
SOLUTION APPROACHES FOR

MULTI OBJECTIVE PARALLEL MACHINE

SCHEDULING PROBLEMS

PhD Dissertation

Aseel N.H. SABTI

Eskişehir 2017

SOLUTION APPROACHES FOR MULTI OBJECTIVE

PARALLEL MACHINE SCHEDULING PROBLEMS

Aseel N.H. SABTI

PhD Dissertation

Statistics Program

Assist. Prof. Dr. Zehra KAMIŞLI ÖZTÜRK

Eskişehir

Anadolu University

Graduate School of Sciences

December 2017

ii

FINAL APPROVAL FOR THESIS

This thesis titled “Solution Approaches for Multi Objective Parallel Machine

Scheduling Problems” has been prepared and submitted by Aseel N.H. SABTI in partial

fullfillment of the requirements in “Anadolu University Directive on Graduate

Education and Examination” for the Degree of Doctor of Philosophy (PhD) in Statistics

Department has been examined and approved on 29/12/2017

Committee Members Title Name Surname Signature

Member (Supervisor) : Assist. Prof. Dr. Zehra KAMIŞLI ÖZTÜRK

......
Member : Prof. Dr. Yeliz MERT KANTAR

......
Member : Assist. Prof. Dr. Nergiz KASIMBEYLİ

......
Member : Prof. Dr. Hasan Kıvanç AKSOY

......
Member : Assist. Prof. Dr. Neslihan IYIT

......

Prof.Dr. Ersin YÜCEL

Director of Graduate School of Sciences

iii

ABSTRACT

SOLUTION APPROACHES FOR MULTI OBJECTIVE

PARALLEL MACHINE SCHEDULING PROBLEMS

Aseel N.H. SABTI

Statistics Program

Anadolu University, Graduate School of Sciences, December, 2017

Supervisor: Assist. Prof. Dr. Zehra KAMIŞLI ÖZTÜRK

This study considers the multi-objective parallel machine scheduling. A novel

algorithm with name Sequence Job Minimum Completion Time (SJMCT) is proposed

for unrelated parallel machines and non-identical jobs to minimize the two objectives.

These objectives are minimization of maximum job completion time and total tardiness

when each job is assigned only to one machine at time. The proposed algorithm’s

performance is compared with some common dispatching rules based on a small size

problem (four machines and nine jobs).

Because of the complexity in multi-objective parallel machine scheduling

problems, for large size problems, two novel metaheuristic algorithms SJMCT-NSGA-

II based on Non-dominated sorting genetic algorithm (NSGA-II) and SJMCT-SPEA-II

based on Strength Pareto evolutionary algorithm (SPEA-II) are proposed to obtain

Pareto optimal solutions. The simulation results for 272 tests are reported to show the

efficiency of these two algorithms. Two test problems of simulation experiences are

done to study effects of the different parameters. In the simulations, the effects of

generation numbers and job numbers are investigated. The results demonstrate that the

proposed SJMCT-SPEA-II has better performed than the SJMCT-NSGA-II. Besides

choosing the appropriate performance measures, Spacing and Spread Diversity Metrics

are also ensured this result. Finally, the conclusions and some directions for future

research are reported.

Keywords: Operations research; Scheduling; Unrelated parallel machine; Multi-

objective evolutionary algorithms; SJMCT-NSGA-II and SJMCT-SPEA-II algorithms.

iv

ÖZET

ÇOK AMAÇLI PARALEL MAKİNE ÇİZELGELEME PROBLEMLERİ

İÇİN ÇÖZÜM YAKLAŞIMLARI

Aseel N.H. SABTI

İstatistik Anabilim Dalı

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Aralık, 2017

Danışman: Yard. Doç. Dr. Zehra KAMIŞLI ÖZTÜRK

Bu çalışmada çok amaçlı paralel makine çizelgeleme problemi ele alınmıştır.

Bağımsız paralel makineler ve özdeş olmayan iş dizileri için Ardışık İş Enküçük

Tamamlanma Zaman (SJMCT) isimli yeni bir algoritma önerilerek iki amaç

eniyilenmiştir. Bu amaçlar; her bir işin sadece tek bir zaman ve makineye atandığı

durumdaki enbüyük tamamlanma zamanı ve toplam gecikmenin en küçüklenmesidir.

Geliştirilen algoritmanın performansı, küçük boyutlu bir problem (dört makine ve dokuz

iş) üzerinden çok kullanılan genel sevk etme kuralları ile karşılaştırılmıştır.

Büyük boyutlu problemler için çok amaçlı makine çizelgeleme problemlerindeki

karmaşıklıklardan dolayı, Baskın Olmayan Sıralama Genetik Algoritma (NSGA-II)

tabanlı ile Güçlü Pareto Evrimsel Algoritma (SPEA-II) tabanlı SJMCT-NSGA-II ve

SJMCT-SPEA-II isimli iki yeni melez metasezgisel algoritma Pareto optimal çözümleri

elde etmek için önerilmiştir. 272 simülasyon sonucu, geliştirilen algoritmaların

etkinliğini göstermektedir. Değişik parametrelerin etkilerini göstermek için iki farklı

problem üzerinden simülasyonlar yapılmıştır. Simülasyonlarda iterasyon sayısı ve iş

sayısı etkileri araştırılmıştır. Sonuçlar, önerilen SJMCT-SPEA-II algortimasının

SJMCT-NSGA-II’den daha iyi performansa sahip olduğunu göstermektedir. Uygun

performans ölçülerini seçmeden önce, elde edilen Pareto çözümlerin etkiliğini

göstermek için Yayılma ve Mesafe metrikleri de kullanılmıştır. Son olarak, sonuçlar ve

gelecek çalışmalar için bazı öneriler de sunulmuştur.

Anahtar sözcükler: Yöneylem araştırması; Çizelgeleme; Özdeş olmayan paralel

makine; Çok amaçlı evrimsel algoritmalar; SJMCT-NSGA-II; SJMCT-SPEA-II.

v

ACKNOWLEDGEMENTS

Allah the Almighty said: "And those who strive for Us – We will surely guide

them to Our ways. And indeed, Allah is with the doers of good" [Quran] (29:69)

First of all, I would like to thank Türkiye Bursları (Scholarships program) for the

great experience and support throughout the study period.

I would like to thank the Iraqi government and Ministry of Higher Education and

Scientific Research for giving me this opportunity that contributes to my future

scientific development. Also, I would like to thank the Iraq Culture Office in Ankara

and its staff for their help and support.

 Big thanks to AL-Irqia University and its staff for the great help they have

provided to me.

I would like to thank my adviser Assist. Prof. Dr. Zehra Kamışlı Öztürk for her

guidance and suggestions greatly helped me to focus on the topic of the thesis. Without

her academic knowledge and dedications this thesis would not reach this point.

I would like to express my appreciation to my research committee members Prof.

Dr. Yeliz Mert Kantar and Assist. Prof. Dr. Nergiz Kasimbeyli. Their willingness to

provide assistance and guidance during the writing process was essential to the

completion of this study.

 I would like to thank my research committee members Assoc. Prof. Dr. Hakan

Kıvanç Aksoy and Assist. Prof. Dr. Neslihan Iyit for their time and support.

I am deeply grateful to Prof. Dr. Aladdin Shamilov for his support and valuable

information through the course of Entropy Optimization Methods and Applications.

I would like to thank Prof. Dr. Memmedağa Memmedli for his support and

science guidance through the courses of Artificial Neural Network I and II.

I would also like to thank Prof. Dr. Refail Kasımbeyli for the knowledge he

conveyed to me through the courses in Operations Research, Constrained and Non-

constrained Optimization Methods.

It is pleasure to me to thank my friends Res. Asst. Nihal Ince and Res. Asst.

Gökçen Uysal for giving me the special help whenever I needed.

I thank my family, especially my mother and my father for being such a great

support and for pushing me forward my dreams.

Aseel N.H. SABTI

vi

29/12/2017

STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES AND RULES

I hereby truthfully declare that this thesis is an original work prepared by me; that

I have behaved in accordance with the scientific ethical principles and rules throughout

the stages of preparation, data collection, analysis and presentation of my work; that I

have cited the sources of all the data and information that could be obtained within the

scope of this study, and included these sources in the references section; and that this

study has been scanned for plagiarism with “scientific plagiarism detection program”

used by Anadolu University, and that “it does not have any plagiarism” whatsoever. I

also declare that, if a case contrary to my declaration is detected in my work at any time,

I hereby express my consent to all the ethical and legal consequences that are involved.

 Aseel N.H. SABTI

vii

CONTENTS

Pages

TITLE PAGE……………………..…………………………………………….……i

FINAL APPROVAL FOR THESIS……..………………………………….……...ii

 ABSTRACT…………………………………………………………………………iii

ÖZET………………………………………………………………………………...iv

ACKNOWLEDGEMENTS…………………………………………………………v

STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES AND

RULES……………………………………………………………………………....vi

CONTENTS………………………………………………………………………...vii

LIST OF TABLES……………………………………………………………...…...ix

LIST OF FIGURES………………………………………………………………....xi

LIST OF ABBREVIATIONS…………..…………………………………………xiii

1. INTRODUCTION…………………………………………………………………1

2. SOME DEFINITIONS AND LITERATURE REVIEW………………………..3

2.1. Background of Machine Scheduling .. 3

2.2. Dispatching Rules .. 4

2.3. Literature Review ... 6

2.4. Relevant Works in Single Machine Scheduling Problems 6

2.5. Relevant Works in Single Objective Parallel Machine Scheduling Problems

 ……………………………………………………………………... 7

2.5.1. Exact solution approaches for single objective parallel machine

scheduling problems... 7

2.5.2. Heuristic and metaheuristic solution approaches for single objective

parallel machine scheduling problems ... 9

2.6. Relevant Works in Multi-Objectives Parallel Machine Scheduling Problems

 ……………………………………………………………………..11

2.6.1. Solution approaches for multi-objective parallel machine scheduling

problems ... 11

2.6.2. Evolutionary solution approaches for multi-objective parallel

machine scheduling problems .. 13

2.7. Relevant Works in Shop Scheduling Problems ... 15

viii

3. PROBLEM DEFINITION AND MODELING………………………………...18

3.1. Problem Definition ... 18

3.2. Assumptions ... 19

3.3. Mathematical Model of the Problem ... 19

3.4. The Comparison of the SJMCT Algorithm with other Algorithms 22

3.4.1. Scheduling with LPT Balin’s rule .. 23

3.4.2. Scheduling with Balin (GAs) ... 24

3.4.3. Scheduling with longest processing time dispatching rule (LPT) ... 25

3.4.4. Scheduling with shortest processing time dispatching rule (SPT) ... 25

3.4.5. Scheduling with sequence job minimum completion time (SJMCT)

 .. 26

3.4.6. The computational results and comparisons 27

4. NOVEL MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS………..28

4.1. Multi-objective Optimization ... 28

4.2. Non-dominated Sorting Genetic Algorithm II (NSGA-II) 29

4.3. SJMCT- Based NSGA-II (SJMCT -NSGA-II Algorithm) 30

4.4. Strength Pareto Evolutionary Algorithm II (SPEA-II) 37

4.5. SJMCT- Based SPEA-II (SJMCT- SPEA-II Algorithm) 37

5. COMPUTATIONAL RESULTS………………………………………………..44

5.1. Experimental Design .. 44

5.2. Computational Results ... 45

5.2.1. Computational results for SJMCT-NSGA-II algorithm 46

5.2.2. Simulation results for SJMCT-SPEA-II algorithm 50

5.3. The Effect of Parameters ... 71

5.4. Performance Measures ... 71

6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS……………....81

REFERENCES……………………………………………………………………..83

 APPENDICES

 CURRICULUM VITA

ix

LIST OF TABLES

Pages

Table 2. 1. Summary of dispatching rules .. 6

Table 3. 1. Processing time of the jobs…….……………………….……………..…...23

Table 3. 2. Scheduling with LPT Balin rule... 24

Table 3. 3. Scheduling with GAs at iteration 720 .. 25

Table 3. 4. Scheduling with LPT rule .. 25

Table 3. 5. Scheduling with SPT rule .. 26

Table 3. 6. Scheduling with sequence job minimum completion time algorithm

(SJMCT) .. 26

Table 3. 7. The total and maximum completion time for all comparison algorithms 27

Table 5. 1. Parameters used for each algorithm……………..…………………………45

Table 5. 2. The values of the best non-dominated front for 5 machines and 60 jobs with

generation 40 and crossover probability 0.6 .. 54

Table 5. 3. The values of the best non-dominated front for 5 machines and 60 jobs with

generation 40 and crossover probability 0.7 .. 55

Table 5. 4. The values of the best non-dominated front for 5 machines and 60 jobs with

generation 40 and crossover probability 0.8 .. 56

Table 5. 5. The values of the best non-dominated front for 5 machines and 60 jobs with

generation 40 and crossover probability 0.9 .. 57

Table 5. 6. The values of the best non-dominated front for 5 machines and 60 jobs with

generation 100 and crossover probability 0.6 .. 58

Table 5. 7. The values of the best non-dominated front for 5 machines and 60 jobs with

generation 100 and crossover probability 0.7 .. 59

Table 5. 8. The values of the best non-dominated front for 5 machines and 60 jobs with

generation 100 and crossover probability 0.8 .. 60

Table 5. 9. The values of the best non-dominated front for 5 machines and 60 jobs with

generation 100 and crossover probability 0.9 .. 61

Table 5. 10. The values of the best non-dominated front for 5 machines and 60 jobs

with generation 300 and crossover probability 0.6 62

x

Table 5. 11. The values of the best non-dominated front for 5 machines and 60 jobs

with generation 300 and crossover probability 0.7 64

Table 5. 12. The values of the best non-dominated front for 5 machines and 60 jobs

with generation 300 and crossover probability 0.8 64

Table 5. 13. The values of the best non-dominated front for 5 machines and 60 jobs

with generation 300 and crossover probability 0.9 65

Table 5. 14. The values of the best non-dominated front for 5 machines and 60 jobs

with generation numbers 500 and crossover probability 0.6 66

Table 5. 15. The values of the best non-dominated front for 5 machines and 60 jobs

with generation 500 and crossover probability 0.7 67

Table 5. 16. The values of the best non-dominated front for 5 machines and 60 jobs

with generation 500 and crossover probability 0.8 68

Table 5. 17. The values of the best non-dominated front for 5 machines and 60 jobs

with 500 generation and crossover probability 0.9 69

Table 5. 18. Minimum and average values for 60 jobs to all algorithm numbers and

objectives ... 70

Table 5. 19. The mean of diversity metrics for non-dominated front to each algorithm

for 10 runs (second test problems) ... 76

Table 5. 20. The variance of diversity metrics for non-dominated front to each

algorithm for 10 runs (second test problems) .. 76

Table 5. 21. Time in second for the best solution to each algorithm for all the second

test problems .. 78

xi

LIST OF FIGURES

Pages

Figure 3. 1. The representation of SJMCT algorithm .. 22

Figure 3. 2. Representation of chromosome .. 24

Figure 3. 3. The scheduling chart of SJMCT algorithm .. 26

 Figure 4. 1. Non-dominated and dominated solution……………………………… ….29

Figure 4. 2. Crowding distance calculation ... 31

Figure 4. 3. Schematic representation of the NSGA-II procedure 32

Figure 4. 4. Flow chart of SJMCT-NSGA-II ... 36

Figure 4. 5. Illustration of the archive truncation method used in SPEA-II 39

Figure 4. 6. Flow chart of SJMCT-SPEA-II .. 43

 Figure 5. 1. Pareto optimal solutions for SJMCT- NSGA-II with generation 40 and

different crossover probabilities……...…………………………………...46

Figure 5. 2. Pareto optimal solutions for SJMCT- NSGA-II with generation 100 and

different crossover probabilities ... ………….47

Figure 5. 3. Pareto optimal solutions for SJMCT- NSGA-II with generation 300 and

different crossover probabilities .. 48

Figure 5. 4. Pareto optimal solutions for SJMCT- NSGA-II with generation 500 and

different crossover probabilities .. 49

Figure 5. 5. Pareto optimal solutions for SJMCT- SPEA-II with generation 40 and

different crossover probabilities .. 50

Figure 5. 6. Pareto optimal solutions for SJMCT- SPEA-II with generation 100 and

different crossover probabilities .. 51

Figure 5. 7. Pareto optimal solutions for SJMCT- SPEA-II with generation 300 and

different crossover probabilities .. 52

Figure 5. 8. Pareto optimal solutions for SJMCT- SPEA-II with generation 500 and

different crossover probabilities .. 53

Figure 5. 9. Solutions at generation 40 for 60 jobs (Crossover probability 0.6) 54

Figure 5. 10. Solutions at generation 40 for 60 jobs (Crossover probability 0.7) 55

Figure 5. 11. Solutions at generation 40 for 60 jobs (Crossover probability 0.8) 57

xii

Figure 5. 12. Solutions at generation 40 for 60 jobs (Crossover probability 0.9) 57

Figure 5. 13. Solutions at generation 100 for 60 jobs (Crossover probability 0.6) 58

Figure 5. 14. Solutions at generation 100 for 60 jobs (Crossover probability 0.7) 59

Figure 5. 15. Solutions at generation 100 for 60 jobs (Crossover probability 0.8) 60

Figure 5. 16. Solutions at generation 100 for 60 jobs (Crossover probability 0.9) 61

Figure 5. 17. Solutions at generation 300 for 60 jobs (Crossover probability 0.6) 62

Figure 5. 18. Solutions at generation 300 for 60 jobs (Crossover probability 0.7) 63

Figure 5. 19. Solutions at generation 300 for 60 jobs (Crossover probability 0.8) 64

Figure 5. 20. Solutions at generation 300 for 60 jobs (Crossover probability 0.9) 65

Figure 5. 21. Solutions at generation 500 for 60 jobs (Crossover probability 0.6) 66

Figure 5. 22. Solutions at generation 500 for 60 jobs (Crossover probability 0.7) 67

Figure 5. 23. Solutions at generation 500 for 60 jobs (Crossover probability 0.8) 68

Figure 5. 24. Solutions at generation 500 for 60 jobs (Crossover probability 0.9) 69

Figure 5. 25. PFknown / PFtrue example ... 72

Figure 5. 26. The Euclidean distance in the solutions ... 74

Figure 5. 27. Time in second with all crossover probabilities for 20 jobs 79

Figure 5. 28. Time in second with all crossover probabilities for 60 jobs 79

Figure 5. 29. Time in second with all crossover probabilities for 100 jobs 80

xiii

LIST OF ABBREVIATIONS

Abbreviation Explanation

SJMCT : Sequence Job Minimum Completion Time

NSGA : Non-Dominated Sorting Genetic Algorithm

SPEA : Strength Pareto Evolutionary Algorithm

SJMCT-NSGA-II : Sequence Job Minimum Completion Time Based on NSGA-II

SJMCT-SPEA-II : Sequence Job Minimum Completion Time Based on SPEA-II

ERD : Earliest Release Date

EDD : Earliest Due Date

MS : Minimum Slack First

LPT : Longest Processing Time

WSPT : Weighted Shortest Processing Time

SPT : Shortest Processing Time

CP : Critical Path

LNS : Largest Number Of Successors

SIRO : Service In Random Order

SST : Shortest Setup Time

LFJ : Least Flexible Job

SQNQ : Shortest Queue At The Next Operation

TSA : Tabu Search Algorithm

MA : Memetic Algorithm

APS : Advanced Planning And Scheduling Systems

LS : List Scheduling Rule

PMS : Parallel Machine Scheduling

PMSP-E/T : Parallel Machine Scheduling Problem With Earless And Tardiness

Penalties

ML : Maximum Likelihood

MCTE : Maximum Completion Time Estimation

MLPT : Modified Longest Processing Time

xiv

SA : Simulated Annealing

GAs : Genetic Algorithms

GA-DR-P : Genetic Algorithm With Processing –Time Based Dispatching

Rule

PSO : Particle Swarm Optimization Algorithm

SSO : Simplified Swarm Optimization Algorithm

MOSA : Multi-Objective Simulated Annealing

PMBSP : Bi-Criteria Scheduling Problem For Parallel Machine

ANN : Artificial Neural Networks

MOPSO : Multi-Objective Particle Swarm Optimization

CMOPSO : Conventional Multi-Objective Particle Swarm Optimization

GLS : Genetic Local Search

MOCO : Multi-Objective Combinatorial Optimization

TSP : Traveling Salesman Problem

PESA : Pareto Envelope- Based Selection Algorithm

MPGA : Multiple Population Genetic Algorithm

TWT : Total Weighted Tardiness

TWC : Total Weighted Completion Time

SPGA : Sub-Population Genetic Algorithm

FLC-NSGA-II : Fuzzy Logic Non-Dominated Sorting Genetic Algorithm

TPM : Two Phase Method

VEGA : Vector Evaluated Genetic Algorithm

AL : Approach By Localization

CGA : Controlled Genetic Algorithm

PVNS : Parallel Variable Neighborhood Algorithm

FJSP : Flexible Job Shop Scheduling

MOEA : Multi-Objective Evolutionary Algorithm

MOP : Multi-Objective Optimization Problem

ACO : Ant Colony Optimization

PFKnown : Pareto Optimal Front (P)

xv

PFTrue : Pareto Obtained Solution (S)

MOO : Multi-Objective Optimization

ER : Error Ratio

GD : Generational Distance

SP : Spacing Metric

OS : Overall Pareto Spread

IGD : Inverted Generational Distance

MPFE : Maximum Pareto Front Error

1

1. INTRODUCTION

Scheduling is a field of study concerned with optimal allocation or assignment of

limited resources, over time, to a set of tasks or activities (Parker, 1996). Tasks and

resources can stand for jobs and machines in a manufacturing system, patients and

hospital equipment in health care problem, class and teachers in educational institution,

ships and dockyards in a logistic system, programs and computers, or cities and

traveling salesmen.

In each of these different systems, the decision makers try to optimize an

objective function. For example, minimization of total tardiness, minimization of total

course clashes of students and etc.

As Pinedo, (2008) mentioned, scheduling is a decision-making process, plays an

important role in most manufacturing and production systems.

 In general, the machine scheduling problems are first classified into two classes

in terms of the nature of problem. The first class is the deterministic machine problem

when the processing constraints and parameters can be ascertained with certainty. The

second is the uncertain machine scheduling problem when some processing conditions

or parameters cannot be determined in advance.

The deterministic machine scheduling problems are categorized into four types

according to shop configuration. These types are classified as: single machine, parallel

machines, flow shop, and job shop. In parallel-machine shop, a number of one operation

jobs can be processed on any of machines. In flow shop, machines are arranged in a

serial fashion, and each job has to pass through each machine. Job shop is a

configuration in which each job has different processing routes.

The uncertain machine scheduling problems are grouped into two types in terms

of the description method of uncertainty. The first type is fuzzy machine scheduling

problem in which the processing conditions and parameters are modeled using fuzzy

number. The second is stochastic machine scheduling problem in which stochastic

variables are used to indicate the processing constraints and parameters.

Today's parallel machine scheduling has become one of the most attractive

subjects because of the competition in production environments. Parallel machine

scheduling is one of the machine scheduling classes. In addition, the unrelated parallel

machine scheduling which means there is no relationship among these machines

(Eroglu, Ozmutlu and Ozmutlu, 2014). Therefore, this study deals with this type of

2

scheduling problem and the motivation behind this thesis is to solve large size of

unrelated parallel machine scheduling with non-identical jobs to optimize two

objectives represented by minimizing the maximum completion time and total tardiness.

The organization of this thesis is as follows: Chapter 2 presents a brief overview of

the literature related with single machine scheduling, single and multi-objective parallel

machine scheduling. Also, flow shop and job shop scheduling problems.

In Chapter 3, a new mathematical model is proposed for unrelated parallel

machines with non-identical jobs when jobs have different processing times on each

machine. Sequence Job Minimum Completion Time (SJMCT) algorithm is used to

solve this model. The minimum random processing time is used to assignment

problems. The aim is to minimize two objectives: the maximum completion time and

total tardiness. The comparison between SJMCT and some dispatching rules is

represented.

In Chapter 4, the most challenge of this study is proposed two novel heuristic

algorithms Sequence Job Minimum Completion Time-based NSGA-II (SJMCT-NSGA-

II) and Sequence Job Minimum Completion Time-based SPEA-II (SJMCT-SPEA-II).

These algorithms are able to solve large and more complex multi-objective parallel

machine scheduling problems.

In Chapter 5, firstly, 32 simulation test problems are made with 60 jobs and with

different generation numbers (40, 100, 300 and 500). Secondly, 240 simulation test

problems are reported with different number of jobs (20, 60 and 100) where the

generation number is 500. All of these tests with different crossover and mutation

probabilities and with the same size of population are used to compare between these

two algorithms. In addition, the spacing and spread diversity metrics are used to find the

best algorithms.

In Chapter 6, the conclusions, the contribution of this thesis and some suggesting

future research directions are explained.

3

2. SOME DEFINITIONS AND LITERATURE REVIEW

2.1. Background of Machine Scheduling

In single machine scheduling models, there is only one machine and the routes

consist of only one operation performed on this machine (Akyol, 2006). On the other

hand, in parallel machine scheduling there are N jobs and M machines and each job can

be processed on any one of available machines (Allahverdi, Gupta and Aldowaisan,

1999). Also, there are three types of parallel machines (Ma, Chu and Zuo, 2010) and

(Strusevich and Rustogi, 2017):

 Identical machines: If each processing time of a job is independent of the machine

when performing a job.

 Uniform machines: The machines operated at different speeds.

 Unrelated parallel machines: The processing time of a job depends on the

machine assignment.

The basic parameters in machine scheduling are given bellow (Pinado, 2005):

Processing time (Pij): It is the required time of job j to complete its processing on

machine i.

Release date (rj): It is the time at which job j ∈ N becomes available for processing.

Deadline: It is the time by which a job j ∈ N must be completed; unlike the due date, a

deadline is a hard constraint.

Due date (di): It is the time at which job j ∈ N is expected to complete.

For any scheduling problem, the following primary criteria are used as a function.

Completion time (Ci): It is the popular quality measure, represents the times by which

jobs are completed on machine i.

Lateness (Li): Lateness is expresses the deviation of the completion time of a job j from

a due date, it can be positive, negative or zero Lj=Cj-dj.

Tardiness (Ti): Tardiness is the non-negative quantity that can be calculated to show

how much time a job is completed after its due date { }

 { }.

According to Lawler et al., (1993) and Xing and Zhang, (2000) the three field

classification of machine scheduling are , where:

 describes machine environment, ∈ { }

 : Identical parallel machines, for all ,

4

 : Uniform parallel machines, ⁄ for a given speed of ,

 : Unrelated parallel machines, ⁄ for given job-dependent speeds

of .

 describes job characteristics, ∈ { }

 : Preemption is allowed; the processing of any operation may be interrupted

and resumed at a later time.

 : No preemption is allowed.

 describes optimality criteria. In general ∈ { ∑ ∑ ∑ }.

2.2. Dispatching Rules

The term dispatching rule is used to determine the next job waiting in front of a

machine when the machine becomes available (Pinedo, 2005). The main advantage of

dispatching rules is that, they are easy to understand, easy to apply and require relatively

little computer time. Their primary disadvantage is that, they can’t guarantee an optimal

solution (Akyol, 2006). Dispatching rules can be classified in different ways. Static

rules are not time dependent and they are just a function of the job and/or machine data.

Dynamic rules are time dependent. Another classification of dispatching rules is

according to the information they are based upon. There are many basic dispatching

rules but a sample of these rules is given as bellow (Pinedo, 2005) and (Massabò,

Paletta and Ruiz-Torres, 2016).

 The Earliest Release Date first (ERD) rule: This rule tends to minimize the diversity

in the waiting times of the jobs at a machine. The job which has the earliest release

date is selected next to be processed.

 The Earliest Due Date first (EDD) rule: This rule refers to minimize the maximum

lateness among the jobs waiting for processing. The job which has the earliest due

date is selected next to be processed.

 The Minimum Slack first (MS) rule: When a machine is freed the minimum slack

job will schedule next. Also, the remaining slack of each job at that time t is defined

as .

 The Longest Processing Time first (LPT) rule: The LPT rule sorts jobs in decreasing

order of processing times and iteratively assigns each job to the machine which

would complete in the shortest processing time.

5

 The Weighted Shortest Processing Time first (WSPT) rule: This rule schedules the

job with highest ratio of weight over processing time. Jobs are ordered in decreasing

order of wj/pj. If all the weights are equal, the WSPT rule reduces to the Shortest

Processing Time first (SPT) rule.

 The Critical Path (CP) rule: This rule is related with jobs subject to precedence

constraints. The job which has the longest string of processing times in the

precedence constraints graph (Prec) is selected next to be processed.

 The Largest Number of Successors (LNS) rule: This rule also is used when the jobs

are subject to precedence constraints. The job which has the largest number of jobs

following it is selected next to be processed.

 The Service in Random Order (SIRO) rule: In this rule, the next job is selected at

random from those waiting for processing.

 The Shortest Setup Time first (SST) rule: In this rule, the job with the shortest setup

time is firstly selected for processing.

 The Least Flexible Job first (LFJ) rule: This priority rule is used with the non-

identical parallel machine and the jobs are subject to machine eligibility constraints.

Job j can only be processed on a specific subset of the m machines, say Mj. It selects

the job which is processed on the smallest number of remaining machines i.e., the

job with the fewest processing alternatives.

 The Shortest Queue at the Next Operation (SQNO) rule: In job shops, this rule

selects the job with the shortest queue at the next machine on its route for

processing. At the next machine the length of the queue can be measured in different

ways. It may be simply the number of jobs waiting in queue or it may be the total

amount of work waiting in queue.

Pinedo, (2005) describes the basic dispatching rules mentioned above as given in

Table 2.1.

6

Table 2. 1. Summary of dispatching rules (Pinedo, 2005)

RULE DATA OBJECTIVES

Rules Dependent on

Release Dates and Due

Dates

ERD

EDD

MS

Variance in Throughput Times

Maximum Lateness

Maximum Lateness

Rules Dependent on

Processing Times

LPT

SPT

WSPT

CP

LNS

Load Balancing Over Parallel Machines

Sum of Completion Times, WIP

Weighted Sum of Completion Times, WIP

Makespan

Makespan

Miscellaneous

SIRO

STT

LFJ

SQNQ

__

__

Ease of Implementation

Makespan and Throughput

Makespan and Throughput

Machine Idleness

2.3. Literature Review

In this section, many relevant works about single machine scheduling problems,

single objective parallel machine solved by exact and heuristic solution approaches,

multi-objective parallel machine scheduling problems solved by different and

evolutionary solution approaches are indicated. Other relevant works in shop scheduling

problems are also viewed.

2.4. Relevant Works in Single Machine Scheduling Problems

 Dyer and Wolsey (1990) considered the formulation of the single machine

sequencing problem with release dates as a mixed integer programming problem to

minimize the weighted sum of start (or completion) times for the n-jobs 1-machine

problem. They showed that; a first hierarchy of relaxations (obtained by combining

enumeration of initial sequences with Smith’s rule) and the second hierarchy of

relaxations (obtained by studying various relaxations and alternative formulations) can

be formulated as a linear programming problem.

7

 Laguna, Barnes and Glover, (1991) used three local searches strategies within

tabu search algorithm (TSA) to minimize the sum of the set up costs and linear delay

penalties. Firstly, they used TS approach of making a succession of pairwise job

exchange or swaps to move from one trail solution to another. Next, they used the insert

moves to define the local neighborhood of each trail solution. Finally, a hybrid TSA

employed to swap and insert moves. The experiment results for benchmark problem of

up to 60 jobs illustrate that, there is an advantage in using more than one strategy to

move from one trail solution to another with in a TSA method.

 Crauwels, Potts and Van Wassenhove, (1998) presented several local search

heuristics to minimize total weighted tardiness. A new binary representation and the

additional diversifying element in the tabu search methods are introduced to represent

solutions. The extensive computational tests ensure that, binary encoding scheme

produces very robust results for the total weighted tardiness problem.

 França, Mendes and Moscato, (2001) proposed a new Memetic Algorithm (MA)

with due dates and sequence dependent setup time to minimize total tardiness. The

Genetic algorithms GAs and MA are compared with three other heuristics. Several

neighborhood reduction schemes are improved starting with a set of random generated

parameters. The computational results using a non-structured population and less

elaborated neighborhoods led to a considerable loss of performance especially for large

instances.

2.5. Relevant Works in Single Objective Parallel Machine Scheduling Problems

2.5.1. Exact solution approaches for single objective parallel machine scheduling

problems

The most associated studies in parallel machine scheduling for single objective

can be summarized as follows:

 Balakrishnan, Kanet and Sridharan, (1999) considered the problem of

scheduling n jobs on m parallel machines that operating at different speeds (known as

uniform parallel machines), to minimize the sum of earliness and tardiness costs. They

presented a mixed integer mathematical model to solve small sized problems (10 jobs

and 5 machines).

