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ABSTRACT

In this paper, general knowledge about Genetic Algorithms (GAs), which have received much attention the past
few years because of the fact that they have been successfully applied in several different fields of study, is given.
The basic principles of GAs, such as representation, selection and genetic operators are summarized and the funda-
mental theorem of GAs, the so-called schema theorem, is discussed. A simple example is given in order to explain

how they work. Finally, a literature survey for the applications of GAs to Operational Research (OR) problems is
also provided.
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GENETIK ALGORITMALARA GENEL BIiR BAKIS
6z

Bu caligmada, birgok farkli alanda bagariyla uygulanmalarindan dolay: son yillarda biiyiik ilgi géren Genetik
Algoritmalar (GA) hakkinda genel bilgi verilmektedir. GA’lann gosterim, se¢gme ve genetik operatorler gibi temel-
leri 6zetlenmekte ve sema teoremi olarak bilinen GA’larin temel teoremi incelenmektedir. GA’larin nasil igledigini
aciklamak amaciyla basit bir Srnek verilmektedir. Son olarak, Y oneylem Aragtirmast problemlerinde GA’larn uy-
gulamalarina yonelik bir yayin taramasi da sunulmaktadir.

Anahtar Kelimeler: Genetik Algoritmalar, Stokastik Arama, Fonksiyon Eniyileme, Yoneylem Arastirmasi.

1. INTRODUCTION

A GA may be described as a mechanism that mi-
mics the genetic evolution of a species (Goldberg,
1989; Holland, 1992). The basic principles of GA we-
re first proposed by John Holland at the University of
Michigan in the late 1960s and early 1970s. Thereafter
a series of literature and reports have become availab-
le. There have been a number of international conferen-
ces and also journals on the theory and applications of
GAs. They have been used successfully in a wide va-
riety of applications including mathematical function
optimization, very large scale integration (VLSI) chip
layout, parameter fitting, scheduling, manufacturing,
clustering, machine learning, design problems etc. and
are still finding increasing acceptance. Reeves (1997)
states that the level of funding for GA-based projects
by national governments and by organizations such as
European Commission, far exceeds any funding given
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to the projects based on the methods such as simulated
annealing and tabu search.

There are some differences between GA’s and the
traditional optimization techniques. They work using
an encoding of the variables, rather than the variables
themselves, and use probabilistic transition rules to
move from one population of solutions to another rat-
her than a single solution to another. The most impor-
tant and interesting characteristics of genetic algo-
rithms is that they require only the value of the objec-
tive function. That is, they do not use derivatives or ot-
her knowledge (Hadj-Aloune and Bean, 1997).

2. GENETIC ALGORITHMS

In nature, individuals in a population compete
with each other for food, space and mates. Those indi-
viduals which are fitter with respect to their environ-
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ment and more attractive for mates, survive and repro-
duce longer than weaker ones. Their characteristics, en-
coded in their genes, are transmitted to their offspring
and tend to propagate into new generations. This natu-
ral phenomenon is called “survival of the fittest”. In this
way, on average, each generation consists of fitter indi-
viduals than parents. (Srinivas and Patnaik, 1994).

GAs simulate, in a rather simplified way, the pro-
cesses outlined above to get better solutions for a prob-
lem. They work with a population of individuals, each
representing a possible solution to a given problem.
Each possible solution must be encoded in a binary or
non-binary string format such as Gray code, floating
point representation, sequence representation etc. (for
details, see, Reeves, 1993; Janikow and Michalewicz).
These strings are analogous to chromosomes in nature.
Strings are also called individuals or solutions in GA li-
terature. A position on a chromosome is called a locus.
A set of one of more loci is called a gene and the pos-
sible values that a gene can have are known as alleles.
Note that the GA literature is rich in terms borrowed
from genetics. Holland used these terms in order to
describe numerous steps of his new algorithm.

GAs typically work by iteratively generating and
testing candidate solutions as given in Figure 1.

The simplest forms of GAs work according to the
scheme shown in Figure 1.

