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ABSTRACT 

SOLUTION APPROACHES FOR MULTI OBJECTIVE 

PARALLEL MACHINE SCHEDULING PROBLEMS 

Aseel N.H. SABTI 

Statistics Program 

Anadolu University, Graduate School of Sciences, December, 2017 

Supervisor: Assist. Prof. Dr. Zehra KAMIŞLI ÖZTÜRK 

This study considers the multi-objective parallel machine scheduling. A novel 

algorithm with name Sequence Job Minimum Completion Time (SJMCT) is proposed 

for unrelated parallel machines and non-identical jobs to minimize the two objectives. 

These objectives are minimization of maximum job completion time and total tardiness 

when each job is assigned only to one machine at time. The proposed algorithm’s 

performance is compared with some common dispatching rules based on a small size 

problem (four machines and nine jobs). 

Because of the complexity in multi-objective parallel machine scheduling 

problems, for large size problems, two novel metaheuristic algorithms SJMCT-NSGA-

II based on Non-dominated sorting genetic algorithm (NSGA-II) and SJMCT-SPEA-II 

based on Strength Pareto evolutionary algorithm (SPEA-II) are proposed to obtain 

Pareto optimal solutions. The simulation results for 272 tests are reported to show the 

efficiency of these two algorithms. Two test problems of simulation experiences are 

done to study effects of the different parameters. In the simulations, the effects of 

generation numbers and job numbers are investigated. The results demonstrate that the 

proposed SJMCT-SPEA-II has better performed than the SJMCT-NSGA-II. Besides 

choosing the appropriate performance measures, Spacing and Spread Diversity Metrics 

are also ensured this result. Finally, the conclusions and some directions for future 

research are reported.  

Keywords: Operations research; Scheduling; Unrelated parallel machine; Multi- 

objective evolutionary algorithms; SJMCT-NSGA-II and SJMCT-SPEA-II algorithms. 
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ÖZET 

ÇOK AMAÇLI PARALEL MAKİNE ÇİZELGELEME PROBLEMLERİ   

İÇİN ÇÖZÜM YAKLAŞIMLARI 

Aseel N.H. SABTI 

İstatistik Anabilim Dalı 

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Aralık, 2017 

Danışman: Yard. Doç. Dr. Zehra KAMIŞLI ÖZTÜRK 

 

Bu çalışmada çok amaçlı paralel makine çizelgeleme problemi ele alınmıştır. 

Bağımsız paralel makineler ve özdeş olmayan iş dizileri için Ardışık İş Enküçük 

Tamamlanma Zaman (SJMCT) isimli yeni bir algoritma önerilerek iki amaç 

eniyilenmiştir. Bu amaçlar; her bir işin sadece tek bir zaman ve makineye atandığı 

durumdaki enbüyük tamamlanma zamanı ve toplam gecikmenin en küçüklenmesidir. 

Geliştirilen algoritmanın performansı, küçük boyutlu bir problem (dört makine ve dokuz 

iş) üzerinden çok kullanılan genel sevk etme kuralları ile karşılaştırılmıştır.  

Büyük boyutlu problemler için çok amaçlı makine çizelgeleme problemlerindeki 

karmaşıklıklardan dolayı, Baskın Olmayan Sıralama Genetik Algoritma (NSGA-II) 

tabanlı ile Güçlü Pareto Evrimsel Algoritma (SPEA-II) tabanlı SJMCT-NSGA-II ve 

SJMCT-SPEA-II isimli iki yeni melez metasezgisel algoritma Pareto optimal çözümleri 

elde etmek için önerilmiştir. 272 simülasyon sonucu, geliştirilen algoritmaların 

etkinliğini göstermektedir. Değişik parametrelerin etkilerini göstermek için iki farklı 

problem üzerinden simülasyonlar yapılmıştır. Simülasyonlarda iterasyon sayısı ve iş 

sayısı etkileri araştırılmıştır. Sonuçlar, önerilen SJMCT-SPEA-II algortimasının 

SJMCT-NSGA-II’den daha iyi performansa sahip olduğunu göstermektedir. Uygun 

performans ölçülerini seçmeden önce, elde edilen Pareto çözümlerin etkiliğini 

göstermek için Yayılma ve Mesafe metrikleri de kullanılmıştır. Son olarak, sonuçlar ve 

gelecek çalışmalar için bazı öneriler de sunulmuştur.  

 

Anahtar sözcükler: Yöneylem araştırması; Çizelgeleme; Özdeş olmayan paralel 

makine; Çok amaçlı evrimsel algoritmalar; SJMCT-NSGA-II; SJMCT-SPEA-II. 
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1.    INTRODUCTION 

Scheduling is a field of study concerned with optimal allocation or assignment of 

limited  resources, over time, to a set of tasks or activities (Parker, 1996). Tasks and 

resources can stand for jobs and machines in a manufacturing system, patients and 

hospital equipment in health care problem, class and teachers in educational institution, 

ships and dockyards in a logistic system, programs and computers, or cities and 

traveling salesmen. 

In each of these different systems, the decision makers try to optimize an 

objective function. For example, minimization of total tardiness, minimization of total 

course clashes of students and etc. 

As Pinedo, (2008) mentioned, scheduling is a decision-making process, plays an 

important role in most manufacturing and production systems. 

 In general, the machine scheduling problems are first classified into two classes 

in terms of the nature of problem. The first class is the deterministic machine problem 

when the processing constraints and parameters can be ascertained with certainty. The 

second is the uncertain machine scheduling problem when some processing conditions 

or parameters cannot be determined in advance. 

The deterministic machine scheduling problems are categorized into four types 

according to shop configuration. These types are classified as: single machine, parallel 

machines, flow shop, and job shop. In parallel-machine shop, a number of one operation 

jobs can be processed on any of machines. In flow shop, machines are arranged in a 

serial fashion, and each job has to pass through each machine. Job shop is a 

configuration in which each job has different processing routes. 

The uncertain machine scheduling problems are grouped into two types in terms 

of the description method of uncertainty. The first type is fuzzy machine scheduling 

problem in which the processing conditions and parameters are modeled using fuzzy 

number. The second is stochastic machine scheduling problem in which stochastic 

variables are used to indicate the processing constraints and parameters.  

Today's parallel machine scheduling has become one of the most attractive 

subjects because of the competition in production environments. Parallel machine 

scheduling is one of the machine scheduling classes. In addition, the unrelated parallel 

machine scheduling which means there is no relationship among these machines 

(Eroglu, Ozmutlu and Ozmutlu, 2014). Therefore, this study deals with this type of 
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scheduling problem and the motivation behind this thesis is to solve large size of 

unrelated parallel machine scheduling with non-identical jobs to optimize two 

objectives represented by minimizing the maximum completion time and total tardiness. 

The organization of this thesis is as follows: Chapter 2 presents a brief overview of 

the literature related with single machine scheduling, single and multi-objective parallel 

machine scheduling. Also, flow shop and job shop scheduling problems. 

In Chapter 3, a new mathematical model is proposed for unrelated parallel 

machines with non-identical jobs when jobs have different processing times on each 

machine. Sequence Job Minimum Completion Time (SJMCT) algorithm is used to 

solve this model. The minimum random processing time is used to assignment 

problems. The aim is to minimize two objectives: the maximum completion time and 

total tardiness. The comparison between SJMCT and some dispatching rules is 

represented.  

In Chapter 4, the most challenge of this study is proposed two novel heuristic 

algorithms Sequence Job Minimum Completion Time-based NSGA-II (SJMCT-NSGA-

II) and Sequence Job Minimum Completion Time-based SPEA-II (SJMCT-SPEA-II). 

These algorithms are able to solve large and more complex multi-objective parallel 

machine scheduling problems.  

In Chapter 5, firstly, 32 simulation test problems are made with 60 jobs and with 

different generation numbers (40, 100, 300 and 500). Secondly, 240 simulation test 

problems are reported with different number of jobs (20, 60 and 100) where the 

generation number is 500. All of these tests with different crossover and mutation 

probabilities and with the same size of population are used to compare between these 

two algorithms. In addition, the spacing and spread diversity metrics are used to find the 

best algorithms.  

In Chapter 6, the conclusions, the contribution of this thesis and some suggesting 

future research directions are explained. 
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2.    SOME DEFINITIONS AND LITERATURE REVIEW 

2.1. Background of Machine Scheduling 

In single machine scheduling models, there is only one machine and the routes 

consist of only one operation performed on this machine (Akyol, 2006). On the other 

hand, in parallel machine scheduling there are N jobs and M machines and each job can 

be processed on any one of available machines (Allahverdi, Gupta and Aldowaisan, 

1999). Also, there are three types of parallel machines (Ma, Chu and Zuo, 2010) and 

(Strusevich and Rustogi, 2017): 

 Identical machines: If each processing time of a job is independent of the machine 

when performing a job. 

 Uniform machines: The machines operated at different speeds.  

 Unrelated parallel machines: The processing time of a job depends on the 

machine assignment. 

The basic parameters in machine scheduling are given bellow (Pinado, 2005): 

Processing time (Pij): It is the required time of job j to complete its processing on 

machine i. 

Release date (rj): It is the time at which job j ∈ N becomes available for processing. 

Deadline: It is the time by which a job j ∈ N must be completed; unlike the due date, a 

deadline is a hard constraint. 

Due date (di): It is the time at which job j ∈ N is expected to complete. 

For any scheduling problem, the following primary criteria are used as a function. 

Completion time (Ci): It is the popular quality measure, represents the times by which 

jobs are completed on machine i.  

Lateness (Li): Lateness is expresses the deviation of the completion time of a job j from 

a due date, it can be positive, negative or zero Lj=Cj-dj. 

Tardiness (Ti): Tardiness is the non-negative quantity that can be calculated to show 

how much time a job is completed after its due date       {       }  

   {    }. 

According to Lawler et al., (1993) and Xing and Zhang, (2000) the three field 

classification of machine scheduling are       , where: 

    describes machine environment,  ∈ {     } 

    : Identical parallel machines,           for all   , 
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    : Uniform parallel machines,          ⁄    for a given speed     of   , 

    : Unrelated parallel machines,          ⁄   for given job-dependent speeds     

of   . 

    describes job characteristics,   ∈ {      } 

       : Preemption is allowed; the processing of any operation may be   interrupted 

and resumed at a later time.              

     : No preemption is allowed.  

   describes optimality criteria. In general  ∈ {            ∑    ∑    ∑   }. 

 

2.2. Dispatching Rules 

The term dispatching rule is used to determine the next job waiting in front of a            

machine when the machine becomes available (Pinedo, 2005). The main advantage of 

dispatching rules is that, they are easy to understand, easy to apply and require relatively 

little computer time. Their primary disadvantage is that, they can’t guarantee an optimal 

solution (Akyol, 2006). Dispatching rules can be classified in different ways. Static 

rules are not time dependent and they are just a function of the job and/or machine data. 

Dynamic rules are time dependent. Another classification of dispatching rules is 

according to the information they are based upon. There are many basic dispatching 

rules but a sample of these rules is given as bellow (Pinedo, 2005) and (Massabò, 

Paletta  and Ruiz-Torres, 2016). 

 The Earliest Release Date first (ERD) rule: This rule tends to minimize the diversity 

in the waiting times of the jobs at a machine. The job which has the earliest release 

date is selected next to be processed. 

 The Earliest Due Date first (EDD) rule: This rule refers to minimize the maximum 

lateness among the jobs waiting for processing. The job which has the earliest due 

date is selected next to be processed. 

 The Minimum Slack first (MS) rule: When a machine is freed the minimum slack 

job will schedule next. Also, the remaining slack of each job at that time t is defined 

as                 . 

 The Longest Processing Time first (LPT) rule: The LPT rule sorts jobs in decreasing 

order of processing times and iteratively assigns each job to the machine which 

would complete in the shortest processing time. 
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 The Weighted Shortest Processing Time first (WSPT) rule: This rule schedules the 

job with highest ratio of weight over processing time. Jobs are ordered in decreasing 

order of wj/pj. If all the weights are equal, the WSPT rule reduces to the Shortest 

Processing Time first (SPT) rule. 

 The Critical Path (CP) rule: This rule is related with jobs subject to precedence 

constraints. The job which has the longest string of processing times in the 

precedence constraints graph (Prec) is selected next to be processed. 

 The Largest Number of Successors (LNS) rule: This rule also is used when the jobs 

are subject to precedence constraints. The job which has the largest number of jobs 

following it is selected next to be processed. 

 The Service in Random Order (SIRO) rule: In this rule, the next job is selected at 

random from those waiting for processing.  

 The Shortest Setup Time first (SST) rule: In this rule, the job with the shortest setup 

time is firstly selected for processing. 

 The Least Flexible Job first (LFJ) rule: This priority rule is used with the non-

identical parallel machine and the jobs are subject to machine eligibility constraints. 

Job j can only be processed on a specific subset of the m machines, say Mj. It selects 

the job which is processed on the smallest number of remaining machines i.e., the 

job with the fewest processing alternatives.  

 The Shortest Queue at the Next Operation (SQNO) rule: In job shops, this rule 

selects the job with the shortest queue at the next machine on its route for 

processing. At the next machine the length of the queue can be measured in different 

ways. It may be simply the number of jobs waiting in queue or it may be the total 

amount of work waiting in queue. 

Pinedo, (2005) describes the basic dispatching rules mentioned above as given in 

Table 2.1. 
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Table 2. 1. Summary of dispatching rules (Pinedo, 2005) 

 

 
RULE DATA OBJECTIVES 

 

Rules Dependent on 

Release Dates and Due 

Dates 

 

ERD 

EDD 

MS 

 

   

   

   

 

 

Variance in Throughput Times 

Maximum Lateness 

Maximum Lateness 

 

Rules Dependent on 

Processing Times 

 

LPT 

SPT 

WSPT 

CP 

LNS 

 

   

   

      

        

        

 

 

Load Balancing Over Parallel Machines  

Sum of Completion Times, WIP 

Weighted Sum of Completion Times, WIP 

Makespan 

Makespan 

 

 

Miscellaneous 

 

SIRO 

STT 

LFJ 

SQNQ 

 

__ 

    

   

__ 

 

 

 

Ease of Implementation 

Makespan and Throughput 

Makespan and Throughput 

Machine Idleness 

 

2.3. Literature Review  

In this section, many relevant works about single machine scheduling problems, 

single objective parallel machine solved by exact and heuristic solution approaches, 

multi-objective parallel machine scheduling problems solved by different and 

evolutionary solution approaches are indicated. Other relevant works in shop scheduling 

problems are also viewed. 

 

2.4. Relevant Works in Single Machine Scheduling Problems 

 Dyer and Wolsey (1990) considered the formulation of the single machine 

sequencing problem with release dates as a mixed integer programming problem to 

minimize the weighted sum of start (or completion) times for the n-jobs 1-machine 

problem. They showed that; a first hierarchy of relaxations (obtained by combining 

enumeration of initial sequences with Smith’s rule) and the second hierarchy of 

relaxations (obtained by studying various relaxations and alternative formulations) can 

be formulated as a linear programming problem. 



 
 

7 

 

     Laguna, Barnes and Glover, (1991)  used three local searches strategies within 

tabu search algorithm (TSA) to minimize the sum of the set up costs and linear delay 

penalties. Firstly, they used TS approach of making a succession of pairwise job 

exchange or swaps to move from one trail solution to another. Next, they used the insert 

moves to define the local neighborhood of each trail solution.  Finally, a hybrid TSA 

employed to swap and insert moves. The experiment results for benchmark problem of 

up to 60 jobs illustrate that, there is an advantage in using more than one strategy to 

move from one trail solution to another with in a TSA method.  

 Crauwels, Potts and Van Wassenhove, (1998) presented several local search 

heuristics to minimize total weighted tardiness. A new binary representation and the 

additional diversifying element in the tabu search methods are introduced to represent 

solutions. The extensive computational tests ensure that, binary encoding scheme 

produces very robust results for the total weighted tardiness problem. 

 França, Mendes and Moscato, (2001) proposed a new Memetic Algorithm (MA) 

with due dates and sequence dependent setup time to minimize total tardiness.  The 

Genetic algorithms GAs and MA are compared with three other heuristics. Several 

neighborhood reduction schemes are improved starting with a set of random generated 

parameters. The computational results using a non-structured population and less 

elaborated neighborhoods led to a considerable loss of performance especially for large 

instances. 

 

2.5. Relevant Works in Single Objective Parallel Machine Scheduling Problems 

2.5.1. Exact solution approaches for single objective parallel machine scheduling 

problems 

The most associated studies in parallel machine scheduling for single objective 

can be summarized as follows: 

 Balakrishnan, Kanet and Sridharan, (1999) considered the problem of 

scheduling n jobs on m parallel machines that operating at different speeds (known as 

uniform parallel machines), to minimize the sum of earliness and tardiness costs. They 

presented a mixed integer mathematical model to solve small sized problems (10 jobs 

and 5 machines). 
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Uma, Wein and Williamson, (2006) investigated from a theoretical perspective, 

the relationship between combinatorial relaxation and several linear programming 

relaxation -based lower bounds for three scheduling problems to minimize the average 

weighted completion time of the jobs scheduled. As a result, they obtained the first 

worst-case analysis of the quality of the lower bounds delivered by these combinatorial 

relaxations. 

 Senthiil, Selladurai and Rajesh, (2007) proposed a new algorithm, the extension 

of the traveling salesman problem in a parallel machine environment to minimize the 

makespan. The proposed algorithm extends the optimization of a single machine 

problem to a parallel machine problem using the traveling salesman problem for 

scheduling. Moreover, they used the ant colonies optimization algorithm to find a 

solution for this new proposed problem. The simulation results show that, the algorithm 

is able to optimize the different scheduling problems.  

 Lu, Zhang and Yuan, (2008) considered the unbounded parallel batch machine 

scheduling with release dates and rejection. A job is either rejected with a certain 

penalty having to be paid, or accepted and processed in batches. The aim is to minimize 

the sum of the makespan of the accepted jobs and the total rejection penalty of the 

rejected jobs. They showed that, the problem is binary NP-hard and it can be solved in 

polynomial time when the jobs have the same rejection penalty.  

 Lin and Liao, (2008) proposed an optimal algorithm for solving the uniform 

parallel machine problem to minimize the makespan. Two important theorems are 

developed for the problem. The first theorem provides an improved lower bound as the 

starting point for the search, and the second theorem further accelerates the search speed 

in the algorithm. 

 Unlu and Mason, (2010) represented different Mixed Integer Programming 

formulations based on different types of decision variables for non-preemptive parallel 

machine scheduling problems. Different performance measures such as, total weighted 

completion time, makespan, maximum lateness, total weighted tardiness and total 

number of tardy jobs are used to evaluate the formulation efficiency. 

 Ruiz and Andrés-Romano, (2011) considered a novel complex scheduling 

problem with unrelated parallel machine problem and job sequence dependent setup 

times. A combination of total assigned resources and total completion time is used as a 
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criterion. The good performance of the mixed integer programming model with large 

number of constraints and variables and other heuristics algorithm are obtained. 

 Zhang and Luo, (2013) studied the rejection and a fixed non-availability interval 

on two identical parallel machines when the processing time of a job is a simple linear 

increasing function of its starting time. The objective is to minimize the makespan of 

the accepted jobs plus the total penalty of the rejected jobs. In addition, for two identical 

machines a "fully polynomial-time approximation scheme" presented to show that the 

problem is NP-hard in the ordinary sense only. 

 Öztürk and Ornek, (2014) improved a mixed integer programming formulations 

for advanced planning and scheduling systems (APS). The objective function includes 

the cost of idle times of the machines and penalties on tardiness and earliness. They 

developed a basic model with sequence dependent setups time and transfer times 

between machines. They also showed that the presented model can be used to provide 

delivery times for customer orders in case due dates are not specified. 

 

2.5.2. Heuristic and metaheuristic solution approaches for single objective 

parallel machine scheduling problems 

 Frenk and Rinnooy Kan, (1987) studied the behavior of list scheduling rules 

(LS) to minimize makespan for parallel machines of different speed. The jobs are 

assigned successively to the first available machine in the order. The processing 

requirements of the jobs are independent, identically non-negative random variable. 

They obtained strong asymptotic optimality results for the LPT (longest processing 

time) rule, when the jobs are assigned to the machines in order of non- increasing 

processing requirements. 

 Cheng and Gen, (1997) used Memetic Algorithm (hybrid genetic algorithm) to 

minimize the maximum weighted absolute lateness. The computational experiments 

demonstrate that the hybrid genetic algorithm outperforms the genetic algorithms and 

the conventional heuristics. 

 Sivrikaya-Şerifoǧlu and Ulusoy, (1999) considered the parallel machine problem 

scheduling with earliness and tardiness penalties (PMSP-E/T). The problem consisted of 

scheduling a set of independent jobs with sequence-dependent setup times to minimize 

the sum of the weighted earliness and tardiness values. Also, they employed two 
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Genetic Algorithms (GAs) approaches. Firstly, they used a crossover operator to solve 

multi-component combinatorial optimization problems. Secondly, they didn’t use a 

crossover operator. The computational results showed that, GAs with crossover operator 

is more attractive in large sized and more difficult problems. 

 Xing and Zhang, (2000) studied the parallel machine scheduling (PMS) problem 

with a hypothesis: a job cannot be processed on two machines simultaneously if 

preemption is allowed, and under a hypothesis: any part of a job can be processed on 

two different machines at the same time, they called it PMS with splitting jobs. They 

presented some simple cases which are polynomial solvable. Furthermore, a heuristic 

maximum likelihood (ML) used to convert the original problem to a new problem by 

using the maximum completion time estimation (MCTE) and its worst-case analysis 

were shown for P/split /Cmax with independent job setup times. The objective was to 

minimize the total cost. 

 Weng, Lu and Ren, (2001) proposed seven heuristic algorithms tested by 

simulation to scheduling a set of independent jobs on unrelated parallel machines with 

job sequence dependent setup times to minimize the total weighted completion time. 

 Gupta and Ho, (2001) developed an optimization algorithm and polynomially 

bounded heuristic solution procedures for the scheduling jobs on two identical parallel 

machines to hierarchically minimize the makespan subject to the optimality of the total 

flow time. 

 Lin and Liao, (2008) developed the algorithm which has an exponential time 

complexity in addition to the optimal algorithm mentioned before. They also examined 

the effectiveness of the popular LPT heuristic for solving the uniform parallel machine 

problem with the objective of minimizing the makespan. 

 Koulamas and Kyparisis, (2009) proposed a modified longest processing time 

(MLPT) heuristic algorithm for the two uniform machine makespan minimization 

problems. They showed that the performance of the LPT heuristic for the (Q2//Cmax) 

problem can be improved by sequencing the longest three jobs optimally. The results 

demonstrate the applicability of this approach (already implemented for identical 

parallel machine scheduling problems) to a uniform parallel machine environment. 

 Yeh et al., (2014) proposed two meta-heuristics, the Simulated Annealing (SA) 

and the Genetic Algorithm (GA) for parallel machine scheduling with fuzzy processing 
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times and learning effects with aim to minimize the makespan. The results show that, 

SA is better than GA for this problem. 

 Ou, Zhong and Wang, (2015) found new properties and improved an O (n log 

n+ n/ε) heuristic for parallel machine scheduling with rejection. When the jobs are 

accepted and processed or rejected and paid a rejection penalty to minimize the 

completion time of the last accepted job plus the total penalty of all rejected jobs.  

 Joo and Kim, (2015) proposed hybrid Genetic Algorithms with three dispatching 

rules for unrelated parallel machine scheduling to minimize the total completion time. 

MIP Mixed Integer Programming model derived to find the optimal solution. The 

results show that, GA using chromosomes with processing-time-based dispatching rule 

(GA_DR_P) could offer a better solution in both effectiveness and efficiency.  

 Yeh, Chuang and Lee, (2015) proposed a scheduling problem on uniform 

parallel machines where the objective is to minimize the makespan. Three algorithms, 

Genetic Algorithm (GA), Particle Swarm Optimization Algorithm (PSO), and 

Simplified Swarm Optimization Algorithm (SSO) are proposed to solve the problem. In 

results, SSO has better solutions in a small number of jobs, and the GA approach has 

better solutions for large job-sized problems.  

 Massabò, Paletta and Ruiz-Torres, (2016) developed a posterior worst-case 

performance ratio of the LPT heuristic for scheduling independent jobs on two uniform 

parallel machines to minimize the makespan. The posterior worst-case performance 

ratio depends on the index of the latest job inserted in the machine where the makespan 

takes place. They show that the posterior worst-case performance ratio is tight. 

Similar to the previous work, other review of the scheduling problems with 

multiple objectives is given in the next subsection. 

 

2.6. Relevant Works in Multi-Objectives Parallel Machine Scheduling Problems  

2.6.1. Solution approaches for multi-objective parallel machine scheduling 

problems  

 Suresh and Chaudhuri, (1996)  proposed an algorithm based on Tabu Search to 

minimize the makespan and maximum tardiness when each job has required a single 

stage of processing for unrelated parallel machine scheduling. Also, they compared their 
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solutions with other heuristic algorithms. The extensive experiments show that, the 

proposed algorithm outperforms in the quality of solution and execution time. 

 Loukil, Teghem and Tuyttens, (2005) considered a Multi-objective Simulated 

Annealing (MOSA) to find the efficient schedules for a large set of scheduling models. 

They analyzed the solution correspond to one machine, parallel machines and 

permutation flow shops. Thereafter, they designed a Multi-objective Tabu Search 

Algorithm (MOTSA) and tested it numerically to compare with MOSA algorithm.  

 Tavakkoli-Moghaddam, Taheri and Bazzazi, (2008) proposed a new model to 

minimize the number of tardy jobs and total completion time for unrelated parallel 

machines scheduling problem with different machine speeds. They used a two-level 

mixed-integer programming and goal programming approach to solve the scheduling 

problem with precedence constraints and non-independent jobs. The good performance 

of proposed model is obtained in small and medium-sized problems. They solved the 

problem with (6, 8 and 10) jobs, (2, 3 and 4) machines and (3, 4 and 5) number of 

precedence constraints.  

 Mazdeh et al., (2010) studied the bi-criteria scheduling problem (PMBSP) for 

parallel machines with machine effects and job deterioration to minimize total tardiness 

and machine deteriorating cost. They proposed the LP-metric method and a 

metaheuristic algorithm based on Tabu Search. Numerical examples used to assess the 

effectiveness and efficiency of the model. 

 Cheng et al., (2012) considered the parallel batch processing machines with non-

identical job sizes to minimize makespan and total completion time. They used a mixed 

integer programming method to find the optimal solution. Thereafter, they proposed a 

polynomial time algorithm and the worst case ratios to minimize the objective values. 

The reported results indicate to the efficiency of the algorithm. 

 Muralidhar and Alwarsamy, (2013) considered parallel machines scheduling 

problem to minimize the combined objective function of the makespan, total tardiness 

and total earliness. Artificial Neural Networks (ANN) was applied and compared with 

heuristic algorithms. The results show that, the adapted procedure is simpler and it can 

be used for scheduling large number of jobs without training the network again. 

 Torabi et al., (2013) considered a fuzzy multi-objective programming model for 

solving an unrelated parallel machine scheduling problem. A Multi-objective Particle 

Swarm Optimization (MOPSO) algorithm was proposed to find Pareto frontier. The aim 
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is minimizing total weighted flow time, total weighted tardiness and total machine load 

variation. They compared the proposed algorithm with conventional multi-objective 

particle swarm optimization algorithm. Results of test problems observed that the 

proposed MOPSO is better performed than CMOPSO based on the linear statistical 

model for three hypotheses tests. Also, the ANOVA results have been summarized to 

study the effect of i
th

 method, j
th

 objective space and the effect of interaction between i
th

 

method and j
th

 objective space.   

 Yang, (2013) presented unrelated parallel machine scheduling problems with 

deterioration effects and deteriorating multi-maintenance activities. Two models of 

scheduling have been examined: the job and position dependent on deterioration model 

and the time dependent deterioration model. The aim is minimizing total completion 

time to find jointly the optimal maintenance frequencies, the optimal maintenance 

positions and the optimal job sequences. A polynomial time solution was applied for 

variant and some special cases. 

 Lin and Lin, (2015) proposed a bicriteria heuristic and a Tabu Search Algorithm. 

The objective is to minimize the makespan and total weighted tardiness for unrelated 

parallel machine scheduling problems with release dates. The results indicate that, the 

proposed TSA is outperforms other heuristic algorithms.  

 

2.6.2. Evolutionary solution approaches for multi-objective parallel machine 

scheduling problems 

Zitzler, Laumanns and Thiele, (2001) improved Strength Pareto Evolutionary 

Algorithm (SPEA-II) for finding or approximating the Pareto-optimal set for multi-

objective optimization problems and compare SPEA-II with SPEA and two other 

modern elitist methods, Pareto envelope- based selection algorithm (PESA) and NSGA-

II, on different test problems.  

 Jaszkiewicz, (2002) proposed a novel Genetic Local Search algorithm (GLS) 

algorithm for multi-objective combinatorial optimization problems (MOCO) to find an 

efficient solution in both combinatorial optimization and non-convex continuous 

optimization problems. The results show that, the proposed algorithm has better 

performance than multi-objective methods based on GLS or based on traveling 

salesman problem TSP.           
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 Cochran, Horng and Fowler, (2003) proposed a two-stage multiple population 

genetic algorithms (MPGA). The goal is to minimize makespan and total weighted 

tardiness (TWT). They also compared MPGA with benchmark method and multi-

objective genetic algorithm MOGA. Moreover, The MPGA is extended to scheduling 

problems with three objectives: makespan, TWT, and total weighted completion times 

TWC. The experiment results in most of the test problems show that, MPGA has better 

performs than MOGA.  