8

Uma, Wein and Williamson, (2006) investigated from a theoretical perspective,

the relationship between combinatorial relaxation and several linear programming

relaxation -based lower bounds for three scheduling problems to minimize the average

weighted completion time of the jobs scheduled. As a result, they obtained the first

worst-case analysis of the quality of the lower bounds delivered by these combinatorial

relaxations.

 Senthiil, Selladurai and Rajesh, (2007) proposed a new algorithm, the extension

of the traveling salesman problem in a parallel machine environment to minimize the

makespan. The proposed algorithm extends the optimization of a single machine

problem to a parallel machine problem using the traveling salesman problem for

scheduling. Moreover, they used the ant colonies optimization algorithm to find a

solution for this new proposed problem. The simulation results show that, the algorithm

is able to optimize the different scheduling problems.

 Lu, Zhang and Yuan, (2008) considered the unbounded parallel batch machine

scheduling with release dates and rejection. A job is either rejected with a certain

penalty having to be paid, or accepted and processed in batches. The aim is to minimize

the sum of the makespan of the accepted jobs and the total rejection penalty of the

rejected jobs. They showed that, the problem is binary NP-hard and it can be solved in

polynomial time when the jobs have the same rejection penalty.

 Lin and Liao, (2008) proposed an optimal algorithm for solving the uniform

parallel machine problem to minimize the makespan. Two important theorems are

developed for the problem. The first theorem provides an improved lower bound as the

starting point for the search, and the second theorem further accelerates the search speed

in the algorithm.

 Unlu and Mason, (2010) represented different Mixed Integer Programming

formulations based on different types of decision variables for non-preemptive parallel

machine scheduling problems. Different performance measures such as, total weighted

completion time, makespan, maximum lateness, total weighted tardiness and total

number of tardy jobs are used to evaluate the formulation efficiency.

 Ruiz and Andrés-Romano, (2011) considered a novel complex scheduling

problem with unrelated parallel machine problem and job sequence dependent setup

times. A combination of total assigned resources and total completion time is used as a

9

criterion. The good performance of the mixed integer programming model with large

number of constraints and variables and other heuristics algorithm are obtained.

 Zhang and Luo, (2013) studied the rejection and a fixed non-availability interval

on two identical parallel machines when the processing time of a job is a simple linear

increasing function of its starting time. The objective is to minimize the makespan of

the accepted jobs plus the total penalty of the rejected jobs. In addition, for two identical

machines a "fully polynomial-time approximation scheme" presented to show that the

problem is NP-hard in the ordinary sense only.

 Öztürk and Ornek, (2014) improved a mixed integer programming formulations

for advanced planning and scheduling systems (APS). The objective function includes

the cost of idle times of the machines and penalties on tardiness and earliness. They

developed a basic model with sequence dependent setups time and transfer times

between machines. They also showed that the presented model can be used to provide

delivery times for customer orders in case due dates are not specified.

2.5.2. Heuristic and metaheuristic solution approaches for single objective

parallel machine scheduling problems

 Frenk and Rinnooy Kan, (1987) studied the behavior of list scheduling rules

(LS) to minimize makespan for parallel machines of different speed. The jobs are

assigned successively to the first available machine in the order. The processing

requirements of the jobs are independent, identically non-negative random variable.

They obtained strong asymptotic optimality results for the LPT (longest processing

time) rule, when the jobs are assigned to the machines in order of non- increasing

processing requirements.

 Cheng and Gen, (1997) used Memetic Algorithm (hybrid genetic algorithm) to

minimize the maximum weighted absolute lateness. The computational experiments

demonstrate that the hybrid genetic algorithm outperforms the genetic algorithms and

the conventional heuristics.

 Sivrikaya-Şerifoǧlu and Ulusoy, (1999) considered the parallel machine problem

scheduling with earliness and tardiness penalties (PMSP-E/T). The problem consisted of

scheduling a set of independent jobs with sequence-dependent setup times to minimize

the sum of the weighted earliness and tardiness values. Also, they employed two

10

Genetic Algorithms (GAs) approaches. Firstly, they used a crossover operator to solve

multi-component combinatorial optimization problems. Secondly, they didn’t use a

crossover operator. The computational results showed that, GAs with crossover operator

is more attractive in large sized and more difficult problems.

 Xing and Zhang, (2000) studied the parallel machine scheduling (PMS) problem

with a hypothesis: a job cannot be processed on two machines simultaneously if

preemption is allowed, and under a hypothesis: any part of a job can be processed on

two different machines at the same time, they called it PMS with splitting jobs. They

presented some simple cases which are polynomial solvable. Furthermore, a heuristic

maximum likelihood (ML) used to convert the original problem to a new problem by

using the maximum completion time estimation (MCTE) and its worst-case analysis

were shown for P/split /Cmax with independent job setup times. The objective was to

minimize the total cost.

 Weng, Lu and Ren, (2001) proposed seven heuristic algorithms tested by

simulation to scheduling a set of independent jobs on unrelated parallel machines with

job sequence dependent setup times to minimize the total weighted completion time.

 Gupta and Ho, (2001) developed an optimization algorithm and polynomially

bounded heuristic solution procedures for the scheduling jobs on two identical parallel

machines to hierarchically minimize the makespan subject to the optimality of the total

flow time.

 Lin and Liao, (2008) developed the algorithm which has an exponential time

complexity in addition to the optimal algorithm mentioned before. They also examined

the effectiveness of the popular LPT heuristic for solving the uniform parallel machine

problem with the objective of minimizing the makespan.

 Koulamas and Kyparisis, (2009) proposed a modified longest processing time

(MLPT) heuristic algorithm for the two uniform machine makespan minimization

problems. They showed that the performance of the LPT heuristic for the (Q2//Cmax)

problem can be improved by sequencing the longest three jobs optimally. The results

demonstrate the applicability of this approach (already implemented for identical

parallel machine scheduling problems) to a uniform parallel machine environment.

 Yeh et al., (2014) proposed two meta-heuristics, the Simulated Annealing (SA)

and the Genetic Algorithm (GA) for parallel machine scheduling with fuzzy processing

11

times and learning effects with aim to minimize the makespan. The results show that,

SA is better than GA for this problem.

 Ou, Zhong and Wang, (2015) found new properties and improved an O (n log

n+ n/ε) heuristic for parallel machine scheduling with rejection. When the jobs are

accepted and processed or rejected and paid a rejection penalty to minimize the

completion time of the last accepted job plus the total penalty of all rejected jobs.

 Joo and Kim, (2015) proposed hybrid Genetic Algorithms with three dispatching

rules for unrelated parallel machine scheduling to minimize the total completion time.

MIP Mixed Integer Programming model derived to find the optimal solution. The

results show that, GA using chromosomes with processing-time-based dispatching rule

(GA_DR_P) could offer a better solution in both effectiveness and efficiency.

 Yeh, Chuang and Lee, (2015) proposed a scheduling problem on uniform

parallel machines where the objective is to minimize the makespan. Three algorithms,

Genetic Algorithm (GA), Particle Swarm Optimization Algorithm (PSO), and

Simplified Swarm Optimization Algorithm (SSO) are proposed to solve the problem. In

results, SSO has better solutions in a small number of jobs, and the GA approach has

better solutions for large job-sized problems.

 Massabò, Paletta and Ruiz-Torres, (2016) developed a posterior worst-case

performance ratio of the LPT heuristic for scheduling independent jobs on two uniform

parallel machines to minimize the makespan. The posterior worst-case performance

ratio depends on the index of the latest job inserted in the machine where the makespan

takes place. They show that the posterior worst-case performance ratio is tight.

Similar to the previous work, other review of the scheduling problems with

multiple objectives is given in the next subsection.

2.6. Relevant Works in Multi-Objectives Parallel Machine Scheduling Problems

2.6.1. Solution approaches for multi-objective parallel machine scheduling

problems

 Suresh and Chaudhuri, (1996) proposed an algorithm based on Tabu Search to

minimize the makespan and maximum tardiness when each job has required a single

stage of processing for unrelated parallel machine scheduling. Also, they compared their

12

solutions with other heuristic algorithms. The extensive experiments show that, the

proposed algorithm outperforms in the quality of solution and execution time.

 Loukil, Teghem and Tuyttens, (2005) considered a Multi-objective Simulated

Annealing (MOSA) to find the efficient schedules for a large set of scheduling models.

They analyzed the solution correspond to one machine, parallel machines and

permutation flow shops. Thereafter, they designed a Multi-objective Tabu Search

Algorithm (MOTSA) and tested it numerically to compare with MOSA algorithm.

 Tavakkoli-Moghaddam, Taheri and Bazzazi, (2008) proposed a new model to

minimize the number of tardy jobs and total completion time for unrelated parallel

machines scheduling problem with different machine speeds. They used a two-level

mixed-integer programming and goal programming approach to solve the scheduling

problem with precedence constraints and non-independent jobs. The good performance

of proposed model is obtained in small and medium-sized problems. They solved the

problem with (6, 8 and 10) jobs, (2, 3 and 4) machines and (3, 4 and 5) number of

precedence constraints.

 Mazdeh et al., (2010) studied the bi-criteria scheduling problem (PMBSP) for

parallel machines with machine effects and job deterioration to minimize total tardiness

and machine deteriorating cost. They proposed the LP-metric method and a

metaheuristic algorithm based on Tabu Search. Numerical examples used to assess the

effectiveness and efficiency of the model.

 Cheng et al., (2012) considered the parallel batch processing machines with non-

identical job sizes to minimize makespan and total completion time. They used a mixed

integer programming method to find the optimal solution. Thereafter, they proposed a

polynomial time algorithm and the worst case ratios to minimize the objective values.

The reported results indicate to the efficiency of the algorithm.

 Muralidhar and Alwarsamy, (2013) considered parallel machines scheduling

problem to minimize the combined objective function of the makespan, total tardiness

and total earliness. Artificial Neural Networks (ANN) was applied and compared with

heuristic algorithms. The results show that, the adapted procedure is simpler and it can

be used for scheduling large number of jobs without training the network again.

 Torabi et al., (2013) considered a fuzzy multi-objective programming model for

solving an unrelated parallel machine scheduling problem. A Multi-objective Particle

Swarm Optimization (MOPSO) algorithm was proposed to find Pareto frontier. The aim

13

is minimizing total weighted flow time, total weighted tardiness and total machine load

variation. They compared the proposed algorithm with conventional multi-objective

particle swarm optimization algorithm. Results of test problems observed that the

proposed MOPSO is better performed than CMOPSO based on the linear statistical

model for three hypotheses tests. Also, the ANOVA results have been summarized to

study the effect of i
th

 method, j
th

 objective space and the effect of interaction between i
th

method and j
th

 objective space.

 Yang, (2013) presented unrelated parallel machine scheduling problems with

deterioration effects and deteriorating multi-maintenance activities. Two models of

scheduling have been examined: the job and position dependent on deterioration model

and the time dependent deterioration model. The aim is minimizing total completion

time to find jointly the optimal maintenance frequencies, the optimal maintenance

positions and the optimal job sequences. A polynomial time solution was applied for

variant and some special cases.

 Lin and Lin, (2015) proposed a bicriteria heuristic and a Tabu Search Algorithm.

The objective is to minimize the makespan and total weighted tardiness for unrelated

parallel machine scheduling problems with release dates. The results indicate that, the

proposed TSA is outperforms other heuristic algorithms.

2.6.2. Evolutionary solution approaches for multi-objective parallel machine

scheduling problems

Zitzler, Laumanns and Thiele, (2001) improved Strength Pareto Evolutionary

Algorithm (SPEA-II) for finding or approximating the Pareto-optimal set for multi-

objective optimization problems and compare SPEA-II with SPEA and two other

modern elitist methods, Pareto envelope- based selection algorithm (PESA) and NSGA-

II, on different test problems.

 Jaszkiewicz, (2002) proposed a novel Genetic Local Search algorithm (GLS)

algorithm for multi-objective combinatorial optimization problems (MOCO) to find an

efficient solution in both combinatorial optimization and non-convex continuous

optimization problems. The results show that, the proposed algorithm has better

performance than multi-objective methods based on GLS or based on traveling

salesman problem TSP.

14

 Cochran, Horng and Fowler, (2003) proposed a two-stage multiple population

genetic algorithms (MPGA). The goal is to minimize makespan and total weighted

tardiness (TWT). They also compared MPGA with benchmark method and multi-

objective genetic algorithm MOGA. Moreover, The MPGA is extended to scheduling

problems with three objectives: makespan, TWT, and total weighted completion times

TWC. The experiment results in most of the test problems show that, MPGA has better

performs than MOGA.

 Chang, Chen and Hsieh, (2006) proposed a modified sub-population genetic

algorithm SPGA and an adaptive SPGA for parallel machine scheduling problem to

minimize total tardiness time and makespan. They show that, the results obtained by

adaptive SPGA and modified SPGA are more efficient than other multi-objective

optimization genetic algorithms NSGA-II and SPEA-II for large size problems.

 Balasubramanian et al., (2009) proposed iterative SPT–LPT–SPT heuristic and a

bicriteria genetic algorithm for interfering job sets. Where, the makespan minimized for

one of the sets and the total completion time minimized for the other. Integer

programming formulation solution was compared with the heurestic and GA algorithms

to show the effeiciency of these algorithms. Results show that, the heuristic and the

genetic algorithm provide high solution quality and are computationally efficient.

 Li et al., (2010) considered an identical parallel machines scheduling problem

with release dates, due dates, and sequence-dependent setup times to minimize the

makespan and the total tardiness. A new mathematical model and two metaheuristics

NSGA-II (Non-dominated Sorting Genetic Algorithm–II) and SPEA-II (Strength Pareto

Evolutionary Algorithm-II) were explained. A full enumeration method was applied to

find the absolute Pareto optimal solutions. The results show that, the full enumeration

method cannot solve the problems with more than 8 jobs.

 Mirabedini and Mina, (2012) proposed multi-objective model including the

problem of preventive maintenance and production scheduling by one objective. The

weighted-sum objective function is considered with five parts; minimizing maintenance

cost, makespan, total weighted completion time of jobs, total weighted tardiness, and

maximizing machine availability. Multi-objective genetic algorithms solved the model

and found a local optimum solution.

 Li et al., (2012) presented an identical parallel machine scheduling problem with

release dates, due dates and sequence dependent setup times to minimize the makespan

15

and the total tardiness. They proposed a new mathematical model and developed two

metahurestics as non-dominated sorting genetic algorithm (NSGA-II) and a fuzzy logic

guided NSGA-II (FLC-NSGA-II). Also, two phase method TPM was used as an exact

method to solve the problem. The FLC-NSGA-II was compared with the TPM method

for the small size problems. Results indicate to the ability of FLC-NSGA-II to find the

absolute optimal solutions and the TPM method can solve the problems with maximum

10 jobs.

 Bandyopadhyay and Bhattacharya, (2013) represented a multi-objective parallel

machine scheduling problem with minimization of three objectives: total cost due to

tardiness, deterioration cost for the machines and makespan. They solved the

mathematical model by multi-objective evolutionary algorithms modified NSGA-II,

NSGA-II and SPEA-II. The processing, setup and deterioration costs were generated

randomly to follow uniform distribution. Simulation experiments were performed to

compare these algorithms. The comparison shows that, the modified NSGA-II has better

performance than the NSGA-II and SPEA-II.

 Wang and Liu, (2015) considered a multi-objective parallel machine scheduling

problem with flexible preventive maintenance activities and with two kinds of resources

(machines and moulds). The aim is to minimize the makespan for the production, the

unavailability of the machine system and the unavailability of the mould system. They

proposed a multi-objective integrated optimization method and NSGA-II adaption. The

computationally results show that, the integrated optimization method of production

scheduling and preventive maintenance outperforms the method with periodic

preventive maintenance for this problem.

2.7. Relevant Works in Shop Scheduling Problems

 Murata, Ishibuchi and Tanaka, (1996) proposed a multi-objective genetic

algorithm for flow shop scheduling. They used crossover operation based on a weighted

sum of multiple objective functions with variable weighted. The two objectives were

determined as minimizing the makespan and total tardiness and three objectives were

determined as minimizing the makespan, total tardiness and total flow time are

examined. The simulation experience represents the ability of multi-objective genetic

algorithm to find Pareto optimal solutions, and it has better performance than the VEGA

(Vector Evaluated Genetic Algorithm) and the single-objective genetic algorithm.

16

 Ishibuchi and Murata, (1998) proposed a multi-objective genetic local search

algorithm on flow shop scheduling problems. A local search procedure was applied to

each new solution generated by the genetic operations. They used a multi-objective

weighted sum fitness function. The highest quality performance of the algorithm shows

the ability of proposed algorithm to handle the non-convex feasible region in the

objective space.

 Bagchi, (2001) obtained Pareto optimal solutions by using metaheuristic

methods. GAs and NSGA are used for sequencing jobs in a flow shop. Multi-objective

production scheduling problems such as three-objective flow shops, three-objective job

shops and two-objective open shop problems are explained. They demonstrated a

statistical comparison between the NSGA and augmented NSGA.

 Kacem, Hammadi and Borne, (2002) presented a novel approach by localization

(AL) and controlled evolutionary approach CGA (generated by the first approach) to

solve assignment and job shop scheduling problem. The considered objectives are

minimization of the overall completion time (makespan) and the total workload of the

machines.

 Rajendran and Ziegler, (2003) proposed two heuristics in a static flow shop with

sequence dependent setup time’s jobs to minimize the sum of weighted flow time and

weighted tardiness of jobs. A random search procedure and a greedy local search are

used as benchmark problems to evaluate the proposed heuristic. Computationally, the

proposed algorithm has better performance than benchmark procedures in both speed

and effective.

 Arroyo and Armentano, (2005) proposed a genetic local search algorithm for the

flow shop scheduling problem. The algorithm was applied to the flow shop scheduling

problem for the following two pairs of objectives: (i) makespan and maximum

tardiness; (ii) makespan and total tardiness. The results show the efficiency of the

proposed algorithm to find the Pareto optimal set.

 Jungwattanakit et al., (2008) formulated a mathematical model to minimize the

makespan and the tardy jobs for the flexible flow shop problem with unrelated parallel

machines and considering setup times. Firstly, they studied several dispatching rules

(constructive algorithms). Secondly, they studied GA-based algorithms as improvement

algorithm. They compared the performance of the heuristics algorithms on a set of test

17

problems up to 50 jobs and 20 stages. They found that, for population sizes, crossover

types, and mutation types, there were statistically significant differences.

 Yazdani, Amiri and Zandieh, (2010) proposed a PVNS (parallel variable

neighborhood algorithm) that solves the FJSP (flexible job shop scheduling) to

minimize makespan time. The computational results show that the proposed algorithm

is a viable and effective approach for the FJSP.

 Moslehi and Mahnam, (2011) proposed a new approach to solve the multi-

objective flexible jobs hop scheduling problem based on a hybridization of the Particle

Swarm and Local Search algorithms with different release time. They compared the

proposed algorithm with other algorithms (weighted summation of objectives and

Pareto approaches) to show the performance of presented algorithm.

18

3. PROBLEM DEFINITION AND MODELING

In this chapter, firstly a novel mixed integer multi-objective mathematical model

for parallel machine scheduling problem is introduced. Next, the assumptions for the

problem are presented. Finally, the comparison with other dispatching rules and the

solutions for the considered problem are provided.

3.1. Problem Definition

The problem considered in this chapter regards with scheduling of unrelated

parallel machine when job’s processing time is dependent on the completion time of

assigned machine. It is worth to mention that, the idea of the Sequence Job Minimum

Completion Time (SJMCT) algorithm is associated with a common heuristic used in

parallel machine scheduling the longest processing time rule (LPT) in some

characteristic features.

In this study, processing times are known and deterministic. Assume that, there is

limited number of jobs (2m+1) or more and each job has a single operation that can be

performed on one machine only. Therefore, the problem will become an NP hard

problem (Frenk and Rinnooy Kan, 1987).

Several researchers such as Tavakkoli-Moghaddam, Taheri and Bazzazi, (2008),

Li et al., (2010), Li et al., (2012) and Bandyopadhyay and Bhattacharya, (2013)

formulated a mathematical programming model for parallel machine scheduling

problems with different assumptions. Also, Kamisli Ozturk and Sabti A.N., (2017)

considered a mixed integer programming model for unrelated parallel machine

scheduling problems.

In this study, the proposed algorithm Sequence Job Minimum Completion Time

(SJMCT) deals with scheduling non-identical jobs J1, J2,…,Jn on unrelated parallel

machine M1,M2,..,Mm. Every job j is considered with a processing time pij and a due date

dij. Let pij= pj , be the processing time to the first m scheduled job. The SJMCT

algorithm is applied at two levels. In the first level, the new job is assigned to machine i

which has the minimum completion time between the first m machines. In the second

level, each job will be assigned iteratively to the machine which has the shortest

completion time. The algorithm repeats the same operator to schedule all jobs to

19

minimize the maximum completion time and the total tardiness as given in equations

(3.1) and (3.2).

 (3.1)

 Where, Cj is the completion time of job j.

 ∑

 (3.2)

Where, Tj is the tardiness of job j and Tj = max (0, Cj − dj).

Furthermore, if the completion time Cj of job j is greater than its due date dj, then

this job is considered as tardy. Otherwise, the tardiness Tj of job j is equal to 0.

3.2. Assumptions

Before formulating the problem, the following assumptions are considered.

1. The machines are unrelated (the processing time of a job depends on the machine

assignment).

2. The jobs are non- identical (jobs have different processing times on each machine).

3. Each machine can process only one job at a time.

4. Each machine is available at time zero.

5. Preemption and machine breakdowns are not allowed.

6. No setup time is required.

3.3. Mathematical Model of the Problem

As mentioned in Section 3.1, the two objectives are minimized simultaneously.

The proposed multi-objective mathematical model for parallel machine scheduling

model is proposed as follows, where;

Indices and sets:

n: number of jobs.

m: number of machines.

 j, k : index for jobs, j = 1, …, n, k=m+1 ϵ n, {j:j=1,2,…,k, m+2, … ,n}.

 i: index for machine, i = 1,…, m.

Parameters:

 : starting time of job j at machine i. i=j=1, …, m, which equal to zero.

 : due date of job j at machine i. i=1 ,.., m, j = 1,…, n.

 : processing time of job j on machine i. i=1, .., m and j = 1,…, n.

20

M: a great constant.

Decision variables:

 : completion time of job j at machine i. i =j= 1, …, m.

 : minimum completion time of job j at machine i, i =j= 1, …, m.

 : completion time of job k at machine i. i=1, .., m, k=m+1.

 : minimum completion time of job k at machine i. i=1, ..., m, k = m+1,…, n.

 : completion time of job k+1 at machine i. i=1, ..., m, k=m+1, …, n.

 : max(0, Cij-dij) the real tardiness of job j, i=1, ..., m, j = 1, …, n.

 : maximum completion time.

 {

 {

Formulated problem:

 (∑ ∑

) (3.3)

 Subject to

 (3.4)

 (3.5)

 (3.6)

Level-I:

 { } (3.7)

 (3.8)

 (3.9)

Level-II:

 { } (3.10)

 ()
 (3.11)

 (3.12)

21

 ∑
 (3.13)

 { } (3.14)

 (3.15)

 (3.16)

 (3.17)

Equation (3.3) represents the objective functions. Constraint set (3.4) assigns the

first m jobs to m machines, such as 1
st
 job to 1

st
 machine, 2

st
 job to 2

st
 machine and so

on. Constraint set (3.5) states that the starting times of the first m job on each machine

equal to zero. Constraint set (3.6) relates the processing time of the first m job with start

time. Constraint set (3.7) denotes to select the minimum completion time from the first

m job. Constraint set (3.8) guarantees assigning k
th

 job to i
th

 machine which has

minimum completion time. Constraint set (3.9) calculates the completion time for k
th

job on machine i. Constraint set (3.10) selects the minimum completion time for all jobs

from k
th

to n
th

job. Constraint set (3.11) assigns the (k+1)
th

 job to the minimum

completion time for all jobs from k+1 to n. Constraint set (3.12) calculates the

completion time from k
th

 to n
th

 job on machine i. Constraint set (3.13) guarantees that

each job is assigned exactly to one machine. Constraint set (3.14) determines

completion time as the maximum completion time of all machines. Constraint set (3.15)

and (3.16) calculate the tardiness of job j ensure that only the positive value of lateness

can be considered as tardiness. Constraint set (3.17) defines the decision variable xik, it

is equal to 1 when job k assigned to machine i, 0 otherwise.

22

For this problem and for more clarity, the solution process can be summarized as

follows:

Algorithm: Sequence Job Minimum Completion Time (SJMCT)

Step 1: Start with 2m+1 or more jobs where m represents the number of unrelated

parallel machine i = 1,…, m.

Level-I; Starting from the first job to k
th

 job, let k=m+1:

Step 2: Assign the first m jobs to machines respectively set i=j=1,…, m.

Step 3: Compute the minimum completion time (release date + processing time) for the

first m job(
).

Step 4: Assign job k to machine which has the minimum job completion time.

Step 5: Update the completion time of job k, and go to step 6.

Level-II; Starting from job k, where (k=m+1,…, n):

Step 6: Select the new minimum completion time
 .

Step 7: Assign the unscheduled job k+1 to machine has minimum job completion time.

Step 8: Compute the total completion time and repeat level-II in the same way until all

jobs are scheduled.

The illustrative representation of SJMCT is given in Figure 3.1.

 Jobs

Machines
J1 J2 J3 Jm Jk Jk+1 … Jn

M1 C11

 …

M2
 …

M3 C33 …

M4 C4m …

Figure 3. 1. The representation of SJMCT algorithm

3.4. The Comparison of the SJMCT Algorithm with other Algorithms

In order to evaluate the performance of proposed algorithm SJMCT it compared

with Balin’s (2011) test problems and other dispatching rules (as given in chapter 2).

The comparison with respect to one objective function represented by minimize the

maximum completion time (makespan). In general, a formulation of the problem uses

“binary” variables xi where, (i=l,..., m; j=l,..., n), as follows:

23

 {

The positive variable Cmax represents the maximum completion time and xij refers

to assignment variables. The problem can be written as (Potts, 1985):

 (3.18)

 Subject to

 ∑

 (3.19)

 ∑
 (3.20)

 ∈ { } (3.21)

Constraint (3.19) ensures that Cmax is at least as large as the total processing time

on any machine, while constraints (3.20) and (3.21) ensure that each job is processed on

exactly one machine.

Comparisons for some dispatching rules and the analysis of the results are given

in the following subsections.

3.4.1. Scheduling with LPT Balin’s rule

The scheduling problem solved by Balin, (2011) using LPT dispatching rule. The

set data indicates to the processing times for nine jobs and four unrelated parallel

machines are given at Table 3.1.

Table 3. 1. Processing time of the jobs (Balin, 2011)

Processing

time (min)
Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9

Machine 1 18 14 24 30 16 20 22 26 14

Machine 2 9 7 12 15 8 10 11 13 7

Machine 3 4.5 3.5 6 7.5 4 5 5.5 6.5 3.5

Machine 4 3.6 2.8 4.8 6 3.2 4 4.4 5.2 2.8

24

The obtained scheduling problem of Blain LPT dispatching rule are given in

Table 3.2.

Table 3. 2. Scheduling with LPT Balin’s rule

Machines Scheduled job Ci

M.1 Job 2 14.00

M.2 Job 7 11.00

M.3 Job 8 Job 6 Job 5 15.50

M.4 Job 4 Job 3 Job 1 Job 9 17.20

3.4.2. Scheduling with Balin (GAs)

Genetic algorithms (GAs) are adaptive heuristics search algorithm based on the

concepts of natural genetics and natural selection theories proposed by Charles Darwin.

In this algorithm the population is defined to be the collection of all the chromosomes.

Each chromosome represents a possible solution to the optimization problem, often

using strings of 0’s and 1’s as seen in Figure 3.2. Each bit typically corresponds to a

gene. The value for a given gene is called alleles (Mishra and Patnaik, 2009).

 Chromosome (string)

 alleles gene

Figure 3. 2 Representation of chromosome

The same scheduling problem is solved with GAs (Balin, 2011). A randomly

generated population of 10 chromosomes is solved by using “work center”. Several

iterations are used to solve the problem and each iteration is provides one solution. The

best solutions are given in 12 different schedules. The scheduling results and the

minimum completion time at iterations 720 are given in Table 3.3

0 1 0 1 1 1 1 0 1 0 0 1 ….. 0 1

25

Table 3. 3. Scheduling with GAs at iteration 720

Machines Scheduled job Ci

M.1 Job 2 14.00

M.2 Job 1 Job 9 16.00

M.3 Job 5 Job 7 Job 3 15.50

M.4 Job 6 Job 8 Job 4 15.20

3.4.3. Scheduling with longest processing time dispatching rule (LPT)

A common heuristic used in parallel machine scheduling is the LPT rule. In

parallel machine scheduling environments Pm//Cmax, as Hong, Hang and Yu (1998)

mentioned jobs are arranged in decreasing order with respect to the processing times,

such that p1 ≥ p2 ≥…≥ pn. At time t = 0, in this rule the jobs having large values of

processing time are given high priority for scheduling on the parallel machine. The

results of Balin’s scheduling problem are resolved with LPT rule as given in Table 3.4.

Table 3. 4. Scheduling with LPT rule

Machines Scheduled job Ci

M.1 Job 4 Job 2 Job 9 58.00

M.2 Job 8 Job 5 21.00

M.3 Job 3 Job 1 10.50

M.4 Job 7 Job 6 8.40

3.4.4. Scheduling with shortest processing time dispatching rule (SPT)

In SPT dispatching rule, the job with the shortest processing time is chosen fist

for processing (Jungwattanakit et al., 2008). The same test problem is solved again

according to SPT rule. The obtained schedule is given in Table 3.5.

26

Table 3. 5. Scheduling with SPT rule

Machines Scheduled job Ci

M.1 Job 2 Job 8 30.00

M.2 Job 9 Job 3 19.00

M.3 Job 5 Job 7 9.50

M.4 Job 1 Job 6 Job 4 13.60

3.4.5. Scheduling with sequence job minimum completion time (SJMCT)

The proposed algorithm SJMCT with the same parameters given in Table 3.1 is

solved by GAMS v. (24.5.6) optimization software and CPLEX solver. The obtained

schedule and the scheduling chart of the algorithm are represented in Table 3.6 and

Figure 3.3.

Table 3. 6. Scheduling with sequence job minimum completion time algorithm (SJMCT)

Machines Scheduled job Ci

M.1 Job 1 18.00

M.2 Job 2 Job 7 18.00

M.3 Job 3 Job 5 Job 8 16.50

M.4 Job 4 Job 6 Job 9 12.80

 Figure 3. 3. The scheduling chart of SJMCT algorithm

0 2 4 6 8 10 12 14 16 18

1

2

3

4

JOBS

M
A

C
H

IN
E

27

3.4.6. The computational results and comparisons

The proposed algorithm is compared with all algorithms mentioned in Section 3.4.

The computational results to Balin’s problem with nine jobs which represented by the

total and the maximum completion time and for each machine are given in Table 3.7.

Table 3. 7. The total and maximum completion time for all comparison algorithms

Machines
Completion time Ci

Balin LPT Balin GA LPT SPT SJMCT

M1 14.00 14.00 58.00 30.00 18.00

M2 11.00 16.00 21.00 19.00 18.00

M3 15.50 15.50 10.50 9.50 16.50

M4 17.20 15.20 8.40 13.60 12.80

As given in this table, the maximum completion time is equal to 17.20 at machine

(4) in Balin’s LPT rule, equal to 16 at machine (2) in Balin’s GAs, equal to 58 at

machine (1) in LPT dispatching rule, equal to 30 at machine (1) in SPT dispatching rule

and equal to 18 at machine (1) and (2).

Among all the results obtained from Balin’s test problems, the SJMCT algorithm

is better than LPT and SPT dispatching rule because it has the smallest value of

maximum completion time. Furthermore, SJMCT algorithm has more convergence as

compared with other algorithms in computing the total completion time of each

machine. That means, it gives a good assignment of jobs at the machines and it make a

good balance in workload over the parallel machines. In addition, in SJMCT algorithm

there is no order forced to submit certain job.

The dispatching rule mentioned before are easy to solve small size problems with

one objective and it require little computer time. Moreover, it can’t guarantee the

optimal solution. For all these reasons, novel heuristic algorithms are proposed to solve

large size and multi-objective parallel machine scheduling problems.

28

4. NOVEL MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

As given in the literature review section, multi-objective evolutionary algorithms

(MOEA) are performed to solve multi-objective parallel machines scheduling problems.

In this section two hybrid multi-objective evolutionary algorithms are proposed based

on SJMCT algorithm.

4.1. Multi-objective Optimization

Many real-life optimization problems are actually multi-objective because they

involve more than one objective. The solutions of multi-objective problems can provide

deeper insights to the decision maker than those of single-objective problems. A multi-

objective optimization problem (MOP) can be formulated to find the best solution under

multiple objective functions each is either maximized or minimized. As in the single

objective optimization problems, there may be some constraints that must be satisfied.