Representation: The first step to develop a GA for
an optimization problem is to represent it so that every
solution for it is in the form of a string of bits, all of
them consisting of the same number of element. Each
of the strings represents a random point in the space of
the possible solutions to a problem. There are several
ways of encoding the parameters. Binary encoding (i.e.
bit strings ) is the most common way of encoding. If a
parameter which can take values between a and b is
mapped to a string of length n, the precision is,

b-a
= 1
o1 1
As seen from equation 1, the length of the string is
a function of the required precision. The longer the

1. initialize population (t)

2. determine fitness of population (t)

3. repeat until a stopping criterion is satisfied
a) select parents from population (t)
b) perform crossover on parents creating population (t+1)
¢) Perform mutation on population (t+1)

d) determine fitness of population (t+1)

Figure 1. The Steps of A Typical Genetic Algorithm.
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string the better the precision. It is possible to find the
original values of the parameters by decoding a string.
In order to find the real value, x, corresponding to the
binary string ( b,-1 b,-2 ..., bg), the transformation gi-
ven below is used:

n-1
x=a+(z 2ibi)H @)
i=0

where n is the number of the bits in the string. A
string is created by joining the parameters together.
Suppose that the problem is to maximize a function of
three parameters, f (x,y,z). Each parameter might be
represented by a 5-bit binary string. Therefore, the
string contains three genes and consists of 15 binary
numbers.

Binary strings are sufficiently general but they are
not always the more natural or the more adequate rep-
resentation. So, other types of coding such as Gray co-
de, floating point representation, sequence representati-
on etc. have been used in several studies.

Initial Population: Usually an initial population is
created randomly. In some applications, the initial po-
pulation is generated by using some other method. Un-
less a given region of the search space is known to con-
tain the optimal solution, this initial population should
be spread over enough of the search space to represent
as wide a variety of solutions as possible.

The number of population strings (N) that are ini-
tially generated (this number remains constant throug-
hout successive generations) is usually 40 to 250 or lar-
ger, depending on the size of the problem being solved.

Fitness value: A fitness function must be divided
for each problem to be solved. Given a particular chro-
mosome, the fitness function returns a single numerical
fitness value, which is proportional to the ability or uti-
lity of the solution represented by that chromosome. It
is this information that guides in the selection of the fit-
ter solutions in each generation. The higher the fitness
value of a solution, the higher its chances of survival
and reproduction and the larger its representation in the
subsequent generation.

If objective function is profit or utility function i.e.
maximum value of f(x) is being searched, and f(x) is
positive for all solutions, the problem is,

"find X such that f{X) = max f(x)"

For such problems, we can use f(x) as a fitness me-
asure, where f(x) is the raw fitness.

In some problems f(x) can be negative for some
solutions. Therefore, fitness proportionate selection can
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not be used (f,,, < 0 gives a negative selection proba-

bility). In order to avoid this, the transformation given
below is used:

f(x)+ Cmin ,iff(x)+ Cmin>0
gx)= ' 3)
0 ,otherwise ‘
where C_;, is the absolute value of one of the follo-
wing:
* minimum value, f(x) can take (when known),

* minimum value of f(x) in the current / or last k
generations,

¢ A function of variance of f(x) in the current popu-
lation, e.g.

Mean [f(x)] - 2 ¥ Var[f(x)] 4

In some problems fitness function, f(x), is a cost
or an error E(x) and the problem is,

"find X such that E (X) = min E (x)"

In this situation, f(x)= ~E(x) is taken as a fitness
function to be maximized and in order to avoid negati-
ve probabilities, equation 1 is used to avoid negative
probabilities with fitness proportionate selection or
transformation given below is used:

Cmax - E(X) R if Cmax > E‘.(X)
g(x)= (5
0 ,otherwise

where C,,«, is one of the following:

* maximum value, E(x) can take (when known),

» maximum value of E(x) in the current and/ or last
k generations,

« a function of the variance of E(x) in the current
population, e.g.