 Chang, Chen and Hsieh, (2006) proposed a modified sub-population genetic 

algorithm SPGA and an adaptive SPGA for parallel machine scheduling problem to 

minimize total tardiness time and makespan. They show that, the results obtained by 

adaptive SPGA and modified SPGA are more efficient than other multi-objective 

optimization genetic algorithms NSGA-II and SPEA-II for large size problems.  

 Balasubramanian et al., (2009) proposed iterative SPT–LPT–SPT heuristic and a 

bicriteria genetic algorithm for interfering job sets. Where, the makespan minimized for 

one of the sets and the total completion time minimized for the other. Integer 

programming formulation solution was compared  with the heurestic and GA algorithms 

to show the effeiciency of these algorithms. Results show that, the heuristic and the 

genetic algorithm provide high solution quality and are computationally efficient. 

 Li et al., (2010) considered an identical parallel machines scheduling problem 

with release dates, due dates, and sequence-dependent setup times to minimize the 

makespan and the total tardiness. A new mathematical model and two metaheuristics 

NSGA-II (Non-dominated Sorting Genetic Algorithm–II) and SPEA-II (Strength Pareto 

Evolutionary Algorithm-II) were explained. A full enumeration method was applied to 

find the absolute Pareto optimal solutions. The results show that, the full enumeration 

method cannot solve the problems with more than 8 jobs. 

 Mirabedini and Mina, (2012) proposed multi-objective model including the 

problem of preventive maintenance and production scheduling by one objective. The 

weighted-sum objective function is considered with five parts; minimizing maintenance 

cost, makespan, total weighted completion time of jobs, total weighted tardiness, and 

maximizing machine availability. Multi-objective genetic algorithms solved the model 

and found a local optimum solution. 

 Li et al., (2012) presented an identical parallel machine scheduling problem with 

release dates, due dates and sequence dependent setup times to minimize the makespan 
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and the total tardiness. They proposed a new mathematical model and developed two 

metahurestics as non-dominated sorting genetic algorithm (NSGA-II) and a fuzzy logic 

guided NSGA-II (FLC-NSGA-II). Also, two phase method TPM was used as an exact 

method to solve the problem. The FLC-NSGA-II was compared with the TPM method 

for the small size problems. Results indicate to the ability of FLC-NSGA-II to find the 

absolute optimal solutions and the TPM method can solve the problems with maximum 

10 jobs.  

 Bandyopadhyay and Bhattacharya, (2013) represented a multi-objective parallel 

machine scheduling problem with minimization of three objectives: total cost due to 

tardiness, deterioration cost for the machines and makespan. They solved the 

mathematical model by multi-objective evolutionary algorithms modified NSGA-II, 

NSGA-II and SPEA-II. The processing, setup and deterioration costs were generated 

randomly to follow uniform distribution. Simulation experiments were performed to 

compare these algorithms. The comparison shows that, the modified NSGA-II has better 

performance than the NSGA-II and SPEA-II. 

 Wang and Liu, (2015) considered a multi-objective parallel machine scheduling 

problem with flexible preventive maintenance activities and with two kinds of resources 

(machines and moulds). The aim is to minimize the makespan for the production, the 

unavailability of the machine system and the unavailability of the mould system. They 

proposed a multi-objective integrated optimization method and NSGA-II adaption. The 

computationally results show that, the integrated optimization method of production 

scheduling and preventive maintenance outperforms the method with periodic 

preventive maintenance for this problem.  

 

2.7. Relevant Works in Shop Scheduling Problems 

 Murata, Ishibuchi and Tanaka, (1996) proposed a multi-objective genetic 

algorithm for flow shop scheduling. They used crossover operation based on a weighted 

sum of multiple objective functions with variable weighted. The two objectives were 

determined as minimizing the makespan and total tardiness and three objectives were 

determined as minimizing the makespan, total tardiness and total flow time are 

examined. The simulation experience represents the ability of multi-objective genetic 

algorithm to find Pareto optimal solutions, and it has better performance than the VEGA 

(Vector Evaluated Genetic Algorithm) and the single-objective genetic algorithm.  
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 Ishibuchi and Murata, (1998) proposed a multi-objective genetic local search 

algorithm on flow shop scheduling problems. A local search procedure was applied to 

each new solution generated by the genetic operations. They used a multi-objective 

weighted sum fitness function.  The highest quality performance of the algorithm shows 

the ability of proposed algorithm to handle the non-convex feasible region in the 

objective space. 

  Bagchi, (2001) obtained Pareto optimal solutions by using metaheuristic 

methods. GAs and NSGA are used for sequencing jobs in a flow shop. Multi-objective 

production scheduling problems such as three-objective flow shops, three-objective job 

shops and two-objective open shop problems are explained. They demonstrated a 

statistical comparison between the NSGA and augmented NSGA. 

 Kacem, Hammadi and Borne, (2002) presented a novel approach by localization 

(AL) and controlled evolutionary approach CGA (generated by the first approach) to 

solve assignment and job shop scheduling problem. The considered objectives are 

minimization of the overall completion time (makespan) and the total workload of the 

machines. 

 Rajendran and Ziegler, (2003) proposed two heuristics in a static flow shop with 

sequence dependent setup time’s jobs to minimize the sum of weighted flow time and 

weighted tardiness of jobs. A random search procedure and a greedy local search are 

used as benchmark problems to evaluate the proposed heuristic. Computationally, the 

proposed algorithm has better performance than benchmark procedures in both speed 

and effective. 

 Arroyo and Armentano, (2005) proposed a genetic local search algorithm for the 

flow shop scheduling problem. The algorithm was applied to the flow shop scheduling 

problem for the following two pairs of objectives: (i) makespan and maximum 

tardiness; (ii) makespan and total tardiness. The results show the efficiency of the 

proposed algorithm to find the Pareto optimal set. 

 Jungwattanakit et al., (2008) formulated a mathematical model to minimize the 

makespan and the tardy jobs for the flexible flow shop problem with unrelated parallel 

machines and considering setup times. Firstly, they studied several dispatching rules 

(constructive algorithms). Secondly, they studied GA-based algorithms as improvement 

algorithm. They compared the performance of the heuristics algorithms on a set of test 
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problems up to 50 jobs and 20 stages. They found that, for population sizes, crossover 

types, and mutation types, there were statistically significant differences.       

 Yazdani, Amiri and Zandieh, (2010) proposed a PVNS (parallel variable 

neighborhood algorithm) that solves the FJSP (flexible job shop scheduling) to 

minimize makespan time. The computational results show that the proposed algorithm 

is a viable and effective approach for the FJSP. 

 Moslehi and Mahnam, (2011) proposed a new approach to solve the multi-

objective flexible jobs hop scheduling problem based on a hybridization of the Particle 

Swarm and Local Search algorithms with different release time. They compared the 

proposed algorithm with other algorithms (weighted summation of objectives and 

Pareto approaches) to show the performance of presented algorithm.  
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3. PROBLEM DEFINITION AND MODELING 

In this chapter, firstly a novel mixed integer multi-objective mathematical model 

for parallel machine scheduling problem is introduced. Next, the assumptions for the 

problem are presented. Finally, the comparison with other dispatching rules and the 

solutions for the considered problem are provided.  

 

3.1. Problem Definition 

The problem considered in this chapter regards with scheduling of unrelated 

parallel machine when job’s processing time is dependent on the completion time of 

assigned machine. It is worth to mention that, the idea of the Sequence Job Minimum 

Completion Time (SJMCT) algorithm is associated with a common heuristic used in 

parallel machine scheduling the longest processing time rule (LPT) in some 

characteristic features.  

In this study, processing times are known and deterministic. Assume that, there is 

limited number of jobs (2m+1) or more and each job has a single operation that can be 

performed on one machine only. Therefore, the problem will become an NP hard 

problem (Frenk and Rinnooy Kan, 1987). 

Several researchers such as Tavakkoli-Moghaddam, Taheri and Bazzazi, (2008), 

Li et al., (2010), Li et al., (2012) and Bandyopadhyay and Bhattacharya, (2013) 

formulated a mathematical programming model for parallel machine scheduling 

problems with different assumptions. Also, Kamisli Ozturk and Sabti A.N., (2017) 

considered a mixed integer programming model for unrelated parallel machine 

scheduling problems.  

In this study, the proposed algorithm Sequence Job Minimum Completion Time 

(SJMCT) deals with scheduling non-identical jobs J1, J2,…,Jn on unrelated parallel 

machine M1,M2,..,Mm. Every job j is considered with a processing time pij and a due date 

dij. Let pij= pj ,       be the processing time to the first m scheduled job. The SJMCT 

algorithm is applied at two levels. In the first level, the new job is assigned to machine i 

which has the minimum completion time between the first m machines. In the second 

level, each job will be assigned iteratively to the machine which has the shortest 

completion time. The algorithm repeats the same operator to schedule all jobs to 
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minimize the maximum completion time and the total tardiness as given in equations 

(3.1) and (3.2). 

                                                                                                      (3.1) 

 Where, Cj is the completion time of job j.  

   ∑   
 
                                                               (3.2) 

Where, Tj is the tardiness of job j and Tj = max (0, Cj − dj). 

Furthermore, if the completion time Cj of job j is greater than its due date dj, then 

this job is considered as tardy. Otherwise, the tardiness Tj of job j is equal to 0.  

 

3.2. Assumptions 

Before formulating the problem, the following assumptions are considered. 

1. The machines are unrelated (the processing time of a job depends on the machine 

assignment). 

2. The jobs are non- identical (jobs have different processing times on each machine). 

3. Each machine can process only one job at a time. 

4. Each machine is available at time zero. 

5. Preemption and machine breakdowns are not allowed. 

6. No setup time is required. 

 

3.3. Mathematical Model of the Problem 

As mentioned in Section 3.1, the two objectives are minimized simultaneously. 

The proposed multi-objective mathematical model for parallel machine scheduling 

model is proposed as follows, where; 

Indices and sets: 

n: number of jobs. 

m: number of machines. 

 j, k : index for jobs,  j = 1, …, n,  k=m+1 ϵ n,  {j:j=1,2,…,k, m+2, … ,n}. 

 i: index for machine, i = 1,…, m. 

Parameters: 

   : starting time of job j at machine i. i=j=1, …, m, which equal to zero. 

   : due date of job j at  machine i. i=1 ,.., m, j = 1,…, n. 

    : processing time of job j on machine i. i=1, .., m  and  j = 1,…, n. 



 
 

20 

 

M: a great constant. 

Decision variables: 

   : completion time of job j at machine i. i =j= 1, …, m. 

    
 : minimum completion time of job j at machine i, i =j= 1, …, m.  

   : completion time of job k at machine i. i=1, .., m, k=m+1. 

   
 : minimum completion time of job k at machine i.  i=1, ..., m, k = m+1,…, n. 

       : completion time of job k+1 at machine i. i=1, ..., m, k=m+1, …, n.                                                                                                                                                                               

   : max(0, Cij-dij) the real tardiness of job j, i=1, ..., m,  j = 1, …, n. 

    : maximum completion time. 

    {
  
  
              

                                 
          

    

    {
  
  
              

                                 
          

    

 

Formulated problem: 

                       (     ∑ ∑   
     

 
   )                                       (3.3) 

                     Subject to   

                                                                                  (3.4) 

                                                                                   (3.5) 

                                                                         (3.6) 

Level-I: 

    
     {   }                                                                 (3.7) 

                 
                                 (3.8) 

                                                                                        (3.9) 

Level-II: 

   
     {   }                                              (3.10) 

     (         )     
                              (3.11)  

                                                                              (3.12)                                             
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 ∑                                        
                                  (3.13) 

        {   }                                   (3.14) 

                                                                 (3.15) 

                                                                         (3.16) 

                                                             (3.17) 

Equation (3.3) represents the objective functions. Constraint set (3.4) assigns the 

first m jobs to m machines, such as 1
st
 job to 1

st
 machine, 2

st
 job to 2

st
 machine and so 

on. Constraint set (3.5) states that the starting times of the first m job on each machine 

equal to zero. Constraint set (3.6) relates the processing time of the first m job with start 

time. Constraint set (3.7) denotes to select the minimum completion time from the first 

m job. Constraint set (3.8) guarantees assigning k
th

 job to i
th

 machine which has 

minimum completion time. Constraint set (3.9) calculates the completion time for k
th

 

job on machine i. Constraint set (3.10) selects the minimum completion time for all jobs 

from k
th 

to n
th 

job. Constraint set (3.11) assigns the (k+1)
th

  job to the minimum 

completion time for all jobs from k+1 to n. Constraint set (3.12) calculates the 

completion time from k
th 

 to n
th 

 job on machine i. Constraint set (3.13) guarantees that 

each job is assigned exactly to one machine. Constraint set (3.14) determines 

completion time as the maximum completion time of all machines. Constraint set (3.15) 

and (3.16) calculate the tardiness of job j ensure that only the positive value of lateness 

can be considered as tardiness. Constraint set (3.17) defines the decision variable xik, it 

is equal to 1 when job k assigned to machine i, 0 otherwise. 
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For this problem and for more clarity, the solution process can be summarized as 

follows: 

Algorithm: Sequence Job Minimum Completion Time (SJMCT) 

Step 1: Start with 2m+1 or more jobs where m represents the number of unrelated 

parallel machine i = 1,…, m. 

Level-I; Starting from the first job to k
th

 job, let k=m+1: 

Step 2: Assign the first m jobs to machines respectively set i=j=1,…, m. 

Step 3: Compute the minimum completion time (release date + processing time) for the 

first m job(   
 ). 

Step 4: Assign job k to machine which has the minimum job completion time. 

Step 5: Update the completion time of job k, and go to step 6. 

Level-II; Starting from job k, where (k=m+1,…, n): 

Step 6: Select the new minimum completion time    
  . 

Step 7: Assign the unscheduled job k+1 to machine has minimum job completion time. 

Step 8: Compute the total completion time and repeat level-II in the same way until all 

jobs are scheduled. 

 

The illustrative representation of SJMCT is given in Figure 3.1. 

     Jobs 

 

Machines 
J1 J2 J3 Jm Jk Jk+1 … Jn 

M1 C11       
 

         …     

M2     
         …     

M3   C33    …     

M4    C4m   …     

 

Figure 3. 1. The representation of SJMCT algorithm 

 

3.4. The Comparison of the SJMCT Algorithm with other Algorithms   

In order to evaluate the performance of proposed algorithm SJMCT it compared 

with  Balin’s (2011) test problems and other dispatching rules (as given in chapter 2). 

The comparison with respect to one objective function represented by minimize the 

maximum completion time (makespan). In general, a formulation of the problem uses 

“binary” variables xi where, (i=l,..., m;  j=l,..., n), as follows: 
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                            {
                                   
          

 

The positive variable Cmax represents the maximum completion time and xij refers 

to assignment variables. The problem can be written as (Potts, 1985):  

                                                                                          (3.18)   

                   Subject to   

 ∑       
 
                                                                    (3.19) 

 ∑                                               
                                     (3.20) 

    ∈ {    }                                                              (3.21)                                                                                          

Constraint (3.19) ensures that Cmax is at least as large as the total processing time 

on any machine, while constraints (3.20) and (3.21) ensure that each job is processed on 

exactly one machine.  

Comparisons for some dispatching rules and the analysis of the results are given 

in the following subsections. 

 

3.4.1. Scheduling with LPT Balin’s rule 

The scheduling problem solved by Balin, (2011) using LPT dispatching rule. The 

set data indicates to the processing times for nine jobs and four unrelated parallel 

machines are given at Table 3.1. 

 

Table 3. 1. Processing time of the jobs (Balin, 2011) 

Processing 

time (min) 
Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9 

Machine 1 18 14 24 30 16 20 22 26 14 

Machine 2 9 7 12 15 8 10 11 13 7 

Machine 3 4.5 3.5 6 7.5 4 5 5.5 6.5 3.5 

Machine 4 3.6 2.8 4.8 6 3.2 4 4.4 5.2 2.8 

 

 



 
 

24 

 

The obtained scheduling problem of Blain LPT dispatching rule are given in 

Table 3.2.  

 

Table 3. 2. Scheduling with LPT Balin’s rule 

Machines Scheduled job Ci 

M.1 Job 2    14.00 

M.2 Job 7    11.00 

M.3 Job 8 Job 6 Job 5  15.50 

M.4 Job 4 Job 3 Job 1 Job 9 17.20 

 

 

3.4.2. Scheduling with Balin (GAs)  

Genetic algorithms (GAs) are adaptive heuristics search algorithm based on the 

concepts of natural genetics and natural selection theories proposed by Charles Darwin.  

In this algorithm the population is defined to be the collection of all the chromosomes. 

Each chromosome represents a possible solution to the optimization problem, often 

using strings of 0’s and 1’s as seen in Figure 3.2. Each bit typically corresponds to a 

gene. The value for a given gene is called alleles (Mishra and Patnaik, 2009). 

 

               Chromosome (string) 

                                  

                                                                     

                                                 alleles                              gene 

                                                                                         
 

 

Figure 3. 2 Representation of chromosome 

 

The same scheduling problem is solved with GAs (Balin, 2011). A randomly 

generated population of 10 chromosomes is solved by using “work center”. Several 

iterations are used to solve the problem and each iteration is provides one solution. The 

best solutions are given in 12 different schedules. The scheduling results and the 

minimum completion time at iterations 720 are given in Table 3.3 

            

0 1 0 1 1 1 1 0 1 0 0 1 ….. 0 1 
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Table 3. 3. Scheduling with GAs at iteration 720 

Machines Scheduled job Ci 

M.1 Job 2   14.00 

M.2 Job 1 Job 9  16.00 

M.3 Job 5 Job 7 Job 3 15.50 

M.4 Job 6 Job 8 Job 4 15.20 

 

3.4.3. Scheduling with longest processing time dispatching rule (LPT) 

A common heuristic used in parallel machine scheduling is the LPT rule. In 

parallel machine scheduling environments Pm//Cmax, as Hong, Hang and Yu (1998) 

mentioned jobs are arranged in decreasing order with respect to the processing times, 

such that p1 ≥ p2 ≥…≥ pn. At time t = 0, in this rule the jobs having large values of 

processing time are given high priority for scheduling on the parallel machine. The 

results of Balin’s scheduling problem are resolved with LPT rule as given in Table 3.4. 

 

Table 3. 4. Scheduling with LPT rule 

Machines Scheduled job Ci 

M.1 Job 4 Job 2 Job 9 58.00 

M.2 Job 8 Job 5  21.00 

M.3 Job 3 Job 1  10.50 

M.4 Job 7 Job 6  8.40 

 

3.4.4. Scheduling with shortest processing time dispatching rule (SPT) 

In SPT dispatching  rule, the job with the shortest processing time is chosen fist 

for processing (Jungwattanakit et al., 2008). The same test problem is solved again 

according to SPT rule. The obtained schedule is given in Table 3.5. 
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Table 3. 5. Scheduling with SPT rule 

Machines Scheduled job Ci 

M.1 Job 2 Job 8  30.00 

M.2 Job 9 Job 3  19.00 

M.3 Job 5 Job 7  9.50 

M.4 Job 1 Job 6 Job 4 13.60 

 

3.4.5. Scheduling with sequence job minimum completion time (SJMCT) 

The proposed algorithm SJMCT with the same parameters given in Table 3.1 is 

solved by GAMS v. (24.5.6) optimization software and CPLEX solver. The obtained 

schedule and the scheduling chart of the algorithm are represented in Table 3.6 and 

Figure 3.3. 

 

Table 3. 6. Scheduling with sequence job minimum completion time algorithm (SJMCT) 

Machines Scheduled job Ci 

M.1 Job 1   18.00 

M.2 Job 2 Job 7  18.00 

M.3 Job 3 Job 5 Job 8 16.50 

M.4 Job 4 Job 6 Job 9 12.80 

 

 

                 Figure 3. 3. The scheduling chart of SJMCT algorithm 
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3.4.6. The computational results and comparisons  

The proposed algorithm is compared with all algorithms mentioned in Section 3.4. 

The computational results to Balin’s problem with nine jobs which represented by the 

total and the maximum completion time and for each machine are given in Table 3.7. 

 

Table 3. 7. The total and maximum completion time for all comparison algorithms 

Machines 
Completion time Ci 

Balin LPT Balin GA LPT SPT SJMCT 

M1 14.00 14.00 58.00 30.00 18.00 

M2 11.00 16.00 21.00 19.00 18.00 

M3 15.50 15.50 10.50 9.50 16.50 

M4 17.20 15.20 8.40 13.60 12.80 

 

As given in this table, the maximum completion time is equal to 17.20 at machine 

(4) in Balin’s LPT rule, equal to 16 at machine (2) in Balin’s GAs, equal to 58 at 

machine (1) in LPT dispatching rule, equal to 30 at machine (1) in SPT dispatching rule 

and equal to 18 at machine (1) and (2). 

Among all the results obtained from Balin’s test problems, the SJMCT algorithm 

is better than LPT and SPT dispatching rule because it has the smallest value of 

maximum completion time. Furthermore, SJMCT algorithm has more convergence as 

compared with other algorithms in computing the total completion time of each 

machine. That means, it gives a good assignment of jobs at the machines and it make a 

good balance in workload over the parallel machines. In addition, in SJMCT algorithm 

there is no order forced to submit certain job. 

The dispatching rule mentioned before are easy to solve small size problems with 

one objective and it require little computer time. Moreover, it can’t guarantee the 

optimal solution.  For all these reasons, novel heuristic algorithms are proposed to solve 

large size and multi-objective parallel machine scheduling problems.  
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4. NOVEL MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 

As given in the literature review section, multi-objective evolutionary algorithms 

(MOEA) are performed to solve multi-objective parallel machines scheduling problems. 

In this section two hybrid multi-objective evolutionary algorithms are proposed based 

on SJMCT algorithm. 

 

4.1. Multi-objective Optimization  

Many real-life optimization problems are actually multi-objective because they 

involve more than one objective. The solutions of multi-objective problems can provide 

deeper insights to the decision maker than those of single-objective problems. A multi-

objective optimization problem (MOP) can be formulated to find the best solution under 

multiple objective functions each is either maximized or minimized. As in the single 

objective optimization problems, there may be some constraints that must be satisfied. 

In its general form, a multi-objective optimization problem can be formulated as follows 

(Kasimbeyli et al., 2015): 

   
 ∈ 

[             ] 

Where X is a nonempty set of feasible solutions and                 is real-

valued functions. Let (             ) for every  ∈   and let         . 

For a nontrivial multi-objective optimization problem, there is not exist single 

solution that simultaneously optimizes each objective. Also, there exist a (possibly 

infinite) number of Pareto optimal solutions. In that case, a solution is called non-

dominated. In the same way, (Ehrgott, 2006) introduced the idea of dominance as 

follows: 

Definition 4.1. A feasible solution  ̂ ∈   is called efficient or Pareto optimal, if there is 

no other  ∈   such that          ̂ . If  ̂ is efficient,    ̂  is called non-dominated 

point. If       ∈   and             we say    dominates    and       

dominates      . The set of all efficient solutions  ̂ ∈   is denoted    and called the 

efficient set. The set of all non-dominated points   ̂     ̂ ∈  , where   ̂ ∈   , is 

denoted    and called the non-dominated set. 
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The definition of dominated and don-dominated solutions can also illustrate as 

follows (Ehrgott, 2006). 

 Domination: A solution is said to be dominate another if it is better in all 

objectives.  

 Non-Domination: A solution is said to be non-dominated if it is better than other 

solutions in at least one objective.  

 

 

 

 

 

 

 

Figure 4. 1. Non-dominated and dominated solution 

 

 

  A dominates B (better in both  f1 and   f2 ) 

  A dominates C (same in  f1 but better in  f2 ) 

  A does not dominate D (non-dominated points) 

 A and D are in the “Pareto optimal front” 

 These non-dominated solutions are called Pareto optimal solutions. 

 This non-dominated curve is said to be Pareto  front. 

Before 1995, the conventional techniques such as linear programming, dynamic 

programming and nonlinear programming are the main approaches to solve multi and 

bi-objective problems (Reddy and Kumar, 2007). However, these methods can only 

solve the small size problems. The evolutionary algorithms have become the main path 

to solve multi-objective scheduling problems since 1995 (Lei, 2009). Non-dominated 

sorting genetic algorithm (NSGA), Strength Pareto evolutionary algorithm (SPEA), ant-

colony optimization (ACO) and particle swarm optimization (PSO) are some examples 

of multi-objective evolutionary optimization algorithms. 

 

4.2. Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) introduced by 

(Srinivas and Deb, 1994) is an evolutionary multi-objective solution approach used to 
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improve the adaptive fit of a population of candidate solutions to a Pareto front 

constrained by a set of objective functions. NSGA-II is an extension of the Genetic 

Algorithms for multi objective problems. It has a better sorting algorithm, incorporates 

elitism and no sharing parameter need to be chosen a priori (Seshadri, 2006).  

Refers to (Srinivas and Deb, 1994), the selection procedure of NSGA-II orders the 

population into a hierarchy of non-dominated Pareto fronts. Also, sorts the solution by 

rank and crowding distance then, ranks the non-dominated front of level1 is constituted 

and includes all the non-dominated solutions. As (Godinez, Espinosa and Montes, 2010) 

and (Yusoff, Ngadiman and Zain, 2011) described the crowding distance is a measure 

of how close the solution to its neighbors. Large average crowding distance will result 

in a better diversity in the population (Seshadri, 2006). Here, the calculation of this 

quantity in Figure 4.3 and equations (4.1) and (4.2).   

Two genetic operators’ crossover and mutation with selection operator are used to 

update the current population and create a new population. The crossover operator 

combines two solutions (parents) to create two new solutions (children) that may be 

better than both of the parents. For crossover operators, the binary crossover (Memari et 

al., 2016) is used. Moreover, mutation operator is an important part of the evolution 

principle used to add diversity into current population and helps to escape from local 

optimal to enhance the algorithm and to find better solutions (Fallah-Mehdipour et al., 

2012). 

 

4.3. SJMCT- Based NSGA-II (SJMCT -NSGA-II Algorithm) 

Non-dominated Sorting Genetic Algorithm (NSGA-II) is combined with proposed 

SJMCT algorithm to create one unified population able to represent the best possible 

solutions for multi-objective parallel machine scheduling problem.       

The procedure of SJMCT-NSGA-II can be described as follows, where t represents 

number of generations: 

1. Generate uniform random processing time Pt and due date Dt.  

2. Evaluate the objective function values based on SJMCT constraints. 

3. Initialize the population of NSGA-II algorithm randomly and evaluate the objective 

function values of SJMCT algorithm. 

4. Create Qt (offspring) with the operators of selection, crossover and mutation. 

5. Evaluate the solutions. 
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6. Combine populations Pt  and Qt  to create new population  Rt of size 2N. 

7. Sort the solutions of Rt in different non dominated front.  

8. In the new population Pt+1 add the best solutions (the best front and the best value of 

the crowding distance). Use non-dominated and crowding distance equations (4.1) 

and (4.2) to fulfill the new generation if the number of these solutions is less than 

the population size. 

The crowding distance represents the average distance of two solutions on either 

side of solutions i along each of the objectives to get an estimate of the density of 

solutions surrounding a particular solution i in the population (Chand and Mohanty, 

2013). 

        ∑ |
               

               
| 

                                                      (4.1) 

   (       )     (       )                                          (4.2)  

Figure 4.2 represents the crowding distance calculation as follows: 

 

                              

                             

                     

                                                                                          

 

 

 

 

 

 

 

Figure 4. 2. Crowding distance calculation 

 

Where,          : The maximum value of objective j.                    

                     : The minimum value of objective j. 

             j= 1, 2,…, n numbers of objective functions. 

The crowding tournament selection operator is a measure that guides the selection 

process at the various stages of the algorithm toward Pareto optimal front, when the 

following conditions are true: 

 If  rank i < rank j , (i has a better rank). 

 

(𝒇𝟏 𝒎𝒊𝒏  𝒇𝟐 𝒎𝒂𝒙 ) 

(𝒇𝟏 𝒎𝒂𝒙  𝒇𝟐 𝒎𝒊𝒏 ) 
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 If  rank i =  rank j  but C.D(i) > C.D(j), (i has a better crowding distance). 

9. Repeat the steps 4-6 till the maximum number of generation is reached. 

 

A schematic representation of the NSGA-II procedure is given in Figure 4.3. 

 

Figure 4. 3. Schematic representation of the NSGA-II procedure (Wang 2011) 

 

 

Crossover and mutation schemes that were developed by (Deb et al., 2000) are 

employed. The crossover operator used in this study can be seen in the following 

equations: 

   
      

 

 
[        

               
      ]                     (4.3) 

   
      

 

 
[        

               
      ]                     (4.4) 

Where: 

   {
     

(
 

   
) 

(
 

       
)
(

 

   
)              

              
              

                                        (4.5) 

b: difference between the objective function values of parents and children. 

µ: a constant which shows the difference between the objective function values of 

parents and children; a large value of µ gives a higher probability for creating near-

parent solutions. r: a random value in [0, 1]. 

The mutation operator is also applied as seen in equations (4.6) and (4.7).  

  {
     

(
 

   
)   

(  (       ))
(

 

   
)              

              
              

                      (4.6)  
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Where: r:  is a random value in [0, 1] 

            ƞ:  distribution constant of mutation 

           d: mutation value. This parameter is added to the parent gene value, as given in 

equation (4.7). 