In its general form, a multi-objective optimization problem can be formulated as follows

(Kasimbeyli et al., 2015):

 ∈

[]

Where X is a nonempty set of feasible solutions and is real-

valued functions. Let () for every ∈ and let .

For a nontrivial multi-objective optimization problem, there is not exist single

solution that simultaneously optimizes each objective. Also, there exist a (possibly

infinite) number of Pareto optimal solutions. In that case, a solution is called non-

dominated. In the same way, (Ehrgott, 2006) introduced the idea of dominance as

follows:

Definition 4.1. A feasible solution ̂ ∈ is called efficient or Pareto optimal, if there is

no other ∈ such that ̂ . If ̂ is efficient, ̂ is called non-dominated

point. If ∈ and we say dominates and

dominates . The set of all efficient solutions ̂ ∈ is denoted and called the

efficient set. The set of all non-dominated points ̂ ̂ ∈ , where ̂ ∈ , is

denoted and called the non-dominated set.

29

The definition of dominated and don-dominated solutions can also illustrate as

follows (Ehrgott, 2006).

 Domination: A solution is said to be dominate another if it is better in all

objectives.

 Non-Domination: A solution is said to be non-dominated if it is better than other

solutions in at least one objective.

Figure 4. 1. Non-dominated and dominated solution

 A dominates B (better in both f1 and f2)

 A dominates C (same in f1 but better in f2)

 A does not dominate D (non-dominated points)

 A and D are in the “Pareto optimal front”

 These non-dominated solutions are called Pareto optimal solutions.

 This non-dominated curve is said to be Pareto front.

Before 1995, the conventional techniques such as linear programming, dynamic

programming and nonlinear programming are the main approaches to solve multi and

bi-objective problems (Reddy and Kumar, 2007). However, these methods can only

solve the small size problems. The evolutionary algorithms have become the main path

to solve multi-objective scheduling problems since 1995 (Lei, 2009). Non-dominated

sorting genetic algorithm (NSGA), Strength Pareto evolutionary algorithm (SPEA), ant-

colony optimization (ACO) and particle swarm optimization (PSO) are some examples

of multi-objective evolutionary optimization algorithms.

4.2. Non-dominated Sorting Genetic Algorithm II (NSGA-II)

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) introduced by

(Srinivas and Deb, 1994) is an evolutionary multi-objective solution approach used to

Minimize function

M
in

im
iz

e
fu

n
ct

io
n

A

B

C

D

1f

2f

30

improve the adaptive fit of a population of candidate solutions to a Pareto front

constrained by a set of objective functions. NSGA-II is an extension of the Genetic

Algorithms for multi objective problems. It has a better sorting algorithm, incorporates

elitism and no sharing parameter need to be chosen a priori (Seshadri, 2006).

Refers to (Srinivas and Deb, 1994), the selection procedure of NSGA-II orders the

population into a hierarchy of non-dominated Pareto fronts. Also, sorts the solution by

rank and crowding distance then, ranks the non-dominated front of level1 is constituted

and includes all the non-dominated solutions. As (Godinez, Espinosa and Montes, 2010)

and (Yusoff, Ngadiman and Zain, 2011) described the crowding distance is a measure

of how close the solution to its neighbors. Large average crowding distance will result

in a better diversity in the population (Seshadri, 2006). Here, the calculation of this

quantity in Figure 4.3 and equations (4.1) and (4.2).

Two genetic operators’ crossover and mutation with selection operator are used to

update the current population and create a new population. The crossover operator

combines two solutions (parents) to create two new solutions (children) that may be

better than both of the parents. For crossover operators, the binary crossover (Memari et

al., 2016) is used. Moreover, mutation operator is an important part of the evolution

principle used to add diversity into current population and helps to escape from local

optimal to enhance the algorithm and to find better solutions (Fallah-Mehdipour et al.,

2012).

4.3. SJMCT- Based NSGA-II (SJMCT -NSGA-II Algorithm)

Non-dominated Sorting Genetic Algorithm (NSGA-II) is combined with proposed

SJMCT algorithm to create one unified population able to represent the best possible

solutions for multi-objective parallel machine scheduling problem.

The procedure of SJMCT-NSGA-II can be described as follows, where t represents

number of generations:

1. Generate uniform random processing time Pt and due date Dt.

2. Evaluate the objective function values based on SJMCT constraints.

3. Initialize the population of NSGA-II algorithm randomly and evaluate the objective

function values of SJMCT algorithm.

4. Create Qt (offspring) with the operators of selection, crossover and mutation.

5. Evaluate the solutions.

31

6. Combine populations Pt and Qt to create new population Rt of size 2N.

7. Sort the solutions of Rt in different non dominated front.

8. In the new population Pt+1 add the best solutions (the best front and the best value of

the crowding distance). Use non-dominated and crowding distance equations (4.1)

and (4.2) to fulfill the new generation if the number of these solutions is less than

the population size.

The crowding distance represents the average distance of two solutions on either

side of solutions i along each of the objectives to get an estimate of the density of

solutions surrounding a particular solution i in the population (Chand and Mohanty,

2013).

 ∑ |

|

 (4.1)

 () () (4.2)

Figure 4.2 represents the crowding distance calculation as follows:

Figure 4. 2. Crowding distance calculation

Where, : The maximum value of objective j.

 : The minimum value of objective j.

 j= 1, 2,…, n numbers of objective functions.

The crowding tournament selection operator is a measure that guides the selection

process at the various stages of the algorithm toward Pareto optimal front, when the

following conditions are true:

 If rank i < rank j , (i has a better rank).

(𝒇𝟏 𝒎𝒊𝒏 𝒇𝟐 𝒎𝒂𝒙)

(𝒇𝟏 𝒎𝒂𝒙 𝒇𝟐 𝒎𝒊𝒏)

32

 If rank i = rank j but C.D(i) > C.D(j), (i has a better crowding distance).

9. Repeat the steps 4-6 till the maximum number of generation is reached.

A schematic representation of the NSGA-II procedure is given in Figure 4.3.

Figure 4. 3. Schematic representation of the NSGA-II procedure (Wang 2011)

Crossover and mutation schemes that were developed by (Deb et al., 2000) are

employed. The crossover operator used in this study can be seen in the following

equations:

[

] (4.3)

[

] (4.4)

Where:

 {

(

)

(

)
(

)

 (4.5)

b: difference between the objective function values of parents and children.

µ: a constant which shows the difference between the objective function values of

parents and children; a large value of µ gives a higher probability for creating near-

parent solutions. r: a random value in [0, 1].

The mutation operator is also applied as seen in equations (4.6) and (4.7).

 {

(

)

(())
(

)

 (4.6)

33

Where: r: is a random value in [0, 1]

 ƞ: distribution constant of mutation

 d: mutation value. This parameter is added to the parent gene value, as given in

equation (4.7).

 (4.7)

The flow chart of SJMCT-NSGA-II is given in Figure 4.4.

Figure 4.4. Flow chart of SJMCT-NSGA-II

Start

 Initialize processing time 𝑝𝑖𝑗

 Initialize due date 𝑑𝑖𝑗

 The number of machine m

 The number of job n

If 𝑖 𝑗 𝑚

i=i+1

j=j+1

Compute the minimum value of 𝐶𝑖𝑗

𝑖 𝑗

𝑥𝑖𝑗

𝐶𝑖𝑗 𝑝𝑖𝑗𝑥𝑖𝑗

No

Yes

1

34

Figure 4.4. (Continue) Flow chart of SJMCT-NSGA-II

1

Yes

No

Yes

Yes

Yes
No

No

No

No

Yes

If i=m

𝑥𝑖𝑘

i= 1

 𝐶𝑖𝑘 𝐶𝑖𝑗 𝑝
𝑖𝑘
𝑥𝑖𝑘

Compute the minimum value of 𝐶𝑖𝑘

i=j=1

k=m+1

 If k=n

2

𝑥𝑖𝑘

If 𝑐𝑖𝑗
 {𝑐𝑖𝑗}

i=i+1

j=j+1

 𝐶𝑖 𝑘 𝐶𝑖𝑘 𝑝𝑖 𝑘 𝑥𝑖 𝑘

If 𝑐𝑖𝑘
 {𝑐𝑖𝑘}

𝑥 𝑖 𝑘

𝑥 𝑖 𝑘

j=k + 1

i=i+1

 If i=m

k=k+1

35

Figure 4.4. (Continue) Flow chart of SJMCT-NSGA-II

2

𝐶𝑚𝑎𝑥 {𝐶𝑖𝑛}

No

Yes

Yes

No

No

Yes

 If i=m

If 𝑐𝑖𝑗 < 𝑑𝑖𝑗

𝑇𝑖𝑗 𝑐𝑖𝑗 𝑑𝑖𝑗 𝑇𝑖𝑗

3

.

i=i+1

 If j=n

j=j+1

i =1

j= 1

Start NSGA-II algorithm

Initialize population

𝑓 𝑥 𝐶𝑚𝑎𝑥 𝑇𝑖𝑗

𝑛

𝑗

Evaluate the objective function of SJMST algorithm

36

Figure 4. 4. (Continue) Flow chart of SJMCT-NSGA-II

No

Rank population

Selection

Crossover

Yes

Mutation

Evaluate the objective

functions of SJMCT

Combine parent

and child population

Stopping

criteria

met?

Display final

population

3

.

Rank population

Select N individuals

37

4.4. Strength Pareto Evolutionary Algorithm II (SPEA-II)

Strength Pareto Evolutionary Algorithm (SPEA-II) is an extension of the Genetic

Algorithms for multi objective problems. It has been proposed by (Zitzler, Laumanns

and Thiele, 2001). Generally, SPEA-II algorithm uses a regular population and archive

(external set) to find Pareto optimal set. It is used as an evolutionary algorithm to locate

and maintain a set of Pareto optimal solutions.

The algorithm started with an initial population and an empty archive. The raw

fitness function represents the summation of the strength values of its dominators in

both archive and population. The density function as given in equation (4.11) estimates

the density of an area of the Pareto front. The candidate population with the best

remaining (non-dominated solution) fills the new archive in order to fitness. It removes

the smallest distance values in the archive population by using truncated procedure. It

selects the parents from a population using binary tournament selection to fill the

archive population. The two genetic operators, crossover and mutation as represented in

equations 4.3-4.6.

4.5. SJMCT- Based SPEA-II (SJMCT- SPEA-II Algorithm)

Strength Pareto Evolutionary Algorithm (SPEA-II) is an elitist evolutionary

algorithm. The proposed SJMCT algorithm is combined with the mean process of

SPEA-II as follows:

1. Input: n (number of jobs), m (number of machines), ̅ (archive size), T (maximum

number of generation).

2. Initialization-I: At first generation t =0, use the uniform random to initialize the

processing time P0 and due date D0 for SJMCT algorithm.

3. Initialization-II: Initialize the population of SPEA-II to evaluate the objective

function values of SJMCT algorithm and create the empty archive ̅ .

4. Fitness assignment: for each individual i in the archive ̅ and the population Pt

there is S(i) called the strength Pareto- solution which represents the number of

dominated solution:

 |{ | ∈ ̅ }| (4.8)

Where: the symbol + represents multi set union, the symbol corresponds to the Pareto

dominance relation, the symbol ˄ means AND (Gharari et al., 2016).

38

For SPEA-II, fitness is defined by equation (4.9).

 (4.9)

The raw fitness function of an individual i is calculated by the following

equation:

 ∑ ∈ ̅ (4.10)

Here it is important to note that, fitness is to be minimized, i.e.,

corresponds to a non-dominated individual. The additional density information is

incorporated to discriminate between individuals having same raw fitness, where the

density at any point is a (decreasing) function of the distance to the k
th

 nearest data

point. To be more precise, for each individual i the distances (in objective space) to all

individuals j in archive and population are calculated and stored in a list. After sorting

the list in increasing order, the k
th

 element gives the distance denoted as
 , the density

function is defined by:

 (4.11)

Where:
 represents the objective-space distance between the i

th
and k

th
 nearest

neighbors and √ ̅ in equation (4.11).

5. Environmental selection: In this operator, all non-dominated solutions are copied

from population and archived to the archive of new iteration ̅ . If the archive is

too small | ̅ | < ̅ then ̅ is filled with best dominated solutions from Pt and

 ̅ . Otherwise, if the archive is too large | ̅ | ̅ an archive truncation

procedure is used until | ̅ | ̅. Here, at each iteration individual i is chosen for

removal for which i, for all ∈ ̅ with < <

| ̅ |

 < < | ̅ | [(< <

) ⋀
 <

] (4.12)

In equation (4.12), i and j are the individuals, and also means that

individual i dominated individual j and
 denotes the distance of i to its k

th
 nearest

neighbor in ̅ . In other words, at each iteration, the individual which has the

minimum distance to another individual is chosen (a connection is broken by

considering the second smallest distances and so forth), as given in Figure 4.5.

39

Figure 4. 5. Illustration of the archive truncation method used in SPEA-II

On the right, a non-dominated set is shown. On the left, it is depicted which

solutions are removed in which order by the truncate operator (assuming that ̅)

(Zitzler, Laumanns, and Thiele, 2001)

6. Termination: If then the archive members ̅ presented as a Pareto set,

otherwise go to step 3.

7. Mating selection: In order to fill the mating pool use binary tournament selection

with replacement on ̅ .

8. Variation: Apply mutation and crossover operators to the mating pool and fill Pt+1

with the generated solutions. Set t=t+1 and go back to step 4.

The flow chart of SJMCT-SPEA-II is given in Figure 4.6.

40

Figure 4.6. Flow chart of SJMCT-SPEA-II

Start

No

1

No

Yes

𝑥𝑖𝑘

If 𝑐𝑖𝑗
 {𝑐𝑖𝑗}

𝑥𝑖𝑘

i=i+1

j=j+1

 𝐶𝑖𝑘 𝐶𝑖𝑗 𝑝
𝑖𝑘
𝑥𝑖𝑘

If i=m

i=j=1

k=m+1

Compute the minimum value of 𝐶𝑖𝑗

No

Yes

𝐶𝑖𝑗 𝑝𝑖𝑗𝑥𝑖𝑗

i=i+1

j=j+1

𝑖 𝑗

𝑥𝑖𝑗

If 𝑖 𝑗 𝑚

Initialize processing time 𝑝𝑖𝑗

Initialize due date 𝑑𝑖𝑗

The number of machine m

The number of job n

Yes

41

Figure 4.6. (Continue) Flow chart of SJMCT-SPEA-II

2

𝐶𝑚𝑎𝑥 {𝐶𝑖𝑛}

Yes

 If i=m

No If k=n

Yes

Yes

No

If 𝑐𝑖𝑘
 {𝑐𝑖𝑘}

i=i+1

 𝐶𝑖 𝑘 𝐶𝑖𝑘 𝑝𝑖 𝑘 𝑥𝑖 𝑘

𝑥 𝑖 𝑘

𝑥 𝑖 𝑘

Compute the minimum value of 𝐶𝑖𝑘

i= 1

j=k + 1

k=k+1

1

No

42

Figure 4.6. (Continue) Flow chart of SJMCT-SPEA-II

3

.

Initialize population

𝑓 𝑥 𝐶𝑚𝑎𝑥 𝑇𝑖𝑗

𝑛

𝑗

Evaluate the objective function of SJMST algorithm

Yes

Yes

If 𝑐𝑖𝑗 < 𝑑𝑖𝑗

𝑇𝑖𝑗 𝑐𝑖𝑗 𝑑𝑖𝑗 𝑇𝑖𝑗

 If i=m

 If j=n

j=j+1

i=i+1

i =1

j= 1

2

Start SPEA-II algorithm

No

Yes

No

No

43

 …………………………………………..…………Generation i………………….………..……………………

 …………………………………………..…………Generation i+1……………….………..……………………

Figure 4. 6. (Continue) Flow chart of SJMCT-SPEA-II

Size ≥ maxsize

Pareto set Current population

Extend Pareto set Determination of non-dominated solutions

Expand population Reduce Pareto set

by clustering

Pareto set Current population

Fitness evaluation

Selection

Crossover and

mutation

3

.

Yes No

44

5. COMPUTATIONAL RESULTS

In this section, different parameter values are considered to simulate different

cases and to analyze the performances of the proposed algorithms SJMCT-NSGA-II and

SJMCT-SPEA-II. For five parallel machines the first test problems is described with 60

jobs and different generation numbers. Thereafter, the second test problems are

described with generation 500 and different number of jobs. The Pareto-optimal front

are represented to minimize the two criteria scheduling problems, the makespan which

represents the completion time of the final job and the total tardiness which represents

the sum of tardiness of every job.

5.1. Experimental Design

The processing times and due dates of jobs are generated uniformly between 1

and 20, the population size equals to 100 in each algorithm. Different crossover

probabilities (0.6, 0.7, 0.8 and 0.9) and mutation probabilities (0.4, 0.3, 0.2 and 0.1) are

used in these tests. In particular, the experiments are designed to test the performance of

the proposed algorithms by changing the parameters. The algorithms are tested firstly

with 60 jobs and different generation numbers (40, 100, 300 and 500). Secondly, the

algorithms are tested with different number of jobs (20, 60 and 100) and number of

generation equals to 500. Table 5.1 describes the couple of different parameters setting

on both algorithms SJMCT-NSGA-II and SJMCT-SPEA-II in order to show the final

Pareto behavior after changing the parameters. In all cases, the number of archive used

in SJMCT-SPEA-II algorithm is equal to 60. Moreover, the lower and upper bounds are

selected between [-15, 15].

45

 Table 5. 1. Parameters used for each algorithm

5.2. Computational Results

 In this subsection, scheduling problem with 5 parallel machines, 60 jobs and

with the parameters given in Table 5.1 is considered. In the first test problems, multiple

cases study the effect of increasing the generation numbers from 40 to 500. All test

problems for the proposed algorithms are implemented by MATLAB programming

Version 8.3.0.532 (R2014a). Figures 5.1-5.4 depict the simulation results obtained by

SJMCT-NSGA-II algorithm. Figures 5.5-5.9 give the Pareto solutions obtained by

SJMCT-SPEA-II algorithm. In each test the crossover probabilities are 0.6, 0.7, 0.8 and

0.9 respectively.

Var

Min

Var

Max
nArchive nPop Var Size

Generation

Numbers

Crossover

Probability

Mutation

Probability

[Machine

Job]

-15 15 60 100 [5 20] 40 0.6 0.4

 [5 60] 100 0.7 0.3

 [5 100] 300 0.8 0.2

 500 0.9 0.1

46

5.2.1. Computational results for SJMCT-NSGA-II algorithm

Test 1: In the first test problems for 60 jobs, the best solution is obtained for SJMCT-

NSGA-II algorithm at generation 40 with number of population 100 and with crossover

probabilities 0.6, 0.7, 0.8 and 0.9.

Figure 5. 1. Pareto optimal solutions for SJMCT- NSGA-II with generation 40

 and different crossover probabilities

(a) Crossover Probability 0.6 (b) Crossover Probability 0.7

(c) Crossover Probability 0.8 (d) Crossover Probability 0.9

47

Test 2: In the first test problems for 60 jobs, the best solution is obtained for SJMCT-

NSGA-II algorithm at generation 100 with number of population 100 and with

crossover probabilities 0.6, 0.7, 0.8 and 0.9.

Figure 5. 2. Pareto optimal solutions for SJMCT- NSGA-II with generation 100

 and different crossover probabilities

(a) Crossover Probability 0.6 (b) Crossover Probability 0.7

(c) Crossover Probability 0.8 (d) Crossover Probability 0.9

48

Test 3: In the first test problems for 60 jobs, the best solution is obtained for SJMCT-

NSGA-II algorithm at generation 300 with number of population 100 and with

crossover probabilities 0.6, 0.7, 0.8 and 0.9.

Figure 5. 3. Pareto optimal solutions for SJMCT- NSGA-II with generation 300

 and different crossover probabilities

(a) Crossover Probability 0.6 (b) Crossover Probability 0.7

(c) Crossover Probability 0.8 (d) Crossover Probability 0.9

49

Test 4: In the first test problems for 60 jobs, the best solution is obtained for SJMCT-

NSGA-II algorithm at generation 500 with number of population 100 and with

crossover probabilities 0.6, 0.7, 0.8 and 0.9.

Figure 5. 4. Pareto optimal solutions for SJMCT- NSGA-II with generation 500

 and different crossover probabilities

(a) Crossover Probability 0.6 (b) Crossover Probability 0.7

(c) Crossover Probability 0.8 (d) Crossover Probability 0.9

50

5.2.2. Simulation results for SJMCT-SPEA-II algorithm

Test 1: In the first test problems for 60 jobs, the best solution is obtained for SJMCT-

SPEA-II algorithm at generation 40 with number of population 100 and with crossover

probabilities 0.6, 0.7, 0.8 and 0.9.

Figure 5. 5. Pareto optimal solutions for SJMCT- SPEA-II with generation 40

 and different crossover probabilities

(a) Crossover Probability 0.6 (b) Crossover Probability 0.7

(c) Crossover Probability 0.8 (d) Crossover Probability 0.9

51

Test 2: In the first test problems for 60 jobs, the best solution is obtained for SJMCT-

SPEA-II algorithm at generation 100 with number of population 100 and with crossover

probabilities 0.6, 0.7, 0.8 and 0.9.

Figure 5. 6. Pareto optimal solutions for SJMCT- SPEA-II with generation 100

 and different crossover probabilities

(a) Crossover Probability 0.6 (b) Crossover Probability 0.7

(c) Crossover Probability 0.8 (d) Crossover Probability 0.9

52

Test 3: In the first test problems for 60 jobs, the best solution is obtained for SJMCT-

SPEA-II algorithm at generation 300 with number of population 100 and with crossover

probabilities 0.6, 0.7, 0.8 and 0.9.

Figure 5. 7. Pareto optimal solutions for SJMCT- SPEA-II with generation 300

 and different crossover probabilities

(a) Crossover Probability 0.6 (b) Crossover Probability 0.7

(c) Crossover Probability 0.8 (d) Crossover Probability 0.9

53

Test 4: In the first test problems for 60 jobs, the best solution is obtained for SJMCT-

SPEA-II algorithm at generation 500 with number of population 100 and with crossover

probabilities 0.6, 0.7, 0.8 and 0.9.

Figure 5. 8. Pareto optimal solutions for SJMCT- SPEA-II with generation 500

 and different crossover probabilities

For more clarification, to discover the best configuration of SJMCT-NSGA-II and

SJMCT-SPEA-II, Tables 5.2-5.17 and Figures 5.9-5.24 describe all results obtained

from the first test problems represented before (in Figures 5.1-5.8) for each algorithm.

(a) Crossover Probability 0.6 (b) Crossover Probability 0.7

(c) Crossover Probability 0.8 (d) Crossover Probability 0.9

54

Table 5. 2. The values of the best non-dominated front for 5 machines and 60 jobs with generation 40

and crossover probability 0.6

Generation Number of job

Crossover

probability

SJMCT- NSGA-II

SJMCT-SPEA-II

Objective1 Objective2 Objective1 Objective2

40 60 0.6 100.656 134.337 102.019 103.893

 104.677 82.166 124.826 82.961

 102.716 122.604 99.185 121.977

 104.072 89.047 107.065 102.157

 108.955 101.377

 118.807 92.171

 113.584 101.012

Figure 5. 9. Solutions at generation 40 for 60 jobs (Crossover probability 0.6)

In Table 5.2 and Figure 5.9 for 60 jobs, at generation 40 and crossover probability

0.6, the minimum value of objective1 is 99.185 at SJMCT-SPEA-II algorithm and the

minimum value of objective2 equals to 82.166 at SJMCT-NSGA-II algorithm. That

means, the Pareto set is all non-dominated individuals between (99.185, 121.977) and

(104.677, 82.166) solutions.

0

20

40

60

80

100

120

140

160

90 100 110 120 130

o
b

je
ct

iv
e

2

objective1

SJMCT-NSGA-II

SJMCT-SPEA-II

55

Table 5. 3. The values of the best non-dominated front for 5 machines and 60 jobs with generation 40

and crossover probability 0.7

Generation Number of job

Crossover

probability

SJMCT- NSGA-II

SJMCT-SPEA-II

Objective1 Objective2 Objective1 Objective2

40 60 0.7 99.671 137.937 100.620 141.913

 104.821 63.836 102.019 103.893

 103.123 123.708 113.239 79.024

 104.825 97.297

 109.451 97.028

 112.597 96.278

Figure 5. 10. Solutions at generation 40 for 60 jobs (Crossover probability 0.7)

In Table 5.3 and Figure 5.10 for 60 jobs, at generation 40 and crossover

probability 0.7, the minimum value of objective1 is 99.671 at SJMCT- NSGA-II

algorithm and the minimum value of objective2 equals to 63.836 at SJMCT-NSGA-II

algorithm. That means, the Pareto set is all non-dominated individuals between (99.671,

137.937) and (104.821, 63.836) solutions.

0

20

40

60

80

100

120

140

160

95 100 105 110 115

o
b

je
ct

iv
e

2

objective1

SJMCT-NSGA-II

SJMCT-SPEA-II

56

Table 5. 4. The values of the best non-dominated front for 5 machines and 60 jobs with generation 40 and

crossover probability 0.8

Generation Number of job

Crossover

probability

SJMCT- NSGA-II

SJMCT-SPEA-II

Objective1 Objective2 Objective1 Objective2

40 60 0.8 102.229 134.565 99.700 135.708

 122.704 70.499 102.019 103.893

 112.861 86.100 119.957 84.093

 106.509 89.587 103.459 103.713

 104.911 101.917 110.686 94.117

 104.357 119.334 110.393 103.002

 104.459 118.323

Figure 5. 11. Solutions at generation 40 for 60 jobs (Crossover probability 0.8)

In Table 5.4 and Figure 5.11 for 60 jobs, at generation 40 and crossover

probability 0.8, the minimum value of objective1 is 99.700 at SJMCT- SPEA-II

algorithm and the minimum value of objective2 equals to 70.499 at SJMCT-NSGA-II

algorithm. That means, the Pareto set is all non-dominated individuals between (99.700,

135.708) and (122.704, 70.499) solutions.

0

20

40

60

80

100

120

140

160

90 100 110 120 130

o
b

je
ct

iv
e

2

0bjective1

SJMCT-NSGA-II

SJMCT-SPEA-II

57

Table 5. 5. The values of the best non-dominated front for 5 machines and 60 jobs with generation 40

and crossover probability 0.9

Generation Number of job

Crossover

probability

SJMCT- NSGA-II

SJMCT-SPEA-II

Objective1 Objective2 Objective1 Objective2

40 60 0.9 123.954 92.965 99.700 135.708

 98.995 149.581 102.019 103.893

 101.449 115.698 114.911 78.628

 112.074 93.737 114.547 79.531

 111.837 109.917 110.128 88.279

 103.685 111.078 108.962 97.073

Figure 5. 12. Solutions at generation 40 for 60 jobs (Crossover probability 0.9)

In Table 5.5 and Figure 5.12 for 60 jobs, at generation 40 and crossover

probability 0.9, the minimum value of objective1 is 98.995 at SJMCT-NSGA-II

algorithm and the minimum value of objective2 equals to 78.628 at SJMCT-SPEA-II

algorithm. That means, the Pareto set is all non-dominated individuals between (98.995,

149.581) and (114.911, 78.628) solutions.

0

20

40

60

80

100

120

140

160

95 105 115 125 135

o
b

je
ct

iv
e

2

objective1

SJMCT-NSGA-II

SJMCT-SPEA-II

58

Table 5. 6. The values of the best non-dominated front for 5 machines and 60 jobs with generation 100

and crossover probability 0.6

Generation Number of job

Crossover

probability

SJMCT- NSGA-II

SJMCT-SPEA-II

Objective1 Objective2 Objective1 Objective2

100 60 0.6 100.656 134.337 91.587 78.141

 113.802 81.107

 104.677 82.166

 103.183 113.331

 104.072 89.047

 102.716 122.604

Figure 5. 13. Solutions at generation 100 for 60 jobs (Crossover probability 0.6)

In Table 5.6 and Figure 5.13 for 60 jobs, at generation 100 and crossover

probability 0.6, the minimum value of objective1 is 91.587 at SJMCT-SPEA-II

algorithm and the minimum value of objective2 equals to 78.141 at SJMCT-SPEA-II

algorithm. That means, the Pareto set is the non-dominated solution (91.587, 78.141).

0

20

40

60

80

100

120

140

160

80 90 100 110 120

o
b

je
ct

iv
e

2

objective1

SJMCT-NSGA-II

SJMCT-SPEA-II

59

Table 5. 7. The values of the best non-dominated front for 5 machines and 60 jobs with generation 100

and crossover probability 0.7

Generation Number of job

Crossover

probability

SJMCT- NSGA-II

SJMCT-SPEA-II

Objective1 Objective2 Objective1 Objective2

100 60 0.7 104.821 63.836 111.988 69.860

 93.275 88.818 100.620 141.913

 106.452 86.186

 102.019 103.893

 103.661 96.431

 101.834 128.962

Figure 5. 14. Solutions at generation 100 for 60 jobs (Crossover probability 0.7)

In Table 5.7 and Figure 5.14 for 60 jobs, at generation 100 and crossover

probability 0.7, the minimum value of objective1 is 93.275 at SJMCT-NSGA-II

algorithm and the minimum value of objective2 equals to 63.836 at SJMCT-NSGA-II

algorithm. That means, the Pareto set is all non-dominated individuals between (93.275,

88.818) and (104.821, 63.836) solutions.

0

20

40

60

80

100

120

140

160

80 90 100 110 120

o
b

je
ct

iv
e

2

objective1

SJMCT-NSGA-II

SJMCT-SPEA-II

60

Table 5. 8. The values of the best non-dominated front for 5 machines and 60 jobs with generation 100

and crossover probability 0.8

Generation Number of job

Crossover

probability

SJMCT- NSGA-II

SJMCT-SPEA-II

Objective1 Objective2 Objective1 Objective2

100 60 0.8 122.704 70.499 110.019 53.667

 99.356 169.563 102.406 85.020

 100.331 104.701 99.700 135.708

 107.004 74.735 102.019 103.893

 104.911 101.917

 106.509 89.587

Figure 5. 15. Solutions at generation 100 for 60 jobs (Crossover probability 0.8)

In Table 5.8 and Figure 5.15 for 60 jobs, at generation 100 and crossover

probability 0.8, the minimum value of objective1 is 99.356 at SJMCT-NSGA-II

algorithm and the minimum value of objective2 equals to 53.667 at SJMCT-SPEA-II

algorithm. That means, the Pareto set is all non-dominated individuals between (99.356,

169.563) and (110.019, 53.667) solutions.

0

20

40

60

80

100

120

140

160

180

90 100 110 120 130

o
b

je
ct

iv
e

2

objective1

SJMCT-NSGA-II

SJMCT-SPEA-II

61

Table 5. 9. The values of the best non-dominated front for 5 machines and 60 jobs with generation 100

and crossover probability 0.9

Generation Number of job

Crossover

probability

SJMCT- NSGA-II

SJMCT-SPEA-II

Objective1 Objective2 Objective1 Objective2

100 60 0.9 98.9954 149.5807 99.700 135.708

 116.2029 79.48637 102.019 103.893

 101.2643 95.724 99.974 118.774

 111.7504 87.20371 114.911 78.628

 114.3319 86.9915 114.547 79.531

 110.128 88.279

 108.962 97.073

 108.696 103.788

Figure 5. 16. Solutions at generation 100 for 60 jobs (Crossover probability 0.9)

In Table 5.9 and Figure 5.16 for 60 jobs, at generation 100 and crossover

probability 0.9, the minimum value of objective1 is 98.9954 at SJMCT-NSGA-II

algorithm and the minimum value of objective2 equals to 78.628 at SJMCT-SPEA-II

algorithm. That means, the Pareto set is all non-dominated individuals between

(98.9954, 149.5807) and (114.911, 78.628) solutions.

0

20

40

60

80

100

120

140

160

95 100 105 110 115 120

o
b

je
ct

iv
e

2

objective1

SJMCT-NSGA-II

SJMCT-SPEA-II

62

Table 5. 10. The values of the best non-dominated front for 5 machines and 60 jobs with generation 300

and crossover probability 0.6

Generation. Number of job

Crossover

probability

SJMCT- NSGA-II

SJMCT-SPEA-II

Objective1 Objective2 Objective1 Objective2

300 60 0.6 121.113 59.114 91.587 78.141

 95.650 157.273 126.673 70.516

 98.355 108.603 120.030 75.110

 108.409 63.721

 107.792 77.312

 101.888 102.758

 104.677 82.166

 103.079 94.841

 104.072 89.047

Figure 5. 17. Solutions at generation 300 for 60 jobs (Crossover probability 0.6)

In Table 5.10 and Figure 5.17 for 60 jobs, at generation 300 and crossover

probability 0.6, the minimum value of objective1 is 91.587 at SJMCT-SPEA-II

algorithm and the minimum value of objective2 equals to 59.114 at SJMCT-NSGA-II

algorithm. That means, the Pareto set is all non-dominated individuals between (91.587,

78.141) and (121.113, 59.114) solutions.