Mean [E(x)] + 2 VVar [E(x)] (6)

If all values of f(X)e [f i, » fax] with ;0
and f,, — £ >> 0, then fitness proportionate selecti-

>> 0,

on can lead to stagnation even at the beginning of a run.
In this situation, Cp;,= — fiyin 1S taken and the equation

1 is used so that f(x) € [0, fax = fminl-

Selection: Once all individuals in the population
have been evaluated, their fitnesses are used as the ba-
sis for selection. Selection allows strings to be copied
for possible inciusion in the next generation. The chan-
ce that a string will be copied is based on the string’s fit-
ness value, calculated from a fitness function. The ob-
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ject of the selection method is to give exponentially inc-
reasing trials to the fittest strings. There are several pos-
sibilities (see Blickle and Thiele, 1995), but here fitness
proportionate selection, one of the simplest, will be
explained here. After having found the fitness of each
individual f; in a given generation, a probability is as-
signed to each string as follows:

"i=vf‘; (7

where f; is fitness value of individuali, % f; isthe to-
tal population fitness. =

Finally, a cumulative probability is obtained for
each string by adding up the fitnesses of the preceding
population members;

=3y Px

k=1

A random r, uniformly distributed in [0,1], is
drawn N times and each time the i-th string is selected
such that ¢;_; < < ¢;.When r<c;, the first string is se-

i=12..,N (8)

lected. This process can be visualized as the spinning of
a biased roulette wheel divided into N slots, each with
a size proportional to the string’s fitness (Tomassini,
1995).

This selection method is not without problems.
One problem is that, after a while, since better individu-
als get more copies in successive generations, the diffe-
rences in fitness between individuals become small
which renders selection ineffective. In this case, the se-
lection pressure need to reduce more often than they
would under the normal fitness evaluation. Another
problem is the possible existence of a super individual
(solutions with fitness values significantly better than
average). With fitness proportionate selection this indi-
vidual get many copies in successive generations and
rapidly come to dominate the population, thus causing
premature convergence to a possibly local optimum.
Scaling mechanisms and selection methods do not allo-
cate trials proportionally to fitness (see next section).

Genetic Operators: Whatever selection method is
used, it does not introduce any new solutions. It is here
that two individuals selected in the previous step are al-
lowed to produce offspring via the use of specific gene-
tic operators such as crossover and mutation. The most
commonly used crossover operators are one point cros-
sover, two point crossover, multi point crossover and
uniform crossover. In crossover, GA seeks to construct
better solutions by combining the features of good exis-
ting ones.

One point Crossover: One point crossover is app-
lied to two chromosomes (parents) and creates two new
chromosomes (offspring) by selecting a random positi-
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on along the string and splicing the section that appears
before the selected position in the first string with the
section that appears after a selection position in the se-
cond string and via versa (See Figure 2).

Crossover is not applied to all pairs of individuals.
Pairs of individuals are selected to undergo crossover
with crossover probability p.. Typically, it is between

0.6 and 1.0. If crossover is not applied, the two selected
strings are passed into the next generation unchanged
(Beasley et al., 1993). It is clear that approximately p N

strings undergo crossover in each generation. (Grefens-
tete, 1986).

Mutation: Selection and crossover alone can obvi-
ously generate a staggering amount of differing strings.
However, depending on the initial population chosen,
there may not be enough variety of strings to ensure the
GA seeks the entire population space. The purpose of
the mutation is to provide insurance against the irrevo-
cable loss of genetic information and hence to maintain
diversity within the population. For example, if every
solution in the population has 0 as the value of a parti-
cular bit, then no amount of crossover will produce a
solution with a 1 there instead.

Mutation is applied to each string after crossover.
It randomly alters each bit with a small probability (see
Figure 3). Typical values for p,, mutation probability
range from 0.001 to 0.01. Approximately, p,,Nn muta-
tions occur per generation.

In Figure 3, the third bit of the string is being mu-
tated.

Stopping Criteria: When cycle of evolution, selec-
tion, crossover, mutation and fitness evolution is itera-
ted for many generations, the overall fitness of the po-
pulation generally improves and the strings in the popu-
lation represent improved solutions. The stopping crite-
rion can be set by the number of evolution cycles, the
amount of variation of individuals between different ge-
nerations, or a predefined value of fitness.

lParents |001001/1010|111001/0001]

IOﬁ'spring |0010010001 ‘1110011010 |

Figure 2. One Point Crossover.

