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