0

20

40

60

80

100

120

140

160

180

80 90 100 110 120 130

o
b

je
ct

iv
e

2

objective1

SJMCT-NSGA-II

SJMCT-SPEA-II

63

Table 5. 11. The values of the best non-dominated front for 5 machines and 60 jobs with generation 300

and crossover probability 0.7

Generation Number of job

Crossover

probability

SJMCT- NSGA-II

SJMCT-SPEA-II

Objective1 Objective2 Objective1 Objective2

300 60 0.7 104.821 63.836 95.489 147.707

 93.275 88.818 96.482 116.788

 102.093 82.724 100.651 87.274

 101.583 83.964 111.988 69.860

 111.249 78.447

 110.818 79.762

 106.452 86.186

 108.612 85.413

 109.557 84.451

Figure 5. 18. Solutions at generation 300 for 60 jobs (Crossover probability 0.7)

In Table 5.11 and Figure 5.18 for 60 jobs, at generation 300 and crossover

probability 0.7, the minimum value of objective1 is 93.275 at SJMCT-NSGA-II

algorithm and the minimum value of objective2 equals to 63.836 at SJMCT-NSGA-II

algorithm. That means, the Pareto set is all non-dominated individuals between (93.275,

88.818) and (104.821, 63.836) solutions

0

20

40

60

80

100

120

140

160

80 90 100 110 120

o
b

je
ct

iv
e

2

objective1

SJMCT-NSGA-II

SJMCT-SPEA-II

64

Table 5. 12. The values of the best non-dominated front for 5 machines and 60 jobs with generation 300

and crossover probability 0.8

Generation Number of job

Crossover

probability

SJMCT- NSGA-II

SJMCT-SPEA-II

Objective1 Objective2 Objective1 Objective2

300 60 0.8 110.691 57.063 110.019 53.667

 96.414 68.981 107.844 60.935

 99.700 135.708

 101.338 129.323

 102.406 85.020

 101.929 122.292

 102.019 103.893

Figure 5. 19. Solutions at generation 300 for 60 jobs (Crossover probability 0.8)

In Table 5.12 and Figure 5.19 for 60 jobs, at generation 300 and crossover

probability 0.8, the minimum value of objective1 is 96.414 at SJMCT-NSGA-II

algorithm and the minimum value of objective2 equals to 53.667 at SJMCT-SPEA-II

algorithm. That means, the Pareto set is all non-dominated individuals between (96.414,

68.981) and (110.019, 53.667) solutions.

0

20

40

60

80

100

120

140

160

95 100 105 110 115

o
b

je
ct

iv
e

2

objective1

SJMCT-NSGA-II

SJMCT-SPEA-II

65

Table 5. 13. The values of the best non-dominated front for 5 machines and 60 jobs with generation 300

and crossover probability 0.9

Generation Number of job

Crossover

probability

SJMCT- NSGA-II

SJMCT-SPEA-II

Objective1 Objective2 Objective1 Objective2

300 60 0.9 102.218 72.547 112.674 55.712

 97.116 121.903 101.679 83.513

 101.264 95.724 99.700 135.708

 98.946 114.026 99.844 108.079

 112.010 75.979

Figure 5. 20. Solutions at generation 300 for 60 jobs (Crossover probability 0.9)

In Table 5.13 and Figure 5.20 for 60 jobs, at generation 300 and crossover

probability 0.9, the minimum value of objective1 is 97.116 at SJMCT-NSGA-II

algorithm and the minimum value of objective2 equals to 55.712 at SJMCT-SPEA-II

algorithm. That means, the Pareto set is all non-dominated individuals between (97.116,

121.903) and (112.674, 55.712) solutions.

0

20

40

60

80

100

120

140

160

95 100 105 110 115

o
b

je
ct

iv
e

2

objective1

SJMCT-NSGA-II

SJMCT-SPEA-II

66

Table 5. 14. The values of the best non-dominated front for 5 machines and 60 jobs with generation

numbers 500 and crossover probability 0.6

Generation Number of job

Crossover

probability

SJMCT- NSGA-II

SJMCT-SPEA-II

Objective1 Objective2 Objective1 Objective2

500 60 0.6 121.113 59.114 91.587 78.141

 95.650 157.273 106.759 71.317

 98.355 108.603 113.615 69.618

 108.409 63.721

 101.888 102.758

 104.677 82.166

 103.079 94.841

 107.792 77.312

 104.072 89.047

 108.035 73.248

Figure 5. 21. Solutions at generation 500 for 60 jobs (Crossover probability 0.6)

In Table 5.14 and Figure 5.21 for 60 jobs, at generation 500 and crossover

probability 0.6, the minimum value of objective1 is 91.587 at SJMCT-SPEA-II

algorithm and the minimum value of objective2 equals to 59.114 at SJMCT-NSGA-II

algorithm. That means, the Pareto set is all non-dominated individuals between (91.587,

78.141) and (121.113, 59.114) solutions.

0

20

40

60

80

100

120

140

160

180

80 90 100 110 120 130

o
b

je
ct

iv
e

2

objective1

SJMCT-NSGA-II

SJMCT-SPEA-II

67

Table 5. 15. The values of the best non-dominated front for 5 machines and 60 jobs with generation 500

and crossover probability 0.7

Generation Number of job

Crossover

probability

SJMCT- NSGA-II

SJMCT-SPEA-II

Objective1 Objective2 Objective1 Objective2

500 60 0.7 104.821 63.836 94.736 110.466

 93.275 88.818 95.634 101.489

 102.093 82.724 96.236 97.437

 101.040 88.182 100.119 83.699

 101.583 83.964 111.988 69.860

 110.708 70.256

Figure 5. 22. Solutions at generation 500 for 60 jobs (Crossover probability 0.7)

In Table 5.15 and Figure 5.22 for 60 jobs, at generation 500 and crossover

probability 0.7, the minimum value of objective1 is 93.275 at SJMCT-NSGA-II

algorithm and the minimum value of objective2 equals to 63.836 at SJMCT-NSGA-II

algorithm. That means, the Pareto set is all non-dominated individuals between (93.275,

88.818) and (104.821, 63.836) solutions.

0

20

40

60

80

100

120

80 90 100 110 120

o
b

je
ct

iv
e

2

objective1

SJMCT-NSGA-II

SJMCT-SPEA-II

68

Table 5. 16. The values of the best non-dominated front for 5 machines and 60 jobs with generation 500

and crossover probability 0.8

Generation Number of job

Crossover

probability

SJMCT- NSGA-II

SJMCT-SPEA-II

Objective1 Objective2 Objective1 Objective2

500 60 0.8
110.691 57.063 110.019 53.667

96.414 68.981 107.844 60.935

106.689 67.534 97.786 98.376

108.864 64.371 97.304 120.473

 103.522 78.553

 102.406 85.020

Figure 5. 23. Solutions at generation 500 for 60 jobs (Crossover probability 0.8)

In Table 5.16 and Figure 5.23 for 60 jobs, at generation 500 and crossover

probability 0.8, the minimum value of objective1 is 96.414 at SJMCT-NSGA-II

algorithm and the minimum value of objective2 equals to 53.667 at SJMCT-SPEA-II

algorithm. That means, the Pareto set is all non-dominated individuals between (96.414,

68.981) and (110.019, 53.667) solutions.

0

20

40

60

80

100

120

140

95 100 105 110 115

o
b

je
ct

iv
e

2

objective1

SJMCT-NSGA-II

SJMCT-SPEA-II

69

Table 5. 17. The values of the best non-dominated front for 5 machines and 60 jobs with 500 generation

and crossover probability 0.9

Generation Number of job

Crossover

probability

SJMCT- NSGA-II

SJMCT-SPEA-II

Objective1 Objective2 Objective1 Objective2

500 60 0.9 97.116 121.903 112.674 55.712

 117.669 70.647 100.471 73.837

 102.218 72.547 95.291 113.669

 101.264 95.724 98.359 99.067

 98.870 111.135

 100.098 103.991

Figure 5. 24. Solutions at generation 500 for 60 jobs (Crossover probability 0.9)

In Table 5.17 and Figure 5.24 for 60 jobs, at generation 500 and crossover

probability 0.9, the minimum value of objective1 is 95.291 at SJMCT-SPEA-II

algorithm and the minimum value of objective2 equals to 55.712 at SJMCT-SPEA-II

algorithm. That means, the Pareto set is all non-dominated individuals between (95.291,

113.669) and (112.674, 55.712) solutions.

0

20

40

60

80

100

120

140

90 95 100 105 110 115 120

o
b

je
ct

iv
e

2

objective1

SJMCT-NSGA-II

SJMCT-SPEA-II

70

As seen in Tables 5.2-5.17 and Figures 5.9-5.24 it is difficult to know the best

algorithm. Therefore, we decided to use the performance measures in Section 5.4. Also,

as further study, the minimum and average values for the first test problems represented

in Table 5.18.

Table 5. 18. Minimum and average values for 60 jobs to all algorithm numbers and objectives

Generation

numbers

Crossover

Probability

Minimum

and

Average

Objective 1 Objective 2

SJMCT-

NSGA-II

SJMCT-

SPEA-II

SJMCT-

NSGA-II

SJMCT-

SPEA-II

40

0.6

Min. 100.656 99.185 82.166 82.961

Ave. 103.030 110.635 107.039 100.793

100
Min. 100.656 91.587 81.107 78.141

Ave. 104.851 91.587 103.766 78.141

300
Min. 95.650 91.587 59.114 70.516

Ave. 105.004 112.763 92.760 74.589

500
Min. 95.650 91.587 59.114 69.618

Ave. 105.307 103.987 90.808 73.025

40

0.7

Min. 99.671 100.620 63.836 79.024

Ave. 102.538 107.125 108.494 102.572

100
Min. 93.275 100.620 63.836 69.860

Ave. 99.048 104.429 76.327 104.541

300
Min. 93.275 95.489 63.836 69.860

Ave. 100.443 105.700 79.836 92.877

500
Min. 93.275 94.736 63.836 69.860

Ave. 100.563 101.570 81.505 88.868

40

0.8

Min. 102.229 99.700 70.499 84.093

Ave. 108.290 107.702 102.904 104.088

100
Min. 99.356 99.700 70.499 53.667

Ave. 106.803 103.536 101.834 94.572

300
Min. 96.414 99.700 57.063 53.667

Ave. 103.552 103.608 63.022 98.691

500
Min. 96.414 97.304 57.063 53.667

Ave. 105.665 103.147 64.487 82.837

40

0.9

Min. 98.995 99.700 92.965 78.628

Ave. 108.666 108.378 112.163 97.185

100
Min. 98.995 99.700 79.486 78.628

Ave. 108.509 107.367 99.797 100.709

300
Min. 97.1156 99.700 72.5474 55.712

Ave. 99.8861 105.181 101.0502 91.798

500
Min. 97.116 95.291 70.647 55.712

Ave. 102.873 101.699 95.991 85.571

71

Table 5.18 leads to the best generation will be selected in next test problems to

indicate the efficiency of proposed algorithms. More details about the effects of

parameters for Tables 5.2-5.18 are explained in Section 5.3.

5.3. The Effect of Parameters

The effect of crossover, mutation probabilities and the effect of generation

numbers of the best non-dominated front for 5 machines and 60 jobs can be discussed as

follows:

 Effect of crossover and mutation probabilities:

The crossover operator used to generate two good individuals, called offspring,

from the two selected parents (Vallada and Ruiz, 2011). A standard one-point crossover

is used in this study to produce two offspring from two parent solutions and the

mutation operator selects two random genes and then exchanges their positions.

Testing different crossover and mutation operators gives us the variety of Pareto

frontier sets.

 Effect of generation numbers:

Due to the first test problems concerned with 60 jobs for all objectives, the

minimum values and averages at most cases obtained by increasing the generation

numbers from 40 to 500 as seen in Table 5.18. Moreover, this table shows that the best

minimum value of each objective obtained when the generation number is 500 for each

algorithm. So we conclude, there is a need for the second test problems that will be

performed at different seeds when the generation number is 500.

Since the comparison of two Pareto front is too difficult because each front is a set

of non-dominated solution. Therefore, the diversity metrics of multi-objective

optimization (MOO) in Section 5.4 are used to define the best evolutionary performance

of SJMCT-NSGA-II and SJMCT-SPEA-II algorithms. The mean and variance of

spacing and spread metrics to the second test problems with 20, 60 and 100 jobs and

generation number is 500 for 10 runs implemented by MATLAB programming are

given respectively in Table 5.19 and Table 5.20.

5.4. Performance Measures

In multi-objective optimization the most important consideration is the

quantitative metrics used for defining the optimality of different solution sets. However,

comparing two sets of solutions is more complex because of the multi-objectives. These

72

metrics make the comparison between algorithms is relatively easy. Typically, the

performance measures help us to find the convergence and the diversity between the

Pareto optimal front PFKnown and the obtained solutions PFTrue. Veldhuizen and Lamont,

(2000) display the small example to show the relationship between PFTrue and PFKnown

as given in Figure (5.25):

Figure 5. 25. PFknown / PFtrue example (Veldhuizen and Lamont, 2000)

 Jiang et al., (2014) considered four types of the MOO metrics based on

capacity, convergence and diversity of performance criteria as follows:

A. Capacity metrics: This group of metrics calculates the number or ratio of non-

dominated solutions in S (where, S solutions of the best non-dominated front PFTrue)

that satisfies given predefined requirements.

B. Convergence metrics: These are the metrics for measuring the proximity of solution

set S to optimal solution P (where P is the optimal Pareto front PFKnown).

C. Diversity metrics: These metrics include two forms of information:

1) “Distribution” measures how evenly the solutions of S in the objective space

scattered.

2) Spread indicates how well do the solutions of S arrive at the extreme of true PFS.

D. Convergence-diversity metrics: They indicate both the convergence and diversity of

S on a single scale.

(4, 4)

(3,6)

(2, 8)

(1.5, 10)

(5, 4)

(2.5, 9)

0

2

4

6

8

10

12

0 1 2 3 4 5 6

f 2
 v

a
lu

e

f1 value

Example f1-f2 Plot

PF true

PF known

73

A. Capacity Metrics

The error ratio (ER) measure, indicates the percentage of solutions that are not

members of the Pareto optimal set (Godinez, Espinosa, and Montes, 2010).

∑

 (5.1)

Where, n is the number of vectors in the current set of non-dominated vectors available,

 indicates an ideal behavior and ER = 0. If vector i is a member of the Pareto

optimal set that mean .

B. Convergence Metrics

Ghosh and Das, (2008) and Veldhuizen and Lamont, (2000) represented

generational distance GD convergence metrics, which measure the degree of proximity

based on the distance between the solutions in S to those in P.

|∑

 | |
 |

 ⁄

| |
 (5.2)

Where; ⃗∈ ‖ (⃗) ⃗ ‖ ⃗ ∈

 is a smallest distance from ⃗ ∈ to the closet solution in P.

C. Diversity Metrics

Diversity metrics indicate the distribution and spread of solutions in the non-

dominated solution set S.

1) Distribution Metrics: (Deb et al., 2000) proposed a metric that compares all the

solutions’ consecutive distances with the average distance.

 ∑
()

| |

| |
 (5.3)

Where; is the Euclidean distance between consecutive solutions in S, and , is the

average of . If all the pair of consecutive solutions have equal distance, then ,

 , and S has a perfect distribution.

Another distribution metrics is spacing metric proposed by (Schott, 1995). A metric

measuring the closet distance of pairwise solutions in S. (Veldhuizen and Lamont,

2000) defined this metric as given in equation (5.4):

74

 √∑ ()
 | |

| | ⁄ (5.4)

Where, (|
 ⃗

 ⃗ | |
 ⃗

 ⃗ |)

 is the mean of all and S is the number of obtained solutions. A value of zero for

this metric indicates all members of S are equidistantly spaced.

2) Spread Metric: The overall Pareto spread (OS) quantifies how much of the extreme

regions are covered by set S (Jiang et al., 2014).

 ∏
|

 ⃗⃗⃗∈
 ⃗

 ⃗⃗⃗∈
 ⃗ |

| |

 (5.5)

Where ⃗∈ ⃗ ⃗∈ ⃗ are the maximum and minimum values of the k
th

objective in S. For more details see (Wu and Azarm, 2000).

3) Distribution and Spread Metrics: (Deb et al., 2002) have proposed Diversity Metric

Δ. This metric consider the distribution and spread of obtained solution S

simultaneously. It is defined in Equation (5.6):

 ∑ | ̅ |

 ̅
 (5.6)

 √(
 ⃗

 ⃗)

 (
 ⃗

 ⃗)

 is the Euclidean distance between consecutive solutions (Ghosh and Das, 2008) and

 ̅ is the average of all distances . represent the Euclidean distance between

the extreme solutions and the boundary solutions of the obtained non-dominated set. As

seen in Figure 5.26. , i=1,2,…,(S-1) and (S-1) the consecutive distance of the best

non-dominated front. In this metric, lesser value is the better result (Deb et al., 2000).

Figure 5. 26. The Euclidean distance in the solutions

75

D. Convergence-Diversity Metrics

The metric Inverted General Distance (IGD) is introduced by (Jiang et al., 2014)

measures the quality of the optimal solution set S in terms of convergence and diversity

on a single scale.

|∑

 | |
 |

 ⁄

| |
 (5.7)

Where, ⃗∈ ‖ (⃗⃗) ⃗ ‖ ⃗⃗ ∈

 is a smallest distance from ⃗⃗ ∈ to the closet solution in S.

Instead of measuring the average distance in IGD, the maximum Pareto front error

(MPFE) is defined as:

 ⃗⃗∈ √ ⃗∈ ∑ | (⃗) ⃗⃗ |

 (5.8)

This metric finds the maximum distance from solutions in P to the closest solution

in S.

In order to satisfy the comparison purpose, the second simulation test problems

for each algorithm at generation 500 with different seeds and with different number of

jobs (20, 60 and 100) are represented in appendices A, B, C and D.

In appendix A, Tables 1-3 and Figures (Appendix A.1 - Appendix A.30) include

the Pareto solutions for unrelated multi-objective parallel machine scheduling problem

for 5 machines and (20, 60 and 100) jobs with crossover probability 0.6.

In Appendix B, Tables 1-3 and Figures (Appendix B.1 - Appendix B.30) consist

of the Pareto solutions for unrelated multi-objective parallel machine scheduling

problem for 5 machines and (20, 60 and 100) jobs with crossover probability 0.7.

In Appendix C, Tables1-3 and Figures (Appendix C.1 - Appendix C.30) consist of

the Pareto solutions for unrelated multi-objective parallel machine scheduling problem

for 5 machines and (20, 60 and 100) jobs with crossover probability 0.8.

Finally, in Appendix D, Tables1-3 and Figures (Appendix D.1 - Appendix D.30)

contain the Pareto solutions for the same problem for 5 machines and (20, 60 and 100)

jobs with crossover probability 0.9.

In general, the obtained results show the ability of each algorithm to determine the

final non-dominated solutions but it cannot determine the best algorithm because the

Pareto solutions are closed to each other. Therefore, the Diversity metrics (spacing

76

diversity metric SP, distribution and spread diversity metric Δ) are selected from all

previous measures because it dependent on the obtained Pareto front. Tables 5.19 and

5.20 represent the mean and variance of diversity metrics for 10 run trails to each

algorithm.

Table 5. 19. The mean of diversity metrics for non-dominated front to each algorithm for 10 runs (second

test problems)

Number of job
Crossover

probability

Spacing Diversity Metric

(SP)

Distribution and Spread

Diversity Metric (Δ)

SJMCT-

NSGA-II

SJMCT-

SPEA-II

SJMCT-

NSGA-II

SJMCT-

SPEA-II

20

0.6 3.653 2.415 0.677 0.631

0.7 4.445 4.115 0.717 0.711

0.8 1.925 2.928 0.601 0.682

0.9 3.362 2.775 0.644 0.600

60

0.6 8.352 6.159 0.702 0.644

0.7 4.803 7.746 0.617 0.673

0.8 3.917 5.497 0.583 0.621

0.9 8.150 7.388 0.686 0.711

100

0.6 11.946 15.168 0.751 0.769

0.7 13.681 9.330 0.763 0.601

0.8 15.592 9.175 0.824 0.762

0.9 10.726 10.258 0.783 0.734

Table 5. 20. The variance of diversity metrics for non-dominated front to each algorithm for 10 runs

(second test problems)

Number of job
Crossover

probability

Spacing Diversity Metric(SP)
Distribution and Spread

Diversity Metric (Δ)

SJMCT-

NSGA-II

SJMCT-

SPEA-II

SJMCT-

NSGA-II

SJMCT-

SPEA-II

20

0.6 3.671 1.645 0.013 0.007

0.7 8.983 6.356 0.033 0.004

0.8 2.460 3.129 0.018 0.019

0.9 2.963 2.278 0.024 0.005

60

0.6 22.399 6.469 0.010 0.045

0.7 7.479 7.159 0.022 0.004

0.8 3.672 13.873 0.008 0.044

0.9 21.302 11.560 0.011 0.018

100

0.6 123.890 116.747 0.024 0.016

0.7 70.393 66.193 0.024 0.100

0.8 47.570 33.945 0.021 0.026

0.9 41.014 67.066 0.018 0.013

77

Tables 5.19 and 5.20 consider the diversity metric values for the second test

problems. In order to enhance the best performance the comparison between the two

algorithms as follows:

 In Table 5.19 the smallest mean value of spacing metric is 1.925 in SJMCT-NSGA-

II. That means, SJMCT-NSGA-II has the small distance at test with crossover

probability 0.8 and with 20 jobs. While the smallest mean value equal to 2.415 in

SJMCT-SPEA-II at test with crossover probability 0.6 and with 20 jobs.

 In Table 5.19 the smallest mean value of spread metric is 0.583 in SJMCT-NSGA-

II at test with crossover probability 0.8 and with 60 jobs. Also, the smallest mean

value 0.600 at test with crossover probability 0.9 and with 20 jobs.

 In Table 5.20 the smallest variance value of spacing metric is 1.645 at test with

crossover probability 0.6 and with 20 jobs in SJMCT-SPEA-II. Also, it equel to

2.460 at test with crossover probability 0.8 and with 20 jobs in SJMCT-NSGA-II.

Furthermore, the smallest variance value of spread metric is 0.004 at test with

crossover probability 0.7 with 20 and 60 jobs in SJMCT-SPEA-II. While, it equals

to 0.008 in SJMCT-NSGA-II algorithm at test with crossover probability 0.8 and

with 60 jobs.

In other words, for each job Tables 5.19 and 5.20 can be explained as follows:

 For 20 jobs the mean and variance values of diversity metrics in SJMCT-SPEA-II is

smaller than SJMCT-NSGA-II by 75% precent.

 For 60 jobs the mean and the variance values of spread metric in SJMCT-NSGA-II

is smaller than SJMCT-SPEA-II by 75% precent. Also, the mean values of spacing

metric in both algorithms equal to 50% precent and the variance values in 60 jobs of

spacing metric in SJMCT-SPEA-II is smaller than SJMCT-NSGA-II by 75%

precent.

 For 100 jobs the mean and the variance values of spacing metric in SJMCT-SPEA-

II is smaller than SJMCT-NSGA-II by 75% precent. Also, and the mean values of

spread metric in SJMCT-SPEA-II is smaller than SJMCT-NSGA-II by 75% precent

and the variance values of spread metric in both algorithms equal to 50% precent.

According to the experimintal results, on most cases, SJMCT-SPEA-II algorithm

is better than the SJMCT-NSGA-II algorithm based on the mean and variance values of

diversity metrics. That means the SJMCT-SPEA-II algorithm outperformes than

SJMCT-NSGA-II.

78

5.5. The time of implementation

In this section, the feasible running time during executing the proposed algorithms

SJMCT-NSGA-II and SJMCT-SPEA-II for all jobs with respect to crossover

probabilities (0.6, 0.7, 0.8 and 0.9) are given in Table 5.21.

Table 5. 21. Time in second for the best solution to each algorithm for all the second test problems

Number

of jobs
Run

Crossover Prob. 0.6 Crossover Prob. 0.7 Crossover Prob. 0.8 Crossover Prob. 0.9

Time in

second

SJMCT-

NSGA-II

Time in

second

SJMCT-

SPEA-II

Time in

second

SJMCT-

NSGA-II

Time in

second

SJMCT-

SPEA-II

Time in

second

SJMCT-

NSGA-II

Time in

second

SJMCT-

SPEA-II

Time in

second

SJMCT-

NSGA-II

Time in

second

SJMCT-

SPEA-II

20

1 967.471 571.390 1058.079 689.900 1085.146 683.118 1106.223 721.679

2 980.014 583.901 1245.825 626.850 1164.926 701.433 1059.521 646.834

3 1104.007 635.357 1084.479 662.924 1065.065 641.520 1039.019 635.490

4 998.972 680.116 1132.613 611.302 1084.335 737.335 1080.692 803.987

5 1007.078 666.725 1174.816 645.403 1078.374 623.905 1109.272 680.713

6 1026.416 580.067 1041.795 670.298 1102.594 694.027 1107.050 648.016

7 952.461 586.704 1236.804 704.621 1202.466 727.222 1106.783 799.539

8 998.456 592.224 1183.025 613.109 1024.877 800.919 1122.158 843.626

9 1050.007 552.026 1094.522 786.645 1187.786 732.809 1126.215 790.031

10 1115.048 557.017 1127.016 805.425 1081.074 766.746 1116.350 655.506

60

1 2046.756 2391.281 1957.160 1812.959 2120.108 1587.196 2246.470 1623.477

2 2553.467 2273.719 2398.855 2037.075 2244.856 1713.006 2560.084 2133.748

3 2374.902 2338.787 2411.098 2089.031 2543.429 2138.496 2633.918 2179.575

4 2551.688 2315.890 2423.819 2070.147 2378.141 2180.710 2707.688 2234.209

5 2581.791 2316.141 2409.290 2221.823 2334.725 2183.359 2658.536 2244.689

6 2537.604 2400.167 2505.478 2199.132 3551.508 2459.062 2653.767 2226.643

7 2590.568 2305.287 2520.043 2243.515 2798.671 2230.224 2615.379 2300.624

8 2603.123 2317.850 2580.543 2204.830 2757.490 2277.624 2702.401 2257.214

9 2508.108 2316.629 2640.918 2129.395 3306.445 2340.241 2741.937 2211.559

10 2564.135 2372.476 2643.406 2181.727 2777.679 2181.572 2757.501 2211.103

100

1 2884.634 2777.606 3097.011 2565.551 2928.928 2990.946 3507.810 3146.403

2 4026.407 3688.663 3020.067 3214.600 3876.872 3551.773 3987.180 3573.405

3 4049.246 3486.287 4080.368 3676.209 4057.971 3664.288 4013.143 3708.259

4 4089.591 3646.479 4147.180 3456.658 4115.976 3519.977 3962.430 3662.431

5 4003.891 3713.938 4022.216 3716.522 4067.952 3727.317 4035.916 3598.593

6 4059.865 3681.047 4046.430 3576.281 4143.247 3639.772 3972.169 3614.173

7 4151.922 3620.690 4056.137 3727.200 3938.903 3672.502 4097.809 3693.397

8 4099.609 3669.987 4039.054 3713.942 4086.299 3521.890 4055.563 3639.965

9 3964.667 3659.561 4026.973 3592.622 4029.191 3760.300 4072.633 3679.504

10 4087.830 3629.579 4100.362 3581.727 4120.590 3655.493 4085.536 3702.196

79

Figures 5.27-5.29 represent the starting and ending time in seconds to each

algorithm for (20, 60 and 100) jobs respectively.

For 20 jobs, in view of Figure 5.27 and Table 5.21, the smallest time is 552.026

seconds in SJMCT-SPEA-II at crossover probability 0.6. Moreover, the largest time is

1245.825 seconds in SJMCT-NSGA-II at crossover probability 0.7.

Figure 5. 27. Time in second with all crossover probabilities for 20 jobs

For 60 jobs, Figure 5.28 and Table 5.21 illustrate the smallest time is 1587.196

seconds in SJMCT-SPEA-II at crossover probability 0.8. The largest time is 3551.508

seconds in SJMCT-NSGA-II at crossover probability 0.8.

Figure 5. 28. Time in second with all crossover probabilities for 60 jobs

0.5

0.6

0.7

0.8

0.9

1

500 1000 1500

C
ro

ss
o

ve
r

P
ro

b
ab

ili
ty

Time

Time of SJMCT-NSGA-II Time of SJMCT-SPEA-II

Time of SJMCT-NSGA-II Time oof SJMCT-SPEA-II

Time of SJMCT-NSGA-II Time of SJMCT-SPEA-II

Time of SJMCT-NSGA-II Time of SJMCT-SPEA-II

0.5

0.6

0.7

0.8

0.9

1

1000 2000 3000 4000

C
ro

ss
o

ve
r

p
ro

b
ab

ili
ty

Time

Time of SJMCT-NSGA-II Time of SJMCT-SPEA-II

Time of SJMCT-NSGA-II Time of SJMCT-SPEA-II

Time of SJMCT-NSGA-II Time of SJMCT-SPEA-II

Time of SJMCT-NSGA-II Time of SJMCT-SPEA-II

80

For 100 jobs, it can be observed from Figure 5.29 and Table 5.21, the smallest

time is 2565.551 seconds in SJMCT-SPEA-II at crossover probability 0.7. The largest

time is 4151.922 seconds in SJMCT-NSGA-II at crossover probability 0.6.

Figure 5. 29. Time in second with all crossover probabilities for 100 jobs

During the performance of the two algorithms, it is clear to see that SJMCT-

SPEA-II algorithm has the smallest running time as compared with SJMCT-NSGA-II

as seen in Table 5.21 and Figures 5.27-5.29.

0.5

0.6

0.7

0.8

0.9

1

2000 2500 3000 3500 4000 4500

C
ro

ss
o

ve
r

p
ro

b
ab

ili
ty

Time

Time of SJMCT-NSGA-II Time of SJMC-SPEA-II

Time of SJMCT-NSGA-II Time of SJMCT-SPEA-II

Time of SJMCT-NSGA-II Time of SJMCT-SPEA-II

Time of SJMCT-NSGA-II Time of SJMCT-SPEA-II

81

6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

 In this thesis, a novel algorithm with name Sequence Job Minimum Completion

Time (SJMCT) is proposed to represent the scheduling of unrelated parallel machines

with non-identical jobs. The proposed algorithm was compared with other dispatching

rules (LPT and SPT). Numerical example is solved by using GAMS-CPLEX

programming to show the efficiency of proposed algorithm. The associated promising

result with small size one objective problem is a motivation to use it with large size

multi-objective problems.

As seen in the literature review, many real life multi-objective scheduling

problems solved by mathematical programming, dispatching rules, neighborhood

search, genetic and heuristic algorithms. Therefore, the main contribution of this thesis

is to develop the multi-objective hybrid evolutionary algorithms and find the best Pareto

front with more than one objective.

 Two algorithms named Sequence Job Minimum Completion Time based on

Non-dominated Sorting Genetic Algorithm (SJMCT-NSGA-II) and Sequence Job

Minimum Completion Time based on Strength Pareto (SJMCT-SPEA-II) have been

proposed to minimize the maximum completion time and the total tardiness.

 The performance of the two algorithms SJMCT-NSGA-II and SJMCT-SPEA-II

are tested by using MATLAB programming Version 8.3.0.532 (R2014a). It is interested

to know, this program is suitable to solve large particular scheduling problem with

small changes.

The proposed algorithms are able to find the best non-dominated Pareto front by

each algorithm for big dimensional multi-objective parallel machine scheduling

problem.

An intensive work of numerical experimentations has been performed. The first

test problems are done with 5 parallel machines and 60 jobs and generation numbers

from 40-500. The second test problems are done with 5 parallel machines and 20, 60

and 100 jobs and generation 500.

For most problems, several good solutions are introduced by changing the

crossover and mutation probabilities.

To compare multi-objective evolutionary algorithms performance, we need to use

some metrics. Therefore, the results of two algorithms have been compared by using

two performance diversity metrics as spacing and spread metrics. In the simulation

82

results of 60 jobs, a reasonably good minimum value of solutions and good spread are

obtained at generation 500. Therefore, in order to observe the consistency of outcome of

the proposed algorithms with different initial populations are selected at generation

equals to 500.

During the performance evaluation of proposed algorithm, it is observed that, the

SJMCT-SPEA-II algorithm has the smaller mean and variance values for each spacing

and spread metrics in most of the second test problems. Also, the performance of

SJMCT-SPEA-II has smallest running time than SJMCT-NSGA-II in second test

problems. The smallest running time of SJMCT-SPEA-II was between 9 minutes at 20

jobs and 43 minutes at 100 jobs, while the running time of SJMCT-NSGA-II was

between 21 minutes at 20 jobs and 69 minutes at 100 jobs.