[Offspring [ 101000100]

|Offspring mutated | 100000100

Figure 3. Mutation.
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3. SELECTION OF GAs PARAMETERS

The effects of GAs parameters are very important
on the performance of GAs. Therefore, these parame-
ters, called control parameters, should be chosen cor-

‘rectly. There are 6 control parameters. These are popu-

lation size, crossover probability, mutation probability,
generation gap (G), selection strategy and scaling func-
tion.

Population size: One of the most important decisi-
ons is the population size determined by GA user. If the
population size is too small, GA may converge to a lo-
cal optimum, if it is too large it increases the cost per
generation (e.g. run-time).

Crossover probability: The aim of crossover is to
construct better chromosomes by combining the featu-
res of good existing chromosomes. Pair of chromoso-
mes are chosen to undergo crossover operation with
probability p.. The increase of it causes the recombina-

tion of building blocks to rise but it also increases the
disruption of good chromosomes.

Mutation probability: The purpose of mutation is
to maintain genetic diversity in the population. Mutati-
on occur at each bit in a chromosome with probability
P If the p,, increases, genetic search transform into a

random search; but it also helps reintroduce the lost ge-
netic material.

Generation gap: The fraction of new chromoso-
mes at each generation is called the generation gap. It
determinates how many chromosomes are selected for
genetic operators (between 0 and 100 percent). A high
value means that many chromosomes are replaced
which causes faster convergence.

Selection strategy: There are several strategies to
replace the old generation. In generational strategy, the
chromosomes in the current population are completely
replaced by the offspring. Since the best chromosome
of the population may fail to reproduce offspring in the
next generation, it is usually combined with elitist stra-
tegy. Elitist strategy consist of never replacing the best
chromosomes in the population with inferior solution,
so the best solution is always available for reproducti-
on. However, in the steady state strategy, only a few
chromosomes are replaced in each generation. Usually
the worst chromosomes are replaced when new chro-
mosomes are inserted in to the population.

Scaling Functions: There are several scaling met-
hods. The most commonly used are given below:

* Linear Scaling: Linear scaling computes the
scaled fitness value as

f=af+b 9
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where is the fitness value, f is the scaled fitness value.
Coefficients a and b are chosen each generation so that
the average values of f and f’ are equal and so that the
maximum value of f”is a specified multiple of the ave-
rage. (Michalewicz, 1994)

e Sigma Truncation: In this method, the scaled
fitness values are determined as follows:

f=f-(f-co) (10
where  is the average fitness values of the population,
G is the standard deviation in the population, c is a
small constant typically ranging from 1 to 3., Any nega-
tive result f'<0 1is set to zero, in order to prevent nega-
tive values of f".

* Power Law Scaling: In this method, the actual
fitness value is taken to some specific power:

f =tk (11)

where Kk is, in general, problem dependent or even var-
ying during the run (Man et al., 1996) .

4. WHY GAs WORK: SCHEMATA AND BUILDING
BLOCKS

In this section, we will look into the standard gene-
tic algorithm workings in a more detailed way, in order
to see why GAs constitute an effective search procedu-
re. Holland introduced the notation of schema to expla-
in how GAs search for regions of high fitness. Schema-
ta (plural of schema) are theoretical constructs used to
explain the behavior of GAs and are not processed di-
rectly by the algorithm. A schema (or similarity templa-
te) is a string that describe similarity between certain
sets of strings. Alphabet {0, 1, *} is used in order to de-
fine a schema,. For example schema H below is a temp-
late for a set of chromosomes having O in their first lo-
cus and 1 in their second and fourth locus.

H=01*1*

The * is a don’t care symbol that matches both 0
and 1. A bit string x that matches the pattern of a sche-
ma, X, is said to be an instance of H. For example the
string X given by

x=01110

is an instance of H above. The schema H also matches
the following strings: (01010),(01011),(01110)
and(01111).