                                                                                      (4.7) 

The flow chart of SJMCT-NSGA-II is given in Figure 4.4. 

 

 

 

 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Flow chart of SJMCT-NSGA-II 
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Figure 4.4. (Continue) Flow chart of SJMCT-NSGA-II 
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Figure 4.4. (Continue) Flow chart of SJMCT-NSGA-II 
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Figure 4. 4. (Continue) Flow chart of SJMCT-NSGA-II 
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4.4. Strength Pareto Evolutionary Algorithm II (SPEA-II) 

Strength Pareto Evolutionary Algorithm (SPEA-II) is an extension of the Genetic 

Algorithms for multi objective problems. It has been proposed by (Zitzler, Laumanns 

and Thiele, 2001). Generally, SPEA-II algorithm uses a regular population and archive 

(external set) to find Pareto optimal set. It is used as an evolutionary algorithm to locate 

and maintain a set of Pareto optimal solutions.  

The algorithm started with an initial population and an empty archive. The raw 

fitness function represents the summation of the strength values of its dominators in 

both archive and population. The density function as given in equation (4.11) estimates 

the density of an area of the Pareto front. The candidate population with the best 

remaining (non-dominated solution) fills the new archive in order to fitness. It removes 

the smallest distance values in the archive population by using truncated procedure. It 

selects the parents from a population using binary tournament selection to fill the 

archive population. The two genetic operators, crossover and mutation as represented in 

equations 4.3-4.6.  

 

4.5. SJMCT- Based SPEA-II (SJMCT- SPEA-II Algorithm) 

Strength Pareto Evolutionary Algorithm (SPEA-II) is an elitist evolutionary 

algorithm. The proposed SJMCT algorithm is combined with the mean process of 

SPEA-II as follows: 

1. Input: n (number of jobs), m (number of machines),   ̅ (archive size), T (maximum 

number of generation). 

2. Initialization-I: At first generation t =0, use the uniform random to initialize the 

processing time P0 and due date D0 for SJMCT algorithm.  

3. Initialization-II: Initialize the population of SPEA-II to evaluate the objective 

function values of SJMCT algorithm and create the empty archive ̅   . 

4. Fitness assignment: for each individual i in the archive  ̅   and the population Pt  

there is S(i) called the strength Pareto- solution  which  represents the number of 

dominated solution: 

      |{ | ∈      ̅        }|                                                 (4.8)                                                          

Where: the symbol + represents multi set union, the symbol   corresponds to the Pareto 

dominance relation, the symbol ˄ means AND (Gharari et al., 2016). 
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For SPEA-II, fitness       is defined by equation (4.9). 

                                                                                      (4.9) 

The raw fitness function      of an individual i is calculated by the following 

equation: 

      ∑      ∈    ̅                                                                   (4.10)                                                    

Here it is important to note that, fitness is to be minimized, i.e.,        

corresponds to a non-dominated individual. The additional density information is 

incorporated to discriminate between individuals having same raw fitness, where the 

density at any point is a (decreasing) function of the distance to the k
th

 nearest data 

point. To be more precise, for each individual i the distances (in objective space) to all 

individuals j in archive and population are calculated and stored in a list. After sorting 

the list in increasing order, the k
th

 element gives the distance denoted as   
 , the density 

function is defined by: 

      
 

  
   

                                                                                 (4.11)                                        

Where:   
  represents the objective-space distance between the i

th 
and k

th
 nearest 

neighbors and    √   ̅  in equation (4.11).   

5. Environmental selection: In this operator, all non-dominated solutions are copied 

from population and archived to the archive of new iteration  ̅   . If the archive is 

too small | ̅   | <  ̅ then  ̅    is filled with best dominated solutions from Pt and 

 ̅ . Otherwise, if the archive is too large | ̅   |   ̅ an archive truncation 

procedure is used until | ̅   |   ̅. Here, at each iteration individual i is chosen for 

removal for which i,       for all   ∈  ̅    with                        <   <

| ̅   |         
     

            

   <   < | ̅   |  [(  <   <         
     

 ) ⋀     
 <    

  ]         (4.12)     

In equation (4.12), i and j are the individuals, and also        means that 

individual i dominated individual j and    
  denotes the distance of i to its k

th
 nearest 

neighbor in  ̅   . In other words, at each iteration, the individual which has the 

minimum distance to another individual is chosen (a connection is broken by 

considering the second smallest distances and so forth), as given in Figure 4.5. 
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Figure 4. 5. Illustration of the archive truncation method used in SPEA-II 

On the right, a non-dominated set is shown. On the left, it is depicted which 

solutions are removed in which order by the truncate operator (assuming that  ̅     ) 

(Zitzler, Laumanns, and Thiele, 2001) 

 

6. Termination: If      then the archive members  ̅    presented as a Pareto set, 

otherwise go to step 3. 

7. Mating selection: In order to fill the mating pool use binary tournament selection 

with replacement on  ̅     . 

8. Variation: Apply mutation and crossover operators to the mating pool and fill Pt+1 

with the generated solutions. Set t=t+1 and go back to step 4. 

 

The flow chart of SJMCT-SPEA-II is given in Figure 4.6. 
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Figure 4.6.  Flow chart of SJMCT-SPEA-II 
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Figure 4.6. (Continue) Flow chart of SJMCT-SPEA-II 
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Figure 4.6. (Continue) Flow chart of SJMCT-SPEA-II 
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Figure 4. 6. (Continue) Flow chart of SJMCT-SPEA-II 
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5. COMPUTATIONAL RESULTS 

In this section, different parameter values are considered to simulate different 

cases and to analyze the performances of the proposed algorithms SJMCT-NSGA-II and 

SJMCT-SPEA-II. For five parallel machines the first test problems is described with 60 

jobs and different generation numbers. Thereafter, the second test problems are 

described with generation 500 and different number of jobs. The Pareto-optimal front 

are represented to minimize the two criteria scheduling problems, the makespan which 

represents the completion time of the final job and the total tardiness which represents 

the sum of tardiness of every job. 

 

5.1. Experimental Design  

The processing times and due dates of jobs are generated uniformly between 1 

and 20, the population size equals to 100 in each algorithm. Different crossover 

probabilities (0.6, 0.7, 0.8 and 0.9) and mutation probabilities (0.4, 0.3, 0.2 and 0.1) are 

used in these tests. In particular, the experiments are designed to test the performance of 

the proposed algorithms by changing the parameters. The algorithms are tested firstly 

with 60 jobs and different generation numbers (40, 100, 300 and 500). Secondly, the 

algorithms are tested with different number of jobs (20, 60 and 100) and number of 

generation equals to 500. Table 5.1 describes the couple of different parameters setting 

on both algorithms SJMCT-NSGA-II and SJMCT-SPEA-II in order to show the final 

Pareto behavior after changing the parameters. In all cases, the number of archive used 

in SJMCT-SPEA-II algorithm is equal to 60. Moreover, the lower and upper bounds are 

selected between [-15, 15]. 
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   Table 5. 1. Parameters used for each algorithm 

 

5.2. Computational Results  

 In this subsection, scheduling problem with 5 parallel machines, 60 jobs and 

with the parameters given in Table 5.1 is considered. In the first test problems, multiple 

cases study the effect of increasing the generation numbers from 40 to 500. All test 

problems for the proposed algorithms are implemented by MATLAB programming 

Version 8.3.0.532 (R2014a). Figures 5.1-5.4 depict the simulation results obtained by 

SJMCT-NSGA-II algorithm. Figures 5.5-5.9 give the Pareto solutions obtained by 

SJMCT-SPEA-II algorithm. In each test the crossover probabilities are 0.6, 0.7, 0.8 and 

0.9 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Var 

Min 

Var 

Max 
nArchive nPop Var Size 

Generation 

Numbers 

Crossover 

Probability 

Mutation 

Probability 
    

[Machine       

Job] 

-15 15 60 100 [5      20] 40 0.6 0.4 

    [5      60] 100 0.7 0.3 

    [5    100] 300 0.8 0.2 

     500 0.9 0.1 
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5.2.1. Computational results for SJMCT-NSGA-II algorithm 

Test 1: In the first test problems for 60 jobs, the best solution is obtained for SJMCT- 

NSGA-II algorithm at generation 40 with number of population 100 and with crossover 

probabilities 0.6, 0.7, 0.8 and 0.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 1. Pareto optimal solutions for SJMCT- NSGA-II with generation 40 

                                         and different crossover probabilities 

 

 

 

 

 

 

 

 

 

 

 

 
(a)  Crossover Probability 0.6                    (b) Crossover Probability 0.7 

 
(c)  Crossover Probability 0.8                    (d) Crossover Probability 0.9 
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Test 2: In the first test problems for 60 jobs, the best solution is obtained for SJMCT- 

NSGA-II algorithm at generation 100 with number of population 100 and with 

crossover probabilities 0.6, 0.7, 0.8 and 0.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 2. Pareto optimal solutions for SJMCT- NSGA-II with generation 100 

                                        and different crossover probabilities 

 

 

 

 

 

 

 

 

 

 

 
(a)  Crossover Probability 0.6                    (b) Crossover Probability 0.7 

 
(c)  Crossover Probability 0.8                    (d) Crossover Probability 0.9 
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Test 3: In the first test problems for 60 jobs, the best solution is obtained for SJMCT- 

NSGA-II algorithm at generation 300 with number of population 100 and with 

crossover probabilities 0.6, 0.7, 0.8 and 0.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 3. Pareto optimal solutions for SJMCT- NSGA-II with generation 300 

                                        and different crossover probabilities 

 

 

 

 

 

 

 

 

 
(a)  Crossover Probability 0.6                    (b) Crossover Probability 0.7 

 
(c)  Crossover Probability 0.8                    (d) Crossover Probability 0.9 
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Test 4: In the first test problems for 60 jobs, the best solution is obtained for SJMCT- 

NSGA-II algorithm at generation 500 with number of population 100 and with 

crossover probabilities 0.6, 0.7, 0.8 and 0.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 4. Pareto optimal solutions for SJMCT- NSGA-II with generation 500 

                                        and different crossover probabilities 

 

 

 

 

 

 

 

 

 

 

 

 
(a)  Crossover Probability 0.6                    (b) Crossover Probability 0.7 

 
(c)  Crossover Probability 0.8                    (d) Crossover Probability 0.9 
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5.2.2. Simulation results for SJMCT-SPEA-II algorithm 

Test 1: In the first test problems for 60 jobs, the best solution is obtained for SJMCT- 

SPEA-II algorithm at generation 40 with number of population 100 and with crossover 

probabilities 0.6, 0.7, 0.8 and 0.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 5. Pareto optimal solutions for SJMCT- SPEA-II with generation 40 

                                         and different crossover probabilities 

 

 

 

 

 

 

 

 

 
(a)  Crossover Probability 0.6                    (b) Crossover Probability 0.7 

 
(c)  Crossover Probability 0.8                    (d) Crossover Probability 0.9 
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Test 2: In the first test problems for 60 jobs, the best solution is obtained for SJMCT- 

SPEA-II algorithm at generation 100 with number of population 100 and with crossover 

probabilities 0.6, 0.7, 0.8 and 0.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 6. Pareto optimal solutions for SJMCT- SPEA-II with generation 100 

                                        and different crossover probabilities 

 

 

 

 

 

 

 

 

 

 

 

 
(a)  Crossover Probability 0.6                    (b) Crossover Probability 0.7 

 
(c)  Crossover Probability 0.8                    (d) Crossover Probability 0.9 
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Test 3: In the first test problems for 60 jobs, the best solution is obtained for SJMCT- 

SPEA-II algorithm at generation 300 with number of population 100 and with crossover 

probabilities 0.6, 0.7, 0.8 and 0.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 7. Pareto optimal solutions for SJMCT- SPEA-II with generation 300 

                                        and different crossover probabilities 

 

 

 

 

 

 

 

 

 

 

 

 
(a)  Crossover Probability 0.6                    (b) Crossover Probability 0.7 

 
(c)  Crossover Probability 0.8                    (d) Crossover Probability 0.9 
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Test 4: In the first test problems for 60 jobs, the best solution is obtained for SJMCT- 

SPEA-II algorithm at generation 500 with number of population 100 and with crossover 

probabilities 0.6, 0.7, 0.8 and 0.9. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 8. Pareto optimal solutions for SJMCT- SPEA-II with generation 500 

                                        and different crossover probabilities 

 

 

For more clarification, to discover the best configuration of SJMCT-NSGA-II and 

SJMCT-SPEA-II, Tables 5.2-5.17 and Figures 5.9-5.24 describe all results obtained 

from the first test problems represented before (in Figures 5.1-5.8) for each algorithm. 

 

 

 

 

 

 
(a)  Crossover Probability 0.6                    (b) Crossover Probability 0.7 

 
(c)  Crossover Probability 0.8                    (d) Crossover Probability 0.9 
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Table 5. 2. The values of the best non-dominated front for 5 machines and 60 jobs with generation 40 

and crossover probability 0.6 

Generation Number of job 

 

Crossover 

probability 

SJMCT- NSGA-II 

 

SJMCT-SPEA-II 

 

Objective1 Objective2 Objective1 Objective2 

40 60 0.6 100.656 134.337 102.019 103.893 

   104.677 82.166 124.826 82.961 

   102.716 122.604 99.185 121.977 

   104.072 89.047 107.065 102.157 

     108.955 101.377 

     118.807 92.171 

     113.584 101.012 

 

          

 
 

Figure 5. 9. Solutions at generation 40 for 60 jobs (Crossover probability 0.6) 

 

In Table 5.2 and Figure 5.9 for 60 jobs, at generation 40 and crossover probability 

0.6, the minimum value of objective1 is 99.185 at SJMCT-SPEA-II algorithm and the 

minimum value of objective2 equals to 82.166 at SJMCT-NSGA-II algorithm. That 

means, the Pareto set is all non-dominated individuals between (99.185, 121.977) and 

(104.677, 82.166) solutions. 
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Table 5. 3. The values of the best non-dominated front for 5 machines and 60 jobs with generation 40 

and crossover probability 0.7 

Generation Number of job 

 

Crossover 

probability 

 

SJMCT- NSGA-II 

 

 

SJMCT-SPEA-II 

 

Objective1 Objective2 Objective1 Objective2 

40 60 0.7 99.671 137.937 100.620 141.913 

   104.821 63.836 102.019 103.893 

   103.123 123.708 113.239 79.024 

     104.825 97.297 

     109.451 97.028 

     112.597 96.278 

 

 

 
 

Figure 5. 10. Solutions at generation 40 for 60 jobs (Crossover probability 0.7) 

 

In Table 5.3 and Figure 5.10 for 60 jobs, at generation 40 and crossover 

probability 0.7, the minimum value of objective1 is 99.671 at SJMCT- NSGA-II 

algorithm and the minimum value of objective2 equals to 63.836 at SJMCT-NSGA-II 

algorithm. That means, the Pareto set is all non-dominated individuals between (99.671, 

137.937) and (104.821, 63.836) solutions. 
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Table 5. 4. The values of the best non-dominated front for 5 machines and 60 jobs with generation 40 and 

crossover probability 0.8 

Generation Number of job 

 

Crossover 

probability 

 

SJMCT- NSGA-II 

 

 

SJMCT-SPEA-II 

 

Objective1 Objective2 Objective1 Objective2 

40 60 0.8 102.229 134.565 99.700 135.708 

   122.704 70.499 102.019 103.893 

   112.861 86.100 119.957 84.093 

   106.509 89.587 103.459 103.713 

   104.911 101.917 110.686 94.117 

   104.357 119.334 110.393 103.002 

   104.459 118.323   

 

 

 
 

Figure 5. 11. Solutions at generation 40 for 60 jobs (Crossover probability 0.8) 

 

In Table 5.4 and Figure 5.11 for 60 jobs, at generation 40 and crossover 

probability 0.8, the minimum value of objective1 is 99.700 at SJMCT- SPEA-II 

algorithm and the minimum value of objective2 equals to 70.499 at SJMCT-NSGA-II 

algorithm. That means, the Pareto set is all non-dominated individuals between (99.700, 

135.708) and (122.704, 70.499) solutions. 
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Table 5. 5. The values of the best non-dominated front for 5 machines and 60 jobs with generation 40 

and crossover probability 0.9 

Generation Number of job 

 

Crossover 

probability 

 

SJMCT- NSGA-II 

 

 

SJMCT-SPEA-II 

 

Objective1 Objective2 Objective1 Objective2 

40 60 0.9 123.954 92.965 99.700 135.708 

   98.995 149.581 102.019 103.893 

   101.449 115.698 114.911 78.628 

   112.074 93.737 114.547 79.531 

   111.837 109.917 110.128 88.279 

   103.685 111.078 108.962 97.073 

 

 

 
           

Figure 5. 12. Solutions at generation 40 for 60 jobs (Crossover probability 0.9) 

 

In Table 5.5 and Figure 5.12 for 60 jobs, at generation 40 and crossover 

probability 0.9, the minimum value of objective1 is 98.995 at SJMCT-NSGA-II 

algorithm and the minimum value of objective2 equals to 78.628 at SJMCT-SPEA-II 

algorithm. That means, the Pareto set is all non-dominated individuals between (98.995, 

149.581) and (114.911, 78.628) solutions. 
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Table 5. 6. The values of the best non-dominated front for 5 machines and 60 jobs with generation 100 

and crossover probability 0.6 

Generation Number of job 

 

Crossover 

probability 

 

SJMCT- NSGA-II 

 

 

SJMCT-SPEA-II 

 

Objective1 Objective2 Objective1 Objective2 

100 60 0.6 100.656 134.337 91.587 78.141 

   113.802 81.107   

   104.677 82.166   

   103.183 113.331   

   104.072 89.047   

   102.716 122.604   

 

 

 
 

Figure 5. 13. Solutions at generation 100 for 60 jobs (Crossover probability 0.6) 

 

 

In Table 5.6 and Figure 5.13 for 60 jobs, at generation 100 and crossover 

probability 0.6, the minimum value of objective1 is 91.587 at SJMCT-SPEA-II 

algorithm and the minimum value of objective2 equals to 78.141 at SJMCT-SPEA-II 

algorithm. That means, the Pareto set is the non-dominated solution (91.587, 78.141). 
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Table 5. 7. The values of the best non-dominated front for 5 machines and 60 jobs with generation 100 

and crossover probability 0.7 

Generation Number of job 

 

Crossover 

probability 

 

SJMCT- NSGA-II 

 

 

SJMCT-SPEA-II 

 

Objective1 Objective2 Objective1 Objective2 

100 60 0.7 104.821 63.836 111.988 69.860 

   93.275 88.818 100.620 141.913 

     106.452 86.186 

     102.019 103.893 

     103.661 96.431 

     101.834 128.962 

 

 

 
 

Figure 5. 14. Solutions at generation 100 for 60 jobs (Crossover probability 0.7) 

 

In Table 5.7 and Figure 5.14 for 60 jobs, at generation 100 and crossover 

probability 0.7, the minimum value of objective1 is 93.275 at SJMCT-NSGA-II 

algorithm and the minimum value of objective2 equals to 63.836 at SJMCT-NSGA-II 

algorithm. That means, the Pareto set is all non-dominated individuals between (93.275, 

88.818) and (104.821, 63.836) solutions. 
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Table 5. 8. The values of the best non-dominated front for 5 machines and 60 jobs with generation 100 

and crossover probability 0.8 

Generation Number of job 

 

Crossover 

probability 

 

SJMCT- NSGA-II 

 

 

SJMCT-SPEA-II 

 

Objective1 Objective2 Objective1 Objective2 

100 60 0.8 122.704 70.499 110.019 53.667 

   99.356 169.563 102.406 85.020 

   100.331 104.701 99.700 135.708 

   107.004 74.735 102.019 103.893 

   104.911 101.917   

   106.509 89.587   

 

 

 
   

Figure 5. 15. Solutions at generation 100 for 60 jobs (Crossover probability 0.8) 

 

In Table 5.8 and Figure 5.15 for 60 jobs, at generation 100 and crossover 

probability 0.8, the minimum value of objective1 is 99.356 at SJMCT-NSGA-II 

algorithm and the minimum value of objective2 equals to 53.667 at SJMCT-SPEA-II 

algorithm. That means, the Pareto set is all non-dominated individuals between (99.356, 

169.563) and (110.019, 53.667) solutions. 

 

0

20

40

60

80

100

120

140

160

180

90 100 110 120 130

o
b

je
ct

iv
e

2
 

objective1 

SJMCT-NSGA-II

SJMCT-SPEA-II



 
 

61 

 

Table 5. 9. The values of the best non-dominated front for 5 machines and 60 jobs with generation 100 

and crossover probability 0.9 

Generation Number of job 

 

Crossover 

probability 

 

SJMCT- NSGA-II 

 

 

SJMCT-SPEA-II 

 

Objective1 Objective2 Objective1 Objective2 

100 60 0.9 98.9954 149.5807 99.700 135.708 

   116.2029 79.48637 102.019 103.893 

   101.2643 95.724 99.974 118.774 

   111.7504 87.20371 114.911 78.628 

   114.3319 86.9915 114.547 79.531 

     110.128 88.279 

     108.962 97.073 

     108.696 103.788 

 

 

 
 

Figure 5. 16. Solutions at generation 100 for 60 jobs (Crossover probability 0.9) 

 

In Table 5.9 and Figure 5.16 for 60 jobs, at generation 100 and crossover 

probability 0.9, the minimum value of objective1 is 98.9954 at SJMCT-NSGA-II 

algorithm and the minimum value of objective2 equals to 78.628 at SJMCT-SPEA-II 

algorithm. That means, the Pareto set is all non-dominated individuals between 

(98.9954, 149.5807) and (114.911, 78.628) solutions. 
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Table 5. 10. The values of the best non-dominated front for 5 machines and 60 jobs with generation 300 

and crossover probability 0.6 

Generation. Number of job 

 

Crossover 

probability 

 

SJMCT- NSGA-II 

 

 

SJMCT-SPEA-II 

 

Objective1 Objective2 Objective1 Objective2 

300 60 0.6 121.113 59.114 91.587 78.141 

   95.650 157.273 126.673 70.516 

   98.355 108.603 120.030 75.110 

   108.409 63.721   

   107.792 77.312   

   101.888 102.758   

   104.677 82.166   

   103.079 94.841   

   104.072 89.047   

 

 

 
 

Figure 5. 17. Solutions at generation 300 for 60 jobs (Crossover probability 0.6) 

 

In Table 5.10 and Figure 5.17 for 60 jobs, at generation 300 and crossover 

probability 0.6, the minimum value of objective1 is 91.587 at SJMCT-SPEA-II 

algorithm and the minimum value of objective2 equals to 59.114 at SJMCT-NSGA-II 

algorithm. That means, the Pareto set is all non-dominated individuals between (91.587, 

78.141) and (121.113, 59.114) solutions. 
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Table 5. 11. The values of the best non-dominated front for 5 machines and 60 jobs with generation 300 

and crossover probability 0.7 

Generation Number of job 

 

Crossover 

probability 

 

SJMCT- NSGA-II 

 

 

SJMCT-SPEA-II 

 

Objective1 Objective2 Objective1 Objective2 

300 60 0.7 104.821 63.836 95.489 147.707 

   93.275 88.818 96.482 116.788 

   102.093 82.724 100.651 87.274 

   101.583 83.964 111.988 69.860 

     111.249 78.447 

     110.818 79.762 

     106.452 86.186 

     108.612 85.413 

     109.557 84.451 

 

 

 
 

Figure 5. 18. Solutions at generation 300 for 60 jobs (Crossover probability 0.7) 

 

In Table 5.11 and Figure 5.18 for 60 jobs, at generation 300 and crossover 

probability 0.7, the minimum value of objective1 is 93.275 at SJMCT-NSGA-II 

algorithm and the minimum value of objective2 equals to 63.836 at SJMCT-NSGA-II 

algorithm. That means, the Pareto set is all non-dominated individuals between (93.275, 

88.818) and (104.821, 63.836) solutions 
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Table 5. 12. The values of the best non-dominated front for 5 machines and 60 jobs with generation 300 

and crossover probability 0.8 

Generation Number of job 

 

Crossover 

probability 

 

SJMCT- NSGA-II 

 

 

SJMCT-SPEA-II 

 

Objective1 Objective2 Objective1 Objective2 

300 60 0.8 110.691 57.063 110.019 53.667 

   96.414 68.981 107.844 60.935 

     99.700 135.708 

     101.338 129.323 

     102.406 85.020 

     101.929 122.292 

     102.019 103.893 

 

 

 
 

Figure 5. 19. Solutions at generation 300 for 60 jobs (Crossover probability 0.8) 

 

In Table 5.12 and Figure 5.19 for 60 jobs, at generation 300 and crossover 

probability 0.8, the minimum value of objective1 is 96.414 at SJMCT-NSGA-II 

algorithm and the minimum value of objective2 equals to 53.667 at SJMCT-SPEA-II 

algorithm. That means, the Pareto set is all non-dominated individuals between (96.414, 

68.981) and (110.019, 53.667) solutions. 
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Table 5. 13. The values of the best non-dominated front for 5 machines and 60 jobs with generation 300 

and crossover probability 0.9 

Generation Number of job 

 

Crossover 

probability 

 

SJMCT- NSGA-II 

 

 

SJMCT-SPEA-II 

 

Objective1 Objective2 Objective1 Objective2 

300 60 0.9 102.218 72.547 112.674 55.712 

   97.116 121.903 101.679 83.513 

   101.264 95.724 99.700 135.708 

   98.946 114.026 99.844 108.079 

     112.010 75.979 

 

 

 
             

Figure 5. 20. Solutions at generation 300 for 60 jobs (Crossover probability 0.9) 

 

In Table 5.13 and Figure 5.20 for 60 jobs, at generation 300 and crossover 

probability 0.9, the minimum value of objective1 is 97.116 at SJMCT-NSGA-II 

algorithm and the minimum value of objective2 equals to 55.712 at SJMCT-SPEA-II 

algorithm. That means, the Pareto set is all non-dominated individuals between (97.116, 

121.903) and (112.674, 55.712) solutions. 
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Table 5. 14. The values of the best non-dominated front for 5 machines and 60 jobs with generation 

numbers 500 and crossover probability 0.6 

Generation Number of job 

 

Crossover 

probability 

 

SJMCT- NSGA-II 

 

 

SJMCT-SPEA-II 

 

Objective1 Objective2 Objective1 Objective2 

500 60 0.6 121.113 59.114 91.587 78.141 

   95.650 157.273 106.759 71.317 

   98.355 108.603 113.615 69.618 

   108.409 63.721   

   101.888 102.758   

   104.677 82.166   

   103.079 94.841   

   107.792 77.312   

   104.072 89.047   

   108.035 73.248   

 

 

 
             

Figure 5. 21. Solutions at generation 500 for 60 jobs (Crossover probability 0.6) 

 

In Table 5.14 and Figure 5.21 for 60 jobs, at generation 500 and crossover 

probability 0.6, the minimum value of objective1 is 91.587 at SJMCT-SPEA-II 

algorithm and the minimum value of objective2 equals to 59.114 at SJMCT-NSGA-II 

algorithm. That means, the Pareto set is all non-dominated individuals between (91.587, 

78.141) and (121.113, 59.114) solutions. 
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Table 5. 15. The values of the best non-dominated front for 5 machines and 60 jobs with generation 500 

and crossover probability 0.7 

Generation Number of job 

 

Crossover 

probability 

 

SJMCT- NSGA-II 

 

 

SJMCT-SPEA-II 

 

Objective1 Objective2 Objective1 Objective2 

500 60 0.7 104.821 63.836 94.736 110.466 

   93.275 88.818 95.634 101.489 

   102.093 82.724 96.236 97.437 

   101.040 88.182 100.119 83.699 

   101.583 83.964 111.988 69.860 

     110.708 70.256 

 

 

 

 
Figure 5. 22. Solutions at generation 500 for 60 jobs (Crossover probability 0.7) 

 

In Table 5.15 and Figure 5.22 for 60 jobs, at generation 500 and crossover 

probability 0.7, the minimum value of objective1 is 93.275 at SJMCT-NSGA-II 

algorithm and the minimum value of objective2 equals to 63.836 at SJMCT-NSGA-II 

algorithm. That means, the Pareto set is all non-dominated individuals between (93.275, 

88.818) and (104.821, 63.836) solutions. 
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Table 5. 16. The values of the best non-dominated front for 5 machines and 60 jobs with generation 500 

and crossover probability 0.8 

Generation Number of job 

 

Crossover 

probability 

 

SJMCT- NSGA-II 

 

 

SJMCT-SPEA-II 

 

Objective1 Objective2 Objective1 Objective2 

500 60 0.8 
110.691 57.063 110.019 53.667 

   
96.414 68.981 107.844 60.935 

   
106.689 67.534 97.786 98.376 

   
108.864 64.371 97.304 120.473 

   
  103.522 78.553 

   
  102.406 85.020 

 

 

 
 

Figure 5. 23. Solutions at generation 500 for 60 jobs (Crossover probability 0.8) 

 

In Table 5.16 and Figure 5.23 for 60 jobs, at generation 500 and crossover 

probability 0.8, the minimum value of objective1 is 96.414 at SJMCT-NSGA-II 

algorithm and the minimum value of objective2 equals to 53.667 at SJMCT-SPEA-II 

algorithm. That means, the Pareto set is all non-dominated individuals between (96.414, 

68.981) and (110.019, 53.667) solutions. 
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Table 5. 17. The values of the best non-dominated front for 5 machines and 60 jobs with 500 generation 

and crossover probability 0.9 

Generation Number of job 

 

Crossover 

probability 

 

SJMCT- NSGA-II 

 

 

SJMCT-SPEA-II 

 

Objective1 Objective2 Objective1 Objective2 

500 60 0.9 97.116 121.903 112.674 55.712 

   117.669 70.647 100.471 73.837 

   102.218 72.547 95.291 113.669 

   101.264 95.724 98.359 99.067 

   98.870 111.135   

   100.098 103.991   

 

 

 
 

Figure 5. 24. Solutions at generation 500 for 60 jobs (Crossover probability 0.9) 

 

In Table 5.17 and Figure 5.24 for 60 jobs, at generation 500 and crossover 

probability 0.9, the minimum value of objective1 is 95.291 at SJMCT-SPEA-II 

algorithm and the minimum value of objective2 equals to 55.712 at SJMCT-SPEA-II 

algorithm. That means, the Pareto set is all non-dominated individuals between (95.291, 

113.669) and (112.674, 55.712) solutions. 
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As seen in Tables 5.2-5.17 and Figures 5.9-5.24 it is difficult to know the best 

algorithm. Therefore, we decided to use the performance measures in Section 5.4. Also, 

as further study, the minimum and average values for the first test problems represented 

in Table 5.18.  