 In general, we conclude that, the proposed algorithm SJMCT has more

convergence as compared with other algorithms in computing the total completion time

of each machine. That means, it gives a good assignment of jobs at the machines and it

make a good balance in workload over the parallel machines. In addition, there is no

order forced to submit certain job. Also, the two hybrid algorithms are efficient and

practical for solving large size problems. Moreover, SJMCT-SPEA-II has the highest

quality performance than SJMCT-NSGA-II in both efficiency and the running time.

 In future work, some comparison for the performance of proposed algorithm

with other metaheuristic method can be done. It may also interest to apply other genetic

operator (crossover and mutation) and generate a new different offspring. Also, other

performance measures can be implemented as a future research direction.

 Another future research direction is related with it could be interesting to develop

other complex scheduling problems, such as flow shop problems, preceding constraints,

deterioration or the machine with interrupted and unavailability periods. In addition, the

current scheduling model can be developed by adding the rejection job constraint and

rejection penalty.

 Another opportunity for this research is the consideration of the problem with

the other optimization objectives such as minimization of early and tardy penalties or

weighted completion time and weighted tardiness. It also could be interesting to extend

this study for more than two objectives.

83

REFERENCES

Akyol, D. (2006). Neural network based optimization in production scheduling.

Ph.D.Thesis. Izmir: Dokuz Eylul University, Industrial Engineering.

Allahverdi, A., Gupta, J. N. D. and Aldowaisan, T. (1999). A review of scheduling

research involving setup considerations. Omega 27(2): 219–239.

Muralidhar, A. and Alwarsamy, T. (2013). Multi-objective optimization of parallel

machine scheduling using neural networks. International Journal of Latest

Trends in Engineering and Technology (IJLTET) 2(2): 127-132.

Arroyo, J.E.C. and Armentano, V.A. (2005). Genetic local search for multi-objective

fowshop scheduling problems. European Journal of Operational Research

167(3). Multicriteria Scheduling: 717–738.

Bagchi, T.P. (2001). Pareto-optimal solutions for multi-objective production

scheduling problems. Evolutionary multi-criterion optimization Pp. 458–471.

Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/3-540-

44719-9_32, accessed March 17, 2017.

Balakrishnan, N., Kanet, J.J. and Sridharan, V. (1999). Early/tardy scheduling with

sequence dependent setups on uniform parallel machines. Computers &

Operations Research 26(2): 127–141.

Balasubramanian, H., Fowler, J., Keha, A. and Pfund, M. (2009). Scheduling interfering

job sets on parallel machines. European Journal of Operational Research

199(1): 55–67.

Balin, S. (2011). Non-identical parallel machine scheduling using genetic algorithm.

Expert Systems with Applications 38(6): 6814–6821.

Bandyopadhyay, S. and Bhattacharya, R. (2013). Solving multi-objective parallel

machine scheduling problem by a modified NSGA-II. Applied Mathematical

Modelling 37(10–11): 6718–6729.

Chand, P. and Mohanty, J.R. (2013). Solving vehicle routing problem with proposed

non-dominated sorting genetic algorithm and comparison with classical

evolutionary algorithms. International Journal of Computer Applications

69(26): 34–41.

Chang, P-C., Chen, S-H. and Hsieh J-C. (2006). A global archive sub-population

genetic algorithm with adaptive strategy in multi-objective parallel-machine

scheduling problem. Advances in Natural Computation Pp. 730–739. Springer,

Berlin, Heidelberg.://link.springer.com/chapter/10.1007/11881070_98, accessed

March 17, 2017.

Cheng, B., Yang S., Hu, X. and Chen, B. (2012). Minimizing makespan and total

completion time for parallel batch processing machines with non-identical job

sizes. Applied Mathematical Modelling 36(7): 3161–3167.

84

Cheng, R. and Gen, M. (1997). Parallel machine scheduling problems using memetic

algorithms. Computers & Industrial Engineering 33(3). Selected Papers from

the Proceedings of 1996 ICC&IC: 761–764.

Cochran, J.K., Horng, S-M. and Fowler, J.W. (2003). A Multi-population genetic

algorithm to solve multi-objective scheduling problems for parallel machines.

Computers & Operations Research 30(7): 1087–1102.

Crauwels, H.A.J., Potts, C.N. and Van Wassenhove L.N. (1998). Local search heuristics

for the single machine total weighted tardiness scheduling problem. INFORMS

Journal on Computing 10(3): 341–350.

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002). A fast and elitist multi-

objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary

Computation 6(2): 182–197.

Deb, K., Agrawal, S. Pratap, A. and Meyarivan, T. (2000). A fast elitist non-dominated

sorting genetic algorithm for multi-objective optimization: NSGA-II. Parallel

Problem Solving from Nature PPSN VI Pp. 849–858. Lecture Notes in

Computer Science. Springer, Berlin, Heidelberg. https://link.springer.com/

chapter/10.1007/3-540-45356-3_83, accessed November 15, 2017.

Dyer, M.E. and Wolsey, L.A. (1990). Formulating the Single machine sequencing

problem with release dates as a mixed integer program. Discrete Applied

Mathematics 26(2): 255–270.

Ehrgott, M. (2006). Multicriteria optimization, 2
nd

 Edition. Springer science & business

media.

Eroglu, D.Y., Ozmutlu, H.C. and Ozmutlu, S. (2014). Genetic algorithm with local

search for the unrelated parallel machine scheduling problem with sequence-

dependent set-up times. International Journal of Production Research 52(19):

5841–5856.

Fallah-Mehdipour, E., Haddad, O.B., Tabari, M.M.R. and Mariño, M.A. (2012).

Extraction of decision alternatives in construction management projects:

application and adaptation of NSGA-II and MOPSO. Expert Systems with

Applications 39(3): 2794–2803.

França, P.M., Mendes, A. and Moscato, P. (2001). A memetic algorithm for the total

tardiness single machine scheduling problem. European Journal of Operational

Research 132(1): 224–242.

Frenk, J.B.G., and Rinnooy Kan, A.H.G. (1987). The asymptotic optimality of the LPT

rule. Mathematics of Operations Research 12(2): 241–254.

Gharari, R., Poursalehi, N., Abbasi, M., and Aghaie, M. (2016). Implementation of

strength Pareto evolutionary algorithm II in the multi-objective burnable poison

placement optimization of KWU pressurized water reactor. Nuclear

Engineering and Technology 48(5): 1126–1139.

85

Ghosh, A. and Das, M.K. (2008). Non-dominated rank based sorting genetic algorithms.

Fundamenta Informaticae 83(3): 231–252.

Godinez, A.C., Espinosa, L.E.M. and Montes, E.M. (2010). An experimental

comparison of multi-objective algorithms: NSGA-II and OMOPSO. 2010 IEEE

Electronics, Robotics and Automotive Mechanics Conference Pp. 28–33.

Gupta, J.N.D. and Ho, J.C. (2001). Minimizing makespan subject to minimum flowtime

on two identical parallel machines. Computers & Operations Research 28(7):

705–717.

Hong, T-P., Huang, C-M. and Yu, K-M. (1998). LPT scheduling for fuzzy tasks. Fuzzy

Sets and Systems 97(3): 277-286.

Ishibuchi, H. and Murata, T. (1998). A multi-objective genetic local search algorithm

and its application to flowshop scheduling. IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews) 28(3): 392–403.

Jaszkiewicz, A. (2002). Genetic local search for multi-objective combinatorial

optimization. European Journal of Operational Research 137(1): 50–71.

Jiang, S., Ong, Y-S., Zhang, J. and Feng, L. (2014). Consistencies and contradictions of

performance metrics in multiobjective optimization. IEEE Transactions on

Cybernetics 44(12): 2391–2404.

Joo, C.M. and Kim, B.S. (2015). Hybrid genetic algorithms with dispatching rules for

unrelated parallel machine scheduling with setup time and production

availability. Computers & Industrial Engineering 85: 102–109.

Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P. and Werner, F. (2008).

Algorithms for flexible flow shop problems with unrelated parallel machines,

setup times, and dual criteria. The International Journal of Advanced

Manufacturing Technology 37(3–4): 354–370.

Kacem, I., Hammadi, S. and Borne, P. (2002). Approach by localization and multi-

objective evolutionary optimization for flexible job-shop scheduling problems.

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications

and Reviews) 32(1): 1–13.

Kamisli Ozturk, Z. and Sabti, A. (2017). Novel solution approaches for multi-objective

parallel machine scheduling. 21
st
 Conference of the international federation of

operational research societies. Quebec, Canada / 17.07.2017-21.07.2017.

Kasimbeyli, R., Ozturk, Z.K., Kasimbeyli, N., Yalcin, G.D. and Icmen, B. (2015).

Conic scalarization method in multiobjective optimization and relations with

other scalarization methods. Modelling, Computation and Optimization in

Information Systems and Management Sciences Pp. 319–329. Advances in

Intelligent Systems and Computing. Springer, Cham. https://link.springer.com/

 chapter/10.1007/978-3-319-18161-5_27, accessed November 5, 2017.

86

Koulamas, C. and Kyparisis, G.J. (2009). A modified LPT algorithm for the two

uniform parallel machine makespan minimization problem. European Journal

of Operational Research 196(1): 61–68.

Laguna, M., Barnes, J.W. and Glover, F.W. (1991). Tabu search methods for a single

machine scheduling problem. Journal of Intelligent Manufacturing 2(2): 63–73.

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B. (1993). Chapter 9

sequencing and scheduling: algorithms and complexity. Handbooks in

Operations Research and Management Science Pp. 445–522. Logistics of

Production and Inventory. Elsevier. http://www.sciencedirect.com/science/

 article/pii/S0927050705801896.

Lei, D. (2009). Multi-objective production scheduling: A survey. The International

Journal of Advanced Manufacturing Technology 43(9–10): 926.

Li, X., Amodeo, L., Yalaoui, F. and Chehade, H. (2010).A multiobjective optimization

approach to solve a parallel machines scheduling problem. Adv. in Artif. Intell.

2010: 2:1–2:10.

Li, X., Yalaoui, F., Amodeo, L. and Chehade, H. (2012). Metaheuristics and exact

methods to solve a multiobjective parallel machines scheduling problem.

Journal of Intelligent Manufacturing 23(4): 1179–1194.

Lin, C-H., and Liao, C-J. (2008). Makespan minimization for multiple uniform

machines. Computers & Industrial Engineering 54(4): 983–992.

Lin, Y-K. and Lin, H-C. (2015). Bicriteria scheduling problem for unrelated parallel

machines with release dates. Computers & Operations Research 64: 28–39.

Loukil, T., Teghem, J. and Tuyttens, D. (2005). Solving multi-objective production

scheduling problems using metaheuristics. European Journal of Operational

Research 161(1). IEPM: Focus on Scheduling: 42–61.

Lu, L., Zhang, L. and Yuan, J. (2008). The unbounded parallel batch machine

scheduling with release dates and rejection to minimize makespan. Theoretical

Computer Science 396(1): 283–289.

Ma, Y., Chu, C. and Zuo, C. (2010). A Survey of scheduling with deterministic machine

availability constraints. Computers & Industrial Engineering 58(2). Scheduling

in Healthcare and Industrial Systems: 199–211.

Massabò, I., Paletta, G. and Ruiz-Torres, A.J. (2016). A note on longest processing time

algorithms for the two uniform parallel machine makespan minimization

problem. Journal of Scheduling 19(2): 207–211.

Mazdeh, M.M., Zaerpour, F., Zareei, A. and Hajinezhad, A. (2010). Parallel machines

scheduling to minimize job tardiness and machine deteriorating cost with

deteriorating jobs. Applied Mathematical Modelling 34(6): 1498–1510.

87

Memari, A., Rahim, A.R.A., Hassan, A. and Ahmad, R. (2016). A tuned NSGA-II to

optimize the total cost and service level for a just-in-time distribution network.

Neural Computing and Applications: 1–15.

Mirabedini, S.N. and Mina, H. (2012). Multi-objective optimization research on multi

parallel machine with different preventive maintenance planning and scheduling

with genetic algorithm. International Journal of Academic Research in Business

and Social Sciences 2(12): 129–139.

Mishra, B. and Patnaik R.K. (2009). Genetic Algorithm and Its Variants: Theory and

Applications. BTech. http://ethesis.nitrkl.ac.in/199/ accessed January 9, 2018.

Moslehi, G. and Mahnam, M. (2011). A Pareto approach to multi-objective flexible job-

shop scheduling problem using particle swarm optimization and local search.

International Journal of Production Economics 129(1): 14–22.

Murata, T., Ishibuchi, H. and Tanaka, H. (1996). Multi-objective genetic algorithm and

its applications to flowshop scheduling. Computers & Industrial Engineering

30(4): 957–968.

Ou, J., Zhong, X. and Wang, G. (2015). An improved heuristic for parallel machine

scheduling with rejection. European Journal of Operational Research 241(3):

653–661.

Öztürk, C. and Ornek, A.M. (2014). Operational extended model formulations for

advanced planning and scheduling systems. Applied Mathematical Modelling

38(1): 181–195.

Parker, R. G.(1996). Deterministic scheduling theory. CRC Press.

Pinedo, M. L. (2008). Scheduling: Theory, algorithms, and systems. 3
rd

 edition.

Springer Publishing Company, Incorporated.

Pinedo, M.L. (2005). Planning and scheduling in manufacturing and services. Springer

Series in Operations Research. New York: Springer-Verlag. http://link.

springer.com/10.1007/b139030.

Potts, C.N. (1985). Analysis of a linear programming heuristic for scheduling unrelated

parallel machines. Discrete Applied Mathematics 10(2): 155–164.

Rajendran, C. and Ziegler, H. (2003). Scheduling to minimize the sum of weighted

flowtime and weighted tardiness of jobs in a flowshop with sequence-dependent

setup times. European Journal of Operational Research 149(3): 513–522.

Reddy M.J., and Kumar D.N. (2007). Multi-objective differential evolution with

application to reservoir system optimization. Journal of Computing in Civil

Engineering 21(2): 136–146.

Ruiz, R. and Andrés-Romano, C. (2011). Scheduling unrelated parallel machines with

resource-assignable sequence-dependent setup times. The International Journal

of Advanced Manufacturing Technology 57(5–8): 777–794.

88

Schott, J.R. (1995). Fault tolerant design using single and multi-criteria genetic

algorithm optimization. AFIT/CI/CIA-95-039. air force inst of tech wright-

patterson afb oh, air force inst of tech wright-patterson afb oh.

http://www.dtic.mil/docs/citations/ADA296310.

Senthiil, P.V., Selladurai, V. and Rajesh, R. (2007). Parallel machine scheduling (pms)

in manufacturing systems using the ant colonies optimization algorithmic rule.

Journal of Applied Sciences 7: 208–213.

Seshadri, A., (2006). Multi-objective optimization using evolutionary algorithms

(MOEA). https://www.scribd.com/document/263374723/NSGA-2-tutorial.

Sivrikaya-Şerifoǧlu, F. and Ulusoy, G. (1999). Parallel machine scheduling with

earliness and tardiness penalties. Computers & Operations Research 26(8):

773–787.

Srinivas, N. and Deb, K. (1994). Multi-objective optimization using nondominated

sorting in genetic algorithms. Evolutionary Computation 2: 221–248.

Strusevich, V.A. and Rustogi, K. (2017). Scheduling with time-changing effects and

rate-modifying activities, vol.243. International Series in Operations Research

& Management Science. Cham: Springer International Publishing.

http://link.springer.com/10.1007/978-3-319-39574-6.

Suresh, V. and Chaudhuri, D. (1996). Bicriteria scheduling problem for unrelated

parallel machines. Computers & Industrial Engineering 30(1): 77–82.

Tavakkoli-Moghaddam, R., Taheri, F. and Bazzazi, M. (2008). Multi-objective

unrelated parallel machines scheduling with sequence-dependent setup times

and precedence constraints. International Journal of Engineering -

Transactions A: Basics 21(3): 269-278.

Torabi, S.A., Sahebjamnia, N., Mansouri, S. A. and Bajestani, M.A. (2013). A particle

swarm optimization for a fuzzy multi-objective unrelated parallel machines

scheduling problem. Applied Soft Computing 13(12): 4750–4762.

Uma, R.N., Wein, J. and Williamson, D.P. (2006). On the relationship between

combinatorial and LP-based lower bounds for NP-hard scheduling problems.

Theoretical Computer Science 361(2). 241–256.

Unlu, Y. and Mason, S.J. (2010). Evaluation of mixed integer programming

formulations for non-preemptive parallel machine scheduling problems.

Comput. Ind. Eng. 58(4): 785–800.

Vallada, E. and Ruiz, R. (2011). A genetic algorithm for the unrelated parallel machine

scheduling problem with sequence dependent setup times. European Journal of

Operational Research 211(3): 612–622.

Veldhuizen, D.A.V. and Lamont, G.B. (2000). On measuring multi-objective

evolutionary algorithm performance. In Proceedings of the 2000 Congress on

Evolutionary Computation. CEC00 (Cat. No.00TH8512) Pp. 204–211 vol.1.

89

Wang, S. and Liu, M. (2015). Multi-objective optimization of parallel machine

scheduling integrated with multi-resources preventive maintenance planning.

Journal of Manufacturing Systems 37, Part 1: 182–192.

Weng, M.X., Lu, J. and Ren, H. (2001). Unrelated parallel machine scheduling with

setup consideration and a total weighted completion time objective.

International Journal of Production Economics 70(3): 215–226.

Wu, J. and Azarm, S. (2000). Metrics for quality assessment of a multi-objective

design optimization solution set. Journal of Mechanical Design 123(1): 18–25.

Xing, W. and Zhang, J. (2000). Parallel machine scheduling with splitting jobs. Discrete

Applied Mathematics 103(1–3): 259–269.

Yang, S-J. (2013). Unrelated parallel-machine scheduling with deterioration effects and

deteriorating multi-maintenance activities for minimizing the total completion

time. Applied Mathematical Modelling 37(5): 2995–3005.

Yazdani, M., Amiri, M. and Zandieh, M. (2010). Flexible job-shop scheduling with

parallel variable neighborhood search algorithm. Expert Systems with

Applications 37(1): 678–687.

Yeh, W-C., Chuang, M-C. and Lee, W-C. (2015). Uniform parallel machine scheduling

with resource consumption constraint. Applied Mathematical Modelling 39(8):

2131–2138.

Yeh, W-C., Lai, P-J., Lee, W-C. and Chuang, M-C. (2014). Parallel-machine scheduling

to minimize makespan with fuzzy processing times and learning effects.

Information Sciences 269: 142–158.

Yusoff, Y., Ngadiman, M.S. and Zain, A.M. (2011). Overview of NSGA-II for

optimizing machining process parameters. Procedia Engineering 15. CEIS

2011: 3978–3983.

Zhang, M. and Luo, C. (2013). Parallel-machine scheduling with deteriorating jobs,

rejection and a fixed non-availability interval. Applied Mathematics and

Computation 224: 405–411.

Zitzler, E., Laumanns, M. and Thiele, L. (2001). SPEA2: Improving the Strength Pareto

Evolutionary Algorithm. http://kdd.cs.ksu.edu/Courses/Spring-2007/ CIS830 /

Handouts/P8.pdf

APPENDIX A

Simulation results for second test problems to each algorithm for 5 machines and

20 jobs. The values of the best non-dominated front at generation 500 with number of

population are 100 and crossover probability 0.6 as given in APPENDIX A. Table 1.

APPENDIX A. Table 1 The values of the best non-dominated front

for 20 jobs to each algorithm at crossover probability 0.6

Appendix A.1. Solutions at run1

for 20 jobs (Crossover prob. 0.6)

Appendix A.2.Solutions at run 2

for 20 jobs (Crossover prob. 0.6)

Appendix A.3.Solutions at run 3

for 20 jobs (Crossover prob. 0.6)

0

5

10

15

20

25

20 70

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II

SJMCT-
SPEA-II

0

5

10

15

20

25

20 40 60

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II

SJMCT-
SPEA-II

0

5

10

15

20

25

20 30 40

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job
Crossover

probability

SJMCT- NSGA-II

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

1 20 0.6 25.021 10.590 23.496 19.752

 35.994 2.487 23.717 18.722

 31.792 6.433 27.585 10.272

 29.422 7.226 27.809 9.549

 26.970 17.568

 39.481 2.802

 29.906 7.988

 36.069 7.421

 37.767 3.207

2 20 0.6 36.556 1.501 24.120 19.202

 25.589 11.867 41.584 1.006

 25.786 5.658 26.543 15.684

 34.456 2.882 31.245 5.443

 34.463 3.556

 28.755 11.392

 36.421 2.981

3 20 0.6 33.437 1.307 24.976 20.661

 25.807 14.119 27.641 12.737

 25.986 1.339 37.578 4.470

 31.524 7.458

 37.366 5.660

 32.432 7.122

 30.530 11.831

 35.096 7.081

APPENDIX A. Table 1 (Continue) The values of the best non-dominated front

for 20 jobs to each algorithm at crossover probability 0.6

Appendix A.4. Solutions at run 4

for 20 jobs(Crossover prob. 0.6)

Appendix A.5. Solutions at run 5

for 20 jobs(Crossover prob. 0.6)

Appendix A.6.Solutions at run 6

for 20 jobs (Crossover prob. 0.6)

Appendix A.7.Solutions at run 7

for 20 jobs (Crossover prob. 0.6)

0

10

20

30

40

20 40

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

10

20

30

40

20 30 40 50
o

b
je

ct
iv

e
2

objective1

SJMCT-
NSGA-II

SJMCT-
SPEA-II

0

10

20

30

40

20 30 40

o
b

je
ct

iv
e

2

Objective1

SJMCT-
NSGA-II

SJMCT-
SPEA-II

0

10

20

30

20 30 40

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job
Crossover

probability

SJMCT- NSGA-II

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

4 20 0.6 25.620 7.221 24.479 29.934

 35.584 1.404 25.863 15.282

 28.848 3.104 37.128 2.054

 33.376 2.820 34.548 4.192

 29.064 11.643

 29.558 10.066

 33.551 5.989

 29.015 12.835

 31.767 8.807

5 20 0.6 26.918 31.410 25.090 20.867

 39.866 3.733 30.905 0.269

 27.405 12.943 28.151 10.735

 31.592 4.619 28.930 6.813

 29.870 9.353

 30.304 8.080

6 20 0.6 29.360 3.311 25.439 22.909

 24.366 30.934 26.322 14.422

 26.055 9.143 27.911 12.467

 31.340 3.688

 30.847 5.786

 29.581 9.851

7 20 0.6 26.183 22.040 25.224 29.298

 37.430 5.047 35.398 1.549

 32.107 5.230 27.448 9.878

 28.700 16.036 31.667 3.838

 29.159 10.500 29.118 6.381

 30.914 6.028 27.838 9.861

 29.807 9.226 30.847 4.944

 28.111 20.052 26.694 28.497

 28.474 18.516 26.965 20.485

 26.771 21.472

 29.673 9.989

APPENDIX A. Table 1 (Continue) The values of the best non-dominated front

for 20 jobs to each algorithm at crossover probability 0.6

Appendix A.8.Solutions at run 8

for 20 jobs (Crossover prob. 0.6)

Appendix A.9.Solutions at run 9

 for 20 jobs (Crossover prob. 0.6)

Appendix A.10.Solutions at run 10

for 20 jobs (Crossover prob. 0.6)

0

10

20

30

40

20 40 60

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

10

20

30

20 40 60

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

10

20

30

20 70

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job
Crossover

probability

SJMCT- NSGA-II

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

8 20 0.6 38.196 2.347 44.108 1.336

 26.028 29.290 26.523 2.812

 31.997 5.407

 28.205 9.432

 37.412 4.612

 26.381 19.747

 28.046 17.310

9 20 0.6 25.321 27.425 43.291 4.991

 35.420 0.593 40.109 5.936

 27.578 14.107 27.233 12.092

 25.798 27.216 30.980 6.219

 28.137 8.861 30.929 10.556

 33.479 8.213 30.505 11.855

 35.077 5.583

 27.603 11.448

 34.166 7.319

 33.554 7.412

10 20 0.6 46.032 1.265 25.374 5.488

 26.268 26.242 30.149 3.738

 32.011 4.117 37.530 2.945

 45.017 3.529

 26.445 10.488

 27.573 4.872

 27.201 7.199

Simulation results for second test problems to each algorithm for 5 machines and

60 jobs. The values of the best non-dominated front at generation 500 with number of

population are 100 and crossover probability 0.6 as given in APPENDIX A. Table 2.

APPENDIX A. Table 2 The values of the best Non-dominated front

for 60 jobs to each algorithm at crossover probability 0.6

Appendix A.11. Solutions at run 1

for 60 jobs (Crossover prob. 0.6)

Appendix A.12. Solutions at run 2

for 60 jobs (Crossover prob. 0.6)

Appendix A.13. Solutions at run 3

for 60 jobs (Crossover prob. 0.6)

0

50

100

150

200

0 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

80 130

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

60 160

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job
Crossover

probability

SJMCT- NSGA-II

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

1 60 0.6 121.113 59.114 91.587 78.141

 95.650 157.273 106.759 71.317

 98.355 108.603 113.615 69.618

 108.409 63.721

 101.888 102.758

 104.677 82.166

 103.079 94.841

 107.792 77.312

 104.072 89.047

 108.035 73.248

2 60 0.6 96.736 119.493 94.009 98.918

 105.499 68.327 96.218 87.134

 102.750 73.093 122.600 63.796

 98.352 82.241 93.975 107.597

 97.272 93.487 106.122 76.479

 105.219 80.293

 104.487 82.218

 117.126 69.234

 104.248 84.974

3 60 0.6 92.030 149.055 112.328 68.482

 100.803 72.282 99.014 87.615

 93.857 124.826 96.924 96.352

 97.739 78.066 105.360 74.060

 102.220 85.967

 104.823 76.788

 101.953 87.612

APPENDIX A. Table 2 (Continue) The values of the best Non-dominated front

for 60 jobs to each algorithm at crossover probability 0.6

Appendix A.14. Solutions at run 4

 for 60 jobs (Crossover prob. 0.6)

Appendix A.15.Solutions at run 5

for 60 jobs (Crossover prob. 0.6)

Appendix A.16. Solutions at run 6

for 60 jobs (Crossover prob. 0.6)

Appendix A.17.Solutions at run 7

 for 60 jobs (Crossover prob. 0.6)

0

20

40

60

80

100

50 150

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

20

40

60

80

100

60 160

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

50 150

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

50 150

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job
Crossover

probability

SJMCT- NSGA-II

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

4 60 0.6 94.642 93.708 93.984 86.393

 103.948 56.587 101.320 78.663

 117.544 68.344

 111.868 78.541

 114.928 77.468

5 60 0.6 93.347 85.354 96.814 77.332

 129.167 66.819 112.821 57.596

 105.110 74.072 100.306 76.899

 115.067 67.858 111.340 75.652

 107.053 70.942

6 60 0.6 121.290 69.968 105.385 52.590

 94.213 120.628 95.500 113.680

 95.976 94.404 97.644 106.724

 100.401 77.097 99.359 98.362

 107.462 71.268 104.217 76.864

 104.604 72.912 101.531 96.879

 102.772 90.545

7 60 0.6 95.857 139.358 91.216 66.180

 130.800 71.350

 104.574 72.307

 99.109 115.622

 101.735 81.098

 100.126 95.858

 101.239 95.627

APPENDIX A. Table 2 (Continue) The values of the best non-dominated front

for 60 jobs to each algorithm at crossover probability 0.6.

Appendix A.18.Solutions at run8

for 60 jobs (Crossover prob. 0.6)

Appendix A.19.Solutions at run 9

for 60 jobs (Crossover prob. 0.6)

Appendix A.20.Solutions at run 10

for 60 jobs (Crossover prob. 0.6)

0

50

100

150

80 100 120

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

50 150
o

b
je

ct
iv

e
2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

50 150

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II

SJMCT-
SPEA-II

Run Job
Crossover

probability

SJMCT- NSGA-II

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

8 60 0.6 94.336 104.296 96.095 93.662

 102.754 59.522 105.106 72.494

 102.155 90.233 104.461 78.103

 97.572 92.709 109.237 72.291

 104.307 85.480

9 60 0.6 93.808 118.336 127.836 70.998

 121.025 52.721 92.481 132.596

 120.227 71.409 121.189 72.247

 107.624 75.554 97.634 101.831

 98.222 100.635 114.165 75.737

 102.768 79.327 105.097 80.293

 100.862 91.676 100.887 97.045

 102.481 86.818

 111.800 80.194

 101.854 96.160

10 60 0.6 119.581 70.939 93.406 115.177

 86.839 101.173 95.474 87.660

 98.558 91.515 98.270 83.079

 108.070 86.177 101.747 67.711

 113.419 76.239 117.240 66.243

 112.000 79.988

 111.006 82.272

 113.069 78.986

 108.475 83.400

 109.380 82.740

Simulation results for second test problems to each algorithm for 5 machines and

100 jobs. The values of the best non-dominated front at generation 500 with number of

population are 100 and crossover probability 0.6 as given in APPENDIX A. Table 3.

APPENDIX A. Table 3 The values of the best Non-dominated front

for 100 jobs to each algorithm at crossover probability 0.6.

Appendix A.21. Solutions at run 1

for 100 jobs (Crossover prob. 0.6)

Appendix A.22. Solutions at run 2

for 100 jobs (Crossover prob. 0.6)

Appendix A.23. Solutions at run 3

for 100 jobs (Crossover prob. 0.6)

0

50

100

150

200

250

150 250

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

250

150 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

250

100 300

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job
Crossover

probability

SJMCT- NSGA-II

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

1 100 0.6 166.570 199.784 169.921 179.988

 204.570 133.042 197.226 145.079

 186.807 141.220 186.611 152.402

 170.260 185.250 186.402 169.524

 179.558 160.923 180.864 171.506

 181.668 159.463

2 100 0.6 164.236 157.312 180.764 162.159

 197.090 157.086 174.666 192.319

 185.072 160.156

 179.480 190.181

 174.270 225.228

3 100 0.6 173.692 140.047 163.607 208.228

 173.649 224.271 196.345 154.137

 173.575 179.472

 180.795 155.445

APPENDIX A. Table 3 (Continue): The values of the best Non-dominated front

for 100 jobs to each algorithm at crossover probability 0.6

Appendix A.24. Solutions at run 4

for 100 jobs (Crossover prob. 0.6)

Appendix A.25. Solutions at run 5

for 100 jobs (Crossover prob. 0.6)

Appendix A.26.Solutions at run 6

 for 100 jobs (Crossover prob. 0.6)

Appendix A.27.Solutions at run7

for 100 jobs (Crossover prob. 0.6)

0

50

100

150

200

250

100 300

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

250

160 170 180
o

b
je

ct
iv

e
2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

250

150 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

100

200

300

150 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job
Crossover

probability

SJMCT- NSGA-II

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

4 100 0.6 165.803 186.365 162.885 191.022

 197.053 153.142 169.108 168.015

 183.169 164.118 168.766 190.730

 182.350 178.628 188.067 151.104

 188.575 156.590 186.835 159.354

 175.139 181.452 184.177 166.857

 183.792 167.998

5 100 0.6 173.596 137.552 176.217 140.846

 171.493 217.320 169.939 225.698

 172.729 215.052 171.955 219.415

 173.145 212.482

 176.068 180.736

 174.496 195.294

6 100 0.6 172.674 219.376 168.961 192.934

 182.761 142.934 167.882 204.417

 175.380 183.000 168.692 200.662

 174.961 216.079 188.229 150.820

 181.139 159.952

 178.316 172.434

7 100 0.6 197.962 143.994 173.478 141.029

 172.523 240.573 172.240 259.055

 182.935 149.655 173.442 243.230

 180.414 183.039

 176.939 201.635

 175.541 217.850

 173.421 222.900

 178.639 188.585

APPENDIX A. Table 3 (Continue) The values of the best Non-dominated front

for 100 jobs to each algorithm at crossover probability 0.6

Appendix A.28.Solutions at run 8

for 100 jobs (Crossover prob. 0.6)

Appendix A.29.Solutions at run 9

for 100 jobs (Crossover prob. 0.6)

Appendix A.30.Solutions at run 10

 for 100 jobs (Crossover prob. 0.6)

0

50

100

150

200

250

100 300

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

250

150 250

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

250

100 300

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job
Crossover

probability

SJMCT- NSGA-II

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

8 100 0.6 168.075 226.019 164.324 193.095

 201.622 160.239 180.455 139.998

 172.487 200.299 172.984 192.372

 196.882 172.141 176.446 173.452

 186.693 172.449 175.268 184.221

 174.996 187.367

 200.634 164.065

 179.674 187.122

 184.861 185.782

 186.367 180.661

 185.507 183.130

9 100 0.6 169.695 221.387 216.391 154.145

 180.177 132.583 164.668 185.129

 172.349 189.802 173.275 184.790

 177.557 175.920 186.492 158.833

 177.549 181.623 178.630 178.511

 183.535 163.475

 183.046 164.301

10 100 0.6 168.075 226.019 209.848 132.051

 201.622 160.239 173.907 162.895

 172.487 200.299 187.358 146.989

 196.882 172.141 172.535 220.062

 186.693 172.449 182.465 157.111

 174.996 187.367

 200.634 164.065

 179.674 187.122

 184.861 185.782

 186.367 180.661

 185.507 183.130

APPENDIX B

Simulation results for second test problems to each algorithm for 5 machines and

20 jobs. The values of the best non-dominated front at generation 500 with number of

population are 100 and crossover probability 0.7 as given in APPENDIX B. Table 1.