The fitness of any bit string in the population gives
some information about the average fitness of the 21
different schemata of which it is an instance, so an exp-
licit evaluation of a population of N individual strings is
also an implicit evaluation of a much larger number of
schemata. This is referred to as implicit parallelism.
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In schemata, a O or 1 is referred to as a defined bit.
The order of a schema H, denoted by o(H), is the num-
ber of non-* symbols in the schema. Its defining length,
denoted by 1(H), is the distance between the furthest
non-* symbols in the schema. For the schema H=0 1 *
1 *, 1(H)=4-1=3 and o(H)=3. The order of a schema
and its defining length are very important in the funda-
mental theorem of genetic algorithms: schema theorem.
The theorem is as follows:

Suppose n is the length of a chromosome and H is
a schema of the string, f(H,t) is the average fitness va-
lue of the instances of schema H at generation t, and
N(H,t) is the number of those instances in the populati-
on, then the expected number of instances schema H at
generation t+1 is,

N(H t+1)= 1—p—°1—(m-pm0(H) MN(H, t) (12)
n-1 1({)
where ﬁt) is the average fitness value of the whole po-
pulation at generation t (Mitchell, 1996; Odeta-
y0,1995).

This result says that the number of short, low or-
der, above average schemata grows exponentially in
subsequent generations of a genetic algorithm. We can
say that the schema theorem expressed a reduced view
of GA. This above average, low order and short defi-
ning length schemata are called building blocks and
play an important role in the theory. Holland propose
that GAs work by identifying good building blocks and
eventually combining these to get larger building
blocks. This idea has become known as the building
block hypothesis.

5. A SIMPLE EXAMPLE

In this section, in order to explain how GAs work
and their power, optimization of a simple function of
one variable will be presented. Although GAs are not li-
mited to this domain, their workings are probably better
understood in an optimization setting. The function is
defined as

fix) = 3xSin(2px) + 10

and is drown in Figure 4.

0=sX<3.

The problem is to find x* in the interval [Q,3]
which maximizes the function. The problem is not a
mathematically hard one. It could be solved by hand or
with a number of other established methods. It is pu-
rely of illustrative value. Note that, for comparison, it
was solved by using Mathematica for Windows and
x*=2.264 value which correspond f(x*)=16.7657 is fo-
und. For the optimization of the function, SGA (simple
genetic algorithm) code has been used (see Goldberg
(1989)). Let us examine the components of the genetic
algorithm for solving the given problem in turn.
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Figure 4. Graph of f(x) = 3xSin(2px)+10.

Representation: In order to represent real values of
the variable x, binary string will be used. Thus, each in-
dividual is a value of the real variable x. Because of the
fact that the length of the string depends on the required
precision, the longer the string the better the precision.
In this study, the length of a string is n=10 bits. The
length of the string implies that the interval [0,3] should
be devised into at least 1024 equal size ranges. Note
that, our use of 10 bit strings is only for the illustrative
purposes. In real applications, longer strings are ne-
eded. Thus the precision is,

M= 3-0 =000293255
294

This means that GA will be able to sample points
no less than 0.00293255 apart from each other. The
strings 0 0000006G00and 1111111111 will
represent 0 and 3 respectively. Any other 10 bit string
will be mapped to an interior point.

Initial population: The initial population will be
generated by 15 randomly chosen strings.

Genetic operators: SGA uses two classical genetic
operators: mutation and crossover.

Parameters: The parameter values given below
was used :

Population size: M=15

Probability of crossover. p.=0.7
Probability of mutation: p,,=0.01.

Stopping criteria: SGA will be stopped at the end
of 30 generations .

Experimental results: Initial population given in
Table 1 was generated at random. In this Table, strings
generated at random, their real values, their fitness va-
lues and their probability of being chosen is given.

SGA was run 30 generations by starting from the
initial population given in Table 1. In Table 2, we pro-
vide the generation number for which we noted an imp-
rovement in the evaluation function, maximum and the
average fitness values at those generations.
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Table 1. The initial Population Genzerated By SGA.

Siring number Stiring X f(x) Pi
1 0111010001 {1.3636113.0917]0.0760
2 1106010001 ]2.3020]16.5401 | 0.0960
3 101160011 1]2.0850]13.1856]0.0766
4 10116001 11]12.0850}13.1856}0.0766
5 [ 100010111123196]16.3032]0.0946
6 0110061000041.1730(13.1154{0.0762
B 7 0101011100}1.0205]10.3938}0.0604
8 0101011100/1.0205110.3938]0.0604
[ g 110001101 1]23314)16.0996]0.0935
10 101100011112.0850}13.1856]0.0766
il 1111010100712.8739] 3.8616 ]0.0224
12 UU01100000}0.2815110.8281 }0.0629
13 1110011111]27185] 2.0040 [0.0116
14” 0000000010]0.0059]10.0006]0.0581
15 0000000000 }0.0000] 10.0000]0.0581

Table 2. Generations For Which An Improvement In The
Evaluation Fonction s Noted and The Maximum
and The Average Fitness Vaiues At Those Generations.

