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ABSTRACT
In this study it has been shown that Mardia's theorem about eigenvectors in correspondence analysis is wrong.
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MARDIA'NIN YANLI~ TEOREMi
OZ

Bu cahsmada uygunluk cozumlemesinde karsilasilan standart OZ vektorlere iliskin olmak iizere Mardia'nm bir
teoreminin yanhs oldugu gosterilmistir,

Anahtar Kelimeler: Uygunluk Cozumlemesi, Standart OzVektor,

The technique of correspondence analysis effecti­
vely takes both the above relationships simultaneously,
and uses them to deduce scoring vectors rand s which

rences of n species in p locations; that is, xij=1 if spe­

cies i occurs in location j, and Xij=O otherwise. If ri is

the wet-preference score allocated to the ith species,
then the average wet-preference score of the species fo­
und in location j is

This is the estimate of wetness in location j produ­
ced by the classical method of gradient analysis.

One drawback of the above method is that the ri
may be highly subjective. However, they themselves
could be estimated by playing the same procedure in
reverse -if Sj denotes the physical conditions in locati­
on j, then ri could be estimated as the average score of
the locations in which the ith species is found; that is

1. INTRODUCTION
Mardia (1979, 1988 and 1989) has written that

correspondence analysis is a way of interpreting con­
tingency tables, which has several affinities with prin­
cipal component analysis. In his referenced book he
had introduced to the subject in the context of a botani­
cal problem known as "gradient analysis". His senten­
ces have been written below by not changing:

«This concerns the quantification of the notion
that certain species of flora prefer certain types of ha­
bitat, and that their presence in a particular location can
be taken as an indicator of the local conditions. Thus
one species of grass might prefer wet conditions, whi­
le another might prefer dry conditions. Other species
may be indifferent. The classical approach to gradient
analysis involves giving each species a "wet-preferen­
ce score", according to its known preferences. Thus a
wet-loving grass may score 10, and a dry-loving grass
I, with a fickle or ambivalent grass perhaps receiving a
score 5. The conditions in a given location may now be
estimated by averaging the wet-preference scores of
the species that are found here. To formalise this let X
be the nxp one-zero matrix which represents the occur-

Sj a L Xijr/x.j
i

ri a L XijS/Xi.
i

where

where

X.j = L Xij
i

Xi· = L Xij
i
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satisfy both the above equations. The vectors rand s are
generated internally by the data, rather than being ex­
ternally given:»

Now a question arises: What is the problem in cor­
respondence analysis? The answer is simple. The prob­
lem is firstly to find out the secret structure which rep­
resented by rl,r2, ... ,rn and sl,s2""'sp scores of nxl-di­

mensional vector r and px l-dimensional vector s res­
pectively. The solution may be explained like that:

2. SOLUTION

~~: ]. [. :1,
X np 1

. [XII X21 x; ] [11
X'· In = ~.1: ~:: ~~: .. ~. (7)

x., X2p x., 1

Those may be simplified like that:

It will be also easily understood that B is pxp-di­
mensional matrix. The vectors which are the arguments
of A and B are as follows:

(8)

][
X.I] [1]. X.2 _ 1 - 1

i/x., i.~ -. ~. - p

Xlj . rl + X2j . r2 + ...+ Xmj . rm
Sj a x.j (13)

As it will be seen in the above relations that any
row score is a proportion of average (weighted) of the
column scores and reversely any column score is a pro­
portion of average (weighted) of the row scores. Using

(11)

(10)

For i=I,2, ... ,n the row scores may be defined in
terms of column scores and reversely for j=I,2,. oo,p the
column scores may be defined in terms of row scores as
follows:

n a XiI· sl + Xi2 . s2 + ...+ Xin . sn (12)
1 Xi.

(9)

Using the equation (8) and (9) the following equ­
ations may be easily written.

. [ x.. ] [ x., ]
X'Ip = ~.2", X'· In = ~..~

Xn• X.p
Taking equation (8) into consideration A and B

may be shown like that:

(6)

(3)

(1)

(4)

(2)

B=diag(X'·In)

Definition 8

In'=[l 1 ... 1]

Xlj+X2j+ .. ·+Xnj=Xj

Definition 5

It is clear that In is nx l-dimensional vector.