 

Table 5. 18. Minimum and average values for 60 jobs to all algorithm numbers and objectives 

Generation 

numbers 

Crossover 

Probability 

Minimum 

and 

Average 

Objective 1 Objective 2 

SJMCT- 

NSGA-II 

SJMCT- 

SPEA-II 

SJMCT- 

NSGA-II 

SJMCT- 

SPEA-II 

40 

0.6 

Min. 100.656 99.185 82.166 82.961 

Ave. 103.030 110.635 107.039 100.793 

100 
Min. 100.656 91.587 81.107 78.141 

Ave. 104.851 91.587 103.766 78.141 

300 
Min. 95.650 91.587 59.114 70.516 

Ave. 105.004 112.763 92.760 74.589 

500 
Min. 95.650 91.587 59.114 69.618 

Ave. 105.307 103.987 90.808 73.025 

40 

0.7 

Min. 99.671 100.620 63.836 79.024 

Ave. 102.538 107.125 108.494 102.572 

100 
Min. 93.275 100.620 63.836 69.860 

Ave. 99.048 104.429 76.327 104.541 

300 
Min. 93.275 95.489 63.836 69.860 

Ave. 100.443 105.700 79.836 92.877 

500 
Min. 93.275 94.736 63.836 69.860 

Ave. 100.563 101.570 81.505 88.868 

40 

0.8 

Min. 102.229 99.700 70.499 84.093 

Ave. 108.290 107.702 102.904 104.088 

100 
Min. 99.356 99.700 70.499 53.667 

Ave. 106.803 103.536 101.834 94.572 

300 
Min. 96.414 99.700 57.063 53.667 

Ave. 103.552 103.608 63.022 98.691 

500 
Min. 96.414 97.304 57.063 53.667 

Ave. 105.665 103.147 64.487 82.837 

40 

0.9 

Min. 98.995 99.700 92.965 78.628 

Ave. 108.666 108.378 112.163 97.185 

100 
Min. 98.995 99.700 79.486 78.628 

Ave. 108.509 107.367 99.797 100.709 

300 
Min. 97.1156 99.700 72.5474 55.712 

Ave. 99.8861 105.181 101.0502 91.798 

500 
Min. 97.116 95.291 70.647 55.712 

Ave. 102.873 101.699 95.991 85.571 
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Table 5.18 leads to the best generation will be selected in next test problems to 

indicate the efficiency of proposed algorithms. More details about the effects of 

parameters for Tables 5.2-5.18 are explained in Section 5.3. 

5.3. The Effect of Parameters 

The effect of crossover, mutation probabilities and the effect of generation 

numbers of the best non-dominated front for 5 machines and 60 jobs can be discussed as 

follows: 

 Effect of crossover and mutation probabilities: 

The crossover operator used to generate two good individuals, called offspring, 

from the two selected parents (Vallada and Ruiz, 2011). A standard one-point crossover 

is used in this study to produce two offspring from two parent solutions and the 

mutation operator selects two random genes and then exchanges their positions.  

Testing different crossover and mutation operators gives us the variety of Pareto 

frontier sets.  

 Effect of generation numbers: 

Due to the first test problems concerned with 60 jobs for all objectives, the 

minimum values and averages at most cases obtained by increasing the generation 

numbers from 40 to 500 as seen in Table 5.18. Moreover, this table shows that the best 

minimum value of each objective obtained when the generation number is 500 for each 

algorithm. So we conclude, there is a need for the second test problems that will be 

performed at different seeds when the generation number is 500. 

Since the comparison of two Pareto front is too difficult because each front is a set 

of non-dominated solution. Therefore, the diversity metrics of multi-objective 

optimization (MOO) in Section 5.4 are used to define the best evolutionary performance 

of SJMCT-NSGA-II and SJMCT-SPEA-II algorithms. The mean and variance of 

spacing and spread metrics to the second test problems with 20, 60 and 100 jobs and 

generation number is 500  for 10 runs implemented by MATLAB programming are 

given respectively in Table 5.19 and Table 5.20. 

5.4. Performance Measures 

In multi-objective optimization the most important consideration is the 

quantitative metrics used for defining the optimality of different solution sets. However, 

comparing two sets of solutions is more complex because of the multi-objectives. These 
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metrics make the comparison between algorithms is relatively easy. Typically, the 

performance measures help us to find the convergence and the diversity between the 

Pareto optimal front PFKnown and the obtained solutions PFTrue. Veldhuizen and Lamont, 

(2000) display the small example to show the relationship between PFTrue and PFKnown 

as given in Figure (5.25): 

 

 

Figure 5. 25. PFknown / PFtrue  example (Veldhuizen and Lamont, 2000) 

 

 Jiang et al., (2014) considered four types of the MOO metrics based on   

capacity, convergence and diversity of performance criteria as follows:  

A. Capacity metrics: This group of metrics calculates the number or ratio of non-

dominated solutions in S (where, S solutions of the best non-dominated front PFTrue) 

that satisfies given predefined requirements. 

B. Convergence metrics: These are the metrics for measuring the proximity of solution 

set S to optimal solution P (where P is the optimal Pareto front PFKnown).  

C. Diversity metrics: These metrics include two forms of information:  

1) “Distribution” measures how evenly the solutions of S in the objective space 

scattered.  

2)  Spread indicates how well do the solutions of S arrive at the extreme of true PFS. 

D. Convergence-diversity metrics: They indicate both the convergence and diversity of 

S on a single scale. 
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A. Capacity Metrics 

The error ratio (ER) measure, indicates the percentage of solutions that are not 

members of the Pareto optimal set (Godinez, Espinosa, and Montes, 2010). 

    
∑   
 
 

 
                                                                                      (5.1) 

Where, n is the number of vectors in the current set of non-dominated vectors available,                                       

       indicates an ideal behavior and ER = 0. If vector i is a member of the Pareto 

optimal set that mean     . 

 

B. Convergence Metrics 

Ghosh and Das, (2008) and Veldhuizen and Lamont, (2000) represented 

generational distance GD convergence metrics, which measure the degree of proximity 

based on the distance between the solutions in S to those in P. 

         
|∑   

 | |
   |

 
 ⁄

| |
                                                                   (5.2) 

Where;                         ⃗∈ ‖ ( ⃗ )     ⃗ ‖   ⃗ ∈            

   is a smallest distance from  ⃗ ∈   to the closet solution in P. 

 

C. Diversity Metrics 

Diversity metrics indicate the distribution and spread of solutions in the non-

dominated solution set S. 

1) Distribution Metrics: (Deb et al., 2000) proposed a metric    that compares all the 

solutions’ consecutive distances with the average distance. 

       ∑
(    )

| |

| |
                                                                          (5.3) 

Where;    is the Euclidean distance between consecutive solutions in S, and  , is the 

average of   . If all the pair of consecutive solutions have equal distance, then      , 

       , and S has a perfect distribution. 

Another distribution metrics is spacing metric proposed by (Schott, 1995). A metric 

measuring the closet distance of pairwise solutions in S. (Veldhuizen and Lamont, 

2000) defined this metric as given in equation (5.4): 
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       √∑ (    )
 | |

   
| |    ⁄                                               (5.4)                                                                        

Where,                         (|  
   ⃗    

   ⃗ |  |  
   ⃗    

   ⃗ |)                                     

   is the mean of all      and S is the number of obtained solutions. A value of zero for 

this metric indicates all members of S are equidistantly spaced. 

2) Spread Metric: The overall Pareto spread (OS) quantifies how much of the extreme 

regions are covered by set S (Jiang et al., 2014). 

             ∏
|   

 ⃗⃗⃗∈ 
    ⃗     

 ⃗⃗⃗∈ 
    ⃗ |

|             |
 
                              (5.5) 

Where      ⃗∈     ⃗      ⃗∈     ⃗  are the maximum and minimum values of the k
th

 

objective in S. For more details see (Wu and Azarm, 2000).   

3) Distribution and Spread Metrics: (Deb et al., 2002) have proposed Diversity Metric 

Δ. This metric consider the distribution and spread of obtained solution S 

simultaneously.  It is defined in Equation (5.6): 

   
      ∑ |     ̅ |

   
   

            ̅
                                               (5.6)    

     √(  
   ⃗    

   ⃗ )
 

 (  
   ⃗    

   ⃗ )
 

 

   is the Euclidean distance between consecutive solutions (Ghosh and Das, 2008) and 

 ̅ is the average of all distances   .            represent the Euclidean distance between 

the extreme solutions and the boundary solutions of the obtained non-dominated set. As 

seen in Figure 5.26.   , i=1,2,…,(S-1) and (S-1) the consecutive distance of the  best 

non-dominated front. In this metric, lesser value is the better result (Deb et al., 2000). 

 

Figure 5. 26. The Euclidean distance in the solutions 
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D. Convergence-Diversity Metrics 

The metric Inverted General Distance (IGD) is introduced by (Jiang et al., 2014) 

measures the quality of the optimal solution set S in terms of convergence and diversity 

on a single scale. 

          
|∑   

 | |
   |

 
 ⁄

| |
                                                                  (5.7) 

Where,                         ⃗∈ ‖ ( ⃗⃗ )     ⃗ ‖   ⃗⃗ ∈           

   is a smallest distance from  ⃗⃗ ∈   to the closet solution in S. 

Instead of measuring the average distance in IGD, the maximum Pareto front error 

(MPFE) is defined as:  

               ⃗⃗∈ √    ⃗∈ ∑ |  ( ⃗)      ⃗⃗ |
 

 
               (5.8) 

This metric finds the maximum distance from solutions in P to the closest solution 

in S. 

In order to satisfy the comparison purpose, the second simulation test problems 

for each algorithm at generation 500 with different seeds and with different number of 

jobs (20, 60 and 100) are represented in appendices A, B, C and D.  

In appendix A, Tables 1-3 and Figures (Appendix A.1 - Appendix A.30) include 

the Pareto solutions for unrelated multi-objective parallel machine scheduling problem 

for 5 machines and (20, 60 and 100) jobs with crossover probability 0.6. 

In Appendix B, Tables 1-3 and Figures (Appendix B.1 - Appendix B.30) consist 

of the Pareto solutions for unrelated multi-objective parallel machine scheduling 

problem for 5 machines and (20, 60 and 100)  jobs with crossover probability 0.7. 

In Appendix C, Tables1-3 and Figures (Appendix C.1 - Appendix C.30) consist of 

the Pareto solutions for unrelated multi-objective parallel machine scheduling problem 

for 5 machines and (20, 60 and 100) jobs with crossover probability 0.8. 

Finally, in Appendix D, Tables1-3 and Figures (Appendix D.1 - Appendix D.30) 

contain the Pareto solutions for the same problem for 5 machines and (20, 60 and 100) 

jobs with crossover probability 0.9. 

In general, the obtained results show the ability of each algorithm to determine the 

final non-dominated solutions but it cannot determine the best algorithm because the 

Pareto solutions are closed to each other. Therefore, the Diversity metrics (spacing 
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diversity metric SP, distribution and spread diversity metric Δ) are selected from all 

previous measures because it dependent on the obtained Pareto front. Tables 5.19 and 

5.20 represent the mean and variance of diversity metrics for 10 run trails to each 

algorithm. 

 

Table 5. 19. The mean of diversity metrics for non-dominated front to each algorithm for 10 runs (second 

test problems) 

Number of job 
Crossover 

probability 

Spacing Diversity Metric 

(SP) 

Distribution and Spread  

Diversity Metric (Δ) 

SJMCT- 

NSGA-II 

SJMCT- 

SPEA-II 

SJMCT- 

NSGA-II 

SJMCT- 

SPEA-II 

20 

0.6 3.653 2.415 0.677 0.631 

0.7 4.445 4.115 0.717 0.711 

0.8 1.925 2.928 0.601 0.682 

0.9 3.362 2.775 0.644 0.600 

60 

0.6 8.352 6.159 0.702 0.644 

0.7 4.803 7.746 0.617 0.673 

0.8 3.917 5.497 0.583 0.621 

0.9 8.150 7.388 0.686 0.711 

100 

0.6 11.946 15.168 0.751 0.769 

0.7 13.681 9.330 0.763 0.601 

0.8 15.592 9.175 0.824 0.762 

0.9 10.726 10.258 0.783 0.734 

 

 

Table 5. 20. The variance of diversity metrics for non-dominated front to each algorithm for 10 runs 

(second test problems) 

Number of job 
Crossover 

probability 

Spacing Diversity Metric(SP) 
Distribution and Spread  

Diversity Metric (Δ) 

SJMCT- 

NSGA-II 

SJMCT- 

SPEA-II 

SJMCT- 

NSGA-II 

SJMCT- 

SPEA-II 

20 

0.6 3.671 1.645 0.013 0.007 

0.7 8.983 6.356 0.033 0.004 

0.8 2.460 3.129 0.018 0.019 

0.9 2.963 2.278 0.024 0.005 

60 

0.6 22.399 6.469 0.010 0.045 

0.7 7.479 7.159 0.022 0.004 

0.8 3.672 13.873 0.008 0.044 

0.9 21.302 11.560 0.011 0.018 

100 

0.6 123.890 116.747 0.024 0.016 

0.7 70.393 66.193 0.024 0.100 

0.8 47.570 33.945 0.021 0.026 

0.9 41.014 67.066 0.018 0.013 
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Tables 5.19 and 5.20 consider the diversity metric values for the second test 

problems. In order to enhance the best performance the comparison between the two 

algorithms as follows: 

 In Table 5.19 the smallest mean value of spacing metric is 1.925 in SJMCT-NSGA-

II. That means, SJMCT-NSGA-II has the small distance at test with crossover 

probability 0.8 and with 20 jobs. While the smallest mean value equal to 2.415 in 

SJMCT-SPEA-II at test with crossover probability 0.6 and with 20 jobs. 

  In Table 5.19 the smallest mean value of spread metric is 0.583 in SJMCT-NSGA-

II at test with crossover probability 0.8 and with 60 jobs. Also, the smallest mean 

value 0.600 at test with crossover probability 0.9 and with 20 jobs.  

 In Table 5.20 the smallest variance value of spacing metric is 1.645 at test with 

crossover probability 0.6 and with 20 jobs in SJMCT-SPEA-II. Also, it equel to 

2.460 at test with crossover probability 0.8 and with 20 jobs in SJMCT-NSGA-II.   

Furthermore, the smallest variance value of spread metric is 0.004 at test with 

crossover probability 0.7 with 20 and 60 jobs in SJMCT-SPEA-II. While, it equals 

to 0.008 in SJMCT-NSGA-II algorithm at test with crossover probability 0.8 and 

with 60 jobs.  

In other words, for each job Tables 5.19 and 5.20 can be explained as follows:  

 For 20 jobs the mean and variance values of diversity metrics in SJMCT-SPEA-II is 

smaller than SJMCT-NSGA-II by 75% precent. 

 For 60 jobs  the mean and the variance values of spread metric in SJMCT-NSGA-II 

is smaller than SJMCT-SPEA-II by 75% precent. Also, the mean values of spacing 

metric in both algorithms equal to 50% precent and the variance values in 60 jobs of 

spacing metric in SJMCT-SPEA-II is smaller than SJMCT-NSGA-II by 75% 

precent. 

 For 100 jobs  the mean and the variance values of spacing metric in SJMCT-SPEA-

II is smaller than SJMCT-NSGA-II by 75% precent. Also, and the mean values of 

spread metric in SJMCT-SPEA-II is smaller than SJMCT-NSGA-II by 75% precent 

and the variance values of spread metric in both algorithms equal to 50% precent. 

According to the experimintal results, on most cases, SJMCT-SPEA-II algorithm 

is better than the SJMCT-NSGA-II algorithm based on the mean and variance values of 

diversity metrics. That means the SJMCT-SPEA-II algorithm outperformes than 

SJMCT-NSGA-II. 
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5.5. The time of implementation 

In this section, the feasible running time during executing the proposed algorithms 

SJMCT-NSGA-II and SJMCT-SPEA-II for all jobs with respect to crossover 

probabilities (0.6, 0.7, 0.8 and 0.9) are given in Table 5.21. 

 

Table 5. 21. Time in second for the best solution to each algorithm for all the second test problems 

Number 

of jobs 
Run 

Crossover Prob. 0.6 Crossover Prob. 0.7 Crossover Prob. 0.8 Crossover Prob. 0.9 

Time in 

second 

SJMCT- 

NSGA-II 

Time in 

second 

SJMCT-

SPEA-II 

Time in 

second 

SJMCT- 

NSGA-II 

Time in 

second 

SJMCT-

SPEA-II 

Time in 

second 

SJMCT- 

NSGA-II 

Time in 

second 

SJMCT-

SPEA-II 

Time in 

second 

SJMCT- 

NSGA-II 

Time in 

second 

SJMCT-

SPEA-II 

20 

1 967.471 571.390 1058.079 689.900 1085.146 683.118 1106.223 721.679 

2 980.014 583.901 1245.825 626.850 1164.926 701.433 1059.521 646.834 

3 1104.007 635.357 1084.479 662.924 1065.065 641.520 1039.019 635.490 

4 998.972 680.116 1132.613 611.302 1084.335 737.335 1080.692 803.987 

5 1007.078 666.725 1174.816 645.403 1078.374 623.905 1109.272 680.713 

6 1026.416 580.067 1041.795 670.298 1102.594 694.027 1107.050 648.016 

7 952.461 586.704 1236.804 704.621 1202.466 727.222 1106.783 799.539 

8 998.456 592.224 1183.025 613.109 1024.877 800.919 1122.158 843.626 

9 1050.007 552.026 1094.522 786.645 1187.786 732.809 1126.215 790.031 

10 1115.048 557.017 1127.016 805.425 1081.074 766.746 1116.350 655.506 

60 

1 2046.756 2391.281 1957.160 1812.959 2120.108 1587.196 2246.470 1623.477 

2 2553.467 2273.719 2398.855 2037.075 2244.856 1713.006 2560.084 2133.748 

3 2374.902 2338.787 2411.098 2089.031 2543.429 2138.496 2633.918 2179.575 

4 2551.688 2315.890 2423.819 2070.147 2378.141 2180.710 2707.688 2234.209 

5 2581.791 2316.141 2409.290 2221.823 2334.725 2183.359 2658.536 2244.689 

6 2537.604 2400.167 2505.478 2199.132 3551.508 2459.062 2653.767 2226.643 

7 2590.568 2305.287 2520.043 2243.515 2798.671 2230.224 2615.379 2300.624 

8 2603.123 2317.850 2580.543 2204.830 2757.490 2277.624 2702.401 2257.214 

9 2508.108 2316.629 2640.918 2129.395 3306.445 2340.241 2741.937 2211.559 

10 2564.135 2372.476 2643.406 2181.727 2777.679 2181.572 2757.501 2211.103 

100 

1 2884.634 2777.606 3097.011 2565.551 2928.928 2990.946 3507.810 3146.403 

2 4026.407 3688.663 3020.067 3214.600 3876.872 3551.773 3987.180 3573.405 

3 4049.246 3486.287 4080.368 3676.209 4057.971 3664.288 4013.143 3708.259 

4 4089.591 3646.479 4147.180 3456.658 4115.976 3519.977 3962.430 3662.431 

5 4003.891 3713.938 4022.216 3716.522 4067.952 3727.317 4035.916 3598.593 

6 4059.865 3681.047 4046.430 3576.281 4143.247 3639.772 3972.169 3614.173 

7 4151.922 3620.690 4056.137 3727.200 3938.903 3672.502 4097.809 3693.397 

8 4099.609 3669.987 4039.054 3713.942 4086.299 3521.890 4055.563 3639.965 

9 3964.667 3659.561 4026.973 3592.622 4029.191 3760.300 4072.633 3679.504 

10 4087.830 3629.579 4100.362 3581.727 4120.590 3655.493 4085.536 3702.196 
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Figures 5.27-5.29 represent the starting and ending time in seconds to each 

algorithm for (20, 60 and 100) jobs respectively. 

For 20 jobs, in view of Figure 5.27 and Table 5.21, the smallest time is 552.026 

seconds in SJMCT-SPEA-II at crossover probability 0.6. Moreover, the largest time is 

1245.825 seconds in SJMCT-NSGA-II at crossover probability 0.7. 

 

 
 

Figure 5. 27. Time in second with all crossover probabilities for 20 jobs 

 

For 60 jobs, Figure 5.28 and Table 5.21 illustrate the smallest time is 1587.196 

seconds in SJMCT-SPEA-II at crossover probability 0.8. The largest time is 3551.508 

seconds in SJMCT-NSGA-II at crossover probability 0.8. 

 

 

Figure 5. 28. Time in second with all crossover probabilities for 60 jobs 
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For 100 jobs, it can be observed from Figure 5.29 and Table 5.21, the smallest 

time is 2565.551 seconds in SJMCT-SPEA-II at crossover probability 0.7. The largest 

time is 4151.922 seconds in SJMCT-NSGA-II at crossover probability 0.6. 

 

 
 

Figure 5. 29. Time in second with all crossover probabilities for 100 jobs 

 

During the performance of the two algorithms, it is clear to see that SJMCT-

SPEA-II algorithm has the smallest running time as compared with  SJMCT-NSGA-II  

as seen in Table 5.21 and Figures 5.27-5.29. 
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6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 In this thesis, a novel algorithm with name Sequence Job Minimum Completion 

Time (SJMCT) is proposed to represent the scheduling of unrelated parallel machines 

with non-identical jobs. The proposed algorithm was compared with other dispatching 

rules (LPT and SPT). Numerical example is solved by using GAMS-CPLEX 

programming to show the efficiency of proposed algorithm. The associated promising 

result with small size one objective problem is a motivation to use it with large size 

multi-objective problems.  

As seen in the literature review, many real life multi-objective scheduling 

problems solved by mathematical programming, dispatching rules, neighborhood 

search, genetic and heuristic algorithms. Therefore, the main contribution of this thesis 

is to develop the multi-objective hybrid evolutionary algorithms and find the best Pareto 

front with more than one objective.  

 Two algorithms named Sequence Job Minimum Completion Time based on 

Non-dominated Sorting Genetic Algorithm (SJMCT-NSGA-II) and Sequence Job 

Minimum Completion Time based on Strength Pareto (SJMCT-SPEA-II) have been 

proposed to minimize the maximum completion time and the total tardiness.   

 The performance of the two algorithms SJMCT-NSGA-II and SJMCT-SPEA-II 

are tested by using MATLAB programming Version 8.3.0.532 (R2014a). It is interested 

to know, this program is suitable to solve large particular scheduling problem with 

small changes. 

The proposed algorithms are able to find  the best non-dominated Pareto front  by 

each algorithm for big dimensional multi-objective parallel machine scheduling 

problem. 

An intensive work of numerical experimentations has been performed. The first 

test problems are done with 5 parallel machines and 60 jobs and generation numbers 

from 40-500. The second test problems are done with 5 parallel machines and 20, 60 

and 100 jobs and generation 500. 

For most problems, several good solutions are introduced by changing the 

crossover and mutation probabilities.  

To compare multi-objective evolutionary algorithms performance, we need to use 

some metrics. Therefore, the results of two algorithms have been compared by using 

two performance diversity metrics as spacing and spread metrics. In the simulation 
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results of 60 jobs, a reasonably good minimum value of solutions and good spread are 

obtained at generation 500. Therefore, in order to observe the consistency of outcome of 

the proposed algorithms with different initial populations are selected at generation 

equals to 500. 

During the performance evaluation of proposed algorithm, it is observed that, the 

SJMCT-SPEA-II algorithm has the smaller mean and variance values for each spacing 

and spread metrics in most of the second test problems. Also, the performance of 

SJMCT-SPEA-II has smallest running time than SJMCT-NSGA-II in second test 

problems. The smallest running time of SJMCT-SPEA-II was between 9 minutes at 20 

jobs and 43 minutes at 100 jobs, while the running time of SJMCT-NSGA-II was 

between 21 minutes at 20 jobs and 69 minutes at 100 jobs.   

 In general, we conclude that, the proposed algorithm SJMCT has more 

convergence as compared with other algorithms in computing the total completion time 

of each machine. That means, it gives a good assignment of jobs at the machines and it 

make a good balance in workload over the parallel machines. In addition, there is no 

order forced to submit certain job. Also, the two hybrid algorithms are efficient and 

practical for solving large size problems. Moreover, SJMCT-SPEA-II has the highest 

quality performance than SJMCT-NSGA-II in both efficiency and the running time. 

 In future work, some comparison for the performance of proposed algorithm 

with other metaheuristic method can be done. It may also interest to apply other genetic 

operator (crossover and mutation) and generate a new different offspring. Also, other 

performance measures can be implemented as a future research direction.   

 Another future research direction is related with it could be interesting to develop 

other complex scheduling problems, such as flow shop problems, preceding constraints, 

deterioration or the machine with interrupted and unavailability periods. In addition, the 

current scheduling model can be developed by adding the rejection job constraint and 

rejection penalty. 

 Another opportunity for this research is the consideration of the problem with 

the other optimization objectives such as minimization of early and tardy penalties or 

weighted completion time and weighted tardiness. It also could be interesting to extend 

this study for more than two objectives. 
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APPENDIX A 

 

Simulation results for second test problems to each algorithm for 5 machines and 

20 jobs. The values of the best non-dominated front at generation 500 with number of 

population are 100 and crossover probability 0.6 as given in APPENDIX A. Table 1. 

 

APPENDIX A. Table 1 The values of the best non-dominated front  

for 20 jobs to each algorithm at crossover probability 0.6 

 

 
Appendix A.1. Solutions at run1 

for 20 jobs (Crossover prob. 0.6) 

 

 

 

 

 
Appendix A.2.Solutions at run 2  

for 20 jobs (Crossover prob. 0.6) 

 

 
Appendix A.3.Solutions at run 3  

for 20 jobs (Crossover prob. 0.6) 
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SJMCT-SPEA-II 

Objective1  Objective2 

1 20 0.6 25.021 10.590 23.496 19.752 

   35.994 2.487 23.717 18.722 

   31.792 6.433 27.585 10.272 

   29.422 7.226 27.809 9.549 

     26.970 17.568 

     39.481 2.802 

     29.906 7.988 

     36.069 7.421 

       37.767 3.207 

2 20 0.6 36.556 1.501 24.120 19.202 

   25.589 11.867 41.584 1.006 

   25.786 5.658 26.543 15.684 

   34.456 2.882 31.245 5.443 

     34.463 3.556 

     28.755 11.392 

     36.421 2.981 

       

3 20 0.6 33.437 1.307 24.976 20.661 

   25.807 14.119 27.641 12.737 

   25.986 1.339 37.578 4.470 

     31.524 7.458 

     37.366 5.660 

     32.432 7.122 

     30.530 11.831 

     35.096 7.081 

       

       



 
 

 

 

APPENDIX A. Table 1 (Continue) The values of the best non-dominated front  

for 20 jobs to each algorithm at crossover probability 0.6    

 

 

 

 
Appendix A.4. Solutions at run 4 

for 20 jobs(Crossover prob. 0.6) 

 

 

 
Appendix A.5. Solutions at run 5 

for 20 jobs(Crossover prob. 0.6) 

 

 
Appendix A.6.Solutions at run 6 

for 20 jobs (Crossover prob. 0.6) 

 

 
Appendix A.7.Solutions at run 7 

for 20 jobs (Crossover prob. 0.6) 
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4 20 0.6 25.620 7.221 24.479 29.934 

   35.584 1.404 25.863 15.282 

   28.848 3.104 37.128 2.054 

   33.376 2.820 34.548 4.192 

     29.064 11.643 

     29.558 10.066 

     33.551 5.989 

     29.015 12.835 

     31.767 8.807 

5 20 0.6 26.918 31.410 25.090 20.867 

   39.866 3.733 30.905 0.269 

   27.405 12.943 28.151 10.735 

   31.592 4.619 28.930 6.813 

   29.870 9.353   

   30.304 8.080   

       

       

6 20 0.6 29.360 3.311 25.439 22.909 

   24.366 30.934 26.322 14.422 

   26.055 9.143 27.911 12.467 

     31.340 3.688 

     30.847 5.786 

     29.581 9.851 

       

       

       

7 20 0.6 26.183 22.040 25.224 29.298 

   37.430 5.047 35.398 1.549 

   32.107 5.230 27.448 9.878 

   28.700 16.036 31.667 3.838 

   29.159 10.500 29.118 6.381 

   30.914 6.028 27.838 9.861 

   29.807 9.226 30.847 4.944 

   28.111 20.052 26.694 28.497 

   28.474 18.516 26.965 20.485 

   26.771 21.472   

   29.673 9.989   



 
 

 

 

APPENDIX A. Table 1 (Continue) The values of the best non-dominated front  

for 20 jobs to each algorithm at crossover probability 0.6 

 

 
Appendix A.8.Solutions at run 8  

for 20 jobs (Crossover prob. 0.6) 

 

 

 

 

 
Appendix A.9.Solutions at run 9 

 for 20 jobs (Crossover prob. 0.6) 

 

 

 

 
Appendix A.10.Solutions at run 10  

for 20 jobs (Crossover prob. 0.6) 
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8 20 0.6 38.196 2.347 44.108 1.336 

   26.028 29.290 26.523 2.812 

   31.997 5.407   

   28.205 9.432   

   37.412 4.612   

   26.381 19.747   

   28.046 17.310   

       

       

9 20 0.6 25.321 27.425 43.291 4.991 

   35.420 0.593 40.109 5.936 

   27.578 14.107 27.233 12.092 

   25.798 27.216 30.980 6.219 

   28.137 8.861 30.929 10.556 

   33.479 8.213 30.505 11.855 

   35.077 5.583   

   27.603 11.448   

   34.166 7.319   

   33.554 7.412   

       

10 20 0.6 46.032 1.265 25.374 5.488 

   26.268 26.242 30.149 3.738 

   32.011 4.117 37.530 2.945 

   45.017 3.529   

   26.445 10.488   

   27.573 4.872   

   27.201 7.199   

       

       



 
 

 

 

Simulation results for second test problems to each algorithm for 5 machines and 

60 jobs. The values of the best non-dominated front at generation 500 with number of 

population are 100 and crossover probability 0.6 as given in APPENDIX A. Table 2. 