Generation nowber {Maximum fitness value |Average fitness value
- [ 16.5401 108126

2 16.5715 9.5090

8 16.7568 10.3071

9 16.7619 8.6607

21 16.7658 11.4978

28 16,7668 9.0576

The best string found at the end of the runis 1 1 0
000001 1 which corresponds to a value of
x*=2.260997067, f(x*)=16.7668. Note that a single run
was done with SGA. If several runs had been done, bet-
ter solitions could have been found.

6. LITERATURE SURVEY

As GAs are general optimization method, this ma-
kes both kind and number of application increase. The-
refore, it is clear that preparing a full reference list of
GAs according to the ali subjects will be hard and this
list will be very long.

One of the popular application areas using GAs is
OR. In this section, we give a literature survey for app-
lications of GAs to OR problems. We restricted our li-
terature search to published journal articles. Total of
131 journal articles were identified through the our lite-
rature search. These were published in 41 different jo-
urnals. The classification of these articles based on app-
lication area is given in Table 3.
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‘Table 3. Some Applications of GAs In OR.

Application

Reference

1. Assembly Line
Balancing

Leu, Marhesuﬁ and Rees (1994); Rubinovitz and Levitin (1995); Tsujimura, Gen and Kubota (1995); Kim,
Kim and Kim (1996); Suresh, Vinod and Sabu (1996); Sabuncuoglu, Frel and Tanyer (1999); Lee, Kahoo
and Yin (2000); Kim, Kim and Kim (2000); Ponnambalam, Aravindan and Naidu (2000)

2. Assignment

Huntley and Brown (1991); Nissen (1992); Levitin and Rubinovitz (1993); Tate and Smith (1995); Ahuja,
Orlin and Tiwari (2000)

3. Bin-Packing

Kroger (1995); Jakobs (1996); Reeves (1996)

4. Facility Layout

Tam (1992); Chan and Tansri (1994); Conway and Venkataramanan (1994); Suresh, Vinod and Sahu
(1995); Del maire, Langevin and Riopel (1997); Istier (1998); Kachbar, Foster and Heragu (1998); Raja
sekbaran, Peters and Yang (1998); Tam and Chan (1998); Hamamoto, Yih and Salvendy (1999); Kochhar
and Heragu (1999): Aj-Hakim (2000)

5. CGzoal Gen, Ida, l.ee and Kim (1997); Taguchi, Ida and Gen (1997)
Programming
6. Integer Yokota, Gen and l;i (1996); Yokaota, Gen?‘l :i and Kim (1996)
Programming
7. Knapsack Thiel and Vuss (1994)
8. Linear Wang (1997); Lee and Yang (1998); Gueyagueler and Guemrah (1999); Urdeneta, Gomez, Sorrentino,

Flores and Programming Diaz (1999)

9. Nonlinear

Programming

Yokota, Gen, Taguchi and 1.i (1995); Sakawa and Yauchi (1998)

10. Scheduling

10.1. Job-Shop

Biegel and Davern (1990); Uckun, Bagchi, Kawamura and Miyabe (1993), Bierwirth (1995); Dagh and
Sittisat hanchai (1995); Della, Tadei and Volta (1995); Domdorf and Pesch (1995) Gilkinson, Rabelo and
Bush (1995); Cheng, Gen and Tsujimura (1996); Kumar and Srinivasan (1996); Maturana, Gu, Naumann
and Norrie (1996); Lee, Piramuthu and Tsai (1997); Shi (1997); Candido, Khatar and' Barcia (1998);
Cheng, Gen and Tsujimura (1999); Ghedjati (1999); Sakawa and Mori (1999); Hajri, Liovane, Hammadi
and Borne (2000); Qi, Burns and Harrison (2000); Sakawa and Kubota (2000); Wu and Zhao (2000)