Definition 6

r'=[rl r2 ... rn]

Definition 2

s'=[sl s2 ... sp]

Definition 3

For i= I ,2,... ,n the sum of row terms is as the follo­
wing form:

Xil+xi2+" .+xip=xi

Definition 4

For j=I,2,oo.,p the sum of column terms is as the
following form:

A=diag(X'Ip) (5)

It is easily understood that A is nxn-dimensional
matrix.

Ip'=[1 1 ... 1]

It is also clear that Ip is px l-dimensional vector.

Definition 7

In order to find out the secret structure behind the
categorical data, the following definitions, theorems
and lemmas are necessary.

Definition 1
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the equation (12) and (13)for i=I,2,oo.,n andj=I,2, ... ,p
the vectors those contain the scores may be written as
follows:

Putting the relation (15) into the relation (14) and
reversely the relation (14) into the relation (15) the fol­
lowing relations may be obtained:

r a A I . X· B- 1. r (16)

s a B-1. X'· AI. s (17)

s =B-1. X'· r. (22)

Putting the equation (22) into the equation (21)

B-t. X'· AI. X . s = p- s (23)

is derived and the theorem is proved. So, kl=k2=p.
Lemma 1:

For the reason of the definition in equation (22) the
eigenvector of B-1. X'· AI. X is s = B-1. X'· r
while the eigenvector of A 1. X· B-1. X' is r.

Theorem 3:

Alitheeigenvaluesof AI. X· B-1. X'· r=p'r
is positive.

Proof

Theorem 2:

Let r = A-1I2 . u then the proof will be completed,
as it will be seen in the following equation:

Q = u'iC'C'iu = p-u'<u

A- I X B-1 X'. . . . r = p'r

The eigenvalue of AI. X· B-1. X' is the same
with the eigenvalue of[A-l/Z. X· B-l/Z). [A-II2. x. B-lIZ),

Proof

. Let the eigenvalue of (AII2. X. B-1I2).
(A 112. X. B-II2) is p and the eigenvector of the same
matrix is u. Taking the definition of relation between ei­
genvalue and eigenvector into consideration the follo­
wing equation is written:

(A112. X· B-1I2). (AII2. X· B-1I2),· u = p' u

Multiplying two sides by A-1I2

Let C denote A1I2. X· B-1I2. Let P denote eigen­
value of C·C'. And let u denote eigenvector of C·C'. It is

obvious that u'· Co C" u may be characterised as a qu­
adratic form, which symbolised as Q. Now let v define
as C'·u. The following equation comes immediately:

Q = v"v = vy + v~ +... + v~

Obviously that this is greater than or equal to zero.
On the other side the mentioned quadratic form may be
written as follows:

As it will be understood that the quadratic form
u"u and Qare positive altogether, for the reason of that
the eigenvalue p must be positive. This means that the
eigenvalue p is greater than or equal to zero. So, the
proof is completed.

Lemma 2:

If the eigenvector of (A-1I2. X· B-1I2).

(A 112. X. B-I12) is u and the eigenvector of

A 1.X .B-1.X' is r thenr=A-II2·u and u=A-ll2.u.

(14)

(15)

r a AI. X· S

s a B-1 . X'· r

Taking the above relations into consideration it can
be said that any row score is a proportion of a linear
combination of the row scores and reversely any co­
lumn score is a linear combination of the column sco­
res. Let kl and k2 be some coefficients. Then above pro­
portion relations may be transformed below equality re­
lations as follows:

AI. X· B-1• r e kj- r (18)

B-1 . X'· AI. S =k2' s (19)

Obviously r is an eigenvector of A I. X· B-1. X'
and s is an eigenvector of B-1. X'· A-I. X. It is also
obvious that kl and k2 are the eigenvalues of
AI. X· B-1. X' and B-1. X'· A-I. X respectively.
It will be proved by the following theorem that kl and
k2 coefficients are equal.

Theorem 1:

The eigenvalue of Al . X· B-1. X' is equal the
eigenvalue of B-1. X'· AI. X.