 

APPENDIX A. Table 2 The values of the best Non-dominated front  

for 60 jobs to each algorithm at crossover probability 0.6 

 

 
Appendix A.11. Solutions at run 1  

for 60 jobs (Crossover prob. 0.6) 

 

 

 
Appendix A.12. Solutions at run 2 

for 60 jobs (Crossover prob. 0.6) 
 

 

 
Appendix A.13. Solutions at run 3  

for 60 jobs (Crossover prob. 0.6) 
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1 60 0.6 121.113 59.114 91.587 78.141 

   95.650 157.273 106.759 71.317 

   98.355 108.603 113.615 69.618 

   108.409 63.721   

   101.888 102.758   

   104.677 82.166   

   103.079 94.841   

   107.792 77.312   

   104.072 89.047   

   108.035 73.248   

2 60 0.6 96.736 119.493 94.009 98.918 

   105.499 68.327 96.218 87.134 

   102.750 73.093 122.600 63.796 

   98.352 82.241 93.975 107.597 

   97.272 93.487 106.122 76.479 

     105.219 80.293 

     104.487 82.218 

     117.126 69.234 

     104.248 84.974 

3 60 0.6 92.030 149.055 112.328 68.482 

   100.803 72.282 99.014 87.615 

   93.857 124.826 96.924 96.352 

   97.739 78.066 105.360 74.060 

     102.220 85.967 

     104.823 76.788 

     101.953 87.612 

       

       



 
 

 

 

APPENDIX A. Table 2 (Continue) The values of the best Non-dominated front  

for 60 jobs to each algorithm at crossover probability 0.6 

 

 
Appendix A.14. Solutions at run 4 

 for 60 jobs (Crossover prob. 0.6) 

 
Appendix A.15.Solutions at run 5  

for 60 jobs (Crossover prob. 0.6) 
 

 
Appendix A.16. Solutions at run 6  

for 60 jobs (Crossover prob. 0.6) 
 

 
Appendix A.17.Solutions at run 7 

 for 60 jobs (Crossover prob. 0.6) 
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4 60 0.6 94.642 93.708 93.984 86.393 

   103.948 56.587 101.320 78.663 

     117.544 68.344 

     111.868 78.541 

     114.928 77.468 

       

5 60 0.6 93.347 85.354 96.814 77.332 

   129.167 66.819 112.821 57.596 

   105.110 74.072 100.306 76.899 

   115.067 67.858 111.340 75.652 

   107.053 70.942   

       

       

       

       

6 60 0.6 121.290 69.968 105.385 52.590 

   94.213 120.628 95.500 113.680 

   95.976 94.404 97.644 106.724 

   100.401 77.097 99.359 98.362 

   107.462 71.268 104.217 76.864 

   104.604 72.912 101.531 96.879 

     102.772 90.545 

7 60 0.6 95.857 139.358 91.216 66.180 

   130.800 71.350   

   104.574 72.307   

   99.109 115.622   

   101.735 81.098   

   100.126 95.858   

   101.239 95.627   

       

       

       



 
 

 

 

APPENDIX A. Table 2 (Continue) The values of the best non-dominated front  

for 60 jobs to each algorithm at crossover probability 0.6. 

 

 
Appendix A.18.Solutions at run8  

for 60 jobs (Crossover prob. 0.6) 
 

 

 

 
Appendix A.19.Solutions at run 9  

for 60 jobs (Crossover prob. 0.6) 
 

 

 

 

 

 
Appendix A.20.Solutions at run 10  

for 60 jobs (Crossover prob. 0.6) 
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8 60 0.6 94.336 104.296 96.095 93.662 

   102.754 59.522 105.106 72.494 

   102.155 90.233 104.461 78.103 

   97.572 92.709 109.237 72.291 

     104.307 85.480 

       

       

9 60 0.6 93.808 118.336 127.836 70.998 

   121.025 52.721 92.481 132.596 

   120.227 71.409 121.189 72.247 

   107.624 75.554 97.634 101.831 

   98.222 100.635 114.165 75.737 

   102.768 79.327 105.097 80.293 

   100.862 91.676 100.887 97.045 

     102.481 86.818 

     111.800 80.194 

     101.854 96.160 

10 60 0.6 119.581 70.939 93.406 115.177 

   86.839 101.173 95.474 87.660 

   98.558 91.515 98.270 83.079 

   108.070 86.177 101.747 67.711 

   113.419 76.239 117.240 66.243 

   112.000 79.988   

   111.006 82.272   

   113.069 78.986   

   108.475 83.400   

   109.380 82.740   

       



 
 

 

 

Simulation results for second test problems to each algorithm for 5 machines and 

100 jobs. The values of the best non-dominated front at generation 500 with number of 

population are 100 and crossover probability 0.6 as given in APPENDIX A. Table 3. 

 

APPENDIX A. Table 3 The values of the best Non-dominated front  

for 100 jobs to each algorithm at crossover probability 0.6. 

 

 
Appendix A.21. Solutions at run 1  

for 100 jobs (Crossover prob. 0.6) 
 

 

 
Appendix A.22. Solutions at run 2  

for 100 jobs (Crossover prob. 0.6) 

 

 

 
Appendix A.23. Solutions at run 3  

for 100 jobs (Crossover prob. 0.6) 
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1 100 0.6 166.570 199.784 169.921 179.988 

   204.570 133.042 197.226 145.079 

   186.807 141.220 186.611 152.402 

   170.260 185.250 186.402 169.524 

   179.558 160.923 180.864 171.506 

   181.668 159.463   

       

       

2 100 0.6 164.236 157.312 180.764 162.159 

   197.090 157.086 174.666 192.319 

     185.072 160.156 

     179.480 190.181 

     174.270 225.228 

       

       

       

       

3 100 0.6 173.692 140.047 163.607 208.228 

   173.649 224.271 196.345 154.137 

     173.575 179.472 

     180.795 155.445 

       

       

       

       



 
 

 

 

APPENDIX A. Table 3 (Continue): The values of the best Non-dominated front  

for 100 jobs to each algorithm at crossover probability 0.6 

 

 

 
Appendix A.24. Solutions at run 4  

for 100 jobs (Crossover prob. 0.6) 

 

 

 
Appendix A.25. Solutions at run 5  

for 100 jobs (Crossover prob. 0.6) 

 

 
Appendix A.26.Solutions at run 6 

 for 100 jobs (Crossover prob. 0.6) 

 

 
Appendix A.27.Solutions at run7  

for 100 jobs (Crossover prob. 0.6) 
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4 100 0.6 165.803 186.365 162.885 191.022 

   197.053 153.142 169.108 168.015 

   183.169 164.118 168.766 190.730 

   182.350 178.628 188.067 151.104 

   188.575 156.590 186.835 159.354 

   175.139 181.452 184.177 166.857 

     183.792 167.998 

       

5 100 0.6 173.596 137.552 176.217 140.846 

   171.493 217.320 169.939 225.698 

   172.729 215.052 171.955 219.415 

     173.145 212.482 

     176.068 180.736 

     174.496 195.294 

       

       

6 100 0.6 172.674 219.376 168.961 192.934 

   182.761 142.934 167.882 204.417 

   175.380 183.000 168.692 200.662 

   174.961 216.079 188.229 150.820 

     181.139 159.952 

     178.316 172.434 

       

       

       

7 100 0.6 197.962 143.994 173.478 141.029 

   172.523 240.573 172.240 259.055 

   182.935 149.655 173.442 243.230 

   180.414 183.039   

   176.939 201.635   

   175.541 217.850   

   173.421 222.900   

   178.639 188.585   

       



 
 

 

 

APPENDIX A. Table 3 (Continue) The values of the best Non-dominated front  

for 100 jobs to each algorithm at crossover probability 0.6 

 
Appendix A.28.Solutions at run 8  

for 100 jobs (Crossover prob. 0.6) 

 

 

 

 

 
Appendix A.29.Solutions at run 9  

for 100 jobs (Crossover prob. 0.6) 
 

 

 

 
Appendix A.30.Solutions at run 10 

 for 100 jobs (Crossover prob. 0.6) 
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8 100 0.6 168.075 226.019 164.324 193.095 

   201.622 160.239 180.455 139.998 

   172.487 200.299 172.984 192.372 

   196.882 172.141 176.446 173.452 

   186.693 172.449 175.268 184.221 

   174.996 187.367   

   200.634 164.065   

   179.674 187.122   

   184.861 185.782   

   186.367 180.661   

   185.507 183.130   

9 100 0.6 169.695 221.387 216.391 154.145 

   180.177 132.583 164.668 185.129 

   172.349 189.802 173.275 184.790 

   177.557 175.920 186.492 158.833 

   177.549 181.623 178.630 178.511 

     183.535 163.475 

     183.046 164.301 

       

10 100 0.6 168.075 226.019 209.848 132.051 

   201.622 160.239 173.907 162.895 

   172.487 200.299 187.358 146.989 

   196.882 172.141 172.535 220.062 

   186.693 172.449 182.465 157.111 

   174.996 187.367   

   200.634 164.065   

   179.674 187.122   

   184.861 185.782   

   186.367 180.661   

   185.507 183.130   

       



 
 

 

 

APPENDIX B 

 

Simulation results for second test problems to each algorithm for 5 machines and 

20 jobs. The values of the best non-dominated front at generation 500 with number of 

population are 100 and crossover probability 0.7 as given in APPENDIX B. Table 1. 

 

APPENDIX B. Table 1 The values of the best non-dominated front  

for 20 jobs to each algorithm at crossover probability 0.7 
 

 
Appendix B.1. Solutions at run1 

for 20 jobs (Crossover prob. 0.7) 

 

 

 

 
Appendix B.2.Solutions at run 2  

for 20 jobs (Crossover prob. 0.7) 

 

 

 

 
Appendix B.3.Solutions at run 3  

for 20 jobs (Crossover prob. 0.7) 
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1 20 0.7 35.349 0.000 27.316 7.933 

   26.694 24.531 29.174 7.720 

   30.125 3.813 27.295 18.160 

   27.654 20.671 39.462 3.024 

   27.912 10.350 31.639 3.831 

   29.422 7.226   

   28.787 9.299   

       

2 20 0.7 26.326 29.389 31.368 1.278 

   27.026 2.310 29.314 11.370 

   26.662 25.616 26.299 26.816 

   26.592 25.750 26.492 25.744 

     30.764 10.742 

     29.066 19.026 

     27.306 23.990 

     28.753 22.353 

       

       

3 20 0.7 47.296 2.279 47.367 2.360 

   25.508 8.475 40.858 4.864 

   32.780 3.077 41.795 4.030 

   39.749 2.954 26.289 11.877 

   29.088 6.203 26.208 22.651 

   32.164 6.001 29.760 5.225 

     29.616 5.606 

       

       



 
 

 

 

APPENDIX B. Table 1 (Continue) The values of the best non-dominated front  

for 20 jobs to each algorithm at crossover probability 0.7                                            
 

 

Appendix B.4. Solutions at run 4  

for 20 jobs (Crossover prob. 0.7) 

 

 

 
Appendix B.5. Solutions at run 5 

for 20 jobs (Crossover prob. 0.7) 

 
Appendix B.6.Solutions at run 6  

for 20 jobs (Crossover prob. 0.7) 

 

 

 
Appendix B.7.Solutions at run 7  

for 20 jobs (Crossover prob. 0.7) 
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4 20 0.7 38.561 1.880 54.238 5.586 

   27.460 22.330 23.892 21.201 

   32.951 4.852 26.822 11.912 

   27.826 18.097 26.394 14.579 

   28.081 6.240 31.488 7.755 

   29.616 5.606 37.649 6.039 

     31.332 9.204 

     36.143 6.896 

       

5 20 0.7 24.558 13.880 24.740 14.883 

   32.505 2.601 34.890 0.889 

   30.314 5.804 27.104 10.639 

   27.501 8.173 33.034 5.686 

   25.052 9.836 32.915 8.865 

     32.400 9.052 

     32.298 10.534 

       

       

6 20 0.7 36.113 2.126 33.788 0.703 

   26.035 9.855 26.743 19.964 

   32.971 5.980 28.096 14.956 

   27.825 8.392 29.110 13.076 

   32.871 7.677 30.444 8.328 

     31.077 8.325 

     31.717 7.229 

     33.206 6.929 

       

       

7 20 0.7 26.620 19.134 25.733 38.543 

   32.796 0.236 28.923 0.168 

   29.870 8.421 25.860 20.413 

   27.746 16.808 26.602 12.800 

   28.889 11.814 27.742 6.882 

   29.010 10.393   

       

       

           



 
 

 

 

APPENDIX B. Table 1 (Continue) The values of the best non-dominated front  

for 20 jobs to each algorithm at crossover probability 0.7 
 

 
Appendix B.8.Solutions at run 8  

for 20 jobs (Crossover prob. 0.7) 

 

 

 

 
Appendix B.9.Solutions at run 9  

for 20 jobs (Crossover prob. 0.7) 

 

 

 

 
Appendix B.10.Solutions at run 10  

for 20 jobs (Crossover prob. 0.7) 
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8 20 0.7 26.810 33.407 24.309 11.039 

   29.864 0.000 27.249 8.499 

   28.289 14.942 35.220 2.341 

   27.323 22.863   

   28.255 15.589   

   26.984 32.408   

       

       

9 20 0.7 49.599 4.941 27.277 44.478 

   26.308 33.355 27.780 11.708 

   27.292 10.162 31.207 2.975 

   36.636 5.448   

   32.850 6.508   

   30.529 8.759   

   30.846 6.706   

   30.626 7.825   

       

       

10 20 0.7 37.783 2.990 26.925 18.643 

   23.587 22.591 35.531 5.891 

   27.787 7.499 29.294 17.007 

   34.152 6.055 30.322 10.937 

     30.196 12.107 

     35.450 6.979 

     30.949 10.711 

     31.506 9.408 

     33.400 8.355 

           



 
 

 

 

Simulation results for second test problems to each algorithm for 5 machines and 

60 jobs. The values of the best non-dominated front at generation 500 with number of 

population are 100 and crossover probability 0.7 as given in APPENDIX B. Table 2. 

 

APPENDIX B. Table 2 The values of the best non-dominated front  

for 60 jobs to each algorithm at crossover probability 0.7 
 

 
Appendix B.11. Solutions at run 1  

for 60 jobs (Crossover prob. 0.7) 

 

 
Appendix B.12. Solutions at run 2 

for 60 jobs (Crossover prob. 0.7) 
 

 

 

 

 
Appendix B.13. Solutions at run 3 

 for 60 jobs (Crossover prob. 0.7) 
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Objective1  Objective2 

1 60 0.7 104.821 63.836 94.736 110.466 

   93.275 88.818 95.634 101.489 

   102.093 82.724 96.236 97.437 

   101.040 88.182 100.119 83.699 

   101.583 83.964 111.988 69.860 

     110.708 70.256 

       

2 60 0.7 88.232 86.529 93.853 90.203 

   112.694 69.091 121.512 63.301 

   105.031 84.060 104.070 69.677 

   112.155 74.504   

   96.594 86.109   

       

       

       

3 60 0.7 126.743 67.194 110.099 62.376 

   95.522 127.240 97.348 120.363 

   98.328 115.203 100.938 78.687 

   123.127 73.341 97.871 106.802 

   117.979 74.563 109.121 75.191 

   114.370 80.390 107.278 77.507 

   100.138 100.987   

   102.166 90.880   

   109.918 80.521   

   107.388 83.809   

   106.586 87.785   

   99.376 109.938   

   103.177 89.012   

   100.024 105.288   



 
 

 

 

APPENDIX B. Table 2 (Continue) The values of the best non-dominated front  

for 60 jobs to each algorithm at crossover probability 0.7 

 

 

 
Appendix B.14. Solutions at run 4  

for 60 jobs (Crossover prob. 0.7) 

 

 

 

 

 
Appendix B.15.Solutions at run 5  

for 60 jobs (Crossover prob. 0.7) 
 

 

 

 

 

 

 
Appendix B.16. Solutions at run 6  

for 60 jobs (Crossover prob. 0.7) 
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4 60 0.7 95.711 100.573 109.535 43.770 

   123.767 61.925 100.042 60.636 

   105.886 62.106 96.653 140.600 

   103.708 81.848 98.387 92.795 

   100.808 92.271 97.641 107.435 

   97.283 95.851   

   100.124 93.305   

   96.719 97.846   

       

5 60 0.7 96.585 157.090 95.372 101.970 

   114.992 57.673 99.469 84.920 

   107.080 61.193 97.835 99.634 

   97.920 134.544 98.981 94.320 

   104.826 64.605 106.818 72.468 

   101.909 74.830 111.545 67.915 

   99.853 106.974   

   100.687 90.037   

   98.555 119.295   

   101.667 87.142   

   99.175 118.722   

6 60 0.7 120.788 70.258 125.732 54.494 

   94.750 93.850 93.680 127.881 

   110.357 79.038 113.180 55.789 

   102.415 88.287 98.275 71.530 

   104.611 85.555 94.986 111.597 

   109.366 81.749 103.471 67.708 

   109.831 79.707   

       

       

       



 
 

 

 

APPENDIX B. Table 2 (Continue) The values of the best non-dominated front  

for 60 jobs to each algorithm at crossover probability 0.7 

 

 

 

 
Appendix B.17.Solutions at run 7  

for 60 jobs (Crossover prob. 0.7) 

 

 

 

 

 

 

 
Appendix B.18.Solutions at run 8  

for 60 jobs (Crossover prob. 0.7) 

 
Appendix B.19. Solutions at run 9  

for 60 jobs (Crossover prob. 0.7) 

 
Appendix B.20. Solutions at run 10  

for 60 jobs (Crossover prob. 0.7) 
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7 60 0.7 116.783 70.433 126.473 64.645 

   97.160 122.815 98.318 85.456 

   108.297 72.102 117.757 71.607 

   104.648 85.178 99.552 84.048 

   97.615 112.242 105.423 81.803 

   102.500 98.843 110.261 75.910 

   107.672 78.981   

   100.181 106.322   

   103.509 93.072   

   100.462 100.422   

   98.910 110.857   

   103.899 88.059   

   107.755 78.559   

8 60 0.7 117.956 58.393 119.014 45.700 

   90.333 80.200 93.884 77.963 

   109.607 79.081 110.947 68.540 

     108.545 76.742 

       

9 60 0.7 94.513 83.359 95.165 103.567 

   113.399 65.838 110.813 62.456 

   105.140 80.587 101.025 74.916 

   107.322 70.116 103.840 71.533 

     99.907 96.333 

     99.582 102.918 

10 60 0.7 114.906 61.809 121.246 62.761 

   96.807 139.091 95.657 101.199 

   114.228 75.201 98.204 90.054 

   99.880 78.033 120.661 75.396 

   97.359 128.988 119.514 76.812 

   98.828 79.489 111.184 79.298 

   98.528 106.423 110.566 80.940 

   98.361 110.574 103.144 88.759 

     110.255 84.073 

     109.743 88.105 



 
 

 

 

Simulation results for second test problems to each algorithm for 5 machines and 

100 jobs. The values of the best non-dominated front at generation 500 with number of 

population are 100 and crossover probability 0.7 as given in APPENDIX B. Table 3. 

 

APPENDIX B. Table 3 The values of the best non-dominated front  

for 100 jobs to each algorithm at crossover probability 0.7 

 

 
Appendix B.21. Solutions at run 1  

for 100 jobs (Crossover prob. 0.7) 

 

 
Appendix B.22. Solutions at run 2 for 

100 jobs (Crossover prob. 0.7) 
 

 

 
Appendix B.23. Solutions at run 3  

for 100 jobs (Crossover prob. 0.7) 
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1 100 0.7 195.765 149.480 211.794 146.034 

   168.559 206.506 162.763 220.543 

   177.587 153.048 175.186 158.695 

   174.221 192.986 172.312 209.608 

   177.113 170.523 185.070 154.951 

   175.205 177.084 173.394 203.838 

       

2 100 0.7 161.546 187.237 183.002 139.518 

   179.671 145.442 174.934 157.491 

   175.169 184.582 173.422 215.603 

   179.369 169.824   

   177.771 181.086   

       

       

       

       

3 100 0.7 219.205 147.972 175.856 172.820 

   168.796 188.493 183.376 154.564 

   170.338 151.360 179.779 168.164 

     173.768 231.295 

     182.464 162.714 

       

       

       



 
 

 

 

APPENDIX B. Table 3 (Continue) The values of the best non-dominated front  

for 100 jobs to each algorithm at crossover probability 0.7 
 

 
Appendix B.24. Solutions at run 4  

for 100 jobs (Crossover prob. 0.7) 

 

 

 
Appendix B.25. Solutions at run 5  

for 100 jobs (Crossover prob. 0.7) 
 

 
Appendix B.26. Solutions at run 6  

for 100 jobs (Crossover prob. 0.7) 
 

 

 
 Appendix B.27. Solutions at run 7  

for 100 jobs (Crossover prob. 0.7) 
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4 100 0.7 168.035 250.868 188.039 136.148 

   176.719 121.874 169.642 200.106 

   171.584 221.218 169.569 218.936 

   174.535 171.715 171.612 186.237 

   173.614 186.765 184.999 147.286 

   174.114 183.745 182.927 156.032 

   174.465 180.301 181.780 170.198 

     177.846 182.822 

     181.184 173.211 

5 100 0.7 168.985 203.541 170.8106 152.9715 

   190.198 138.152 169.4504 186.2566 

   180.741 149.697   

   176.796 175.736   

   173.119 194.338   

   174.118 175.974   

       

6 100 0.7 170.483 250.180 174.008 166.189 

   194.511 129.883 171.712 183.469 

   187.244 166.395 197.149 149.378 

   194.115 156.077 187.971 155.872 

   177.811 174.764   

   172.877 205.187   

   176.764 185.551   

   175.343 192.837   

   173.716 200.551   

7 100 0.7 180.215 155.091 168.173 125.815 

   169.498 227.551   

   175.582 168.273   

   170.997 196.467   

       

       

       

       



 
 

 

 

APPENDIX B. Table 3 (Continue) The values of the best non-dominated front  

for 100 jobs to each algorithm at crossover probability 0.7                                          
 

 
Appendix B.28. Solutions at run 8 

for 100 jobs (Crossover prob. 0.7) 
 

 
Appendix B.29. Solutions at run 9  

for 100 jobs (Crossover prob. 0.7) 

 

 

 
Appendix B.30. Solutions at run 10  

for 100 jobs (Crossover prob. 0.7) 
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8 100 0.7 168.067 228.949 159.274 171.999 

   188.933 152.204 171.977 163.081 

   173.849 167.712 190.406 144.374 

   169.546 212.066 179.004 160.929 

   183.365 164.022   

       

       

9 100 0.7 194.866 157.437 159.966 133.284 

   168.208 217.341   

   170.058 188.475   

   175.217 168.367   

   188.343 165.171   

   189.615 158.403   

   188.505 164.840   

       

       

10 100 0.7 172.373 263.051 197.340 144.029 

   207.212 150.433 177.919 153.691 

   173.164 169.816 167.037 221.806 

   197.062 155.746 173.249 193.417 

   191.467 169.086 174.307 191.163 

   192.020 168.820   

       

       

       

       



 
 

 

 

APPENDIX C 

 

Simulation results for second test problems to each algorithm for 5 machines and 

20 jobs. The values of the best non-dominated front at generation 500 with number of 

population are 100 and crossover probability 0.8 as given in APPENDIX C. Table 1. 

 

APPENDIX C. Table 1 The values of the best non-dominated front  

for 20 jobs to each algorithm at crossover probability 0.8 

 

 
Appendix C.1. Solutions at run 1  

for 20 jobs (Crossover prob. 0.8) 

 

 

 

 

 

 
Appendix C.2. Solutions at run 2  

for 20 jobs (Crossover prob. 0.8) 

 

 

 
Appendix C.3. Solutions at run 3 

for 20 jobs (Crossover prob. 0.8) 
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1 20 0.8 27.756 30.153 24.148 21.409 

   45.806 3.364 25.991 12.191 

   27.924 11.564 27.100 9.332 

   31.691 7.364 26.480 11.940 

   38.241 7.336 30.670 1.102 

   29.104 10.719   

   44.235 4.510   

   41.432 6.310   

   43.038 6.021   

   39.202 6.498   

2 20 0.8 25.910 23.951 34.031 0.516 

   36.599 0.291 26.616 20.258 

   27.522 12.080 27.108 14.707 

   33.635 2.444 28.325 14.465 

   27.093 20.210 30.348 9.915 

   32.751 11.687 28.825 13.012 

   32.956 9.528 32.052 8.030 

     33.348 7.218 

     30.169 12.736 

       

3 20 0.8 26.596 2.127 22.212 3.966 

   34.755 0.705 36.142 0.504 

       

       

       

       

           



 
 

 

 

APPENDIX C. Table 1 (Continue) The values of the best non-dominated front  

for 20 jobs to each algorithm at crossover probability 0.8 

 

 
 Appendix C.4. Solutions at run 4 

for 20 jobs (Crossover prob. 0.8) 

 

 

 
 Appendix C.5. Solutions at run 5 

for 20 jobs (Crossover prob. 0.8) 

 

    Appendix C.6. Solutions at run 6 

for 20 Jobs (Crossover prob. 0.8) 

 

 
 Appendix C.7. Solutions at run 7 

for 20 jobs (Crossover prob. 0.8) 
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4 20 0.8 37.473 2.820 25.305 15.895 

   24.031 9.746 31.579 3.252 

   30.740 5.042 37.944 2.110 

   27.274 8.220 31.299 5.774 

   36.310 4.624 29.904 12.865 

     30.203 11.994 

     30.544 11.610 

5 20 0.8 24.553 27.758 49.307 3.528 

   45.617 4.014 27.609 9.561 

   26.734 20.077 37.012 4.758 

   36.204 4.722 26.128 27.909 

   28.883 16.537 36.219 5.504 

   29.008 12.661 33.458 5.937 

   30.555 9.393 34.253 5.901 

   33.099 8.995 32.024 7.189 

   35.333 6.891   

6 20 0.8 43.204 2.207 29.602 8.560 

   25.272 9.910 27.812 13.319 

   30.972 2.341 31.042 7.659 

     36.369 4.804 

       

       

       

       

7 20 0.8 25.792 12.175 26.244 14.419 

   31.934 0.549 28.773 6.242 

   30.011 6.292 30.269 3.551 

   26.888 9.320 25.981 19.801 

   28.877 8.962   

   29.400 6.916   

       

       

           



 
 

 

 

APPENDIX C. Table 1 (Continue) The values of the best non-dominated front  

for 20 jobs to each algorithm at crossover probability 0.8 

 

 
Appendix C.8. Solutions at run 8  

for 20 jobs (Crossover prob. 0.8) 

 

 

 Appendix C.9. Solutions at run 9  

for 20 jobs (Crossover prob. 0.8) 

 

 

 
Appendix C.10. Solutions at run 10  

for 20 jobs (Crossover prob. 0.8) 
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8 20 0.8 32.140 3.632 24.321 30.224 

   23.547 26.644 27.671 3.505 

   27.970 19.526 26.241 20.964 

   28.236 7.340 36.013 1.624 

   27.990 13.498 27.409 11.932 

     26.726 14.570 

       

       

9 20 0.8 38.148 3.560 29.692 0.000 

   26.050 14.827 26.167 13.229 

   26.897 3.938 25.690 24.263 

       

       

       

       

       

       

10 20 0.8 47.687 4.004 44.876 3.044 

   23.893 10.535 23.319 15.931 

   29.616 4.191 26.285 12.983 

     27.412 11.086 

     29.139 7.102 

     30.325 4.987 

     36.531 3.695 

       

           



 
 

 

 

Simulation results for second test problems to each algorithm for 5 machines and 

60 jobs. The values of the best non-dominated front at generation 500 with number of 

population are 100 and crossover probability 0.8 as given in APPENDIX C. Table 2. 