10.2. Flow-Shop

Badami and Parks (1991); Ishibuchi, Yamamoto, Murata and Tanaka (1994); Chen, Vempati and Aljaber
(1995); Reeves (1995); Murata, Ishibuchi and Taunaka (1996); Nagar, Heragu and Haddock (1996); Janiak
and Portmann (1998); Onwubolu and Mutingi (1999); Nitin, Bagchi and Wagneur (2000)

10.3. Open-Shop

Liaw (2000)

10.4. Single
Machine

Gupta, Gupta amvl‘Kumar (1993); Lee and Choi (1995); Lee and Kim (1993); Crauwels, Potts and Van
Wassenhove (1996); Maimon and Broha (1998); Webster, Jog and Gupta (1998); Hussain and Sastry
(1999); Liu and Tang (1999); Wang, Gen and Cheng (1999); Armentano and Mazzini (2000)

10.5. Parallel

Machine

Cheng, Gen and Tozawa (1995); Kimms (1999); Min and Cheng (1999)

10.6. Maintenance

Chan. Fwa and Tan (1994); Kim, Nara and Gen (1994); Deris, Omatu, Ohta, Kutar and Samat (1999)

10.7. Process
Planning

Vancza and Markus (1991); Awadh, Sepehri and Hawaleshka ('1995); Yip-Hoi and Dutta (1996); Jain and
FiMaraghy (1997); Morad and Zalzala (1994)

10.8. Others

Wren and Wren (1995); Levine (1996); Malmborg (1996); Mori and Tseng (1997); Ulusoy, Sivrikaya and
Bilge (1997); Covalieri and Gaiardelli (1998); Moutaz, Michalewicz and Wilmot (1998); Easton and Man
sour (1994 Lawm, Lin, Sriskavdrarajah and Yan (1999); Norman and Bean (1999); Todd and Sen(1999);
Cai and 1.i (2000); Hoda, Viskvas and Ben (2000); Ip, 1.4, Man and Tang (2000); Jahangiran and Conray
(2000); Li, Man, Tang, Kwong and Ip (2000)

11. Set Covering

Al-Sultan, Hussain and Nizami (1996); Beasley and Chu (1996)

12. Steiner Tree

Kapsalis, Rayward-Smith and Smith (1993); Esbensen (1995); Saltouros, Verentziotis, Markai, Theologou
and Vanieris (2000)

13. System
Reliability

Painton and Campbell (1995); Saéziki7 (,‘xén and Yamashiro (1995); Coit and Smith (1996 a,b); Gen and
Cheng (1996); Dengiz, Aluparmak and Smith (1997); Aluparmak, Dengiz and Smith (2000)

1 Timetabling

Maonfroglio (1996 ab); Krageluod (1997)

15. Traveling
Salesman

Jog, Jung and Gucht (1991); Homaifar, Guan and Liepins (1992); Lin, Delgado, Gause and Vassiliadis
(1995); Potvin (1996); Chatterjee, Carrera and Lynch (1996); Qu and Sun (1999); Louis and Li (2000)

16. Vehicle Routing

Kopfer, Pankratz and Erkens (1994); Filipec, Sklec and Krajcar (2000)




Table 3 shows that there is a great deal of interest
in the use of GAs to solve problems arising in the area
of OR. According to the our literature search, job shop
scheduling has the largest number of applications, fol-
lowed by facility layout, assembly line balancing, flow
shop scheduling, traveling salesman, system reliability
and other problems. An examination of the publication
source of these 131 articles reveals that Computers &
Industrial Engineering, European Journal of Operati-
onal Research and Computers & Operations Research
are the top three journals publishing the articles. Also, it
is important that more than 30% of these 131 articles
were published in the last two years. This is very impor-
tant result for the future of GA applications to OR prob-
lems.

7. CONCLUSION

This paper presented an overview of all the techni-
cal aspects and basic principles of GAs. All the different
steps of the algorithm were reviewed separately. We ha-
ve also provided a literature survey of OR applications
that have been successfully tackled using GAs. Our li-
terature survey results have revealed that GAs have gre-
at acceptance in OR community. There is no doubt that
GA applications to OR problems will be increasing in
the future. The findings of this articles will hopefully be
of value to students, researchers and practitioners in the
field.
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