Proof

Let the eigenvalue of Al . X· B-1. X' be p.
Then

A-I. X'· B-t. X'· r =p . r (20)

is written. Multiplying two sides by

B-1. X'· AI. X ·B-l. X'· r = p . B-1. X'· r (21)

is obtained. Let it define that
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Theorem 4:

3.GRAPHICAL REPRESANTATION

The main purpose of corresponding analysis is to
discover the reality behind the cross table about catego­
rical data. This reality behind the cross table about ca­
tegorical data of certain species and habitants may be
explained as wet-loving score. In other situations of ca­
tegorical data the explanation must obviously change.
Suppose that PI and P2 are two eigenvalues less than I

of AI.X·B-I.X'. According to these eigenvalues rl

and r2 may be found as the standardised eigenvectors of

the same matrix. The reality behind the cross table abo­
ut categorical data may be represented by the way of rl

and r2 or as well as sl and s2' The scores of rl and r2 are

the levels of the quantity about mentioned reality. The­
se vectors are the axes of corresponding analysis and
they define a plane. It is clear that rll,rI2, ... ,rl n and

r21 ,r22" .. ,r2nare the scores of the certain species in the

This means that ps l and the proof is completed.
Similarly it can be argued that the greatest eigenvalue

of B-1. X'· AI. X is 1. The proof is omitted. The si­
milar proof method may be found in (Hill, 1974).

As it will be conveniently understood that the gre­
atest eigenvalue determine the first axis. For the gre­
atest eigenvalue the standardised eigenvectors r and s

1 1
are r =./ri and s= ~ respectively. As it is known
in principal component analysis the first axis is usually
most significant axis but surprisingly it may be said that
these solutions found according to first axis of corres­
pondence analysis are not the most meaningful soluti­
ons (Hill, 1974). These solutions accept that the row
and column categories are the same wet-loving or dry­
loving property (Mardia, 1979). However the purpose
of corresponding analysis is to find out a secret structu­
re such as the wet-loving or dry-loving differences
among the row or column categories in a contingency
table has been explained in the beginning. Taking this
reality into consideration it may be said that the most
meaningful solution in corresponding analysis can be
found for the eigenvalue less than 1.
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mum. For the reason of that any linear combination of r
is less than or equal to the maximum score of the same
vector. According to the equation (26) it may be obvi­
ously argued that the greatest linear combination is
p·rmaxwhile the maximum score of r is rmax' It is also

obvious that the mentioned linear combination is less
than or equal to rmax' For the reason of that the follo-

wing equation may be easily written:

(25)s'·B·l -0p-

Theorem 5:

Similarly the following equation may be proved
too. The proof is omitted.

Lemma 3:

Using Lemma 2 it can be derived that one of the ei­

genvector of (A 112. X· B- 1I2). (A I12. X· B-II2)' is

A 112. Inwhile the eigenvalue is 1.

Lemma 4:

Let r be the eigenvector of A I. X· B-1.X I while
the eigenvalue is different from 1. It is because that the
eigenvectors of symmetric matrix are orthogonal, then
the eigenvectors A 1I2' r and A 112. In of
(A I12. X· B-1I2). (AII2. x- B-II2)' are orthogonal.
Their inner product is zero. So,

r'·A·l n=O (24)

The greatest eigenvalue of A I. X· B-1. X' is 1.

Proof:

Consider the following equation:

AI. X· B-I.X'·r = p-r (26)

Suppose that all the scores of r are positive. All the

sums of the rows of A I. X· B-1. X' are 1 because of the

theorem 4. The vector scores of A I. X· B-1.X'· r are
a linear combination of r scores, which the sum of line­
ar combination coefficients is 1 for the reason of the
theorem 4. So, any linear combination of the scores of r
is between the minimum and maximum scores of the
same vector. Suppose that r'=[1 2]. Obviously the mini­
mum is 1 while maximum is 2. Let the coefficients of
linear combination be 0,3 and 0,7 (Obviously their sum
is 1). So, the linear combination may be computed as
1'0,3+2' 0,7=1,7. As it will be seen that the linear com­
bination is smaller than the maximum and is greater
than minimum. It may be generally argued that any li­
near combination is between the minimum and maxi-

One of the eigenvectors of AI. X· B-1.X' is In

while the eigenvalue is 1.