 

APPENDIX C. Table 2 The values of the best non-dominated front  

for 60 jobs to each algorithm at crossover probability 0.8 

 

 Appendix C.11. Solutions at run 1  

for 60 jobs (Crossover prob. 0.8) 
 

 

 
Appendix C.12. Solutions at run 2  

for 60 jobs (Crossover prob. 0.8) 

 

 Appendix C.13. Solutions at run 3  

for 60 jobs (Crossover prob. 0.8) 
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1 60 0.8 110.691 57.063 110.019 53.667 

   96.414 68.981 107.844 60.935 

   106.689 67.534 97.786 98.376 

   108.864 64.371 97.304 120.473 

     103.522 78.553 

     102.406 85.020 

       

2 60 0.8 118.016 58.020 94.131 110.563 

   95.292 112.492 101.802 80.294 

   100.920 65.539 98.886 93.964 

   98.651 97.249 113.262 73.713 

     106.106 76.860 

       

       

       

       

3 60 0.8 105.817 67.444 118.229 63.539 

   93.143 77.321 97.784 96.745 

   99.484 75.261 100.238 91.977 

   105.109 73.068 108.106 75.668 

     101.277 90.487 

     105.060 81.841 

       

       

       



 
 

 

 

APPENDIX C. Table 2 (Continue) The values of the best non-dominated front  

for 60 jobs to each algorithm at crossover probability 0.8 

 

 
Appendix C.14. Solutions at run 4  

for 60 jobs (Crossover prob. 0.8) 

 

 
Appendix C.15. Solutions at run 5  

for 60 Jobs (Crossover prob. 0.8) 

 

 

 
Appendix C.16. Solutions at run 6  

for 60 Jobs (Crossover prob. 0.8) 

 

 
Appendix C.17. Solutions at run 7  

for 60 Jobs (Crossover prob. 0.8) 
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4 60 0.8 112.710 71.439 107.054 52.310 

   94.917 103.558 97.977 74.004 

   99.912 102.954 96.555 86.674 

   101.148 86.432 95.371 97.978 

   107.942 78.188   

   104.382 85.138   

   107.220 83.997   

5 60 0.8 94.377 111.498 95.207 76.120 

   124.948 62.048 106.831 66.101 

   106.088 71.659   

   117.021 63.655   

   99.447 100.689   

   112.337 69.268   

   104.858 85.394   

   102.366 96.855   

   104.142 91.383   

       

6 60 0.8 92.095 77.846 92.873 84.013 

   105.490 69.593 121.881 57.242 

   99.031 75.675 106.993 61.183 

   102.427 72.133 100.664 82.780 

     106.909 73.468 

       

       

7 60 0.8 94.431 101.871 126.818 57.971 

   120.545 76.415 97.782 67.947 

   107.271 76.997 109.599 67.742 

   102.177 93.348 96.947 108.692 

   103.358 83.007   

   117.692 76.980   

   104.125 81.518   

   98.149 100.060   

   102.074 99.599   

   102.084 95.992   



 
 

 

 

 

APPENDIX C. Table 2 (Continue) The values of the best non-dominated front  

for 60 jobs to each algorithm at crossover probability 0.8 

 

 Appendix C.18. Solutions at run 8  

for 60 jobs (Crossover prob. 0.8) 

 

 Appendix C.19. Solutions at run 9  

for 60 jobs (Crossover prob. 0.8) 
 

 
Appendix C.20. Solutions at run 10  

for 60 jobs (Crossover prob. 0.8) 
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8 60 0.8 103.377 66.503 95.593 61.327 

   92.764 109.257   

   93.986 84.206   

   102.774 80.638   

       

       

       

9 60 0.8 98.510 85.615 96.719 71.760 

   107.322 70.116 107.457 57.846 

   102.727 82.378 103.301 68.160 

       

       

       

       

       

10 60 0.8 107.561 68.425 97.238 79.379 

   93.571 104.359 114.118 66.122 

   101.662 76.839 108.004 72.850 

   99.412 93.131 107.784 75.447 

   94.873 99.110   

   97.583 93.989   

       

       



 
 

 

 

Simulation results for second test problems to each algorithm for 5 machines and 

100 jobs. The values of the best non-dominated front at generation 500 with number of 

population are 100 and crossover probability 0.8 as given in APPENDIX C. Table 3. 

 

APPENDIX C. Table 3 The values of the best non-dominated front  

for 100 jobs to each algorithm at crossover probability 0.8 

 

 
Appendix C.21. Solutions at run 1  

for 100 jobs (Crossover prob. 0.8) 

 

 

 
Appendix C.22. Solutions at run 2  

for 100 jobs (Crossover prob. 0.8) 

 

 

 

 
Appendix C.23. Solutions at run 3 for 

100 jobs (Crossover prob. 0.8) 
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1 100 0.8 167.181 223.981 180.245 152.963 

   184.241 132.031 175.445 208.761 

   170.738 192.467 178.668 179.920 

   177.539 181.610 175.671 205.708 

   180.946 166.259 178.566 181.728 

   180.234 173.797 176.878 188.460 

     176.319 204.967 

       

2 100 0.8 208.500 156.305 186.035 138.621 

   168.239 201.794 173.733 187.047 

   170.015 172.043 172.179 206.551 

   169.031 195.586 184.189 161.852 

   179.995 168.434 183.717 181.496 

   200.213 159.730 184.145 175.399 

   191.119 168.081 183.667 184.551 

   192.386 161.834   

       

       

3 100 0.8 169.683 208.324 203.295 146.663 

   191.280 123.328 168.859 193.933 

   182.548 159.932 175.436 161.187 

   177.989 179.645 179.456 158.189 

   174.104 184.732 171.532 192.017 

   170.914 202.469 173.896 176.520 

     173.690 180.186 

       

       



 
 

 

 

APPENDIX C. Table 3 (Continue) The values of the best non-dominated front  

for 100 jobs to each algorithm at crossover probability 0.8 

 

 
Appendix C.24. Solutions at run 4  

for 100 jobs (Crossover prob. 0.8) 

 

 

 

 
Appendix C.25. Solutions at run 5  

for 100 jobs (Crossover prob. 0.8) 

 
Appendix C.26. Solutions at run 6  

for 100 jobs (Crossover prob. 0.8) 

 
Appendix C.27. Solutions at run 7  

for 100 jobs (Crossover prob. 0.8) 
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4 100 0.8 186.402 121.310 167.042 199.407 

   172.032 164.179 169.504 189.299 

   185.014 151.948 195.911 156.803 

     172.268 187.619 

     184.266 161.548 

     180.458 172.799 

     182.462 169.136 

     179.970 179.497 

     179.316 182.870 

5 100 0.8 168.231 242.052 162.387 188.046 

   185.719 142.625 170.811 152.972 

   170.388 194.631 167.727 182.930 

   180.994 192.664 197.508 131.297 

   183.524 164.242   

   183.111 185.356   

   183.243 175.480   

   183.208 182.291   

6 100 0.8 181.743 159.591 185.988 147.358 

   172.277 281.347 175.539 162.857 

   172.607 201.433 171.060 188.972 

   178.290 166.750 175.190 175.216 

   174.206 180.669   

   181.728 166.439   

   173.904 188.020   

       

7 100 0.8 199.247 157.870 171.263 209.356 

   170.060 257.022 175.684 187.488 

   172.845 216.095 173.356 200.789 

   188.565 162.844 187.748 164.369 

   181.785 169.867 190.736 160.308 

   174.708 183.809 180.270 182.152 

   195.685 161.193 186.786 170.837 

   174.475 209.376 182.898 180.932 

   177.473 172.368 185.438 176.055 

   176.677 174.668   



 
 

 

 

APPENDIX C. Table 3 (Continue) The values of the best non-dominated front  

for 100 jobs to each algorithm at crossover probability 0.8 

 

 
Appendix C.28. Solutions at run 8  

for 100 jobs (Crossover prob. 0.8) 

 

 
Appendix C.29. Solutions at run 9  

for 100 jobs (Crossover prob. 0.8) 

 

 

 
Appendix C.30. Solutions at run 10  

for 100 jobs (Crossover prob. 0.8) 
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8 100 0.8 184.082 142.091 168.038 202.511 

   168.553 205.494 172.107 190.587 

   175.008 158.749 181.256 163.603 

     189.133 156.594 

     177.029 189.236 

     180.650 184.174 

     180.526 187.098 

9 100 0.8 171.669 221.829 170.232 153.558 

   195.960 107.876 179.857 136.991 

   184.813 160.956   

   174.087 183.654   

   181.708 180.284   

   176.094 180.315   

   183.363 161.251   

       

       

10 100 0.8 166.852 217.187 171.941 260.636 

   176.699 130.593 172.104 197.130 

   169.577 187.489 172.366 189.946 

     187.219 155.847 

     184.768 159.561 

     175.336 184.513 

     178.478 172.996 

     175.719 184.029 

     178.439 173.668 



 
 

 

 

APPENDIX D 

 

Simulation results for second test problems to each algorithm for 5 machines and 

20 jobs. The values of the best non-dominated front at generation 500 with number of 

population are 100 and crossover probability 0.9 as given in APPENDIX D. Table 1. 

 

APPENDIX D. Table 1 The values of the best non-dominated front 

for 20 jobs to each algorithm at crossover probability 0.9 

 

 
Appendix D.1. Solutions at run 1 

for 20 jobs (Crossover prob. 0.9) 

 

 
Appendix D.2. Solutions at run 2 

for 20 jobs (Crossover prob. 0.9) 

 

 
Appendix D.3. Solutions at run 3 

for 20 jobs (Crossover prob. 0.9) 
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Objective1  Objective2 

1 20 0.9 26.570 24.081 23.485 9.939 

   39.718 2.854 28.446 5.894 

   33.289 5.249 32.413 4.019 

   27.654 20.671   

   28.705 12.818   

   32.686 7.557   

   29.209 10.389   

2 20 0.9 24.772 9.536 22.344 15.560 

   47.650 1.268 29.188 9.912 

   33.767 4.269 31.331 6.781 

   29.281 7.928 34.343 5.371 

   33.217 7.524   

   33.134 7.904   

       

       

3 20 0.9 23.909 22.752 26.157 35.216 

   37.137 1.098 26.479 35.075 

   26.485 5.490 40.520 3.771 

   32.694 1.669 39.545 5.182 

   25.483 12.652 27.786 27.253 

   24.485 18.908 39.427 5.858 

     27.867 21.083 

     31.789 6.422 

     30.062 13.221 

     28.523 19.016 

     30.778 12.669 

     29.365 15.828 

     31.254 11.997 



 
 

 

 

APPENDIX D. Table 1 (Continue) The values of the best non-dominated front  

for 20 jobs to each algorithm at crossover probability 0.9 

 

 
Appendix D.4. Solutions at run 4 

for 20 jobs (Crossover prob. 0.9) 

 

 

 

 

 

 

 

 

 

 

 

 
Appendix D.5. Solutions at run 5 

for 20 jobs (Crossover prob. 0.9) 

 

 
Appendix D.6. Solutions at run 6 

for 20 jobs (Crossover prob. 0.9) 
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4 20 0.9 26.059 19.242 45.139 3.363 

   47.080 3.623 43.374 3.770 

   26.362 10.519 28.304 15.565 

   39.018 4.507 26.910 30.484 

   27.124 7.129 37.723 4.176 

   30.719 6.710 27.860 18.948 

   36.239 5.831 35.038 4.222 

   33.568 6.162 27.557 28.116 

     30.100 14.075 

     31.810 9.471 

     33.215 8.002 

     31.937 9.073 

     31.734 12.306 

       

5 20 0.9 22.282 14.129 23.544 24.280 

   35.610 3.946 25.452 21.184 

   29.981 8.813 29.849 8.006 

   30.332 4.987 27.945 13.517 

     33.444 3.126 

     27.717 14.650 

     30.592 7.425 

       

       

6 20 0.9 42.229 2.322 24.585 20.119 

   26.202 15.028 26.089 17.564 

   37.863 5.197 26.931 15.336 

   31.774 9.059 34.377 2.707 

   32.715 5.533 30.073 6.436 

   29.270 11.556 34.216 6.160 

   27.997 13.061 32.708 6.165 

     29.268 10.813 

     29.205 15.204 

     32.125 6.392 



 
 

 

 

APPENDIX D. Table 1 (Continue) The values of the best non-dominated front 

for 20 jobs to each algorithm at crossover probability 0.9 

 

 
Appendix D.7. Solutions at run 7 

for 20 jobs (Crossover prob. 0.9) 

 
Appendix D.8. Solutions at run 8 

for 20 jobs (Crossover prob. 0.9) 

 

 
Appendix D.9. Solutions at run 9 

for 20 jobs (Crossover prob. 0.9) 

 

 

 
Appendix D.10. Solutions at run 10 

for 20 jobs (Crossover prob. 0.9) 
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7 20 0.9 35.803 4.660 26.590 33.258 

   24.860 17.092 38.600 2.857 

   30.601 6.696 27.285 6.436 

   28.806 14.102 27.150 26.220 

   29.485 12.286   

   34.102 6.461   

8 20 0.9 39.910 6.028 22.923 6.057 

   27.308 39.478 25.266 2.576 

   27.563 29.159 29.303 0.609 

   27.990 13.498   

   31.701 8.582   

   35.699 6.535   

   35.070 7.123   

   29.589 9.976   

   28.494 10.683   

9 20 0.9 38.323 3.872 48.362 5.475 

   21.732 8.815 42.058 5.573 

   29.700 7.471 24.398 33.479 

   33.042 6.763 24.692 26.776 

   34.601 4.475 40.239 6.253 

   33.197 5.502 27.951 12.557 

   34.000 4.901 32.012 6.850 

     30.587 10.232 

       

10 20 0.9 40.352 3.684 26.176 31.609 

   25.667 28.681 33.541 3.544 

   27.639 8.317 37.959 2.669 

   26.345 26.871 33.393 5.021 

   32.802 5.069 29.677 9.382 

   30.977 5.399 28.089 13.317 

     27.446 19.573 

     30.995 8.900 

     27.687 17.877 



 
 

 

 

Simulation results for second test problems to each algorithm for 5 machines and 

60 jobs. The values of the best non-dominated front at generation 500 with number of 

population are 100 and crossover probability 0.9 as given in APPENDIX D. Table 2. 

 

APPENDIX D. Table 2 The values of the best non-dominated front 

for 60 jobs to each algorithm at crossover probability 0.9 

 

 
Appendix D.11. Solutions at run 1 

for 60 jobs (Crossover prob. 0.9) 

 

 
Appendix D.12. Solutions at run 2 

for 60 jobs (Crossover prob. 0.9) 

 

 

 
Appendix D.13. Solutions at run 3 

for 60 jobs (Crossover prob. 0.9) 
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1 60 0.9 97.116 121.903 112.674 55.712 

   117.669 70.647 100.471 73.837 

   102.218 72.547 95.291 113.669 

   101.264 95.724 98.359 99.067 

   98.870 111.135   

   100.098 103.991   

       

2 60 0.9 108.787 56.472 101.230 77.220 

   92.017 56.968 102.978 75.268 

     97.926 128.804 

     114.463 68.088 

     107.451 73.593 

     98.486 106.439 

     112.355 72.243 

     99.916 100.958 

       

3 60 0.9 95.972 113.360 125.316 65.126 

   109.267 70.717 105.268 71.752 

   99.287 90.067 109.489 71.034 

   102.246 72.364 96.951 117.546 

   101.183 83.354 101.093 86.099 

   101.512 72.535 103.716 81.783 

     99.965 99.425 

     100.785 97.526 

       



 
 

 

 

APPENDIX D. Table 2 (Continue) The values of the best non-dominated front 

for 60 jobs to each algorithm at crossover probability 0.9 

 

 
Appendix D.14. Solutions at run 4 

for 60 jobs (Crossover prob. 0.9) 

 

 
Appendix D.15. Solutions at run 5 

for 60 jobs (Crossover prob. 0.9) 

 

 
Appendix D.16. Solutions at run 6 

for 60 jobs (Crossover prob. 0.9) 

 

 
Appendix D.17. Solutions at run 7 

for 60 jobs (Crossover prob. 0.9) 
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Crossover 

Probability 

 

SJMCT- NSGAII 

Objective1  Objective2 

 

SJMCT-SPEA-II 

Objective1  Objective2 

4 60 0.9 93.911 95.833 143.796 70.767 

   114.805 59.378 100.910 79.636 

   103.604 65.993 98.353 98.380 

   95.419 91.977 108.753 78.098 

     109.729 76.038 

       

       

5 60 0.9 112.299 63.041 95.506 73.847 

   96.345 122.419 95.207 76.120 

   99.247 73.423 109.543 67.243 

   99.152 99.641 105.807 72.612 

   97.784 110.822   

   98.156 110.355   

       

       

6 60 0.9 112.906 63.551 91.914 110.917 

   93.049 89.641 114.309 61.681 

   108.761 74.976 111.617 65.201 

   104.648 87.766 96.630 101.504 

   106.483 77.776 100.601 82.861 

   98.873 88.101 102.510 77.903 

     107.506 72.886 

     100.353 87.158 

     100.067 94.462 

7 60 0.9 114.381 55.745 96.475 97.806 

   96.304 119.803 96.442 113.969 

   100.410 72.050 108.414 70.467 

   112.377 67.623 101.478 91.358 

   97.683 91.868 104.240 88.332 

     108.382 81.154 

       

       



 
 

 

 

APPENDIX D. Table 2 (Continue) The values of the best non-dominated front 

for 60 jobs to each algorithm at crossover probability 0.9 

 

 

 

 
Appendix D.18. Solutions at run 8 

for 60 jobs (Crossover prob. 0.9) 

 

 

 

 
Appendix D.19. Solutions at run 9 

for 60 jobs (Crossover prob. 0.9) 

 

 

 
Appendix D.20. Solutions at run 10 for 60 

jobs (Crossover prob. 0.9) 
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Crossover 

Probability 

 

SJMCT- NSGAII 

Objective1  Objective2 

 

SJMCT-SPEA-II 

Objective1  Objective2 

8 60 0.9 97.330 161.927 95.576 169.399 

   123.597 65.153 117.725 65.147 

   98.000 110.167 96.257 138.969 

   113.816 72.465 96.803 107.744 

   106.484 72.814 108.387 67.545 

   98.261 88.331 98.337 107.591 

   104.433 84.527 104.832 75.018 

   101.458 86.178 100.214 95.240 

   102.816 85.286 102.798 89.124 

       

9 60 0.9 96.495 124.232 97.547 138.893 

   117.927 56.965 99.002 78.352 

   97.526 82.584 120.244 69.739 

   110.500 60.050 103.464 75.460 

   103.053 68.128 98.818 105.451 

   101.134 68.853 97.845 123.927 

     108.736 72.484 

     98.720 122.473 

       

10 60 0.9 121.585 74.875 93.931 98.276 

   94.058 126.058 100.198 88.855 

   106.398 75.796 102.593 84.115 

   100.520 77.234 111.585 73.364 

   96.797 110.927 106.923 77.016 

   97.909 97.459 107.551 76.741 

   97.268 100.710 106.095 79.775 

   97.781 98.680   

       

       



 
 

 

 

Simulation results for second test problems to each algorithm for 5 machines and 

100 jobs. The values of the best non-dominated front at generation 500 with number of 

population are 100 and crossover probability 0.9 as given in APPENDIX D. Table 3. 

 

APPENDIX D. Table 3 The values of the best non-dominated front 

for 100 jobs to each algorithm at crossover probability 0.9 

 

 
Appendix D.21. Solutions at run 1 

for 100 jobs (Crossover prob. 0.9) 

 

 

 

 

 

 
Appendix D.22. Solutions at run 2 

for 100 jobs (Crossover prob. 0.9) 

 

 

 
Appendix D.23. Solutions at run 3 

for 100 jobs (Crossover prob. 0.9) 
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Crossover 

Probability 

 

SJMCT- NSGAII 

Objective1  Objective2 

 

SJMCT-SPEA-II 

Objective1  Objective2 

1 100 0.9 170.778 191.703 172.250 171.500 

   184.749 121.926 181.295 148.558 

   184.089 152.129   

   176.746 161.185   

   176.479 177.755   

   175.133 189.760   

   180.493 157.327   

   183.259 156.085   

   179.558 160.923   

   176.240 189.364   

2 100 0.9 186.949 149.363 187.052 141.244 

   168.717 205.322 171.709 172.688 

   182.186 167.718   

   176.327 197.191   

   177.980 183.813   

   178.099 172.151   

   176.394 192.292   

   181.272 169.741   

3 100 0.9 173.816 256.091 164.814 187.278 

   193.809 140.604 188.426 147.073 

   182.163 155.198 182.144 156.542 

   173.865 210.239 174.941 175.282 

   174.768 178.691 182.067 173.360 

   179.545 169.216   

   179.919 165.856   

       

       



 
 

 

 

APPENDIX D. Table 3 (Continue) The values of the best non-dominated front 

for 100 jobs to each algorithm at crossover probability 0.9 

 

 
Appendix D.24. Solutions at run 4 

for 100 jobs (Crossover prob. 0.9) 

 

 
Appendix D.25. Solutions at run 5 

for 100 jobs (Crossover prob. 0.9) 

 

 
Appendix D.26. Solutions at run 6 

for 100 jobs (Crossover prob. 0.9) 

 

 

 
Appendix D.27. Solutions at run 7 

for 100 jobs (Crossover prob. 0.9) 
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Objective1  Objective2 

 

SJMCT-SPEA-II 

Objective1  Objective2 

4 100 0.9 162.999 162.860 178.392 162.858 

   192.422 156.552 171.385 202.420 

     171.788 200.296 

     188.976 158.258 

     176.739 180.191 

       

       

5 100 0.9 167.534 229.915 175.853 145.479 

   196.659 158.116 169.788 214.064 

   176.314 167.387 172.214 180.610 

   173.415 197.666 170.710 201.173 

   195.816 159.771   

   174.507 185.458   

       

       

6 100 0.9 190.064 138.109 172.861 162.060 

   172.305 262.826 169.645 230.888 

   173.534 190.039 195.784 158.112 

   174.831 177.505   

   182.896 171.166   

   188.287 160.863   

   184.883 164.274   

   186.534 161.156   

       

7 100 0.9 187.590 139.767 173.608 151.896 

   169.551 204.863 171.660 235.849 

   179.816 161.046 172.748 209.060 

   177.735 175.145   

   177.572 189.676   

   172.604 191.394   

   171.741 194.180   

       

       



 
 

 

 

 

APPENDIX D. Table 3 (Continue) The values of the best non-dominated front 

for 100 jobs to each algorithm at crossover probability 0.9 

 

 
Appendix D.28. Solutions at run 8 

for 100 jobs (Crossover prob. 0.9) 

 

 

 

 

 

 
Appendix D.29. Solutions at run 9 

for 100 jobs (Crossover prob. 0.9) 

 

 

 

 

 

 

 
Appendix D.30. Solutions at run 10 

for 100 jobs (Crossover prob. 0.9) 
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Probability 
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Objective1  Objective2 

 

SJMCT-SPEA-II 

Objective1  Objective2 

8 100 0.9 181.558 141.151 167.505 260.778 

   168.677 214.798 172.279 197.271 

   175.151 168.805 176.008 175.657 

   172.892 199.674 192.596 147.523 

   170.185 203.970 187.183 161.203 

   178.593 160.354 186.418 163.436 

   178.602 151.409 181.932 174.137 

     185.761 172.573 

       

       

9 100 0.9 193.647 141.060 169.655 246.799 

   170.367 195.866 194.959 152.578 

   170.667 159.490 192.856 152.646 

     182.935 169.068 

     175.831 199.930 

     188.043 164.578 

     177.315 187.530 

     174.377 225.557 

     188.548 161.115 

     181.165 179.885 

     179.716 186.558 

     181.646 179.299 

10 100 0.9 205.411 152.837 161.982 177.607 

   163.364 206.852 176.736 159.277 

   176.116 165.169 197.734 150.774 

   173.190 195.988   

   175.460 173.614   

   175.171 192.188   

       

       



 
 

 

 

APPENDIX E 

 

GAMS PROGRAMMING FOR BALINS TEST PROBLEM BY USING SJMCT 

ALGORITHM 
SETS 

     I   machine / 1*4 / 

     J job / 1*9 / 

TABLE p(I,J) processing time to assigning job J to machine I 

       1           2          3         4         5        6           7          8            9 

1   18          14        24        30       16       20        22        26         14 

2    9           7          12        15        8        10        11        13          7 

3   4.5        3.5         6        7.5        4        5        5.5        6.5        3.5 

4   3.6        2.8        4.8        6        3.2      4        4.4        5.2        2.8    ; 

VARIABLES 

Z,Z1,Z2,X15,X25,X35,X45,X16,X26,X36,X46,X17,X27,X37,X47,X18,X28,X38,X4

8,X19,X29,X39,X49; 

 EQUATIONS 

OBJ,kisit1,kisit2,kisit3,kisit4,kisit5,kisit6,kisit7,kisit8,kisit9,kis

it10,kisit11,kisit12,kisit13,kisit14,kisit15,kisit16,kisit17,kisit18,k

isit19,kisit20; 

parameter  X(I,J),C(I,J),C11,C22,C33,C44 

,C15,C25,C35,C45,C16,C26,C36,C46,C17,C27,C37,C47,C18,C28,C38,C48,C19,C

29,C39,C49; 

X('1','1') = 1; 

X('2','2') = 1; 

X('3','3') =1; 

X('4','4') =1; 

C11=p('1','1')*X('1','1'); 

C22=p('2','2')*X('2','2'); 

C33=p('3','3')*X('3','3'); 

C44=p('4','4')*X('4','4'); 

*************The  first iteration  J=5: 

     if (C11 <=C22 and C11 <=C33 and C11 <=C44 , 

display C11; 

X('1','5')=1; 

else 

X('1','5')=0; 

 if (C22 <= C11  and C22 <=C33 and C22 <=C44, 

display C22; 

X('2','5')=1; 

else 

X('2','5')=0; 

if (C33 <= C11 and C33 <=C22 and C33 <=C44, 

display C33; 

X('3','5')=1; 

else 

X('3','5')=0; 

if (C44 <= C11 and C44 <=C22 and C44 <=C33 , 

display C44; 

 X('4','5')=1; 

else 



 
 

 

 

X('4','5')=0; 

); 

); 

); 

); 

kisit1.. X('1','5') =E= X15; 

kisit2.. X('2','5') =E= X25; 

kisit3.. X('3','5') =E= X35; 

kisit4.. X('4','5') =E= X45; 

C15=p('1','1')*X('1','1')+p('1','5')*X('1','5'); 

C25=p('2','2')*X('2','2')+p('2','5')*X('2','5'); 

C35=p('3','3')*X('3','3')+p('3','5')*X('3','5'); 

C45=p('4','4')*X('4','4')+p('4','5')*X('4','5'); 

******************************************* 

*************The  second iteration  J=6: 

 if (C15 <=C25 and C15 <=C35 and  C15 <=C45, 

display C15; 

X('1','6')=1; 

else 

X('1','6')=0; 

     if (C25 <=C15 and C25 <=C35 and C25 <=C45, 

display C25; 

X('2','6')=1; 

else 

X('2','6')=0; 

     if (C35 <=C15 and C35 <=C25 and C35 <=C45, 

display C35; 

X('3','6')=1; 

else 

X('3','6')=0; 

     if (C45 <=C15 and C45 <=C25 and C45 <=C35, 

display C45; 

X('4','6')=1; 

else 

X('4','6')=0; 

); 

); 

); 

); 

C16=p('1','1')*X('1','1')+p('1','5')*X('1','5')+p('1','6')*X('1','6'); 

C26=p('2','2')*X('2','2')+p('2','5')*X('2','5')+p('2','6')*X('2','6'); 

C36=p('3','3')*X('3','3')+p('3','5')*X('3','5')+p('3','6')*X('3','6'); 

C46=p('4','4')*X('4','4')+p('4','5')*X('4','5')+p('4','6')*X('4','6'); 

kisit5.. X('1','6') =E= X16; 

kisit6.. X('2','6') =E= X26; 

kisit7.. X('3','6') =E= X36; 

kisit8.. X('4','6') =E= X46; 

*************The third iteration  J=7: 

 if (C16 <=C26 and C16 <=C36 and  C16 <=C46, 

display C16; 

X('1','7')=1; 

else 



 
 

 

 

X('1','7')=0; 

     if (C26 <=C16 and C26 <=C36 and C26 <=C46, 

display C26; 

X('2','7')=1; 

else 

X('2','7')=0; 

     if (C36 <=C16 and C36 <=C26 and C36 <=C46, 

display C36; 

 

X('3','7')=1; 

else 

X('3','7')=0; 

     if (C46 <=C16 and C46 <=C26 and C46 <=C36, 

display C46; 

X('4','7')=1; 

else 

X('4','7')=0; 

); 

); 

); 

); 

C17=p('1','1')*X('1','1')+p('1','5')*X('1','5')+p('1','6')*X('1','6')+

p('1','7')*X('1','7'); 

C27=p('2','2')*X('2','2')+p('2','5')*X('2','5')+p('2','6')*X('2','6')+

p('2','7')*X('2','7'); 