APPENDIX B. Table 1 The values of the best non-dominated front

for 20 jobs to each algorithm at crossover probability 0.7

Appendix B.1. Solutions at run1

for 20 jobs (Crossover prob. 0.7)

Appendix B.2.Solutions at run 2

for 20 jobs (Crossover prob. 0.7)

Appendix B.3.Solutions at run 3

for 20 jobs (Crossover prob. 0.7)

0

10

20

30

20 40 60

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

10

20

30

40

25 30 35

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

5

10

15

20

25

20 40 60

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

probability

SJMCT- NSGA-II

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

1 20 0.7 35.349 0.000 27.316 7.933

 26.694 24.531 29.174 7.720

 30.125 3.813 27.295 18.160

 27.654 20.671 39.462 3.024

 27.912 10.350 31.639 3.831

 29.422 7.226

 28.787 9.299

2 20 0.7 26.326 29.389 31.368 1.278

 27.026 2.310 29.314 11.370

 26.662 25.616 26.299 26.816

 26.592 25.750 26.492 25.744

 30.764 10.742

 29.066 19.026

 27.306 23.990

 28.753 22.353

3 20 0.7 47.296 2.279 47.367 2.360

 25.508 8.475 40.858 4.864

 32.780 3.077 41.795 4.030

 39.749 2.954 26.289 11.877

 29.088 6.203 26.208 22.651

 32.164 6.001 29.760 5.225

 29.616 5.606

APPENDIX B. Table 1 (Continue) The values of the best non-dominated front

for 20 jobs to each algorithm at crossover probability 0.7

Appendix B.4. Solutions at run 4

for 20 jobs (Crossover prob. 0.7)

Appendix B.5. Solutions at run 5

for 20 jobs (Crossover prob. 0.7)

Appendix B.6.Solutions at run 6

for 20 jobs (Crossover prob. 0.7)

Appendix B.7.Solutions at run 7

for 20 jobs (Crossover prob. 0.7)

0

5

10

15

20

25

20 40 60

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

5

10

15

20

20 40
o

b
je

ct
iv

e
2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

5

10

15

20

25

20 40

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMC-
SPEA-II

0

10

20

30

40

50

20 30 40

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

probability

SJMCT- NSGA-II

Objective1Objective2

SJMCT-SPEA-II

Objective1Objective2

4 20 0.7 38.561 1.880 54.238 5.586

 27.460 22.330 23.892 21.201

 32.951 4.852 26.822 11.912

 27.826 18.097 26.394 14.579

 28.081 6.240 31.488 7.755

 29.616 5.606 37.649 6.039

 31.332 9.204

 36.143 6.896

5 20 0.7 24.558 13.880 24.740 14.883

 32.505 2.601 34.890 0.889

 30.314 5.804 27.104 10.639

 27.501 8.173 33.034 5.686

 25.052 9.836 32.915 8.865

 32.400 9.052

 32.298 10.534

6 20 0.7 36.113 2.126 33.788 0.703

 26.035 9.855 26.743 19.964

 32.971 5.980 28.096 14.956

 27.825 8.392 29.110 13.076

 32.871 7.677 30.444 8.328

 31.077 8.325

 31.717 7.229

 33.206 6.929

7 20 0.7 26.620 19.134 25.733 38.543

 32.796 0.236 28.923 0.168

 29.870 8.421 25.860 20.413

 27.746 16.808 26.602 12.800

 28.889 11.814 27.742 6.882

 29.010 10.393

APPENDIX B. Table 1 (Continue) The values of the best non-dominated front

for 20 jobs to each algorithm at crossover probability 0.7

Appendix B.8.Solutions at run 8

for 20 jobs (Crossover prob. 0.7)

Appendix B.9.Solutions at run 9

for 20 jobs (Crossover prob. 0.7)

Appendix B.10.Solutions at run 10

for 20 jobs (Crossover prob. 0.7)

0

10

20

30

40

20 40

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

10

20

30

40

50

20 70
o

b
je

ct
iv

e
2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

5

10

15

20

25

20 40

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

probability

SJMCT- NSGA-II

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

8 20 0.7 26.810 33.407 24.309 11.039

 29.864 0.000 27.249 8.499

 28.289 14.942 35.220 2.341

 27.323 22.863

 28.255 15.589

 26.984 32.408

9 20 0.7 49.599 4.941 27.277 44.478

 26.308 33.355 27.780 11.708

 27.292 10.162 31.207 2.975

 36.636 5.448

 32.850 6.508

 30.529 8.759

 30.846 6.706

 30.626 7.825

10 20 0.7 37.783 2.990 26.925 18.643

 23.587 22.591 35.531 5.891

 27.787 7.499 29.294 17.007

 34.152 6.055 30.322 10.937

 30.196 12.107

 35.450 6.979

 30.949 10.711

 31.506 9.408

 33.400 8.355

Simulation results for second test problems to each algorithm for 5 machines and

60 jobs. The values of the best non-dominated front at generation 500 with number of

population are 100 and crossover probability 0.7 as given in APPENDIX B. Table 2.

APPENDIX B. Table 2 The values of the best non-dominated front

for 60 jobs to each algorithm at crossover probability 0.7

Appendix B.11. Solutions at run 1

for 60 jobs (Crossover prob. 0.7)

Appendix B.12. Solutions at run 2

for 60 jobs (Crossover prob. 0.7)

Appendix B.13. Solutions at run 3

 for 60 jobs (Crossover prob. 0.7)

0

50

100

150

50 150

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

20

40

60

80

100

50 150

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

80 130

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

probability

SJMCT- NSGA-II

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

1 60 0.7 104.821 63.836 94.736 110.466

 93.275 88.818 95.634 101.489

 102.093 82.724 96.236 97.437

 101.040 88.182 100.119 83.699

 101.583 83.964 111.988 69.860

 110.708 70.256

2 60 0.7 88.232 86.529 93.853 90.203

 112.694 69.091 121.512 63.301

 105.031 84.060 104.070 69.677

 112.155 74.504

 96.594 86.109

3 60 0.7 126.743 67.194 110.099 62.376

 95.522 127.240 97.348 120.363

 98.328 115.203 100.938 78.687

 123.127 73.341 97.871 106.802

 117.979 74.563 109.121 75.191

 114.370 80.390 107.278 77.507

 100.138 100.987

 102.166 90.880

 109.918 80.521

 107.388 83.809

 106.586 87.785

 99.376 109.938

 103.177 89.012

 100.024 105.288

APPENDIX B. Table 2 (Continue) The values of the best non-dominated front

for 60 jobs to each algorithm at crossover probability 0.7

Appendix B.14. Solutions at run 4

for 60 jobs (Crossover prob. 0.7)

Appendix B.15.Solutions at run 5

for 60 jobs (Crossover prob. 0.7)

Appendix B.16. Solutions at run 6

for 60 jobs (Crossover prob. 0.7)

0

50

100

150

50 150

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

50 150

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

50 150

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

probability

SJMCT- NSGA-II

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

4 60 0.7 95.711 100.573 109.535 43.770

 123.767 61.925 100.042 60.636

 105.886 62.106 96.653 140.600

 103.708 81.848 98.387 92.795

 100.808 92.271 97.641 107.435

 97.283 95.851

 100.124 93.305

 96.719 97.846

5 60 0.7 96.585 157.090 95.372 101.970

 114.992 57.673 99.469 84.920

 107.080 61.193 97.835 99.634

 97.920 134.544 98.981 94.320

 104.826 64.605 106.818 72.468

 101.909 74.830 111.545 67.915

 99.853 106.974

 100.687 90.037

 98.555 119.295

 101.667 87.142

 99.175 118.722

6 60 0.7 120.788 70.258 125.732 54.494

 94.750 93.850 93.680 127.881

 110.357 79.038 113.180 55.789

 102.415 88.287 98.275 71.530

 104.611 85.555 94.986 111.597

 109.366 81.749 103.471 67.708

 109.831 79.707

APPENDIX B. Table 2 (Continue) The values of the best non-dominated front

for 60 jobs to each algorithm at crossover probability 0.7

Appendix B.17.Solutions at run 7

for 60 jobs (Crossover prob. 0.7)

Appendix B.18.Solutions at run 8

for 60 jobs (Crossover prob. 0.7)

Appendix B.19. Solutions at run 9

for 60 jobs (Crossover prob. 0.7)

Appendix B.20. Solutions at run 10

for 60 jobs (Crossover prob. 0.7)

0

50

100

150

80 130

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

20

40

60

80

100

80 130

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

80 130

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

80 130

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGA-II

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

7 60 0.7 116.783 70.433 126.473 64.645

 97.160 122.815 98.318 85.456

 108.297 72.102 117.757 71.607

 104.648 85.178 99.552 84.048

 97.615 112.242 105.423 81.803

 102.500 98.843 110.261 75.910

 107.672 78.981

 100.181 106.322

 103.509 93.072

 100.462 100.422

 98.910 110.857

 103.899 88.059

 107.755 78.559

8 60 0.7 117.956 58.393 119.014 45.700

 90.333 80.200 93.884 77.963

 109.607 79.081 110.947 68.540

 108.545 76.742

9 60 0.7 94.513 83.359 95.165 103.567

 113.399 65.838 110.813 62.456

 105.140 80.587 101.025 74.916

 107.322 70.116 103.840 71.533

 99.907 96.333

 99.582 102.918

10 60 0.7 114.906 61.809 121.246 62.761

 96.807 139.091 95.657 101.199

 114.228 75.201 98.204 90.054

 99.880 78.033 120.661 75.396

 97.359 128.988 119.514 76.812

 98.828 79.489 111.184 79.298

 98.528 106.423 110.566 80.940

 98.361 110.574 103.144 88.759

 110.255 84.073

 109.743 88.105

Simulation results for second test problems to each algorithm for 5 machines and

100 jobs. The values of the best non-dominated front at generation 500 with number of

population are 100 and crossover probability 0.7 as given in APPENDIX B. Table 3.

APPENDIX B. Table 3 The values of the best non-dominated front

for 100 jobs to each algorithm at crossover probability 0.7

Appendix B.21. Solutions at run 1

for 100 jobs (Crossover prob. 0.7)

Appendix B.22. Solutions at run 2 for

100 jobs (Crossover prob. 0.7)

Appendix B.23. Solutions at run 3

for 100 jobs (Crossover prob. 0.7)

0

50

100

150

200

250

100 300

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

250

150 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

250

100 300

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGA-II

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

1 100 0.7 195.765 149.480 211.794 146.034

 168.559 206.506 162.763 220.543

 177.587 153.048 175.186 158.695

 174.221 192.986 172.312 209.608

 177.113 170.523 185.070 154.951

 175.205 177.084 173.394 203.838

2 100 0.7 161.546 187.237 183.002 139.518

 179.671 145.442 174.934 157.491

 175.169 184.582 173.422 215.603

 179.369 169.824

 177.771 181.086

3 100 0.7 219.205 147.972 175.856 172.820

 168.796 188.493 183.376 154.564

 170.338 151.360 179.779 168.164

 173.768 231.295

 182.464 162.714

APPENDIX B. Table 3 (Continue) The values of the best non-dominated front

for 100 jobs to each algorithm at crossover probability 0.7

Appendix B.24. Solutions at run 4

for 100 jobs (Crossover prob. 0.7)

Appendix B.25. Solutions at run 5

for 100 jobs (Crossover prob. 0.7)

Appendix B.26. Solutions at run 6

for 100 jobs (Crossover prob. 0.7)

 Appendix B.27. Solutions at run 7

for 100 jobs (Crossover prob. 0.7)

0

100

200

300

150 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

250

100 200
o

b
je

ct
iv

e
2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

100

200

300

150 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

250

160 180 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGA-II

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

4 100 0.7 168.035 250.868 188.039 136.148

 176.719 121.874 169.642 200.106

 171.584 221.218 169.569 218.936

 174.535 171.715 171.612 186.237

 173.614 186.765 184.999 147.286

 174.114 183.745 182.927 156.032

 174.465 180.301 181.780 170.198

 177.846 182.822

 181.184 173.211

5 100 0.7 168.985 203.541 170.8106 152.9715

 190.198 138.152 169.4504 186.2566

 180.741 149.697

 176.796 175.736

 173.119 194.338

 174.118 175.974

6 100 0.7 170.483 250.180 174.008 166.189

 194.511 129.883 171.712 183.469

 187.244 166.395 197.149 149.378

 194.115 156.077 187.971 155.872

 177.811 174.764

 172.877 205.187

 176.764 185.551

 175.343 192.837

 173.716 200.551

7 100 0.7 180.215 155.091 168.173 125.815

 169.498 227.551

 175.582 168.273

 170.997 196.467

APPENDIX B. Table 3 (Continue) The values of the best non-dominated front

for 100 jobs to each algorithm at crossover probability 0.7

Appendix B.28. Solutions at run 8

for 100 jobs (Crossover prob. 0.7)

Appendix B.29. Solutions at run 9

for 100 jobs (Crossover prob. 0.7)

Appendix B.30. Solutions at run 10

for 100 jobs (Crossover prob. 0.7)

0

50

100

150

200

250

150 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

250

140 240

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

100

200

300

140 240

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGA-II

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

8 100 0.7 168.067 228.949 159.274 171.999

 188.933 152.204 171.977 163.081

 173.849 167.712 190.406 144.374

 169.546 212.066 179.004 160.929

 183.365 164.022

9 100 0.7 194.866 157.437 159.966 133.284

 168.208 217.341

 170.058 188.475

 175.217 168.367

 188.343 165.171

 189.615 158.403

 188.505 164.840

10 100 0.7 172.373 263.051 197.340 144.029

 207.212 150.433 177.919 153.691

 173.164 169.816 167.037 221.806

 197.062 155.746 173.249 193.417

 191.467 169.086 174.307 191.163

 192.020 168.820

APPENDIX C

Simulation results for second test problems to each algorithm for 5 machines and

20 jobs. The values of the best non-dominated front at generation 500 with number of

population are 100 and crossover probability 0.8 as given in APPENDIX C. Table 1.

APPENDIX C. Table 1 The values of the best non-dominated front

for 20 jobs to each algorithm at crossover probability 0.8

Appendix C.1. Solutions at run 1

for 20 jobs (Crossover prob. 0.8)

Appendix C.2. Solutions at run 2

for 20 jobs (Crossover prob. 0.8)

Appendix C.3. Solutions at run 3

for 20 jobs (Crossover prob. 0.8)

0

10

20

30

40

20 30 40 50

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II

SJMCT-
SPEA-II

0

10

20

30

20 40

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

1

2

3

4

5

20 40

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGAII

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

1 20 0.8 27.756 30.153 24.148 21.409

 45.806 3.364 25.991 12.191

 27.924 11.564 27.100 9.332

 31.691 7.364 26.480 11.940

 38.241 7.336 30.670 1.102

 29.104 10.719

 44.235 4.510

 41.432 6.310

 43.038 6.021

 39.202 6.498

2 20 0.8 25.910 23.951 34.031 0.516

 36.599 0.291 26.616 20.258

 27.522 12.080 27.108 14.707

 33.635 2.444 28.325 14.465

 27.093 20.210 30.348 9.915

 32.751 11.687 28.825 13.012

 32.956 9.528 32.052 8.030

 33.348 7.218

 30.169 12.736

3 20 0.8 26.596 2.127 22.212 3.966

 34.755 0.705 36.142 0.504

APPENDIX C. Table 1 (Continue) The values of the best non-dominated front

for 20 jobs to each algorithm at crossover probability 0.8

 Appendix C.4. Solutions at run 4

for 20 jobs (Crossover prob. 0.8)

 Appendix C.5. Solutions at run 5

for 20 jobs (Crossover prob. 0.8)

 Appendix C.6. Solutions at run 6

for 20 Jobs (Crossover prob. 0.8)

 Appendix C.7. Solutions at run 7

for 20 jobs (Crossover prob. 0.8)

0

5

10

15

20

20 40

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II

SJMCT-
SPEA-II

0

10

20

30

20 70
o

b
je

ct
iv

e
2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

5

10

15

20 70

o
b

je
ct

iv
e

2

objectiive1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

10

20

30

20 30 40

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II

SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGAII

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

4 20 0.8 37.473 2.820 25.305 15.895

 24.031 9.746 31.579 3.252

 30.740 5.042 37.944 2.110

 27.274 8.220 31.299 5.774

 36.310 4.624 29.904 12.865

 30.203 11.994

 30.544 11.610

5 20 0.8 24.553 27.758 49.307 3.528

 45.617 4.014 27.609 9.561

 26.734 20.077 37.012 4.758

 36.204 4.722 26.128 27.909

 28.883 16.537 36.219 5.504

 29.008 12.661 33.458 5.937

 30.555 9.393 34.253 5.901

 33.099 8.995 32.024 7.189

 35.333 6.891

6 20 0.8 43.204 2.207 29.602 8.560

 25.272 9.910 27.812 13.319

 30.972 2.341 31.042 7.659

 36.369 4.804

7 20 0.8 25.792 12.175 26.244 14.419

 31.934 0.549 28.773 6.242

 30.011 6.292 30.269 3.551

 26.888 9.320 25.981 19.801

 28.877 8.962

 29.400 6.916

APPENDIX C. Table 1 (Continue) The values of the best non-dominated front

for 20 jobs to each algorithm at crossover probability 0.8

Appendix C.8. Solutions at run 8

for 20 jobs (Crossover prob. 0.8)

 Appendix C.9. Solutions at run 9

for 20 jobs (Crossover prob. 0.8)

Appendix C.10. Solutions at run 10

for 20 jobs (Crossover prob. 0.8)

0

10

20

30

40

20 30 40

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

10

20

30

25 45
o

b
je

ct
iv

e
2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

5

10

15

20

20 40 60

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGAII

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

8 20 0.8 32.140 3.632 24.321 30.224

 23.547 26.644 27.671 3.505

 27.970 19.526 26.241 20.964

 28.236 7.340 36.013 1.624

 27.990 13.498 27.409 11.932

 26.726 14.570

9 20 0.8 38.148 3.560 29.692 0.000

 26.050 14.827 26.167 13.229

 26.897 3.938 25.690 24.263

10 20 0.8 47.687 4.004 44.876 3.044

 23.893 10.535 23.319 15.931

 29.616 4.191 26.285 12.983

 27.412 11.086

 29.139 7.102

 30.325 4.987

 36.531 3.695

Simulation results for second test problems to each algorithm for 5 machines and

60 jobs. The values of the best non-dominated front at generation 500 with number of

population are 100 and crossover probability 0.8 as given in APPENDIX C. Table 2.

APPENDIX C. Table 2 The values of the best non-dominated front

for 60 jobs to each algorithm at crossover probability 0.8

 Appendix C.11. Solutions at run 1

for 60 jobs (Crossover prob. 0.8)

Appendix C.12. Solutions at run 2

for 60 jobs (Crossover prob. 0.8)

 Appendix C.13. Solutions at run 3

for 60 jobs (Crossover prob. 0.8)

0

50

100

150

80 100 120

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

80 130

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

80 130

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGAII

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

1 60 0.8 110.691 57.063 110.019 53.667

 96.414 68.981 107.844 60.935

 106.689 67.534 97.786 98.376

 108.864 64.371 97.304 120.473

 103.522 78.553

 102.406 85.020

2 60 0.8 118.016 58.020 94.131 110.563

 95.292 112.492 101.802 80.294

 100.920 65.539 98.886 93.964

 98.651 97.249 113.262 73.713

 106.106 76.860

3 60 0.8 105.817 67.444 118.229 63.539

 93.143 77.321 97.784 96.745

 99.484 75.261 100.238 91.977

 105.109 73.068 108.106 75.668

 101.277 90.487

 105.060 81.841

APPENDIX C. Table 2 (Continue) The values of the best non-dominated front

for 60 jobs to each algorithm at crossover probability 0.8

Appendix C.14. Solutions at run 4

for 60 jobs (Crossover prob. 0.8)

Appendix C.15. Solutions at run 5

for 60 Jobs (Crossover prob. 0.8)

Appendix C.16. Solutions at run 6

for 60 Jobs (Crossover prob. 0.8)

Appendix C.17. Solutions at run 7

for 60 Jobs (Crossover prob. 0.8)

0

50

100

150

80 100 120

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

80 130
o

b
je

ct
iv

e
2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

20

40

60

80

100

80 130

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

80 130

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGAII

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

4 60 0.8 112.710 71.439 107.054 52.310

 94.917 103.558 97.977 74.004

 99.912 102.954 96.555 86.674

 101.148 86.432 95.371 97.978

 107.942 78.188

 104.382 85.138

 107.220 83.997

5 60 0.8 94.377 111.498 95.207 76.120

 124.948 62.048 106.831 66.101

 106.088 71.659

 117.021 63.655

 99.447 100.689

 112.337 69.268

 104.858 85.394

 102.366 96.855

 104.142 91.383

6 60 0.8 92.095 77.846 92.873 84.013

 105.490 69.593 121.881 57.242

 99.031 75.675 106.993 61.183

 102.427 72.133 100.664 82.780

 106.909 73.468

7 60 0.8 94.431 101.871 126.818 57.971

 120.545 76.415 97.782 67.947

 107.271 76.997 109.599 67.742

 102.177 93.348 96.947 108.692

 103.358 83.007

 117.692 76.980

 104.125 81.518

 98.149 100.060

 102.074 99.599

 102.084 95.992

APPENDIX C. Table 2 (Continue) The values of the best non-dominated front

for 60 jobs to each algorithm at crossover probability 0.8

 Appendix C.18. Solutions at run 8

for 60 jobs (Crossover prob. 0.8)

 Appendix C.19. Solutions at run 9

for 60 jobs (Crossover prob. 0.8)

Appendix C.20. Solutions at run 10

for 60 jobs (Crossover prob. 0.8)

0

50

100

150

80 100 120

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

20

40

60

80

100

80 100 120

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

80 130

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGAII

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

8 60 0.8 103.377 66.503 95.593 61.327

 92.764 109.257

 93.986 84.206

 102.774 80.638

9 60 0.8 98.510 85.615 96.719 71.760

 107.322 70.116 107.457 57.846

 102.727 82.378 103.301 68.160

10 60 0.8 107.561 68.425 97.238 79.379

 93.571 104.359 114.118 66.122

 101.662 76.839 108.004 72.850

 99.412 93.131 107.784 75.447

 94.873 99.110

 97.583 93.989

Simulation results for second test problems to each algorithm for 5 machines and

100 jobs. The values of the best non-dominated front at generation 500 with number of

population are 100 and crossover probability 0.8 as given in APPENDIX C. Table 3.

APPENDIX C. Table 3 The values of the best non-dominated front

for 100 jobs to each algorithm at crossover probability 0.8

Appendix C.21. Solutions at run 1

for 100 jobs (Crossover prob. 0.8)

Appendix C.22. Solutions at run 2

for 100 jobs (Crossover prob. 0.8)

Appendix C.23. Solutions at run 3 for

100 jobs (Crossover prob. 0.8)

0

50

100

150

200

250

160 180 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

250

150 250

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

250

150 250

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGAII

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

1 100 0.8 167.181 223.981 180.245 152.963

 184.241 132.031 175.445 208.761

 170.738 192.467 178.668 179.920

 177.539 181.610 175.671 205.708

 180.946 166.259 178.566 181.728

 180.234 173.797 176.878 188.460

 176.319 204.967

2 100 0.8 208.500 156.305 186.035 138.621

 168.239 201.794 173.733 187.047

 170.015 172.043 172.179 206.551

 169.031 195.586 184.189 161.852

 179.995 168.434 183.717 181.496

 200.213 159.730 184.145 175.399

 191.119 168.081 183.667 184.551

 192.386 161.834

3 100 0.8 169.683 208.324 203.295 146.663

 191.280 123.328 168.859 193.933

 182.548 159.932 175.436 161.187

 177.989 179.645 179.456 158.189

 174.104 184.732 171.532 192.017

 170.914 202.469 173.896 176.520

 173.690 180.186

APPENDIX C. Table 3 (Continue) The values of the best non-dominated front

for 100 jobs to each algorithm at crossover probability 0.8

Appendix C.24. Solutions at run 4

for 100 jobs (Crossover prob. 0.8)

Appendix C.25. Solutions at run 5

for 100 jobs (Crossover prob. 0.8)

Appendix C.26. Solutions at run 6

for 100 jobs (Crossover prob. 0.8)

Appendix C.27. Solutions at run 7

for 100 jobs (Crossover prob. 0.8)

0

50

100

150

200

250

150 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

100

200

300

0 500
o

b
je

ct
iv

e
2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

100

200

300

160 180 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

100

200

300

150 200 250

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGAII

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

4 100 0.8 186.402 121.310 167.042 199.407

 172.032 164.179 169.504 189.299

 185.014 151.948 195.911 156.803

 172.268 187.619

 184.266 161.548

 180.458 172.799

 182.462 169.136

 179.970 179.497

 179.316 182.870

5 100 0.8 168.231 242.052 162.387 188.046

 185.719 142.625 170.811 152.972

 170.388 194.631 167.727 182.930

 180.994 192.664 197.508 131.297

 183.524 164.242

 183.111 185.356

 183.243 175.480

 183.208 182.291

6 100 0.8 181.743 159.591 185.988 147.358

 172.277 281.347 175.539 162.857

 172.607 201.433 171.060 188.972

 178.290 166.750 175.190 175.216

 174.206 180.669

 181.728 166.439

 173.904 188.020

7 100 0.8 199.247 157.870 171.263 209.356

 170.060 257.022 175.684 187.488

 172.845 216.095 173.356 200.789

 188.565 162.844 187.748 164.369

 181.785 169.867 190.736 160.308

 174.708 183.809 180.270 182.152

 195.685 161.193 186.786 170.837

 174.475 209.376 182.898 180.932

 177.473 172.368 185.438 176.055

 176.677 174.668

APPENDIX C. Table 3 (Continue) The values of the best non-dominated front

for 100 jobs to each algorithm at crossover probability 0.8

Appendix C.28. Solutions at run 8

for 100 jobs (Crossover prob. 0.8)

Appendix C.29. Solutions at run 9

for 100 jobs (Crossover prob. 0.8)

Appendix C.30. Solutions at run 10

for 100 jobs (Crossover prob. 0.8)

0

50

100

150

200

250

150 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

250

150 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

100

200

300

150 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGAII

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

8 100 0.8 184.082 142.091 168.038 202.511

 168.553 205.494 172.107 190.587

 175.008 158.749 181.256 163.603

 189.133 156.594

 177.029 189.236

 180.650 184.174

 180.526 187.098

9 100 0.8 171.669 221.829 170.232 153.558

 195.960 107.876 179.857 136.991

 184.813 160.956

 174.087 183.654

 181.708 180.284

 176.094 180.315

 183.363 161.251

10 100 0.8 166.852 217.187 171.941 260.636

 176.699 130.593 172.104 197.130

 169.577 187.489 172.366 189.946

 187.219 155.847

 184.768 159.561

 175.336 184.513

 178.478 172.996

 175.719 184.029

 178.439 173.668

APPENDIX D

Simulation results for second test problems to each algorithm for 5 machines and

20 jobs. The values of the best non-dominated front at generation 500 with number of

population are 100 and crossover probability 0.9 as given in APPENDIX D. Table 1.

APPENDIX D. Table 1 The values of the best non-dominated front

for 20 jobs to each algorithm at crossover probability 0.9

Appendix D.1. Solutions at run 1

for 20 jobs (Crossover prob. 0.9)

Appendix D.2. Solutions at run 2

for 20 jobs (Crossover prob. 0.9)

Appendix D.3. Solutions at run 3

for 20 jobs (Crossover prob. 0.9)

0

10

20

30

0 20 40 60

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

5

10

15

20

0 50 100

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

10

20

30

40

0 50

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGAII

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

1 20 0.9 26.570 24.081 23.485 9.939

 39.718 2.854 28.446 5.894

 33.289 5.249 32.413 4.019

 27.654 20.671

 28.705 12.818

 32.686 7.557

 29.209 10.389

2 20 0.9 24.772 9.536 22.344 15.560

 47.650 1.268 29.188 9.912

 33.767 4.269 31.331 6.781

 29.281 7.928 34.343 5.371

 33.217 7.524

 33.134 7.904

3 20 0.9 23.909 22.752 26.157 35.216

 37.137 1.098 26.479 35.075

 26.485 5.490 40.520 3.771

 32.694 1.669 39.545 5.182

 25.483 12.652 27.786 27.253

 24.485 18.908 39.427 5.858

 27.867 21.083

 31.789 6.422

 30.062 13.221

 28.523 19.016

 30.778 12.669

 29.365 15.828

 31.254 11.997

APPENDIX D. Table 1 (Continue) The values of the best non-dominated front

for 20 jobs to each algorithm at crossover probability 0.9

Appendix D.4. Solutions at run 4

for 20 jobs (Crossover prob. 0.9)

Appendix D.5. Solutions at run 5

for 20 jobs (Crossover prob. 0.9)

Appendix D.6. Solutions at run 6

for 20 jobs (Crossover prob. 0.9)

0

10

20

30

40

0 50

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

10

20

30

0 50

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

5

10

15

20

25

0 50

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGAII

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

4 20 0.9 26.059 19.242 45.139 3.363

 47.080 3.623 43.374 3.770

 26.362 10.519 28.304 15.565

 39.018 4.507 26.910 30.484

 27.124 7.129 37.723 4.176

 30.719 6.710 27.860 18.948

 36.239 5.831 35.038 4.222

 33.568 6.162 27.557 28.116

 30.100 14.075

 31.810 9.471

 33.215 8.002

 31.937 9.073

 31.734 12.306

5 20 0.9 22.282 14.129 23.544 24.280

 35.610 3.946 25.452 21.184

 29.981 8.813 29.849 8.006

 30.332 4.987 27.945 13.517

 33.444 3.126

 27.717 14.650

 30.592 7.425

6 20 0.9 42.229 2.322 24.585 20.119

 26.202 15.028 26.089 17.564

 37.863 5.197 26.931 15.336

 31.774 9.059 34.377 2.707

 32.715 5.533 30.073 6.436

 29.270 11.556 34.216 6.160

 27.997 13.061 32.708 6.165

 29.268 10.813

 29.205 15.204

 32.125 6.392

APPENDIX D. Table 1 (Continue) The values of the best non-dominated front

for 20 jobs to each algorithm at crossover probability 0.9

Appendix D.7. Solutions at run 7

for 20 jobs (Crossover prob. 0.9)

Appendix D.8. Solutions at run 8

for 20 jobs (Crossover prob. 0.9)

Appendix D.9. Solutions at run 9

for 20 jobs (Crossover prob. 0.9)

Appendix D.10. Solutions at run 10

for 20 jobs (Crossover prob. 0.9)

0

10

20

30

40

0 50

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

10

20

30

40

50

0 50

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

10

20

30

40

0 100

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

10

20

30

40

0 50

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGAII

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

7 20 0.9 35.803 4.660 26.590 33.258

 24.860 17.092 38.600 2.857

 30.601 6.696 27.285 6.436

 28.806 14.102 27.150 26.220

 29.485 12.286

 34.102 6.461

8 20 0.9 39.910 6.028 22.923 6.057

 27.308 39.478 25.266 2.576

 27.563 29.159 29.303 0.609

 27.990 13.498

 31.701 8.582

 35.699 6.535

 35.070 7.123

 29.589 9.976

 28.494 10.683

9 20 0.9 38.323 3.872 48.362 5.475

 21.732 8.815 42.058 5.573

 29.700 7.471 24.398 33.479

 33.042 6.763 24.692 26.776

 34.601 4.475 40.239 6.253

 33.197 5.502 27.951 12.557

 34.000 4.901 32.012 6.850

 30.587 10.232

10 20 0.9 40.352 3.684 26.176 31.609

 25.667 28.681 33.541 3.544

 27.639 8.317 37.959 2.669

 26.345 26.871 33.393 5.021

 32.802 5.069 29.677 9.382

 30.977 5.399 28.089 13.317

 27.446 19.573

 30.995 8.900

 27.687 17.877

Simulation results for second test problems to each algorithm for 5 machines and

60 jobs. The values of the best non-dominated front at generation 500 with number of

population are 100 and crossover probability 0.9 as given in APPENDIX D. Table 2.