Proof

This means that In is an eigenvector

ofAI.X·B-I.X' while the eigenvalue is 1. This also

means that all the sums of the rows of A I. X· B-1. X'
is 1.
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4.MARDIA'S THEOREM

mentioned axes. One of the axes may be interpreted as
wet-loving score. Obviously that the other of the axes
must be interpreted differently. For graphical represen­
tation of the species on a plane determined by two per­
pendicular axes, the first species is placed on the point
(rl\,r2\) of the plane. The second species is placed on

the point (rtz,rzz) of the plane. And so on. Generally jlh

species is placed on the point (rJj,rZi) of the plane Si­

milar study may be repeated for certain habitants by
computing the standardised vectors sl and sz. In this ca-

se the jlh habitant scores according to the axes may be
symbolised as (slj,SZj) and represented on the point

(slj,SZj) of the plane. This procedure can be repeated for

all the habitants. These studies are the visualisation pur­
pose of corresponding analysis. By the expressed way,
the reality behind the cross table about categorical data
may be revealed as graphical representation.

Mardia (1979, 1988 and 1989) has written: «It is
not difficult to show that if r is a standardised eigen-

vector of A-I. X· B-1. X I with eigenvalue p (p>O),

then s= p -I/Z, B-1. X I. r is a standardised eigenvec­

tor of B-1. X I. A I. X with the same eigenvalue» In
addition he has given the proof as an exercise for the re­
ader: «If r is a standardised eigenvector of

A I. X·B-1. X' with eigenvalue p (p>O), show that

p-ll2. B-1. X I. r is a standardised eigenvector of

B-1, X I. A I. X with the same eigenvalue» Howe­
ver it is easy to prove that Mardia's theorem is not true.

The standardised eigenvector of A 1.X· B-1. X I is

I
r = ~ while the eigenvalue is 1. According to Mardia
while the eigenvalue is 1 the standardised eigenvector

of B-1. X'· AI. X may be computed as

S - I-liz·B-l.x
,· I

n S' lifvi hi'... 'vo Imp I ymg t e re ation

B-1. X'· In is obtained. Because of the equation
s=------'

vo _ lp
(11) the following result may be written as s - vo . It
is a pity that the result obtained is not a standardised ei­
genvector while n;tp. So, Mardia's theorem is not true.
Now a question has been raised: How has Mardia fallen
into mistake? The answer may be like that: Using the
equation (14) and (15) the following equations may be
written:

(31)

(30)

B-1. X'· s
s=~=====

-v7X·B-z. X'· r

Cj ={f
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In that conditions the multiplication of the three
terms Ct, Cz and p would be 1 and the result is suitable

with the equation (29). But cI and Cz in the case of p;tl

are different from the Ct and Cz in the case of p=L For

the reason of that the equations (30) cannot be genera­
lised for all the eigenvectors. These are specific coeffi­
cients which are valid only while p= 1. As a final tho­
ught it can be said that Mardia's mentioned transition
relations for the standardised eigenvectors rand s are
not valid. The transition relations such as the equation
(27) and (28) may be looked for but cannot found with
the known Ct and Czfor all the eigenvalues. It can be ar-

gued that it is vine to look for the true transition relati­
ons between the standardised eigenvectors rand s ex­
cept the followings:

AI. X· s
r=~=====

~SI·X'·Az. X· s

It is easy to prove that Mardia's theorem could be
true while cI were equal to cz. For the reason of that

Mardia must be fallen into a mistake by thinking cI=cZ'

However this is not true. For example while p= I, it is
easy to prove that cI is not equal to Czand those has be-

en shown as follows:

Ct and Czare some coefficients. Suppose that r is a

standardised eigenvector while s is a standardised ei­
genvector for the reason of Ct. And also suppose that s

is a standardised eigenvector while r is a standardised
eigenvector for the reason of cz. Putting equation (28)

into equation (27) the following identity may be found:

Cj . Cz . P == 1 (29)

(27)

(28)

r=cI·AI·X·s

s =cz· B· l . X'· r
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