C37=p('3','3')*X('3','3')+p('3','5')*X('3','5')+p('3','6')*X('3','6')+

p('3','7')*X('3','7'); 

C47=p('4','4')*X('4','4')+p('4','5')*X('4','5')+p('4','6')*X('4','6')+

p('4','7')*X('4','7'); 

kisit9..  X('1','7') =E= X17; 

kisit10.. X('2','7') =E= X27; 

kisit11.. X('3','7') =E= X37; 

kisit12.. X('4','7') =E= X47; 

*************The forth iteration  J=8: 

 if (C17 <=C27 and C17 <=C37 and  C17 <=C47, 

display C17; 

X('1','8')=1; 

else 

X('1','8')=0; 

     if (C27 <=C17 and C27 <=C37 and C27 <=C47, 

display C27; 

X('2','8')=1; 

else 

X('2','8')=0; 

     if (C37 <=C17 and C37 <=C27 and C37 <=C47, 

display C37; 

X('3','8')=1; 

else 

X('3','8')=0; 

     if (C47 <=C17 and C47 <=C27 and C47 <=C37, 

display C47; 

 



 
 

 

 

X('4','8')=1; 

else 

X('4','8')=0; 

); 

); 

); 

); 

C18=p('1','1')*X('1','1')+p('1','5')*X('1','5')+p('1','6')*X('1','6')+

p('1','7')*X('1','7')+p('1','8')*X('1','8'); 

C28=p('2','2')*X('2','2')+p('2','5')*X('2','5')+p('2','6')*X('2','6')+

p('2','7')*X('2','7')+p('2','8')*X('2','8'); 

C38=p('3','3')*X('3','3')+p('3','5')*X('3','5')+p('3','6')*X('3','6')+

p('3','7')*X('3','7')+p('3','8')*X('3','8'); 

C48=p('4','4')*X('4','4')+p('4','5')*X('4','5')+p('4','6')*X('4','6')+

p('4','7')*X('4','7')+p('4','8')*X('4','8'); 

kisit13..  X('1','8') =E= X18; 

kisit14.. X('2','8') =E= X28; 

kisit15.. X('3','8') =E= X38; 

kisit16.. X('4','8') =E= X48; 

*************The fifth iteration  J=9: 

 if (C18 <=C28 and C18 <=C38 and  C18 <=C48, 

display C18; 

X('1','9')=1; 

else 

X('1','9')=0; 

     if (C28 <=C18 and C28 <=C38 and C28 <=C48, 

display C28; 

X('2','9')=1; 

else 

X('2','9')=0; 

     if (C38 <=C18 and C38 <=C28 and C38 <=C48, 

display C38; 

X('3','9')=1; 

else 

X('3','9')=0; 

     if (C48 <=C18 and C48 <=C28 and C48 <=C38, 

display C48; 

X('4','9')=1; 

else 

X('4','9')=0; 

); 

); 

); 

); 

C19=p('1','1')*X('1','1')+p('1','5')*X('1','5')+p('1','6')*X('1','6')+

p('1','7')*X('1','7')+p('1','8')*X('1','8')+p('1','9')*X('1','9'); 

C29=p('2','2')*X('2','2')+p('2','5')*X('2','5')+p('2','6')*X('2','6')+

p('2','7')*X('2','7')+p('2','8')*X('2','8')+p('2','9')*X('2','9'); 

C39=p('3','3')*X('3','3')+p('3','5')*X('3','5')+p('3','6')*X('3','6')+

p('3','7')*X('3','7')+p('3','8')*X('3','8')+p('3','9')*X('3','9'); 

C49=p('4','4')*X('4','4')+p('4','5')*X('4','5')+p('4','6')*X('4','6')+

p('4','7')*X('4','7')+p('4','8')*X('4','8')+p('4','9')*X('4','9'); 



kisit17.. X('1','9') =E= X19; 

kisit18.. X('2','9') =E= X29; 

kisit19.. X('3','9') =E= X39; 

kisit20.. X('4','9') =E= X49; 

 if (C19> C29 and C19> C39 and C19> C49, 

display C19; 

 else 

C19=0; 

 ); 

   if (C29> C19 and C29> C39 and C29> C49, 

display C29; 

 else 

C29=0; 

 ); 

 if (C39> C19 and C39> C29 and C39> C49, 

display C39; 

 else 

C39=0; 

 ); 

 if (C49> C19 and C49> C29 and C49> C39, 

display C49; 

 else 

C49=0; 

); 

********************************************************** 

OBJ..    Z=E=C19+C29+C39+C49; 

 MODEL SCHEDUALING / ALL /; 

 SOLVE SCHEDUALING USING MIP MINIMIZING Z ; 

MATLAB PROGRAMMING (FIRST TEST PROBLEM) TO SOLVE SJMCT-

NSGA-II AND SJMCT-SPEA-II ALGORITHM WITH SELECTED 

PAREMTERS 60 JOBS AND GENERATION 40 

COMPUTE THE FITNESS FUNCTION Z=MP60(x) 
m=5 

n=60 

p=unifrnd(1,20,[m n]); 

t=unifrnd(1,20,[m n]); 

for i= 1:m 

s(i)=p(i,i) 

d1=s  

end  

 for i= 1:m 

 r(i)=t(i,i) 

 r1=r  

end  

for i=1:m 

if s(i)==min(s) 

 s(i)=s(i)+p(i,m+1) 

 a6=t(i,m+1); 

 break 

end  

end 

for j=1:m 



 
 

 

 

d2(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d2) 

 s(i)=min(d2)+p(i,m+2) 

 a7=t(i,m+2); 

 break 

end  

end 

for j=1:m 

d3(j)=[s(1,j)] 

end 

for i=1:m 

if s(i)==min(d3) 

s(i)=min(d3)+p(i,m+3) 

a8=t(i,m+3); 

break 

end  

end 

for j=1:m 

d4(j)=[s(1,j)] 

end 

for i=1:m 

if s(i)==min(d4) 

s(i)=min(d4)+p(i,m+4) 

a9=t(i,m+4); 

break 

end  

end 

for j=1:m 

d5(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d5) 

s(i)=min(d5)+p(i,m+5) 

a10=t(i,m+5); 

 break  

end  

end 

for j=1:m 

d6(j)=[s(1,j)] 

end  

for i= 1:m 

if s(i)==min(d6) 

s(i)=min(d6)+p(i,m+6) 

a11=t(i,m+6); 

 break  

end  

end 

for j=1:m 

d7(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d7) 

s(i)=min(d7)+p(i,m+7) 

a12=t(i,m+7); 

 break  

end  

end 

for j=1:m 



 
 

 

 

d8(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d8) 

s(i)=min(d8)+p(i,m+8) 

a13=t(i,m+8); 

 break  

end  

end 

for j=1:m 

d9(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d9) 

s(i)=min(d9)+p(i,m+9) 

a14=t(i,m+9); 

 break  

end  

end 

for j=1:m 

d10(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d10) 

s(i)=min(d10)+p(i,m+10) 

a15=t(i,m+10); 

 break  

end  

end 

for j=1:m 

d11(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d11) 

s(i)=min(d11)+p(i,m+11) 

a16=t(i,m+11); 

 break  

end  

end 

for j=1:m 

d12(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d12) 

s(i)=min(d12)+p(i,m+12) 

a17=t(i,m+12); 

 break  

end  

end 

for j=1:m 

d13(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d13) 

s(i)=min(d13)+p(i,m+13) 

a18=t(i,m+13); 

 break  

end  

end 

for j=1:m 



 
 

 

 

d14(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d14) 

s(i)=min(d14)+p(i,m+14) 

a19=t(i,m+14); 

 break  

end  

end 

for j=1:m 

d15(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d15) 

s(i)=min(d15)+p(i,m+15) 

a20=t(i,m+15); 

 break  

end  

end  

for j=1:m 

d16(j)=[s(1,j)] 

end 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 40 job 

for i= 1:m 

if s(i)==min(d16) 

 s(i)=min(d16)+p(i,m+16) 

 a21=t(i,m+16); 

 break 

end  

end 

for j=1:m 

d17(j)=[s(1,j)] 

end 

for i=1:m 

if s(i)==min(d17) 

s(i)=min(d17)+p(i,m+17) 

a22=t(i,m+17); 

break 

end  

end 

for j=1:m 

d18(j)=[s(1,j)] 

end 

for i=1:m 

if s(i)==min(d18) 

s(i)=min(d18)+p(i,m+18); 

a23=t(i,m+18); 

break 

end  

end 

for j=1:m 

d19(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d19) 

s(i)=min(d19)+p(i,m+19) 

a24=t(i,m+19); 

 break  

end  

end 



 
 

 

 

for j=1:m 

d20(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d20) 

s(i)=min(d20)+p(i,m+20) 

a25=t(i,m+20); 

 break  

end  

end 

for j=1:m 

d21(j)=[s(1,j)] 

end  

for i= 1:m 

if s(i)==min(d21) 

s(i)=min(d21)+p(i,m+21) 

a26=t(i,m+21); 

 break  

end  

end 

for j=1:m 

d22(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d22) 

s(i)=min(d22)+p(i,m+22) 

a27=t(i,m+22); 

 break  

end  

end 

for j=1:m 

d23(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d23) 

s(i)=min(d23)+p(i,m+23) 

a28=t(i,m+23); 

 break  

end  

end 

for j=1:m 

d24(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d24) 

s(i)=min(d24)+p(i,m+24) 

a29=t(i,m+24); 

 break  

end  

end 

for j=1:m 

d25(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d25) 

s(i)=min(d25)+p(i,m+25) 

a30=t(i,m+25); 

 break  

end  

end 



 
 

 

 

for j=1:m 

d26(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d26) 

s(i)=min(d26)+p(i,m+26) 

a31=t(i,m+26); 

 break  

end  

end 

for j=1:m 

d27(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d27) 

s(i)=min(d27)+p(i,m+27) 

a32=t(i,m+27); 

 break  

end  

end 

for j=1:m 

d28(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d28) 

s(i)=min(d28)+p(i,m+28) 

a33=t(i,m+28); 

 break  

end  

end 

for j=1:m 

d29(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d29) 

s(i)=min(d29)+p(i,m+29) 

a34=t(i,m+29); 

 break  

end  

end 

for j=1:m 

d30(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d30) 

s(i)=min(d30)+p(i,m+30) 

a35=t(i,m+30); 

 break  

end  

end 

for j=1:m 

d31(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d31) 

s(i)=min(d31)+p(i,m+31) 

a36=t(i,m+31); 

 break  

end  

end 



for j=1:m 

d32(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d32) 

s(i)=min(d32)+p(i,m+32) 

a37=t(i,m+32); 

 break  

end  

end 

for j=1:m 

d33(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d33) 

s(i)=min(d33)+p(i,m+33) 

a38=t(i,m+33); 

 break  

end  

end 

for j=1:m 

d34(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d34) 

s(i)=min(d34)+p(i,m+34) 

a39=t(i,m+34); 

 break  

end  

end 

for j=1:m 

d35(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d35) 

s(i)=min(d35)+p(i,m+35) 

a40=t(i,m+35); 

 break  

end  

end 

for j=1:m 

d36(j)=[s(1,j)] 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%60 job 

for i= 1:m 

if s(i)==min(d36) 

 s(i)=min(d36)+p(i,m+36) 

 a41=t(i,m+36); 

 break 

end  

end 

for j=1:m 

d37(j)=[s(1,j)] 

end 

for i=1:m 

if s(i)==min(d37) 

s(i)=min(d37)+p(i,m+37) 

a42=t(i,m+37); 

break 

end  



 
 

 

 

end 

for j=1:m 

d38(j)=[s(1,j)] 

end 

for i=1:m 

if s(i)==min(d38) 

s(i)=min(d38)+p(i,m+38) 

a43=t(i,m+38); 

break 

end  

end 

for j=1:m 

d39(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d39) 

s(i)=min(d39)+p(i,m+39) 

a44=t(i,m+39); 

 break  

end  

end 

for j=1:m 

d40(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d40) 

s(i)=min(d40)+p(i,m+40) 

a45=t(i,m+40); 

 break  

end  

end 

for j=1:m 

d41(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d41) 

s(i)=min(d41)+p(i,m+41) 

a46=t(i,m+41); 

 break  

end  

end 

for j=1:m 

d42(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d42) 

s(i)=min(d42)+p(i,m+42) 

a47=t(i,m+42); 

 break  

end  

end 

for j=1:m 

d43(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d43) 

s(i)=min(d43)+p(i,m+43) 

a48=t(i,m+43); 

 break  

end  



 
 

 

 

end 

for j=1:m 

d44(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d44) 

s(i)=min(d44)+p(i,m+44) 

a49=t(i,m+44); 

 break  

end  

end 

for j=1:m 

d45(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d45) 

s(i)=min(d45)+p(i,m+45) 

a50=t(i,m+45); 

 break  

end  

end 

for j=1:m 

d46(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d46) 

s(i)=min(d46)+p(i,m+46) 

a51=t(i,m+46); 

 break  

end  

end 

 for j=1:m 

d47(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d47) 

s(i)=min(d47)+p(i,m+47) 

a52=t(i,m+47); 

 break  

end  

end 

for j=1:m 

d48(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d48) 

s(i)=min(d48)+p(i,m+48) 

a53=t(i,m+48); 

 break  

end  

end 

for j=1:m 

d49(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d49) 

s(i)=min(d49)+p(i,m+49) 

a54=t(i,m+49); 

 break  

end  



 
 

 

 

end 

for j=1:m 

d50(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d50) 

s(i)=min(d50)+p(i,m+50) 

a55=t(i,m+50); 

 break  

end  

end 

for j=1:m 

d51(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d51) 

s(i)=min(d51)+p(i,m+51) 

a56=t(i,m+51); 

 break  

end  

end 

for j=1:m 

d52(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d52) 

s(i)=min(d52)+p(i,m+52) 

a57=t(i,m+52); 

 break  

end  

end 

for j=1:m 

d53(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d53) 

s(i)=min(d53)+p(i,m+53) 

a58=t(i,m+53); 

 break  

end  

end 

for j=1:m 

d54(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d54) 

s(i)=min(d54)+p(i,m+54) 

a59=t(i,m+54); 

 break  

end  

end 

for j=1:m 

d55(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d55) 

s(i)=min(d55)+p(i,m+55) 

a60=t(i,m+55); 

 break  

end  



 
 

 

 

end 

for j=1:m 

d56(j)=[s(1,j)] 

end 

 

%%****************************************** 

  

J6=d2-d1 

J7=d3-d2 

J8=d4-d3 

J9=d5-d4 

J10=d6-d5 

J11=d7-d6 

J12=d8-d7 

J13=d9-d8 

J14=d10-d9 

J15=d11-d10 

J16=d12-d11 

J17=d13-d12 

J18=d14-d13 

J19=d15-d14 

J20=d16-d15 

J21=d17-d16 

J22=d18-d17 

J23=d19-d18 

J24=d20-d19 

J25=d21-d20 

J26=d22-d21 

J27=d23-d22 

J28=d24-d23 

J29=d25-d24 

J30=d26-d25 

J31=d27-d26 

J32=d28-d27 

J33=d29-d28 

J34=d30-d29 

J35=d31-d30 

J36=d32-d31 

J37=d33-d32 

J38=d34-d33 

J39=d35-d34 

J40=d36-d35 

J41=d37-d36 

J42=d38-d37 

J43=d39-d38 

J44=d40-d39 

J45=d41-d40 

J46=d42-d41 

J47=d43-d42; 

J48=d44-d43 

J49=d45-d44 

J50=d46-d45 

J51=d47-d46 

J52=d48-d47 

J53=d49-d48 

J54=d50-d49 

J55=d51-d50 

J56=d52-d51 

J57=d53-d52 

J58=d54-d53 



 
 

 

 

J59=d55-d54 

J60=d56-d55 

TAR1=d1-r1 

TAR6=max(J6)-a6 

TAR7=max(J7)-a7 

TAR8=max(J8)-a8 

TAR9=max(J9)-a9 

TAR10=max(J10)-a10 

TAR11=max(J11)-a11 

TAR12=max(J12)-a12 

TAR13=max(J13)-a13 

TAR14=max(J14)-a14 

TAR15=max(J15)-a15 

TAR16=max(J16)-a16 

TAR17=max(J17)-a17 

TAR18=max(J18)-a18 

TAR19=max(J19)-a19 

TAR20=max(J20)-a20 

TAR21=max(J21)-a21 

TAR22=max(J22)-a22 

TAR23=max(J23)-a23 

TAR24=max(J24)-a24 

TAR25=max(J25)-a25 

TAR26=max(J26)-a26 

TAR27=max(J27)-a27 

TAR28=max(J28)-a28 

TAR29=max(J29)-a29 

TAR30=max(J30)-a30 

TAR31=max(J31)-a31 

TAR32=max(J32)-a32 

TAR33=max(J33)-a33 

TAR34=max(J34)-a34 

TAR35=max(J35)-a35 

TAR36=max(J36)-a36 

TAR37=max(J37)-a37 

TAR38=max(J38)-a38 

TAR39=max(J39)-a39 

TAR40=max(J40)-a40 

TAR41=max(J41)-a41 

TAR42=max(J42)-a42 

TAR43=max(J43)-a43 

TAR44=max(J44)-a44 

TAR45=max(J45)-a45 

TAR46=max(J46)-a46 

TAR47=max(J47)-a47 

TAR48=max(J48)-a48 

TAR49=max(J49)-a49 

TAR50=max(J50)-a50 

TAR51=max(J51)-a51 

TAR52=max(J52)-a52 

TAR53=max(J53)-a53 

TAR54=max(J54)-a54 

TAR55=max(J55)-a55 

TAR56=max(J56)-a56 

TAR57=max(J57)-a57 

TAR58=max(J58)-a58 

TAR59=max(J59)-a59 

TAR60=max(J60)-a60 

T=[TAR1,TAR6,TAR7,TAR8,TAR9,TAR10,TAR11,TAR12,TAR13,TAR14,TAR15,TAR16,

TAR17,TAR18,TAR19,TAR20,TAR21,TAR22,TAR23,TAR24,TAR25,TAR26,TAR27,TAR2



 
 

 

 

8,TAR29,TAR30,TAR31,TAR32,TAR33,TAR34,TAR35,TAR36,TAR37,TAR38,TAR39,TA

R40,TAR41,TAR42,TAR43,TAR44,TAR45,TAR46,TAR47,TAR48,TAR49,TAR50,TAR51,

TAR52,TAR53,TAR54,TAR55,TAR56,TAR57,TAR58,TAR59,TAR60] 

for j=1:n 

if T(j) >0  

DD(j)=T(j); 

else  

DD(j)=0; 

end 

CMAX=max(s) 

TARD=sum(DD)  

%% 

optjobs=[d1;J6;J7;J8;J9;J10;J11;J12;J13;J14;J15;J16;J17;J18;J19;J20;J2

1;J22;J23;J24;J25;J26;J27;J28;J29;J30;J31;J32;J33;J34;J35;J36;J37;J38;

J39;J40;J41;J42;J43;J44;J45;J46;J47;J48;J49;J50;J51;J52;J53;J54;J55;J5

6;J57;J58;J59;J60]';  

%figure(1);  

%title 'parallel machine'; 

%barh(optjobs ,'stack'); 

%xlabel('JOBS') 

%ylabel('MACHINE')  

%TARD=sum(DD) 

%CMAX=max(s)  

z1=CMAX; 

z2=TARD;    

z=[z1 z2]';   

end 

end 

 

USING THE FITNESS FUNCTION Z=MP60(x) WITH CROSSOVER 

PROBABILITY 0.6 AND THE FOLLOWING ASSUMPTIONS TO SOLVE 

SJMCT-NSGA-II ALGORITHM 

 
clc; 

clear; 

close all;  

%% Problem Definition 

CostFunction=@(x)MP60(x); 

nVar=[5 60];             % Number of Decision Variables 

VarSize=[nVar  1];   % Decision Variables Matrix Size  

VarMin=-15;           % Decision Variables Lower Bound 

VarMax=15;           % Decision Variables Upper Bound 

% Number of Objective Functions 

nObj=numel(CostFunction(unifrnd(VarMin,VarMax,VarSize))); 

%% NSGA-II Parameters 

MaxIt=40;      % Maximum Number of Iterations 

nPop=100;        % Population Size 

Crossover=0.6;                         % Crossover Percentage 

nCrossover=2*round(pCrossover*nPop/2); %Number of Parnets (Offsprings)  

pMutation=0.4;                          % Mutation Percentage 

nMutation=round(pMutation*nPop);        % Number of Mutants 

mu=0.02;                    % Mutation Rate 

sigma=0.1*(VarMax-VarMin);  % Mutation Step Size 

%% Initialization 

empty_individual.Position=[]; 

empty_individual.Cost=[]; 

empty_individual.Rank=[]; 

empty_individual.DominationSet=[]; 

empty_individual.DominatedCount=[]; 



 
 

 

 

empty_individual.CrowdingDistance=[]; 

pop=repmat(empty_individual,nPop,1); 

for i=1:nPop 

    pop(i).Position=unifrnd(VarMin,VarMax,VarSize); 

    pop(i).Cost=CostFunction(pop(i).Position); 

end 

% Non-Dominated Sorting 

[pop, F]=NonDominatedSorting(pop); 

% Calculate Crowding Distance 

pop=CalcCrowdingDistance(pop,F); 

% Sort Population 

[pop, F]=SortPopulation(pop);  

%% NSGA-II Main Loop  

for it=1:MaxIt  

    % Crossover 

    popc=repmat(empty_individual,nCrossover/2,2); 

    for k=1:nCrossover/2 

        i1=randi([1 nPop]); 

        p1=pop(i1); 

        i2=randi([1 nPop]); 

        p2=pop(i2); 

        [popc(k,1).Position, 

popc(k,2).Position]=Crossover(p1.Position,p2.Position);  

        popc(k,1).Cost=CostFunction(popc(k,1).Position); 

        popc(k,2).Cost=CostFunction(popc(k,2).Position); 

        end 

    popc=popc(:); 

    % Mutation 

    popm=repmat(empty_individual,nMutation,1); 

    for k=1:nMutation 

        i=randi([1 nPop]); 

        p=pop(i); 

        popm(k).Position=Mutate(p.Position,mu,sigma); 

        popm(k).Cost=CostFunction(popm(k).Position);  

    end 

    % Merge 

    pop=[pop 

         popc 

         popm]; %#ok 

    % Non-Dominated Sorting 

    [pop, F]=NonDominatedSorting(pop); 

    % Calculate Crowding Distance 

    pop=CalcCrowdingDistance(pop,F); 

    % Sort Population 

    pop=SortPopulation(pop); 

    % Truncate 

    pop=pop(1:nPop); 

    % Non-Dominated Sorting 

    [pop, F]=NonDominatedSorting(pop); 

    % Calculate Crowding Distance 

    pop=CalcCrowdingDistance(pop,F); 

    % Sort Population 

    [pop, F]=SortPopulation(pop); 

    % Store F1 

    F1=pop(F{1}); 

     % Show Iteration Information 

    disp(['Iteration ' num2str(it) ': Number of F1 Members = ' 

num2str(numel(F1))]); 

    % Plot F1 Costs 

    figure(1); 



 
 

 

 

    PlotCosts(F1); 

    pause(0.3); 

end 

%% Results 

CF1 = [F1.Cost]; 

for j=1:size(CF1,1) 

    disp(['Objective #' num2str(j) ':']); 

    disp(['      Min = ' num2str(min(CF1(j,:)))]); 

    disp(['      Max = ' num2str(max(CF1(j,:)))]); 

    disp(['    Range = ' num2str(max(CF1(j,:))-min(CF1(j,:)))]); 

    disp(['    St.D. = ' num2str(std(CF1(j,:)))]); 

    disp(['     Mean = ' num2str(mean(CF1(j,:)))]); 

    disp(' '); 

end 

 
 

USING THE FITNESS FUNCTION Z=MP60(x) WITH CROSSOVER 

PROBABILITY 0.6 AND THE FOLLOWING ASSUMPTIONS TO SOLVE 

SJMCT-SPEA-II ALGORITHM 

clc; 

clear; 

close all; 

%% Problem Definition 

CostFunction=@(x)MP60(x); 

nVar=[5 60];             % Number of Decision Variables 

VarSize=[nVar  1];   % Decision Variables Matrix Size 

VarMin=-15;           % Decision Variables Lower Bound 

VarMax=15;           % Decision Variables Upper Bound 

%% SPEA2 Settings 

MaxIt=40;          % Maximum Number of Iterations 

nPop=100;            % Population Size 

nArchive=60;        % Archive Size 

K=round(sqrt(nPop+nArchive));  % KNN Parameter 

pCrossover=0.6; 

nCrossover=round(pCrossover*nPop/2)*2; 

pMutation=1-pCrossover; 

nMutation=nPop-nCrossover; 

crossover_params.gamma=0.1; 

crossover_params.VarMin=VarMin; 

crossover_params.VarMax=VarMax; 

mutation_params.h=0.2; 

mutation_params.VarMin=VarMin; 

mutation_params.VarMax=VarMax;  

%% Initialization 

empty_individual.Position=[]; 

empty_individual.Cost=[]; 

empty_individual.S=[]; 

empty_individual.R=[]; 

empty_individual.sigma=[]; 

empty_individual.sigmaK=[]; 

empty_individual.D=[]; 

empty_individual.F=[]; 

pop=repmat(empty_individual,nPop,1); 

for i=1:nPop 

    pop(i).Position=unifrnd(VarMin,VarMax,VarSize); 

    pop(i).Cost=CostFunction(pop(i).Position); 

end 

archive=[]; 

%% Main Loop 



 
 

 

 

for it=1:MaxIt 

    Q=[pop 

       archive]; 

    nQ=numel(Q); 

    dom=false(nQ,nQ); 

    for i=1:nQ 

        Q(i).S=0; 

    end 

    for i=1:nQ 

        for j=i+1:nQ 

            if Dominates(Q(i),Q(j)) 

                Q(i).S=Q(i).S+1; 

                dom(i,j)=true;    

            elseif Dominates(Q(j),Q(i)) 

                Q(j).S=Q(j).S+1; 

                dom(j,i)=true;     

            end 

             

        end 

    end 

    S=[Q.S]; 

    for i=1:nQ 

        Q(i).R=sum(S(dom(:,i))); 

    end 

    Z=[Q.Cost]'; 

    SIGMA=pdist2(Z,Z,'seuclidean'); 

    SIGMA=sort(SIGMA); 

    for i=1:nQ 

        Q(i).sigma=SIGMA(:,i); 

        Q(i).sigmaK=Q(i).sigma(K); 

        Q(i).D=1/(Q(i).sigmaK+2); 

        Q(i).F=Q(i).R+Q(i).D; 

    end 

    nND=sum([Q.R]==0); 

    if nND<=nArchive 

        F=[Q.F]; 

        [F, SO]=sort(F); 

        Q=Q(SO); 

        archive=Q(1:min(nArchive,nQ));  

    else 

        SIGMA=SIGMA(:,[Q.R]==0); 

        archive=Q([Q.R]==0); 

        k=2; 

        while numel(archive)>nArchive 

            while min(SIGMA(k,:))==max(SIGMA(k,:)) && k<size(SIGMA,1) 

                k=k+1; 

            end 

            [~, j]=min(SIGMA(k,:)); 

            archive(j)=[]; 

            SIGMA(:,j)=[]; 

        end   

    end 

    PF=archive([archive.R]==0); % Approximate Pareto Front 

    % Plot Pareto Front 

    figure(1); 

    PlotCosts(PF); 

    pause(0.01); 

    % Display Iteration Information 

    disp(['Iteration ' num2str(it) ': Number of PF members = ' 

num2str(numel(PF))]); 



if it>=MaxIt 

break; 

end 

% Crossover 

popc=repmat(empty_individual,nCrossover/2,2); 

for c=1:nCrossover/2  

p1=BinaryTournamentSelection(archive,[archive.F]); 

p2=BinaryTournamentSelection(archive,[archive.F]); 

[popc(c,1).Position, 

popc(c,2).Position]=Crossover(p1.Position,p2.Position,crossover_params

); 

popc(c,1).Cost=CostFunction(popc(c,1).Position); 

popc(c,2).Cost=CostFunction(popc(c,2).Position); 

end 

popc=popc(:); 

% Mutation 

popm=repmat(empty_individual,nMutation,1); 

for m=1:nMutation 

p=BinaryTournamentSelection(archive,[archive.F]); 

popm(m).Position=Mutate(p.Position,mutation_params); 

popm(m).Cost=CostFunction(popm(m).Position);  

end 

% Create New Population 

pop=[popc 

popm]; 

end 

%% Results 

 disp(' '); 

 PFC = [PF.Cost]; 

for j=1:size(PFC,1) 

disp(['Objective #' num2str(j) ':']); 

disp([' Min = ' num2str(min(PFC(j,:)))]); 

disp([' Max = ' num2str(max(PFC(j,:)))]); 

disp([' Range = ' num2str(max(PFC(j,:))-min(PFC(j,:)))]); 

disp([' St.D. = ' num2str(std(PFC(j,:)))]); 

disp([' Mean = ' num2str(mean(PFC(j,:)))]); 

disp(' '); 

end 

MATLAB PROGRAMMING (SECOND TEST PROBLEM) TO SOLVE SJMCT-

NSGA-II AND SJMCT-SPEA-II ALGORITHM WITH DIFFERENT NUMBER 

OF JOBS ANDGENERATION 500 

COMPUTETING THE FITNESS FUNCTION FOR 20 JOBS Z=MP20(x) 
m=5 

n=20 

p=unifrnd(1,20,[m n]); 

t=unifrnd(1,20,[m n]); 

 for i= 1:m 

   s(i)=p(i,i) 

d1=s 

end 

 for i= 1:m 

   r(i)=t(i,i) 

r1=r 

end 

 for i=1:m 

if s(i)==min(s) 

 s(i)=s(i)+p(i,m+1) 