APPENDIX D. Table 2 The values of the best non-dominated front

for 60 jobs to each algorithm at crossover probability 0.9

Appendix D.11. Solutions at run 1

for 60 jobs (Crossover prob. 0.9)

Appendix D.12. Solutions at run 2

for 60 jobs (Crossover prob. 0.9)

Appendix D.13. Solutions at run 3

for 60 jobs (Crossover prob. 0.9)

0

50

100

150

80 130

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

50 150

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

0 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGAII

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

1 60 0.9 97.116 121.903 112.674 55.712

 117.669 70.647 100.471 73.837

 102.218 72.547 95.291 113.669

 101.264 95.724 98.359 99.067

 98.870 111.135

 100.098 103.991

2 60 0.9 108.787 56.472 101.230 77.220

 92.017 56.968 102.978 75.268

 97.926 128.804

 114.463 68.088

 107.451 73.593

 98.486 106.439

 112.355 72.243

 99.916 100.958

3 60 0.9 95.972 113.360 125.316 65.126

 109.267 70.717 105.268 71.752

 99.287 90.067 109.489 71.034

 102.246 72.364 96.951 117.546

 101.183 83.354 101.093 86.099

 101.512 72.535 103.716 81.783

 99.965 99.425

 100.785 97.526

APPENDIX D. Table 2 (Continue) The values of the best non-dominated front

for 60 jobs to each algorithm at crossover probability 0.9

Appendix D.14. Solutions at run 4

for 60 jobs (Crossover prob. 0.9)

Appendix D.15. Solutions at run 5

for 60 jobs (Crossover prob. 0.9)

Appendix D.16. Solutions at run 6

for 60 jobs (Crossover prob. 0.9)

Appendix D.17. Solutions at run 7

for 60 jobs (Crossover prob. 0.9)

0

50

100

150

0 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

80 100 120

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

0 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

80 100 120

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGAII

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

4 60 0.9 93.911 95.833 143.796 70.767

 114.805 59.378 100.910 79.636

 103.604 65.993 98.353 98.380

 95.419 91.977 108.753 78.098

 109.729 76.038

5 60 0.9 112.299 63.041 95.506 73.847

 96.345 122.419 95.207 76.120

 99.247 73.423 109.543 67.243

 99.152 99.641 105.807 72.612

 97.784 110.822

 98.156 110.355

6 60 0.9 112.906 63.551 91.914 110.917

 93.049 89.641 114.309 61.681

 108.761 74.976 111.617 65.201

 104.648 87.766 96.630 101.504

 106.483 77.776 100.601 82.861

 98.873 88.101 102.510 77.903

 107.506 72.886

 100.353 87.158

 100.067 94.462

7 60 0.9 114.381 55.745 96.475 97.806

 96.304 119.803 96.442 113.969

 100.410 72.050 108.414 70.467

 112.377 67.623 101.478 91.358

 97.683 91.868 104.240 88.332

 108.382 81.154

APPENDIX D. Table 2 (Continue) The values of the best non-dominated front

for 60 jobs to each algorithm at crossover probability 0.9

Appendix D.18. Solutions at run 8

for 60 jobs (Crossover prob. 0.9)

Appendix D.19. Solutions at run 9

for 60 jobs (Crossover prob. 0.9)

Appendix D.20. Solutions at run 10 for 60

jobs (Crossover prob. 0.9)

0

50

100

150

200

0 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

0 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
NSGA-II

0

50

100

150

0 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGAII

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

8 60 0.9 97.330 161.927 95.576 169.399

 123.597 65.153 117.725 65.147

 98.000 110.167 96.257 138.969

 113.816 72.465 96.803 107.744

 106.484 72.814 108.387 67.545

 98.261 88.331 98.337 107.591

 104.433 84.527 104.832 75.018

 101.458 86.178 100.214 95.240

 102.816 85.286 102.798 89.124

9 60 0.9 96.495 124.232 97.547 138.893

 117.927 56.965 99.002 78.352

 97.526 82.584 120.244 69.739

 110.500 60.050 103.464 75.460

 103.053 68.128 98.818 105.451

 101.134 68.853 97.845 123.927

 108.736 72.484

 98.720 122.473

10 60 0.9 121.585 74.875 93.931 98.276

 94.058 126.058 100.198 88.855

 106.398 75.796 102.593 84.115

 100.520 77.234 111.585 73.364

 96.797 110.927 106.923 77.016

 97.909 97.459 107.551 76.741

 97.268 100.710 106.095 79.775

 97.781 98.680

Simulation results for second test problems to each algorithm for 5 machines and

100 jobs. The values of the best non-dominated front at generation 500 with number of

population are 100 and crossover probability 0.9 as given in APPENDIX D. Table 3.

APPENDIX D. Table 3 The values of the best non-dominated front

for 100 jobs to each algorithm at crossover probability 0.9

Appendix D.21. Solutions at run 1

for 100 jobs (Crossover prob. 0.9)

Appendix D.22. Solutions at run 2

for 100 jobs (Crossover prob. 0.9)

Appendix D.23. Solutions at run 3

for 100 jobs (Crossover prob. 0.9)

0

50

100

150

200

250

160 180 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

250

150 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

100

200

300

150 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGAII

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

1 100 0.9 170.778 191.703 172.250 171.500

 184.749 121.926 181.295 148.558

 184.089 152.129

 176.746 161.185

 176.479 177.755

 175.133 189.760

 180.493 157.327

 183.259 156.085

 179.558 160.923

 176.240 189.364

2 100 0.9 186.949 149.363 187.052 141.244

 168.717 205.322 171.709 172.688

 182.186 167.718

 176.327 197.191

 177.980 183.813

 178.099 172.151

 176.394 192.292

 181.272 169.741

3 100 0.9 173.816 256.091 164.814 187.278

 193.809 140.604 188.426 147.073

 182.163 155.198 182.144 156.542

 173.865 210.239 174.941 175.282

 174.768 178.691 182.067 173.360

 179.545 169.216

 179.919 165.856

APPENDIX D. Table 3 (Continue) The values of the best non-dominated front

for 100 jobs to each algorithm at crossover probability 0.9

Appendix D.24. Solutions at run 4

for 100 jobs (Crossover prob. 0.9)

Appendix D.25. Solutions at run 5

for 100 jobs (Crossover prob. 0.9)

Appendix D.26. Solutions at run 6

for 100 jobs (Crossover prob. 0.9)

Appendix D.27. Solutions at run 7

for 100 jobs (Crossover prob. 0.9)

0

50

100

150

200

250

150 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

250

150 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

100

200

300

150 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

50

100

150

200

250

160 180 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGAII

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

4 100 0.9 162.999 162.860 178.392 162.858

 192.422 156.552 171.385 202.420

 171.788 200.296

 188.976 158.258

 176.739 180.191

5 100 0.9 167.534 229.915 175.853 145.479

 196.659 158.116 169.788 214.064

 176.314 167.387 172.214 180.610

 173.415 197.666 170.710 201.173

 195.816 159.771

 174.507 185.458

6 100 0.9 190.064 138.109 172.861 162.060

 172.305 262.826 169.645 230.888

 173.534 190.039 195.784 158.112

 174.831 177.505

 182.896 171.166

 188.287 160.863

 184.883 164.274

 186.534 161.156

7 100 0.9 187.590 139.767 173.608 151.896

 169.551 204.863 171.660 235.849

 179.816 161.046 172.748 209.060

 177.735 175.145

 177.572 189.676

 172.604 191.394

 171.741 194.180

APPENDIX D. Table 3 (Continue) The values of the best non-dominated front

for 100 jobs to each algorithm at crossover probability 0.9

Appendix D.28. Solutions at run 8

for 100 jobs (Crossover prob. 0.9)

Appendix D.29. Solutions at run 9

for 100 jobs (Crossover prob. 0.9)

Appendix D.30. Solutions at run 10

for 100 jobs (Crossover prob. 0.9)

0

100

200

300

150 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

0

100

200

300

150 200

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPPEA-II

0

50

100

150

200

250

0 500

o
b

je
ct

iv
e

2

objective1

SJMCT-
NSGA-II
SJMCT-
SPEA-II

Run Job

Crossover

Probability

SJMCT- NSGAII

Objective1 Objective2

SJMCT-SPEA-II

Objective1 Objective2

8 100 0.9 181.558 141.151 167.505 260.778

 168.677 214.798 172.279 197.271

 175.151 168.805 176.008 175.657

 172.892 199.674 192.596 147.523

 170.185 203.970 187.183 161.203

 178.593 160.354 186.418 163.436

 178.602 151.409 181.932 174.137

 185.761 172.573

9 100 0.9 193.647 141.060 169.655 246.799

 170.367 195.866 194.959 152.578

 170.667 159.490 192.856 152.646

 182.935 169.068

 175.831 199.930

 188.043 164.578

 177.315 187.530

 174.377 225.557

 188.548 161.115

 181.165 179.885

 179.716 186.558

 181.646 179.299

10 100 0.9 205.411 152.837 161.982 177.607

 163.364 206.852 176.736 159.277

 176.116 165.169 197.734 150.774

 173.190 195.988

 175.460 173.614

 175.171 192.188

APPENDIX E

GAMS PROGRAMMING FOR BALINS TEST PROBLEM BY USING SJMCT

ALGORITHM
SETS

 I machine / 1*4 /

 J job / 1*9 /

TABLE p(I,J) processing time to assigning job J to machine I

 1 2 3 4 5 6 7 8 9

1 18 14 24 30 16 20 22 26 14

2 9 7 12 15 8 10 11 13 7

3 4.5 3.5 6 7.5 4 5 5.5 6.5 3.5

4 3.6 2.8 4.8 6 3.2 4 4.4 5.2 2.8 ;

VARIABLES

Z,Z1,Z2,X15,X25,X35,X45,X16,X26,X36,X46,X17,X27,X37,X47,X18,X28,X38,X4

8,X19,X29,X39,X49;

 EQUATIONS

OBJ,kisit1,kisit2,kisit3,kisit4,kisit5,kisit6,kisit7,kisit8,kisit9,kis

it10,kisit11,kisit12,kisit13,kisit14,kisit15,kisit16,kisit17,kisit18,k

isit19,kisit20;

parameter X(I,J),C(I,J),C11,C22,C33,C44

,C15,C25,C35,C45,C16,C26,C36,C46,C17,C27,C37,C47,C18,C28,C38,C48,C19,C

29,C39,C49;

X('1','1') = 1;

X('2','2') = 1;

X('3','3') =1;

X('4','4') =1;

C11=p('1','1')*X('1','1');

C22=p('2','2')*X('2','2');

C33=p('3','3')*X('3','3');

C44=p('4','4')*X('4','4');

*************The first iteration J=5:

 if (C11 <=C22 and C11 <=C33 and C11 <=C44 ,

display C11;

X('1','5')=1;

else

X('1','5')=0;

 if (C22 <= C11 and C22 <=C33 and C22 <=C44,

display C22;

X('2','5')=1;

else

X('2','5')=0;

if (C33 <= C11 and C33 <=C22 and C33 <=C44,

display C33;

X('3','5')=1;

else

X('3','5')=0;

if (C44 <= C11 and C44 <=C22 and C44 <=C33 ,

display C44;

 X('4','5')=1;

else

X('4','5')=0;

);

);

);

);

kisit1.. X('1','5') =E= X15;

kisit2.. X('2','5') =E= X25;

kisit3.. X('3','5') =E= X35;

kisit4.. X('4','5') =E= X45;

C15=p('1','1')*X('1','1')+p('1','5')*X('1','5');

C25=p('2','2')*X('2','2')+p('2','5')*X('2','5');

C35=p('3','3')*X('3','3')+p('3','5')*X('3','5');

C45=p('4','4')*X('4','4')+p('4','5')*X('4','5');

*************The second iteration J=6:

 if (C15 <=C25 and C15 <=C35 and C15 <=C45,

display C15;

X('1','6')=1;

else

X('1','6')=0;

 if (C25 <=C15 and C25 <=C35 and C25 <=C45,

display C25;

X('2','6')=1;

else

X('2','6')=0;

 if (C35 <=C15 and C35 <=C25 and C35 <=C45,

display C35;

X('3','6')=1;

else

X('3','6')=0;

 if (C45 <=C15 and C45 <=C25 and C45 <=C35,

display C45;

X('4','6')=1;

else

X('4','6')=0;

);

);

);

);

C16=p('1','1')*X('1','1')+p('1','5')*X('1','5')+p('1','6')*X('1','6');

C26=p('2','2')*X('2','2')+p('2','5')*X('2','5')+p('2','6')*X('2','6');

C36=p('3','3')*X('3','3')+p('3','5')*X('3','5')+p('3','6')*X('3','6');

C46=p('4','4')*X('4','4')+p('4','5')*X('4','5')+p('4','6')*X('4','6');

kisit5.. X('1','6') =E= X16;

kisit6.. X('2','6') =E= X26;

kisit7.. X('3','6') =E= X36;

kisit8.. X('4','6') =E= X46;

*************The third iteration J=7:

 if (C16 <=C26 and C16 <=C36 and C16 <=C46,

display C16;

X('1','7')=1;

else

X('1','7')=0;

 if (C26 <=C16 and C26 <=C36 and C26 <=C46,

display C26;

X('2','7')=1;

else

X('2','7')=0;

 if (C36 <=C16 and C36 <=C26 and C36 <=C46,

display C36;

X('3','7')=1;

else

X('3','7')=0;

 if (C46 <=C16 and C46 <=C26 and C46 <=C36,

display C46;

X('4','7')=1;

else

X('4','7')=0;

);

);

);

);

C17=p('1','1')*X('1','1')+p('1','5')*X('1','5')+p('1','6')*X('1','6')+

p('1','7')*X('1','7');

C27=p('2','2')*X('2','2')+p('2','5')*X('2','5')+p('2','6')*X('2','6')+

p('2','7')*X('2','7');

C37=p('3','3')*X('3','3')+p('3','5')*X('3','5')+p('3','6')*X('3','6')+

p('3','7')*X('3','7');

C47=p('4','4')*X('4','4')+p('4','5')*X('4','5')+p('4','6')*X('4','6')+

p('4','7')*X('4','7');

kisit9.. X('1','7') =E= X17;

kisit10.. X('2','7') =E= X27;

kisit11.. X('3','7') =E= X37;

kisit12.. X('4','7') =E= X47;

*************The forth iteration J=8:

 if (C17 <=C27 and C17 <=C37 and C17 <=C47,

display C17;

X('1','8')=1;

else

X('1','8')=0;

 if (C27 <=C17 and C27 <=C37 and C27 <=C47,

display C27;

X('2','8')=1;

else

X('2','8')=0;

 if (C37 <=C17 and C37 <=C27 and C37 <=C47,

display C37;

X('3','8')=1;

else

X('3','8')=0;

 if (C47 <=C17 and C47 <=C27 and C47 <=C37,

display C47;

X('4','8')=1;

else

X('4','8')=0;

);

);

);

);

C18=p('1','1')*X('1','1')+p('1','5')*X('1','5')+p('1','6')*X('1','6')+

p('1','7')*X('1','7')+p('1','8')*X('1','8');

C28=p('2','2')*X('2','2')+p('2','5')*X('2','5')+p('2','6')*X('2','6')+

p('2','7')*X('2','7')+p('2','8')*X('2','8');

C38=p('3','3')*X('3','3')+p('3','5')*X('3','5')+p('3','6')*X('3','6')+

p('3','7')*X('3','7')+p('3','8')*X('3','8');

C48=p('4','4')*X('4','4')+p('4','5')*X('4','5')+p('4','6')*X('4','6')+

p('4','7')*X('4','7')+p('4','8')*X('4','8');

kisit13.. X('1','8') =E= X18;

kisit14.. X('2','8') =E= X28;

kisit15.. X('3','8') =E= X38;

kisit16.. X('4','8') =E= X48;

*************The fifth iteration J=9:

 if (C18 <=C28 and C18 <=C38 and C18 <=C48,

display C18;

X('1','9')=1;

else

X('1','9')=0;

 if (C28 <=C18 and C28 <=C38 and C28 <=C48,

display C28;

X('2','9')=1;

else

X('2','9')=0;

 if (C38 <=C18 and C38 <=C28 and C38 <=C48,

display C38;

X('3','9')=1;

else

X('3','9')=0;

 if (C48 <=C18 and C48 <=C28 and C48 <=C38,

display C48;

X('4','9')=1;

else

X('4','9')=0;

);

);

);

);

C19=p('1','1')*X('1','1')+p('1','5')*X('1','5')+p('1','6')*X('1','6')+

p('1','7')*X('1','7')+p('1','8')*X('1','8')+p('1','9')*X('1','9');

C29=p('2','2')*X('2','2')+p('2','5')*X('2','5')+p('2','6')*X('2','6')+

p('2','7')*X('2','7')+p('2','8')*X('2','8')+p('2','9')*X('2','9');

C39=p('3','3')*X('3','3')+p('3','5')*X('3','5')+p('3','6')*X('3','6')+

p('3','7')*X('3','7')+p('3','8')*X('3','8')+p('3','9')*X('3','9');

C49=p('4','4')*X('4','4')+p('4','5')*X('4','5')+p('4','6')*X('4','6')+

p('4','7')*X('4','7')+p('4','8')*X('4','8')+p('4','9')*X('4','9');

kisit17.. X('1','9') =E= X19;

kisit18.. X('2','9') =E= X29;

kisit19.. X('3','9') =E= X39;

kisit20.. X('4','9') =E= X49;

 if (C19> C29 and C19> C39 and C19> C49,

display C19;

 else

C19=0;

);

 if (C29> C19 and C29> C39 and C29> C49,

display C29;

 else

C29=0;

);

 if (C39> C19 and C39> C29 and C39> C49,

display C39;

 else

C39=0;

);

 if (C49> C19 and C49> C29 and C49> C39,

display C49;

 else

C49=0;

);

**

OBJ.. Z=E=C19+C29+C39+C49;

 MODEL SCHEDUALING / ALL /;

 SOLVE SCHEDUALING USING MIP MINIMIZING Z ;

MATLAB PROGRAMMING (FIRST TEST PROBLEM) TO SOLVE SJMCT-

NSGA-II AND SJMCT-SPEA-II ALGORITHM WITH SELECTED

PAREMTERS 60 JOBS AND GENERATION 40

COMPUTE THE FITNESS FUNCTION Z=MP60(x)
m=5

n=60

p=unifrnd(1,20,[m n]);

t=unifrnd(1,20,[m n]);

for i= 1:m

s(i)=p(i,i)

d1=s

end

 for i= 1:m

 r(i)=t(i,i)

 r1=r

end

for i=1:m

if s(i)==min(s)

 s(i)=s(i)+p(i,m+1)

 a6=t(i,m+1);

 break

end

end

for j=1:m

d2(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d2)

 s(i)=min(d2)+p(i,m+2)

 a7=t(i,m+2);

 break

end

end

for j=1:m

d3(j)=[s(1,j)]

end

for i=1:m

if s(i)==min(d3)

s(i)=min(d3)+p(i,m+3)

a8=t(i,m+3);

break

end

end

for j=1:m

d4(j)=[s(1,j)]

end

for i=1:m

if s(i)==min(d4)

s(i)=min(d4)+p(i,m+4)

a9=t(i,m+4);

break

end

end

for j=1:m

d5(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d5)

s(i)=min(d5)+p(i,m+5)

a10=t(i,m+5);

 break

end

end

for j=1:m

d6(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d6)

s(i)=min(d6)+p(i,m+6)

a11=t(i,m+6);

 break

end

end

for j=1:m

d7(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d7)

s(i)=min(d7)+p(i,m+7)

a12=t(i,m+7);

 break

end

end

for j=1:m

d8(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d8)

s(i)=min(d8)+p(i,m+8)

a13=t(i,m+8);

 break

end

end

for j=1:m

d9(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d9)

s(i)=min(d9)+p(i,m+9)

a14=t(i,m+9);

 break

end

end

for j=1:m

d10(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d10)

s(i)=min(d10)+p(i,m+10)

a15=t(i,m+10);

 break

end

end

for j=1:m

d11(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d11)

s(i)=min(d11)+p(i,m+11)

a16=t(i,m+11);

 break

end

end

for j=1:m

d12(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d12)

s(i)=min(d12)+p(i,m+12)

a17=t(i,m+12);

 break

end

end

for j=1:m

d13(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d13)

s(i)=min(d13)+p(i,m+13)

a18=t(i,m+13);

 break

end

end

for j=1:m

d14(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d14)

s(i)=min(d14)+p(i,m+14)

a19=t(i,m+14);

 break

end

end

for j=1:m

d15(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d15)

s(i)=min(d15)+p(i,m+15)

a20=t(i,m+15);

 break

end

end

for j=1:m

d16(j)=[s(1,j)]

end

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 40 job

for i= 1:m

if s(i)==min(d16)

 s(i)=min(d16)+p(i,m+16)

 a21=t(i,m+16);

 break

end

end

for j=1:m

d17(j)=[s(1,j)]

end

for i=1:m

if s(i)==min(d17)

s(i)=min(d17)+p(i,m+17)

a22=t(i,m+17);

break

end

end

for j=1:m

d18(j)=[s(1,j)]

end

for i=1:m

if s(i)==min(d18)

s(i)=min(d18)+p(i,m+18);

a23=t(i,m+18);

break

end

end

for j=1:m

d19(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d19)

s(i)=min(d19)+p(i,m+19)

a24=t(i,m+19);

 break

end

end

for j=1:m

d20(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d20)

s(i)=min(d20)+p(i,m+20)

a25=t(i,m+20);

 break

end

end

for j=1:m

d21(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d21)

s(i)=min(d21)+p(i,m+21)

a26=t(i,m+21);

 break

end

end

for j=1:m

d22(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d22)

s(i)=min(d22)+p(i,m+22)

a27=t(i,m+22);

 break

end

end

for j=1:m

d23(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d23)

s(i)=min(d23)+p(i,m+23)

a28=t(i,m+23);

 break

end

end

for j=1:m

d24(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d24)

s(i)=min(d24)+p(i,m+24)

a29=t(i,m+24);

 break

end

end

for j=1:m

d25(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d25)

s(i)=min(d25)+p(i,m+25)

a30=t(i,m+25);

 break

end

end

for j=1:m

d26(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d26)

s(i)=min(d26)+p(i,m+26)

a31=t(i,m+26);

 break

end

end

for j=1:m

d27(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d27)

s(i)=min(d27)+p(i,m+27)

a32=t(i,m+27);

 break

end

end

for j=1:m

d28(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d28)

s(i)=min(d28)+p(i,m+28)

a33=t(i,m+28);

 break

end

end

for j=1:m

d29(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d29)

s(i)=min(d29)+p(i,m+29)

a34=t(i,m+29);

 break

end

end

for j=1:m

d30(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d30)

s(i)=min(d30)+p(i,m+30)

a35=t(i,m+30);

 break

end

end

for j=1:m

d31(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d31)

s(i)=min(d31)+p(i,m+31)

a36=t(i,m+31);

 break

end

end

for j=1:m

d32(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d32)

s(i)=min(d32)+p(i,m+32)

a37=t(i,m+32);

 break

end

end

for j=1:m

d33(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d33)

s(i)=min(d33)+p(i,m+33)

a38=t(i,m+33);

 break

end

end

for j=1:m

d34(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d34)

s(i)=min(d34)+p(i,m+34)

a39=t(i,m+34);

 break

end

end

for j=1:m

d35(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d35)

s(i)=min(d35)+p(i,m+35)

a40=t(i,m+35);

 break

end

end

for j=1:m

d36(j)=[s(1,j)]

end

%%60 job

for i= 1:m

if s(i)==min(d36)

 s(i)=min(d36)+p(i,m+36)

 a41=t(i,m+36);

 break

end

end

for j=1:m

d37(j)=[s(1,j)]

end

for i=1:m

if s(i)==min(d37)

s(i)=min(d37)+p(i,m+37)

a42=t(i,m+37);

break

end

end

for j=1:m

d38(j)=[s(1,j)]

end

for i=1:m

if s(i)==min(d38)

s(i)=min(d38)+p(i,m+38)

a43=t(i,m+38);

break

end

end

for j=1:m

d39(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d39)

s(i)=min(d39)+p(i,m+39)

a44=t(i,m+39);

 break

end

end

for j=1:m

d40(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d40)

s(i)=min(d40)+p(i,m+40)

a45=t(i,m+40);

 break

end

end

for j=1:m

d41(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d41)

s(i)=min(d41)+p(i,m+41)

a46=t(i,m+41);

 break

end

end

for j=1:m

d42(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d42)

s(i)=min(d42)+p(i,m+42)

a47=t(i,m+42);

 break

end

end

for j=1:m

d43(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d43)

s(i)=min(d43)+p(i,m+43)

a48=t(i,m+43);

 break

end

end

for j=1:m

d44(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d44)

s(i)=min(d44)+p(i,m+44)

a49=t(i,m+44);

 break

end

end

for j=1:m

d45(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d45)

s(i)=min(d45)+p(i,m+45)

a50=t(i,m+45);

 break

end

end

for j=1:m

d46(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d46)

s(i)=min(d46)+p(i,m+46)

a51=t(i,m+46);

 break

end

end

 for j=1:m

d47(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d47)

s(i)=min(d47)+p(i,m+47)

a52=t(i,m+47);

 break

end

end

for j=1:m

d48(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d48)

s(i)=min(d48)+p(i,m+48)

a53=t(i,m+48);

 break

end

end

for j=1:m

d49(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d49)

s(i)=min(d49)+p(i,m+49)

a54=t(i,m+49);

 break

end

end

for j=1:m

d50(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d50)

s(i)=min(d50)+p(i,m+50)

a55=t(i,m+50);

 break

end

end

for j=1:m

d51(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d51)

s(i)=min(d51)+p(i,m+51)

a56=t(i,m+51);

 break

end

end

for j=1:m

d52(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d52)

s(i)=min(d52)+p(i,m+52)

a57=t(i,m+52);

 break

end

end

for j=1:m

d53(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d53)

s(i)=min(d53)+p(i,m+53)

a58=t(i,m+53);

 break

end

end

for j=1:m

d54(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d54)

s(i)=min(d54)+p(i,m+54)

a59=t(i,m+54);

 break

end

end

for j=1:m

d55(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d55)

s(i)=min(d55)+p(i,m+55)

a60=t(i,m+55);

 break

end

end

for j=1:m

d56(j)=[s(1,j)]

end

%%**

J6=d2-d1

J7=d3-d2

J8=d4-d3

J9=d5-d4

J10=d6-d5

J11=d7-d6

J12=d8-d7

J13=d9-d8

J14=d10-d9

J15=d11-d10

J16=d12-d11

J17=d13-d12

J18=d14-d13

J19=d15-d14

J20=d16-d15

J21=d17-d16

J22=d18-d17

J23=d19-d18

J24=d20-d19

J25=d21-d20

J26=d22-d21

J27=d23-d22

J28=d24-d23

J29=d25-d24

J30=d26-d25

J31=d27-d26

J32=d28-d27

J33=d29-d28

J34=d30-d29

J35=d31-d30

J36=d32-d31

J37=d33-d32

J38=d34-d33

J39=d35-d34

J40=d36-d35

J41=d37-d36

J42=d38-d37

J43=d39-d38

J44=d40-d39

J45=d41-d40

J46=d42-d41

J47=d43-d42;

J48=d44-d43

J49=d45-d44

J50=d46-d45

J51=d47-d46

J52=d48-d47

J53=d49-d48

J54=d50-d49

J55=d51-d50

J56=d52-d51

J57=d53-d52

J58=d54-d53

J59=d55-d54

J60=d56-d55

TAR1=d1-r1

TAR6=max(J6)-a6

TAR7=max(J7)-a7

TAR8=max(J8)-a8

TAR9=max(J9)-a9

TAR10=max(J10)-a10

TAR11=max(J11)-a11

TAR12=max(J12)-a12

TAR13=max(J13)-a13

TAR14=max(J14)-a14

TAR15=max(J15)-a15

TAR16=max(J16)-a16

TAR17=max(J17)-a17

TAR18=max(J18)-a18

TAR19=max(J19)-a19

TAR20=max(J20)-a20

TAR21=max(J21)-a21

TAR22=max(J22)-a22

TAR23=max(J23)-a23

TAR24=max(J24)-a24

TAR25=max(J25)-a25

TAR26=max(J26)-a26

TAR27=max(J27)-a27

TAR28=max(J28)-a28

TAR29=max(J29)-a29

TAR30=max(J30)-a30

TAR31=max(J31)-a31

TAR32=max(J32)-a32

TAR33=max(J33)-a33

TAR34=max(J34)-a34

TAR35=max(J35)-a35

TAR36=max(J36)-a36

TAR37=max(J37)-a37

TAR38=max(J38)-a38

TAR39=max(J39)-a39

TAR40=max(J40)-a40

TAR41=max(J41)-a41

TAR42=max(J42)-a42

TAR43=max(J43)-a43

TAR44=max(J44)-a44

TAR45=max(J45)-a45

TAR46=max(J46)-a46

TAR47=max(J47)-a47

TAR48=max(J48)-a48

TAR49=max(J49)-a49

TAR50=max(J50)-a50

TAR51=max(J51)-a51

TAR52=max(J52)-a52

TAR53=max(J53)-a53

TAR54=max(J54)-a54

TAR55=max(J55)-a55

TAR56=max(J56)-a56

TAR57=max(J57)-a57

TAR58=max(J58)-a58

TAR59=max(J59)-a59

TAR60=max(J60)-a60

T=[TAR1,TAR6,TAR7,TAR8,TAR9,TAR10,TAR11,TAR12,TAR13,TAR14,TAR15,TAR16,

TAR17,TAR18,TAR19,TAR20,TAR21,TAR22,TAR23,TAR24,TAR25,TAR26,TAR27,TAR2

8,TAR29,TAR30,TAR31,TAR32,TAR33,TAR34,TAR35,TAR36,TAR37,TAR38,TAR39,TA

R40,TAR41,TAR42,TAR43,TAR44,TAR45,TAR46,TAR47,TAR48,TAR49,TAR50,TAR51,

TAR52,TAR53,TAR54,TAR55,TAR56,TAR57,TAR58,TAR59,TAR60]

for j=1:n

if T(j) >0

DD(j)=T(j);

else

DD(j)=0;

end

CMAX=max(s)

TARD=sum(DD)

%%

optjobs=[d1;J6;J7;J8;J9;J10;J11;J12;J13;J14;J15;J16;J17;J18;J19;J20;J2

1;J22;J23;J24;J25;J26;J27;J28;J29;J30;J31;J32;J33;J34;J35;J36;J37;J38;

J39;J40;J41;J42;J43;J44;J45;J46;J47;J48;J49;J50;J51;J52;J53;J54;J55;J5

6;J57;J58;J59;J60]';

%figure(1);

%title 'parallel machine';

%barh(optjobs ,'stack');

%xlabel('JOBS')

%ylabel('MACHINE')

%TARD=sum(DD)

%CMAX=max(s)

z1=CMAX;

z2=TARD;

z=[z1 z2]';

end

end

USING THE FITNESS FUNCTION Z=MP60(x) WITH CROSSOVER

PROBABILITY 0.6 AND THE FOLLOWING ASSUMPTIONS TO SOLVE

SJMCT-NSGA-II ALGORITHM

clc;

clear;

close all;

%% Problem Definition

CostFunction=@(x)MP60(x);

nVar=[5 60]; % Number of Decision Variables

VarSize=[nVar 1]; % Decision Variables Matrix Size

VarMin=-15; % Decision Variables Lower Bound

VarMax=15; % Decision Variables Upper Bound

% Number of Objective Functions

nObj=numel(CostFunction(unifrnd(VarMin,VarMax,VarSize)));

%% NSGA-II Parameters

MaxIt=40; % Maximum Number of Iterations

nPop=100; % Population Size

Crossover=0.6; % Crossover Percentage

nCrossover=2*round(pCrossover*nPop/2); %Number of Parnets (Offsprings)

pMutation=0.4; % Mutation Percentage

nMutation=round(pMutation*nPop); % Number of Mutants

mu=0.02; % Mutation Rate

sigma=0.1*(VarMax-VarMin); % Mutation Step Size

%% Initialization

empty_individual.Position=[];

empty_individual.Cost=[];

empty_individual.Rank=[];

empty_individual.DominationSet=[];

empty_individual.DominatedCount=[];

empty_individual.CrowdingDistance=[];

pop=repmat(empty_individual,nPop,1);

for i=1:nPop

 pop(i).Position=unifrnd(VarMin,VarMax,VarSize);

 pop(i).Cost=CostFunction(pop(i).Position);

end

% Non-Dominated Sorting

[pop, F]=NonDominatedSorting(pop);

% Calculate Crowding Distance

pop=CalcCrowdingDistance(pop,F);

% Sort Population

[pop, F]=SortPopulation(pop);

%% NSGA-II Main Loop

for it=1:MaxIt

 % Crossover

 popc=repmat(empty_individual,nCrossover/2,2);

 for k=1:nCrossover/2

 i1=randi([1 nPop]);

 p1=pop(i1);

 i2=randi([1 nPop]);

 p2=pop(i2);

 [popc(k,1).Position,

popc(k,2).Position]=Crossover(p1.Position,p2.Position);

 popc(k,1).Cost=CostFunction(popc(k,1).Position);

 popc(k,2).Cost=CostFunction(popc(k,2).Position);

 end

 popc=popc(:);

 % Mutation

 popm=repmat(empty_individual,nMutation,1);

 for k=1:nMutation

 i=randi([1 nPop]);

 p=pop(i);

 popm(k).Position=Mutate(p.Position,mu,sigma);

 popm(k).Cost=CostFunction(popm(k).Position);

 end

 % Merge

 pop=[pop

 popc

 popm]; %#ok

 % Non-Dominated Sorting

 [pop, F]=NonDominatedSorting(pop);

 % Calculate Crowding Distance

 pop=CalcCrowdingDistance(pop,F);

 % Sort Population

 pop=SortPopulation(pop);

 % Truncate

 pop=pop(1:nPop);

 % Non-Dominated Sorting

 [pop, F]=NonDominatedSorting(pop);

 % Calculate Crowding Distance

 pop=CalcCrowdingDistance(pop,F);

 % Sort Population

 [pop, F]=SortPopulation(pop);

 % Store F1

 F1=pop(F{1});

 % Show Iteration Information

 disp(['Iteration ' num2str(it) ': Number of F1 Members = '

num2str(numel(F1))]);

 % Plot F1 Costs

 figure(1);

 PlotCosts(F1);

 pause(0.3);

end

%% Results

CF1 = [F1.Cost];

for j=1:size(CF1,1)

 disp(['Objective #' num2str(j) ':']);

 disp([' Min = ' num2str(min(CF1(j,:)))]);

 disp([' Max = ' num2str(max(CF1(j,:)))]);

 disp([' Range = ' num2str(max(CF1(j,:))-min(CF1(j,:)))]);

 disp([' St.D. = ' num2str(std(CF1(j,:)))]);

 disp([' Mean = ' num2str(mean(CF1(j,:)))]);

 disp(' ');

end

USING THE FITNESS FUNCTION Z=MP60(x) WITH CROSSOVER

PROBABILITY 0.6 AND THE FOLLOWING ASSUMPTIONS TO SOLVE

SJMCT-SPEA-II ALGORITHM

clc;

clear;

close all;

%% Problem Definition

CostFunction=@(x)MP60(x);

nVar=[5 60]; % Number of Decision Variables

VarSize=[nVar 1]; % Decision Variables Matrix Size

VarMin=-15; % Decision Variables Lower Bound

VarMax=15; % Decision Variables Upper Bound

%% SPEA2 Settings

MaxIt=40; % Maximum Number of Iterations

nPop=100; % Population Size

nArchive=60; % Archive Size

K=round(sqrt(nPop+nArchive)); % KNN Parameter

pCrossover=0.6;

nCrossover=round(pCrossover*nPop/2)*2;

pMutation=1-pCrossover;

nMutation=nPop-nCrossover;

crossover_params.gamma=0.1;

crossover_params.VarMin=VarMin;

crossover_params.VarMax=VarMax;

mutation_params.h=0.2;

mutation_params.VarMin=VarMin;

mutation_params.VarMax=VarMax;

%% Initialization

empty_individual.Position=[];

empty_individual.Cost=[];

empty_individual.S=[];

empty_individual.R=[];

empty_individual.sigma=[];

empty_individual.sigmaK=[];

empty_individual.D=[];

empty_individual.F=[];

pop=repmat(empty_individual,nPop,1);

for i=1:nPop

 pop(i).Position=unifrnd(VarMin,VarMax,VarSize);

 pop(i).Cost=CostFunction(pop(i).Position);

end

archive=[];

%% Main Loop

for it=1:MaxIt

 Q=[pop

 archive];

 nQ=numel(Q);

 dom=false(nQ,nQ);

 for i=1:nQ

 Q(i).S=0;

 end

 for i=1:nQ

 for j=i+1:nQ

 if Dominates(Q(i),Q(j))

 Q(i).S=Q(i).S+1;

 dom(i,j)=true;

 elseif Dominates(Q(j),Q(i))

 Q(j).S=Q(j).S+1;

 dom(j,i)=true;

 end

 end

 end

 S=[Q.S];

 for i=1:nQ

 Q(i).R=sum(S(dom(:,i)));

 end

 Z=[Q.Cost]';

 SIGMA=pdist2(Z,Z,'seuclidean');

 SIGMA=sort(SIGMA);

 for i=1:nQ

 Q(i).sigma=SIGMA(:,i);

 Q(i).sigmaK=Q(i).sigma(K);

 Q(i).D=1/(Q(i).sigmaK+2);

 Q(i).F=Q(i).R+Q(i).D;

 end

 nND=sum([Q.R]==0);

 if nND<=nArchive

 F=[Q.F];

 [F, SO]=sort(F);

 Q=Q(SO);

 archive=Q(1:min(nArchive,nQ));

 else

 SIGMA=SIGMA(:,[Q.R]==0);

 archive=Q([Q.R]==0);

 k=2;

 while numel(archive)>nArchive

 while min(SIGMA(k,:))==max(SIGMA(k,:)) && k<size(SIGMA,1)

 k=k+1;

 end

 [~, j]=min(SIGMA(k,:));

 archive(j)=[];

 SIGMA(:,j)=[];

 end

 end

 PF=archive([archive.R]==0); % Approximate Pareto Front

 % Plot Pareto Front

 figure(1);

 PlotCosts(PF);

 pause(0.01);

 % Display Iteration Information

 disp(['Iteration ' num2str(it) ': Number of PF members = '

num2str(numel(PF))]);

if it>=MaxIt

break;

end

% Crossover

popc=repmat(empty_individual,nCrossover/2,2);

for c=1:nCrossover/2

p1=BinaryTournamentSelection(archive,[archive.F]);

p2=BinaryTournamentSelection(archive,[archive.F]);

[popc(c,1).Position,

popc(c,2).Position]=Crossover(p1.Position,p2.Position,crossover_params

);

popc(c,1).Cost=CostFunction(popc(c,1).Position);

popc(c,2).Cost=CostFunction(popc(c,2).Position);

end

popc=popc(:);

% Mutation

popm=repmat(empty_individual,nMutation,1);

for m=1:nMutation

p=BinaryTournamentSelection(archive,[archive.F]);

popm(m).Position=Mutate(p.Position,mutation_params);

popm(m).Cost=CostFunction(popm(m).Position);

end

% Create New Population

pop=[popc

popm];

end

%% Results

 disp(' ');

 PFC = [PF.Cost];

for j=1:size(PFC,1)

disp(['Objective #' num2str(j) ':']);

disp([' Min = ' num2str(min(PFC(j,:)))]);

disp([' Max = ' num2str(max(PFC(j,:)))]);

disp([' Range = ' num2str(max(PFC(j,:))-min(PFC(j,:)))]);

disp([' St.D. = ' num2str(std(PFC(j,:)))]);

disp([' Mean = ' num2str(mean(PFC(j,:)))]);

disp(' ');

end

MATLAB PROGRAMMING (SECOND TEST PROBLEM) TO SOLVE SJMCT-

NSGA-II AND SJMCT-SPEA-II ALGORITHM WITH DIFFERENT NUMBER

OF JOBS ANDGENERATION 500

COMPUTETING THE FITNESS FUNCTION FOR 20 JOBS Z=MP20(x)
m=5

n=20

p=unifrnd(1,20,[m n]);

t=unifrnd(1,20,[m n]);

 for i= 1:m

 s(i)=p(i,i)

d1=s

end

 for i= 1:m

 r(i)=t(i,i)

r1=r

end

 for i=1:m

if s(i)==min(s)

 s(i)=s(i)+p(i,m+1)

 a6=t(i,m+1);

 break

 end

end

for j=1:m

d2(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d2)

 s(i)=min(d2)+p(i,m+2)

 a7=t(i,m+2);

 break

end

end

for j=1:m

d3(j)=[s(1,j)]

end

for i=1:m

if s(i)==min(d3)

s(i)=min(d3)+p(i,m+3)

a8=t(i,m+3);

break

end

end

 for j=1:m

d4(j)=[s(1,j)]

end

 for i=1:m

if s(i)==min(d4)

s(i)=min(d4)+p(i,m+4)

a9=t(i,m+4);

break

end

end

for j=1:m

d5(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d5)

s(i)=min(d5)+p(i,m+5)

a10=t(i,m+5);

 break

end

end

for j=1:m

d6(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d6)

s(i)=min(d6)+p(i,m+6)

a11=t(i,m+6);

 break

end

end

 for j=1:m

d7(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d7)

s(i)=min(d7)+p(i,m+7)

a12=t(i,m+7);

 break

end

end

for j=1:m

d8(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d8)

s(i)=min(d8)+p(i,m+8)

a13=t(i,m+8);

 break

end

end

for j=1:m

d9(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d9)

s(i)=min(d9)+p(i,m+9)

a14=t(i,m+9);

 break

end

end

for j=1:m

d10(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d10)

s(i)=min(d10)+p(i,m+10)

a15=t(i,m+10);

 break

end

end

for j=1:m

d11(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d11)

s(i)=min(d11)+p(i,m+11)

a16=t(i,m+11);

 break

end

end

for j=1:m

d12(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d12)

s(i)=min(d12)+p(i,m+12)

a17=t(i,m+12);

 break

end

end

 for j=1:m

d13(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d13)

s(i)=min(d13)+p(i,m+13)

a18=t(i,m+13);

 break

end

end

 for j=1:m

d14(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d14)

s(i)=min(d14)+p(i,m+14)

a19=t(i,m+14);

 break

end

end

for j=1:m

d15(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d15)

s(i)=min(d15)+p(i,m+15)

a20=t(i,m+15);

 break

end

end

 for j=1:m

d16(j)=[s(1,j)]

end

%%**

J6=d2-d1

J7=d3-d2

J8=d4-d3

J9=d5-d4

J10=d6-d5

J11=d7-d6

J12=d8-d7

J13=d9-d8

J14=d10-d9

J15=d11-d10

J16=d12-d11

J17=d13-d12

J18=d14-d13

J19=d15-d14

J20=d16-d15

TAR1=d1-r1

TAR6=max(J6)-a6

TAR7=max(J7)-a7

TAR8=max(J8)-a8

TAR9=max(J9)-a9

TAR10=max(J10)-a10

TAR11=max(J11)-a11

TAR12=max(J12)-a12

TAR13=max(J13)-a13

TAR14=max(J14)-a14

TAR15=max(J15)-a15

TAR16=max(J16)-a16

TAR17=max(J17)-a17

TAR18=max(J18)-a18

TAR19=max(J19)-a19

TAR20=max(J20)-a20

T=[TAR1,TAR6,TAR7,TAR8,TAR9,TAR10,TAR11,TAR12,TAR13,TAR14,TAR15,TAR16,

TAR17,TAR18,TAR19,TAR20]

for j=1:n

if T(j) >0

DD(j)=T(j);

else

DD(j)=0;

end

CMAX=max(s)

TARD=sum(DD)

%%

optjobs=[d1;J6;J7;J8;J9;J10;J11;J12;J13;J14;J15;J16;J17;J18;J19;J20]';

%figure(1);

%title 'parallel machine';

%barh(optjobs ,'stack');

%xlabel('JOBS')

%ylabel('MACHINE')

z1=CMAX;

z2=TARD;

z=[z1 z2]';

end

COMPUTETING THE FITNESS FUNCTION FOR 100 JOBS Z=MP100(x)
m=5

n=100

p=unifrnd(1,20,[m n]);

t=unifrnd(1,20,[m n]);

for i= 1:m

 s(i)=p(i,i)

 d1=s

end

 for i= 1:m

 r(i)=t(i,i)

 r1=r

end

 for i=1:m

if s(i)==min(s)

 s(i)=s(i)+p(i,m+1)

 a6=t(i,m+1);

 break

 end

end

for j=1:m

d2(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d2)

 s(i)=min(d2)+p(i,m+2)

 a7=t(i,m+2);

 break

end

end

 for j=1:m

d3(j)=[s(1,j)]

end

 for i=1:m

if s(i)==min(d3)

s(i)=min(d3)+p(i,m+3)

a8=t(i,m+3);

 break

end

end

 for j=1:m

d4(j)=[s(1,j)]

 end

 for i=1:m

if s(i)==min(d4)

s(i)=min(d4)+p(i,m+4)

a9=t(i,m+4);

break

end

end

for j=1:m

d5(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d5)

s(i)=min(d5)+p(i,m+5)

a10=t(i,m+5);

 break

end

end

for j=1:m

d6(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d6)

s(i)=min(d6)+p(i,m+6)

a11=t(i,m+6);

 break

end

end

 for j=1:m

d7(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d7)

s(i)=min(d7)+p(i,m+7)

a12=t(i,m+7);

 break

end

end

 for j=1:m

d8(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d8)

s(i)=min(d8)+p(i,m+8)

a13=t(i,m+8);

 break

end

end

 for j=1:m

d9(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d9)

s(i)=min(d9)+p(i,m+9)

a14=t(i,m+9);

 break

end

end

 for j=1:m

d10(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d10)

s(i)=min(d10)+p(i,m+10)

a15=t(i,m+10);

 break

end

end

for j=1:m

d11(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d11)

s(i)=min(d11)+p(i,m+11)

a16=t(i,m+11);

 break

end

end

 for j=1:m

d12(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d12)

s(i)=min(d12)+p(i,m+12)

a17=t(i,m+12);

 break

end

end

 for j=1:m

d13(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d13)

s(i)=min(d13)+p(i,m+13)

a18=t(i,m+13);

 break

end

end

 for j=1:m

d14(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d14)

s(i)=min(d14)+p(i,m+14)

a19=t(i,m+14);

 break

end

end

 for j=1:m

d15(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d15)

s(i)=min(d15)+p(i,m+15)

a20=t(i,m+15);

 break

end

end

 for j=1:m

d16(j)=[s(1,j)]

end

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 40 job

 for i= 1:m

if s(i)==min(d16)

 s(i)=min(d16)+p(i,m+16)

 a21=t(i,m+16);

 break

end

end

 for j=1:m

d17(j)=[s(1,j)]

end

 for i=1:m

if s(i)==min(d17)

s(i)=min(d17)+p(i,m+17)

a22=t(i,m+17);

break

end

end

 for j=1:m

d18(j)=[s(1,j)]

end

 for i=1:m

if s(i)==min(d18)

s(i)=min(d18)+p(i,m+18);

a23=t(i,m+18);

break

end

end

for j=1:m

d19(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d19)

s(i)=min(d19)+p(i,m+19)

a24=t(i,m+19);

 break

end

end

for j=1:m

d20(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d20)

s(i)=min(d20)+p(i,m+20)

a25=t(i,m+20);

 break

end

end

 for j=1:m

d21(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d21)

s(i)=min(d21)+p(i,m+21)

a26=t(i,m+21);

 break

end

end

 for j=1:m

d22(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d22)

s(i)=min(d22)+p(i,m+22)

a27=t(i,m+22);

 break

end

end

 for j=1:m

d23(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d23)

s(i)=min(d23)+p(i,m+23)

a28=t(i,m+23);

 break

end

end

 for j=1:m

d24(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d24)

s(i)=min(d24)+p(i,m+24)

a29=t(i,m+24);

 break

end

end

 for j=1:m

d25(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d25)

s(i)=min(d25)+p(i,m+25)

a30=t(i,m+25);

 break

end

end

 for j=1:m

d26(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d26)

s(i)=min(d26)+p(i,m+26)

a31=t(i,m+26);

 break

end

end

 for j=1:m

d27(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d27)

s(i)=min(d27)+p(i,m+27)

a32=t(i,m+27);

 break

end

end

 for j=1:m

d28(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d28)

s(i)=min(d28)+p(i,m+28)

a33=t(i,m+28);

 break

end

end

 for j=1:m

d29(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d29)

s(i)=min(d29)+p(i,m+29)

a34=t(i,m+29);

 break

end

end

 for j=1:m

d30(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d30)

s(i)=min(d30)+p(i,m+30)

a35=t(i,m+30);

 break

end

end

 for j=1:m

d31(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d31)

s(i)=min(d31)+p(i,m+31)

a36=t(i,m+31);

 break

end

end

 for j=1:m

d32(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d32)

s(i)=min(d32)+p(i,m+32)

a37=t(i,m+32);

 break

end

end

 for j=1:m

d33(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d33)

s(i)=min(d33)+p(i,m+33)

a38=t(i,m+33);

 break

end

end

 for j=1:m

d34(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d34)

s(i)=min(d34)+p(i,m+34)

a39=t(i,m+34);

 break

end

end

 for j=1:m

d35(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d35)

s(i)=min(d35)+p(i,m+35)

a40=t(i,m+35);

 break

end

end

 for j=1:m

d36(j)=[s(1,j)]

end

%%60 job

for i= 1:m

if s(i)==min(d36)

 s(i)=min(d36)+p(i,m+36)

 a41=t(i,m+36);

 break

end

end

 for j=1:m

d37(j)=[s(1,j)]

end

for i=1:m

if s(i)==min(d37)

s(i)=min(d37)+p(i,m+37)

a42=t(i,m+37);

break

end

end

 for j=1:m

d38(j)=[s(1,j)]

end

 for i=1:m

if s(i)==min(d38)

s(i)=min(d38)+p(i,m+38)

a43=t(i,m+38);

break

end

end

for j=1:m

d39(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d39)

s(i)=min(d39)+p(i,m+39)

a44=t(i,m+39);

 break

end

end

for j=1:m

d40(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d40)

s(i)=min(d40)+p(i,m+40)

a45=t(i,m+40);

 break

end

end

 for j=1:m

d41(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d41)

s(i)=min(d41)+p(i,m+41)

a46=t(i,m+41);

 break

end

end

 for j=1:m

d42(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d42)

s(i)=min(d42)+p(i,m+42)

a47=t(i,m+42);

 break

end

end

 for j=1:m

d43(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d43)

s(i)=min(d43)+p(i,m+43)

a48=t(i,m+43);

 break

end

end

 for j=1:m

d44(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d44)

s(i)=min(d44)+p(i,m+44)

a49=t(i,m+44);

 break

end

end

 for j=1:m

d45(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d45)

s(i)=min(d45)+p(i,m+45)

a50=t(i,m+45);

 break

end

end

 for j=1:m

d46(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d46)

s(i)=min(d46)+p(i,m+46)

a51=t(i,m+46);

 break

end

end

 for j=1:m

d47(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d47)

s(i)=min(d47)+p(i,m+47)

a52=t(i,m+47);

 break

end

end

 for j=1:m

d48(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d48)

s(i)=min(d48)+p(i,m+48)

a53=t(i,m+48);

 break

end

end

 for j=1:m

d49(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d49)

s(i)=min(d49)+p(i,m+49)

a54=t(i,m+49);

 break

end

end

 for j=1:m

d50(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d50)

s(i)=min(d50)+p(i,m+50)

a55=t(i,m+50);

 break

end

end

 for j=1:m

d51(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d51)

s(i)=min(d51)+p(i,m+51)

a56=t(i,m+51);

 break

end

end

 for j=1:m

d52(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d52)

s(i)=min(d52)+p(i,m+52)

a57=t(i,m+52);

 break

end

end

for j=1:m

d53(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d53)

s(i)=min(d53)+p(i,m+53)

a58=t(i,m+53);

 break

end

end

for j=1:m

d54(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d54)

s(i)=min(d54)+p(i,m+54)

a59=t(i,m+54);

 break

end

end

for j=1:m

d55(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d55)

s(i)=min(d55)+p(i,m+55)

a60=t(i,m+55);

 break

end

end

 for j=1:m

d56(j)=[s(1,j)]

end

%%80 job

for i= 1:m

if s(i)==min(d56)

 s(i)=min(d56)+p(i,m+56)

 a61=t(i,m+56);

 break

end

end

 for j=1:m

d57(j)=[s(1,j)]

end

 for i=1:m

if s(i)==min(d57)

s(i)=min(d57)+p(i,m+57)

a62=t(i,m+57);

break

end

end

 for j=1:m

d58(j)=[s(1,j)]

end

 for i=1:m

if s(i)==min(d58)

s(i)=min(d58)+p(i,m+58)

a63=t(i,m+58);

break

end

end

for j=1:m

d59(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d59)

s(i)=min(d59)+p(i,m+59)

a64=t(i,m+59);

 break

end

end

for j=1:m

d60(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d60)

s(i)=min(d60)+p(i,m+60)

a65=t(i,m+60);

 break

end

end

 for j=1:m

d61(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d61)

s(i)=min(d61)+p(i,m+61)

a66=t(i,m+61);

 break

end

end

 for j=1:m

d62(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d62)

s(i)=min(d62)+p(i,m+62)

a67=t(i,m+62);

 break

end

end

 for j=1:m

d63(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d63)

s(i)=min(d63)+p(i,m+63)

a68=t(i,m+63);

 break

end

end

 for j=1:m

d64(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d64)

s(i)=min(d64)+p(i,m+64)

a69=t(i,m+64);

 break

end

end

 for j=1:m

d65(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d65)

s(i)=min(d65)+p(i,m+65)

a70=t(i,m+65);

 break

end

end

 for j=1:m

d66(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d66)

s(i)=min(d66)+p(i,m+66)

a71=t(i,m+66);

 break

end

end

 for j=1:m

d67(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d67)

s(i)=min(d67)+p(i,m+67)

a72=t(i,m+67);

 break

end

end

 for j=1:m

d68(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d68)

s(i)=min(d68)+p(i,m+68)

a73=t(i,m+68);

 break

end

end

 for j=1:m

d69(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d69)

s(i)=min(d69)+p(i,m+69)

a74=t(i,m+69);

 break

end

end

 for j=1:m

d70(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d70)

s(i)=min(d70)+p(i,m+70)

a75=t(i,m+70);

 break

end

end

 for j=1:m

d71(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d71)

s(i)=min(d71)+p(i,m+71)

a76=t(i,m+71);

 break

end

end

 for j=1:m

d72(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d72)

s(i)=min(d72)+p(i,m+72)

a77=t(i,m+72);

 break

end

end

for j=1:m

d73(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d73)

s(i)=min(d73)+p(i,m+73)

a78=t(i,m+73);

 break

end

end

 for j=1:m

d74(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d74)

s(i)=min(d74)+p(i,m+74)

a79=t(i,m+74);

 break

end

end

 for j=1:m

d75(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d75)

s(i)=min(d75)+p(i,m+75)

a80=t(i,m+75);

 break

end

end

 for j=1:m

d76(j)=[s(1,j)]

end

%%%100 job

for i= 1:m

if s(i)==min(d76)

 s(i)=min(d76)+p(i,m+76)

 a81=t(i,m+76);

 break

end

end

 for j=1:m

d77(j)=[s(1,j)]

end

for i=1:m

if s(i)==min(d77)

s(i)=min(d77)+p(i,m+77)

a82=t(i,m+77);

break

end

end

for j=1:m

d78(j)=[s(1,j)]

end

for i=1:m

if s(i)==min(d78)

s(i)=min(d78)+p(i,m+78)

a83=t(i,m+78);

break

end

end

for j=1:m

d79(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d79)

s(i)=min(d79)+p(i,m+79)

a84=t(i,m+79);

 break

end

end

for j=1:m

d80(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d80)

s(i)=min(d80)+p(i,m+80)

a85=t(i,m+80);

 break

end

end

for j=1:m

d81(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d81)

s(i)=min(d81)+p(i,m+81)

a86=t(i,m+81);

 break

end

end

 for j=1:m

d82(j)=[s(1,j)]

end

 for i= 1:m

if s(i)==min(d82)

s(i)=min(d82)+p(i,m+82)

a87=t(i,m+82);

 break

end

end

for j=1:m

d83(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d83)

s(i)=min(d83)+p(i,m+83)

a88=t(i,m+83);

 break

end

end

for j=1:m

d84(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d84)

s(i)=min(d84)+p(i,m+84)

a89=t(i,m+84);

 break

end

end

for j=1:m

d85(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d85)

s(i)=min(d85)+p(i,m+85)

a90=t(i,m+85);

 break

end

end

for j=1:m

d86(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d86)

s(i)=min(d86)+p(i,m+86)

a91=t(i,m+86);

 break

end

end

for j=1:m

d87(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d87)

s(i)=min(d87)+p(i,m+87)

a92=t(i,m+87);

 break

end

end

for j=1:m

d88(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d88)

s(i)=min(d88)+p(i,m+88)

a93=t(i,m+88);

 break

end

end

for j=1:m

d89(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d89)

s(i)=min(d89)+p(i,m+89)

a94=t(i,m+89);

 break

end

end

for j=1:m

d90(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d90)

s(i)=min(d90)+p(i,m+90)

a95=t(i,m+90);

 break

end

end

for j=1:m

d91(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d91)

s(i)=min(d91)+p(i,m+91)

a96=t(i,m+91);

 break

end

end

for j=1:m

d92(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d92)

s(i)=min(d92)+p(i,m+92)

a97=t(i,m+92);

 break

end

end

for j=1:m

d93(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d93)

s(i)=min(d93)+p(i,m+93)

a98=t(i,m+93);

 break

end

end

for j=1:m

d94(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d94)

s(i)=min(d94)+p(i,m+94)

a99=t(i,m+94);

 break

end

end

 for j=1:m

d95(j)=[s(1,j)]

end

for i= 1:m

if s(i)==min(d95)

s(i)=min(d95)+p(i,m+95)

a100=t(i,m+95);

 break

end

end

for j=1:m

d96(j)=[s(1,j)]

end

%%**

J6=d2-d1

J7=d3-d2

J8=d4-d3

J9=d5-d4

J10=d6-d5

J11=d7-d6

J12=d8-d7

J13=d9-d8

J14=d10-d9

J15=d11-d10

J16=d12-d11

J17=d13-d12

J18=d14-d13

J19=d15-d14

J20=d16-d15

J21=d17-d16

J22=d18-d17

J23=d19-d18

J24=d20-d19

J25=d21-d20

J26=d22-d21

J27=d23-d22

J28=d24-d23

J29=d25-d24

J30=d26-d25

J31=d27-d26

J32=d28-d27

J33=d29-d28

J34=d30-d29

J35=d31-d30

J36=d32-d31

J37=d33-d32

J38=d34-d33

J39=d35-d34

J40=d36-d35

J41=d37-d36

J42=d38-d37

J43=d39-d38

J44=d40-d39

J45=d41-d40

J46=d42-d41

J47=d43-d42;

J48=d44-d43

J49=d45-d44

J50=d46-d45

J51=d47-d46

J52=d48-d47

J53=d49-d48

J54=d50-d49

J55=d51-d50

J56=d52-d51

J57=d53-d52

J58=d54-d53

J59=d55-d54

J60=d56-d55

J61=d57-d56

J62=d58-d57

J63=d59-d58

J64=d60-d59

J65=d61-d60

J66=d62-d61

J67=d63-d62

J68=d64-d63

J69=d65-d64

J70=d66-d65

J71=d67-d66

J72=d68-d67

J73=d69-d68

J74=d70-d69

J75=d71-d70

J76=d72-d71

J77=d73-d72

J78=d74-d73

J79=d75-d74

J80=d76-d75

J81=d77-d76

J82=d78-d77

J83=d79-d78

J84=d80-d79

J85= d81-d80

J86= d82-d81

J87= d83-d82

J88= d84-d83

J89= d85-d84

J90=d86-d85

J91=d87-d86

J92=d88-d87

J93=d89-d88

J94=d90-d89

J95=d91-d90

J96=d92-d91

J97=d93-d92

J98=d94-d93

J99=d95-d94

J100=d96-d95

TAR1=d1-r1

TAR6=max(J6)-a6

TAR7=max(J7)-a7

TAR8=max(J8)-a8

TAR9=max(J9)-a9

TAR10=max(J10)-a10

TAR11=max(J11)-a11

TAR12=max(J12)-a12

TAR13=max(J13)-a13

TAR14=max(J14)-a14

TAR15=max(J15)-a15

TAR16=max(J16)-a16

TAR17=max(J17)-a17

TAR18=max(J18)-a18

TAR19=max(J19)-a19

TAR20=max(J20)-a20

TAR21=max(J21)-a21

TAR22=max(J22)-a22

TAR23=max(J23)-a23

TAR24=max(J24)-a24

TAR25=max(J25)-a25

TAR26=max(J26)-a26

TAR27=max(J27)-a27

TAR28=max(J28)-a28

TAR29=max(J29)-a29

TAR30=max(J30)-a30

TAR31=max(J31)-a31

TAR32=max(J32)-a32

TAR33=max(J33)-a33

TAR34=max(J34)-a34

TAR35=max(J35)-a35

TAR36=max(J36)-a36

TAR37=max(J37)-a37

TAR38=max(J38)-a38

TAR39=max(J39)-a39

TAR40=max(J40)-a40

TAR41=max(J41)-a41

TAR42=max(J42)-a42

TAR43=max(J43)-a43

TAR44=max(J44)-a44

TAR45=max(J45)-a45

TAR46=max(J46)-a46

TAR47=max(J47)-a47

TAR48=max(J48)-a48

TAR49=max(J49)-a49

TAR50=max(J50)-a50

TAR51=max(J51)-a51

TAR52=max(J52)-a52

TAR53=max(J53)-a53

TAR54=max(J54)-a54

TAR55=max(J55)-a55

TAR56=max(J56)-a56

TAR57=max(J57)-a57

TAR58=max(J58)-a58

TAR59=max(J59)-a59

TAR60=max(J60)-a60

TAR61=max(J61)-a61

TAR62=max(J62)-a62

TAR63=max(J63)-a63

TAR64=max(J64)-a64

TAR65=max(J65)-a65

TAR66=max(J66)-a66

TAR67=max(J67)-a67

TAR68=max(J68)-a68

TAR69=max(J69)-a69

TAR70=max(J70)-a70

TAR71=max(J71)-a71

TAR72=max(J72)-a72

TAR73=max(J73)-a73

TAR74=max(J74)-a74

TAR75=max(J75)-a75

TAR76=max(J76)-a76

TAR77=max(J77)-a77

TAR78=max(J78)-a78

TAR79=max(J79)-a79

TAR80=max(J80)-a80

TAR81=max(J81)-a81

TAR82=max(J82)-a82

TAR83=max(J83)-a83

TAR84=max(J84)-a84

TAR85=max(J85)-a85

TAR86=max(J86)-a86

TAR87=max(J87)-a87

TAR88=max(J88)-a88

TAR89=max(J89)-a89

TAR90=max(J90)-a90

TAR91=max(J91)-a91

TAR92=max(J92)-a92

TAR93=max(J93)-a93

TAR94=max(J94)-a94

TAR95=max(J95)-a95

TAR96=max(J96)-a96

TAR97=max(J97)-a97

TAR98=max(J98)-a98

TAR99=max(J99)-a99

TAR100=max(J100)-a100

T=[TAR1,TAR6,TAR7,TAR8,TAR9,TAR10,TAR11,TAR12,TAR13,TAR14,TAR15,TAR16,

TAR17,TAR18,TAR19,TAR20,TAR21,TAR22,TAR23,TAR24,TAR25,TAR26,TAR27,TAR2

8,TAR29,TAR30,TAR31,TAR32,TAR33,TAR34,TAR35,TAR36,TAR37,TAR38,TAR39,TA

R40,TAR41,TAR42,TAR43,TAR44,TAR45,TAR46,TAR47,TAR48,TAR49,TAR50,TAR51,

TAR52,TAR53,TAR54,TAR55,TAR56,TAR57,TAR58,TAR59,TAR60,TAR61,TAR62,TAR6

3,TAR64,TAR65,TAR66,TAR67,TAR68,TAR69,TAR70,TAR71,TAR72,TAR73,TAR74,TA

R75,TAR76,TAR77,TAR78,TAR79,TAR80,TAR81,TAR82,TAR83,TAR84,TAR85,TAR86,

TAR87,TAR88,TAR89,TAR90,TAR91,TAR92,TAR93,TAR94,TAR95,TAR96,TAR97,TAR9

8,TAR99,TAR100]

for j=1:n

if T(j) >0

DD(j)=T(j);

else

 DD(j)=0;

end

CMAX=max(s)

TARD=sum(DD)

%%%%%

optjobs=[d1;J6;J7;J8;J9;J10;J11;J12;J13;J14;J15;J16;J17;J18;J19;J20;J2

1;J22;J23;J24;J25;J26;J27;J28;J29;J30;J31;J32;J33;J34;J35;J36;J37;J38;

J39;J40;J41;J42;J43;J44;J45;J46;J47;J48;J49;J50;J51;J52;J53;J54;J55;J5

6;J57;J58;J59;J60;J61;J62;J63;J64;J65;J66;J67;J68;J69;J70;J71;J72;J73;

J74;J75;J76;J77;J78;J79;J80;J81;J82;J83;J84;J85;J86;J87;J88;J89;J90;J9

1;J92;J93;J94;J95;J96;J97;J98;J99;J100]';

%figure(1);

%title 'parallel machine';

%barh(optjobs ,'stack');

%xlabel('JOBS')

%ylabel('MACHINE')

z1=CMAX;

z2=TARD;

z=[z1 z2]';

end