 
 

 

 

 a6=t(i,m+1); 

 break 

 end  

end 

for j=1:m 

d2(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d2) 

 s(i)=min(d2)+p(i,m+2) 

 a7=t(i,m+2); 

 break 

end  

end 

for j=1:m 

d3(j)=[s(1,j)] 

end  

for i=1:m 

if s(i)==min(d3) 

s(i)=min(d3)+p(i,m+3) 

a8=t(i,m+3); 

break 

end  

end 

 for j=1:m 

d4(j)=[s(1,j)] 

end 

 for i=1:m 

if s(i)==min(d4) 

s(i)=min(d4)+p(i,m+4) 

a9=t(i,m+4); 

break 

end  

end 

for j=1:m 

d5(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d5) 

s(i)=min(d5)+p(i,m+5) 

a10=t(i,m+5); 

 break  

end  

end 

for j=1:m 

d6(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d6) 

s(i)=min(d6)+p(i,m+6) 

a11=t(i,m+6); 

 break  

end  

end 

 for j=1:m 

d7(j)=[s(1,j)] 

end  

for i= 1:m 

if s(i)==min(d7) 

s(i)=min(d7)+p(i,m+7) 



 
 

 

 

a12=t(i,m+7); 

 break  

end  

end  

for j=1:m 

d8(j)=[s(1,j)] 

end  

for i= 1:m 

if s(i)==min(d8) 

s(i)=min(d8)+p(i,m+8) 

a13=t(i,m+8); 

 break  

end  

end  

for j=1:m 

d9(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d9) 

s(i)=min(d9)+p(i,m+9) 

a14=t(i,m+9); 

 break  

end  

end 

for j=1:m 

d10(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d10) 

s(i)=min(d10)+p(i,m+10) 

a15=t(i,m+10); 

 break  

end  

end  

for j=1:m 

d11(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d11) 

s(i)=min(d11)+p(i,m+11) 

a16=t(i,m+11); 

 break  

end  

end 

for j=1:m 

d12(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d12) 

s(i)=min(d12)+p(i,m+12) 

a17=t(i,m+12); 

 break  

end  

end 

 for j=1:m 

d13(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d13) 

s(i)=min(d13)+p(i,m+13) 



 
 

 

 

a18=t(i,m+13); 

 break  

end  

end 

 for j=1:m 

d14(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d14) 

s(i)=min(d14)+p(i,m+14) 

a19=t(i,m+14); 

 break  

end  

end  

for j=1:m 

d15(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d15) 

s(i)=min(d15)+p(i,m+15) 

a20=t(i,m+15); 

 break  

end  

end 

 for j=1:m 

d16(j)=[s(1,j)] 

end  

%%******************************************  

J6=d2-d1 

J7=d3-d2 

J8=d4-d3 

J9=d5-d4 

J10=d6-d5 

J11=d7-d6 

J12=d8-d7 

J13=d9-d8 

J14=d10-d9 

J15=d11-d10 

J16=d12-d11 

J17=d13-d12 

J18=d14-d13 

J19=d15-d14 

J20=d16-d15 

TAR1=d1-r1 

TAR6=max(J6)-a6 

TAR7=max(J7)-a7 

TAR8=max(J8)-a8 

TAR9=max(J9)-a9 

TAR10=max(J10)-a10 

TAR11=max(J11)-a11 

TAR12=max(J12)-a12 

TAR13=max(J13)-a13 

TAR14=max(J14)-a14 

TAR15=max(J15)-a15 

TAR16=max(J16)-a16 

TAR17=max(J17)-a17 

TAR18=max(J18)-a18 

TAR19=max(J19)-a19 

TAR20=max(J20)-a20 



 
 

 

 

T=[TAR1,TAR6,TAR7,TAR8,TAR9,TAR10,TAR11,TAR12,TAR13,TAR14,TAR15,TAR16,

TAR17,TAR18,TAR19,TAR20] 

for j=1:n 

if T(j) >0  

DD(j)=T(j); 

else 

DD(j)=0; 

end 

CMAX=max(s) 

TARD=sum(DD) 

%% 

optjobs=[d1;J6;J7;J8;J9;J10;J11;J12;J13;J14;J15;J16;J17;J18;J19;J20]'; 

%figure(1);  

%title 'parallel machine'; 

%barh(optjobs ,'stack'); 

%xlabel('JOBS') 

%ylabel('MACHINE')   

z1=CMAX;    

z2=TARD;     

z=[z1 z2]';  

end 

  

   

COMPUTETING THE FITNESS FUNCTION FOR 100 JOBS Z=MP100(x) 
m=5 

n=100  

p=unifrnd(1,20,[m n]); 

t=unifrnd(1,20,[m n]); 

for i= 1:m 

    s(i)=p(i,i) 

     d1=s  

end  

 for i= 1:m 

   r(i)=t(i,i) 

     r1=r  

end  

 for i=1:m 

if s(i)==min(s) 

 s(i)=s(i)+p(i,m+1) 

 a6=t(i,m+1); 

 break 

 end  

end 

for j=1:m 

d2(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d2) 

 s(i)=min(d2)+p(i,m+2) 

 a7=t(i,m+2); 

 break 

end  

end 

 for j=1:m 

d3(j)=[s(1,j)] 

end  

 for i=1:m 

if s(i)==min(d3) 

s(i)=min(d3)+p(i,m+3) 

a8=t(i,m+3); 



 
 

 

 

 break 

end  

end 

 for j=1:m 

d4(j)=[s(1,j)] 

 end 

 for i=1:m 

if s(i)==min(d4) 

s(i)=min(d4)+p(i,m+4) 

a9=t(i,m+4); 

break 

end  

end 

for j=1:m 

d5(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d5) 

s(i)=min(d5)+p(i,m+5) 

a10=t(i,m+5); 

 break  

end  

end 

for j=1:m 

d6(j)=[s(1,j)] 

end  

for i= 1:m 

if s(i)==min(d6) 

s(i)=min(d6)+p(i,m+6) 

a11=t(i,m+6); 

 break  

end  

end 

 for j=1:m 

d7(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d7) 

s(i)=min(d7)+p(i,m+7) 

a12=t(i,m+7); 

 break  

end  

end 

 for j=1:m 

d8(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d8) 

s(i)=min(d8)+p(i,m+8) 

a13=t(i,m+8); 

 break  

end  

end 

 for j=1:m 

d9(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d9) 

s(i)=min(d9)+p(i,m+9) 

a14=t(i,m+9); 



 
 

 

 

 break  

end  

end 

 for j=1:m 

d10(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d10) 

s(i)=min(d10)+p(i,m+10) 

a15=t(i,m+10); 

 break  

end  

end  

for j=1:m 

d11(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d11) 

s(i)=min(d11)+p(i,m+11) 

a16=t(i,m+11); 

 break  

end  

end 

 for j=1:m 

d12(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d12) 

s(i)=min(d12)+p(i,m+12) 

a17=t(i,m+12); 

 break  

end  

end 

 for j=1:m 

d13(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d13) 

s(i)=min(d13)+p(i,m+13) 

a18=t(i,m+13); 

 break  

end  

end 

 for j=1:m 

d14(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d14) 

s(i)=min(d14)+p(i,m+14) 

a19=t(i,m+14); 

 break  

end  

end 

 for j=1:m 

d15(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d15) 

s(i)=min(d15)+p(i,m+15) 

a20=t(i,m+15); 



 
 

 

 

 break  

end  

end 

 for j=1:m 

d16(j)=[s(1,j)] 

end 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 40 job 

 for i= 1:m 

if s(i)==min(d16) 

 s(i)=min(d16)+p(i,m+16) 

 a21=t(i,m+16); 

 break 

end  

end 

 for j=1:m 

d17(j)=[s(1,j)] 

end 

 for i=1:m 

if s(i)==min(d17) 

s(i)=min(d17)+p(i,m+17) 

a22=t(i,m+17); 

break 

end  

end 

 for j=1:m 

d18(j)=[s(1,j)] 

end 

 for i=1:m 

if s(i)==min(d18) 

s(i)=min(d18)+p(i,m+18); 

a23=t(i,m+18); 

break 

end  

end 

for j=1:m 

d19(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d19) 

s(i)=min(d19)+p(i,m+19) 

a24=t(i,m+19); 

 break  

end  

end 

for j=1:m 

d20(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d20) 

s(i)=min(d20)+p(i,m+20) 

a25=t(i,m+20); 

 break  

end  

end 

 for j=1:m 

d21(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d21) 

s(i)=min(d21)+p(i,m+21) 



 
 

 

 

a26=t(i,m+21); 

 break  

end  

end 

 for j=1:m 

d22(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d22) 

s(i)=min(d22)+p(i,m+22) 

a27=t(i,m+22); 

 break  

end  

end 

 for j=1:m 

d23(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d23) 

s(i)=min(d23)+p(i,m+23) 

a28=t(i,m+23); 

 break  

end  

end 

 for j=1:m 

d24(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d24) 

s(i)=min(d24)+p(i,m+24) 

a29=t(i,m+24); 

 break  

end  

end 

 for j=1:m 

d25(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d25) 

s(i)=min(d25)+p(i,m+25) 

a30=t(i,m+25); 

 break  

end  

end 

 for j=1:m 

d26(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d26) 

s(i)=min(d26)+p(i,m+26) 

a31=t(i,m+26); 

 break  

end  

end 

 for j=1:m 

d27(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d27) 

s(i)=min(d27)+p(i,m+27) 



a32=t(i,m+27); 

 break 

end  

end 

 for j=1:m 

d28(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d28) 

s(i)=min(d28)+p(i,m+28) 

a33=t(i,m+28); 

 break 

end  

end 

 for j=1:m 

d29(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d29) 

s(i)=min(d29)+p(i,m+29) 

a34=t(i,m+29); 

 break 

end  

end 

 for j=1:m 

d30(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d30) 

s(i)=min(d30)+p(i,m+30) 

a35=t(i,m+30); 

 break 

end  

end 

 for j=1:m 

d31(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d31) 

s(i)=min(d31)+p(i,m+31) 

a36=t(i,m+31); 

 break 

end  

end 

 for j=1:m 

d32(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d32) 

s(i)=min(d32)+p(i,m+32) 

a37=t(i,m+32); 

 break 

end  

end 

 for j=1:m 

d33(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d33) 

s(i)=min(d33)+p(i,m+33) 



 
 

 

 

a38=t(i,m+33); 

 break  

end  

end 

 for j=1:m 

d34(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d34) 

s(i)=min(d34)+p(i,m+34) 

a39=t(i,m+34); 

 break  

end  

end 

 for j=1:m 

d35(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d35) 

s(i)=min(d35)+p(i,m+35) 

a40=t(i,m+35); 

 break  

end  

end 

 for j=1:m 

d36(j)=[s(1,j)] 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%60 job 

for i= 1:m 

if s(i)==min(d36) 

 s(i)=min(d36)+p(i,m+36) 

 a41=t(i,m+36); 

 break 

end  

end 

 for j=1:m 

d37(j)=[s(1,j)] 

end 

for i=1:m 

if s(i)==min(d37) 

s(i)=min(d37)+p(i,m+37) 

a42=t(i,m+37); 

break 

end  

end 

 for j=1:m 

d38(j)=[s(1,j)] 

end 

 for i=1:m 

if s(i)==min(d38) 

s(i)=min(d38)+p(i,m+38) 

a43=t(i,m+38); 

break 

end  

end 

for j=1:m 

d39(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d39) 



 
 

 

 

s(i)=min(d39)+p(i,m+39) 

a44=t(i,m+39); 

 break  

end  

end 

for j=1:m 

d40(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d40) 

s(i)=min(d40)+p(i,m+40) 

a45=t(i,m+40); 

 break  

end  

end 

 for j=1:m 

d41(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d41) 

s(i)=min(d41)+p(i,m+41) 

a46=t(i,m+41); 

 break  

end  

end 

 for j=1:m 

d42(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d42) 

s(i)=min(d42)+p(i,m+42) 

a47=t(i,m+42); 

 break  

end  

end 

 for j=1:m 

d43(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d43) 

s(i)=min(d43)+p(i,m+43) 

a48=t(i,m+43); 

 break  

end  

end 

 for j=1:m 

d44(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d44) 

s(i)=min(d44)+p(i,m+44) 

a49=t(i,m+44); 

 break  

end  

end 

 for j=1:m 

d45(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d45) 



 
 

 

 

s(i)=min(d45)+p(i,m+45) 

a50=t(i,m+45); 

 break  

end  

end 

 for j=1:m 

d46(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d46) 

s(i)=min(d46)+p(i,m+46) 

a51=t(i,m+46); 

 break  

end  

end 

 for j=1:m 

d47(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d47) 

s(i)=min(d47)+p(i,m+47) 

a52=t(i,m+47); 

 break  

end  

end 

 for j=1:m 

d48(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d48) 

s(i)=min(d48)+p(i,m+48) 

a53=t(i,m+48); 

 break  

end  

end 

 for j=1:m 

d49(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d49) 

s(i)=min(d49)+p(i,m+49) 

a54=t(i,m+49); 

 break  

end  

end 

 for j=1:m 

d50(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d50) 

s(i)=min(d50)+p(i,m+50) 

a55=t(i,m+50); 

 break  

end  

end 

 for j=1:m 

d51(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d51) 



 
 

 

 

s(i)=min(d51)+p(i,m+51) 

a56=t(i,m+51); 

 break  

end  

end 

 for j=1:m 

d52(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d52) 

s(i)=min(d52)+p(i,m+52) 

a57=t(i,m+52); 

 break  

end  

end 

for j=1:m 

d53(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d53) 

s(i)=min(d53)+p(i,m+53) 

a58=t(i,m+53); 

 break  

end  

end 

for j=1:m 

d54(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d54) 

s(i)=min(d54)+p(i,m+54) 

a59=t(i,m+54); 

 break  

end  

end 

for j=1:m 

d55(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d55) 

s(i)=min(d55)+p(i,m+55) 

a60=t(i,m+55); 

 break  

end  

end 

 for j=1:m 

d56(j)=[s(1,j)] 

end  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%80 job 

for i= 1:m 

if s(i)==min(d56) 

 s(i)=min(d56)+p(i,m+56) 

 a61=t(i,m+56); 

 break 

end  

end 

 for j=1:m 

d57(j)=[s(1,j)] 

end 

 for i=1:m 



 
 

 

 

if s(i)==min(d57) 

s(i)=min(d57)+p(i,m+57) 

a62=t(i,m+57); 

break 

end  

end 

 for j=1:m 

d58(j)=[s(1,j)] 

end 

 for i=1:m 

if s(i)==min(d58) 

s(i)=min(d58)+p(i,m+58) 

a63=t(i,m+58); 

break 

end  

end 

for j=1:m 

d59(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d59) 

s(i)=min(d59)+p(i,m+59) 

a64=t(i,m+59); 

 break  

end  

end 

for j=1:m 

d60(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d60) 

s(i)=min(d60)+p(i,m+60) 

a65=t(i,m+60); 

 break  

end  

end 

 for j=1:m 

d61(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d61) 

s(i)=min(d61)+p(i,m+61) 

a66=t(i,m+61); 

 break  

end  

end 

 for j=1:m 

d62(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d62) 

s(i)=min(d62)+p(i,m+62) 

a67=t(i,m+62); 

 break  

end  

end 

 for j=1:m 

d63(j)=[s(1,j)] 

end 

for i= 1:m 



 
 

 

 

if s(i)==min(d63) 

s(i)=min(d63)+p(i,m+63) 

a68=t(i,m+63); 

 break  

end  

end 

 for j=1:m 

d64(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d64) 

s(i)=min(d64)+p(i,m+64) 

a69=t(i,m+64); 

 break  

end  

end 

 for j=1:m 

d65(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d65) 

s(i)=min(d65)+p(i,m+65) 

a70=t(i,m+65); 

 break  

end  

end 

 for j=1:m 

d66(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d66) 

s(i)=min(d66)+p(i,m+66) 

a71=t(i,m+66); 

 break  

end  

end 

 for j=1:m 

d67(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d67) 

s(i)=min(d67)+p(i,m+67) 

a72=t(i,m+67); 

 break  

end  

end 

 for j=1:m 

d68(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d68) 

s(i)=min(d68)+p(i,m+68) 

a73=t(i,m+68); 

 break  

end  

end 

 for j=1:m 

d69(j)=[s(1,j)] 

end 

 for i= 1:m 



 
 

 

 

if s(i)==min(d69) 

s(i)=min(d69)+p(i,m+69) 

a74=t(i,m+69); 

 break  

end  

end 

 for j=1:m 

d70(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d70) 

s(i)=min(d70)+p(i,m+70) 

a75=t(i,m+70); 

 break  

end  

end 

 for j=1:m 

d71(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d71) 

s(i)=min(d71)+p(i,m+71) 

a76=t(i,m+71); 

 break  

end  

end 

 for j=1:m 

d72(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d72) 

s(i)=min(d72)+p(i,m+72) 

a77=t(i,m+72); 

 break  

end  

end 

for j=1:m 

d73(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d73) 

s(i)=min(d73)+p(i,m+73) 

a78=t(i,m+73); 

 break  

end  

end 

 for j=1:m 

d74(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d74) 

s(i)=min(d74)+p(i,m+74) 

a79=t(i,m+74); 

 break  

end  

end 

 for j=1:m 

d75(j)=[s(1,j)] 

end 

for i= 1:m 



 
 

 

 

if s(i)==min(d75) 

s(i)=min(d75)+p(i,m+75) 

a80=t(i,m+75); 

 break  

end  

end 

 for j=1:m 

d76(j)=[s(1,j)] 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%100 job 

for i= 1:m 

if s(i)==min(d76) 

 s(i)=min(d76)+p(i,m+76) 

 a81=t(i,m+76); 

 break 

end  

end 

 for j=1:m 

d77(j)=[s(1,j)] 

end 

for i=1:m 

if s(i)==min(d77) 

s(i)=min(d77)+p(i,m+77) 

a82=t(i,m+77); 

break 

end  

end 

for j=1:m 

d78(j)=[s(1,j)] 

end 

for i=1:m 

if s(i)==min(d78) 

s(i)=min(d78)+p(i,m+78) 

a83=t(i,m+78); 

break 

end  

end 

for j=1:m 

d79(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d79) 

s(i)=min(d79)+p(i,m+79) 

a84=t(i,m+79); 

 break  

end  

end 

for j=1:m 

d80(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d80) 

s(i)=min(d80)+p(i,m+80) 

a85=t(i,m+80); 

 break  

end  

end 

for j=1:m 

d81(j)=[s(1,j)] 

end 



 
 

 

 

for i= 1:m 

if s(i)==min(d81) 

s(i)=min(d81)+p(i,m+81) 

a86=t(i,m+81); 

 break  

end  

end 

 for j=1:m 

d82(j)=[s(1,j)] 

end 

 for i= 1:m 

if s(i)==min(d82) 

s(i)=min(d82)+p(i,m+82) 

a87=t(i,m+82); 

 break  

end  

end 

for j=1:m 

d83(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d83) 

s(i)=min(d83)+p(i,m+83) 

a88=t(i,m+83); 

 break  

end  

end 

for j=1:m 

d84(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d84) 

s(i)=min(d84)+p(i,m+84) 

a89=t(i,m+84); 

 break  

end  

end 

for j=1:m 

d85(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d85) 

s(i)=min(d85)+p(i,m+85) 

a90=t(i,m+85); 

 break  

end  

end 

for j=1:m 

d86(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d86) 

s(i)=min(d86)+p(i,m+86) 

a91=t(i,m+86); 

 break  

end  

end 

for j=1:m 

d87(j)=[s(1,j)] 

end 



 
 

 

 

for i= 1:m 

if s(i)==min(d87) 

s(i)=min(d87)+p(i,m+87) 

a92=t(i,m+87); 

 break  

end  

end 

for j=1:m 

d88(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d88) 

s(i)=min(d88)+p(i,m+88) 

a93=t(i,m+88); 

 break  

end  

end 

for j=1:m 

d89(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d89) 

s(i)=min(d89)+p(i,m+89) 

a94=t(i,m+89); 

 break  

end  

end 

for j=1:m 

d90(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d90) 

s(i)=min(d90)+p(i,m+90) 

a95=t(i,m+90); 

 break  

end  

end 

for j=1:m 

d91(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d91) 

s(i)=min(d91)+p(i,m+91) 

a96=t(i,m+91); 

 break  

end  

end 

for j=1:m 

d92(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d92) 

s(i)=min(d92)+p(i,m+92) 

a97=t(i,m+92); 

 break  

end  

end 

for j=1:m 

d93(j)=[s(1,j)] 

end 



 
 

 

 

for i= 1:m 

if s(i)==min(d93) 

s(i)=min(d93)+p(i,m+93) 

a98=t(i,m+93); 

 break  

end  

end 

for j=1:m 

d94(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d94) 

s(i)=min(d94)+p(i,m+94) 

a99=t(i,m+94); 

 break  

end  

end 

 for j=1:m 

d95(j)=[s(1,j)] 

end 

for i= 1:m 

if s(i)==min(d95) 

s(i)=min(d95)+p(i,m+95) 

a100=t(i,m+95); 

 break  

end  

end 

for j=1:m 

d96(j)=[s(1,j)] 

end 

%%****************************************** 

J6=d2-d1 

J7=d3-d2 

J8=d4-d3 

J9=d5-d4 

J10=d6-d5 

J11=d7-d6 

J12=d8-d7 

J13=d9-d8 

J14=d10-d9 

J15=d11-d10 

J16=d12-d11 

J17=d13-d12 

J18=d14-d13 

J19=d15-d14 

J20=d16-d15 

J21=d17-d16 

J22=d18-d17 

J23=d19-d18 

J24=d20-d19 

J25=d21-d20 

J26=d22-d21 

J27=d23-d22 

J28=d24-d23 

J29=d25-d24 

J30=d26-d25 

J31=d27-d26 

J32=d28-d27 

J33=d29-d28 

J34=d30-d29 



J35=d31-d30 

J36=d32-d31 

J37=d33-d32 

J38=d34-d33 

J39=d35-d34 

J40=d36-d35 

J41=d37-d36 

J42=d38-d37 

J43=d39-d38 

J44=d40-d39 

J45=d41-d40 

J46=d42-d41 

J47=d43-d42; 

J48=d44-d43 

J49=d45-d44 

J50=d46-d45 

J51=d47-d46 

J52=d48-d47 

J53=d49-d48 

J54=d50-d49 

J55=d51-d50 

J56=d52-d51 

J57=d53-d52 

J58=d54-d53 

J59=d55-d54 

J60=d56-d55 

J61=d57-d56 

J62=d58-d57 

J63=d59-d58 

J64=d60-d59 

J65=d61-d60 

J66=d62-d61 

J67=d63-d62 

J68=d64-d63 

J69=d65-d64 

J70=d66-d65 

J71=d67-d66 

J72=d68-d67 

J73=d69-d68 

J74=d70-d69 

J75=d71-d70 

J76=d72-d71 

J77=d73-d72 

J78=d74-d73 

J79=d75-d74 

J80=d76-d75 

J81=d77-d76 

J82=d78-d77 

J83=d79-d78 

J84=d80-d79 

J85= d81-d80 

J86= d82-d81 

J87= d83-d82 

J88= d84-d83 

J89= d85-d84 

J90=d86-d85 

J91=d87-d86 

J92=d88-d87 

J93=d89-d88 

J94=d90-d89 



 
 

 

 

J95=d91-d90 

J96=d92-d91 

J97=d93-d92 

J98=d94-d93 

J99=d95-d94 

J100=d96-d95 

TAR1=d1-r1 

TAR6=max(J6)-a6 

TAR7=max(J7)-a7 

TAR8=max(J8)-a8 

TAR9=max(J9)-a9 

TAR10=max(J10)-a10 

TAR11=max(J11)-a11 

TAR12=max(J12)-a12 

TAR13=max(J13)-a13 

TAR14=max(J14)-a14 

TAR15=max(J15)-a15 

TAR16=max(J16)-a16 

TAR17=max(J17)-a17 

TAR18=max(J18)-a18 

TAR19=max(J19)-a19 

TAR20=max(J20)-a20 

TAR21=max(J21)-a21 

TAR22=max(J22)-a22 

TAR23=max(J23)-a23 

TAR24=max(J24)-a24 

TAR25=max(J25)-a25 

TAR26=max(J26)-a26 

TAR27=max(J27)-a27 

TAR28=max(J28)-a28 

TAR29=max(J29)-a29 

TAR30=max(J30)-a30 

TAR31=max(J31)-a31 

TAR32=max(J32)-a32 

TAR33=max(J33)-a33 

TAR34=max(J34)-a34 

TAR35=max(J35)-a35 

TAR36=max(J36)-a36 

TAR37=max(J37)-a37 

TAR38=max(J38)-a38 

TAR39=max(J39)-a39 

TAR40=max(J40)-a40 

TAR41=max(J41)-a41 

TAR42=max(J42)-a42 

TAR43=max(J43)-a43 

TAR44=max(J44)-a44 

TAR45=max(J45)-a45 

TAR46=max(J46)-a46 

TAR47=max(J47)-a47 

TAR48=max(J48)-a48 

TAR49=max(J49)-a49 

TAR50=max(J50)-a50 

TAR51=max(J51)-a51 

TAR52=max(J52)-a52 

TAR53=max(J53)-a53 

TAR54=max(J54)-a54 

TAR55=max(J55)-a55 

TAR56=max(J56)-a56 

TAR57=max(J57)-a57 

TAR58=max(J58)-a58 



 
 

 

 

TAR59=max(J59)-a59 

TAR60=max(J60)-a60 

TAR61=max(J61)-a61 

TAR62=max(J62)-a62 

TAR63=max(J63)-a63 

TAR64=max(J64)-a64 

TAR65=max(J65)-a65 

TAR66=max(J66)-a66 

TAR67=max(J67)-a67 

TAR68=max(J68)-a68 

TAR69=max(J69)-a69 

TAR70=max(J70)-a70 

  

TAR71=max(J71)-a71 

TAR72=max(J72)-a72 

TAR73=max(J73)-a73 

TAR74=max(J74)-a74 

TAR75=max(J75)-a75 

TAR76=max(J76)-a76 

TAR77=max(J77)-a77 

TAR78=max(J78)-a78 

TAR79=max(J79)-a79 

TAR80=max(J80)-a80 

TAR81=max(J81)-a81 

TAR82=max(J82)-a82 

TAR83=max(J83)-a83 

TAR84=max(J84)-a84 

TAR85=max(J85)-a85 

TAR86=max(J86)-a86 

TAR87=max(J87)-a87 

TAR88=max(J88)-a88 

TAR89=max(J89)-a89 

TAR90=max(J90)-a90 

TAR91=max(J91)-a91 

TAR92=max(J92)-a92 

TAR93=max(J93)-a93 

TAR94=max(J94)-a94 

TAR95=max(J95)-a95 

TAR96=max(J96)-a96 

TAR97=max(J97)-a97 

TAR98=max(J98)-a98 

TAR99=max(J99)-a99 

TAR100=max(J100)-a100  

T=[TAR1,TAR6,TAR7,TAR8,TAR9,TAR10,TAR11,TAR12,TAR13,TAR14,TAR15,TAR16,

TAR17,TAR18,TAR19,TAR20,TAR21,TAR22,TAR23,TAR24,TAR25,TAR26,TAR27,TAR2

8,TAR29,TAR30,TAR31,TAR32,TAR33,TAR34,TAR35,TAR36,TAR37,TAR38,TAR39,TA

R40,TAR41,TAR42,TAR43,TAR44,TAR45,TAR46,TAR47,TAR48,TAR49,TAR50,TAR51,

TAR52,TAR53,TAR54,TAR55,TAR56,TAR57,TAR58,TAR59,TAR60,TAR61,TAR62,TAR6

3,TAR64,TAR65,TAR66,TAR67,TAR68,TAR69,TAR70,TAR71,TAR72,TAR73,TAR74,TA

R75,TAR76,TAR77,TAR78,TAR79,TAR80,TAR81,TAR82,TAR83,TAR84,TAR85,TAR86,

TAR87,TAR88,TAR89,TAR90,TAR91,TAR92,TAR93,TAR94,TAR95,TAR96,TAR97,TAR9

8,TAR99,TAR100] 

for j=1:n 

if T(j) >0  

DD(j)=T(j); 

else 

  DD(j)=0;  

end 

CMAX=max(s) 

TARD=sum(DD) 



%%%%% 

optjobs=[d1;J6;J7;J8;J9;J10;J11;J12;J13;J14;J15;J16;J17;J18;J19;J20;J2

1;J22;J23;J24;J25;J26;J27;J28;J29;J30;J31;J32;J33;J34;J35;J36;J37;J38;

J39;J40;J41;J42;J43;J44;J45;J46;J47;J48;J49;J50;J51;J52;J53;J54;J55;J5

6;J57;J58;J59;J60;J61;J62;J63;J64;J65;J66;J67;J68;J69;J70;J71;J72;J73;

J74;J75;J76;J77;J78;J79;J80;J81;J82;J83;J84;J85;J86;J87;J88;J89;J90;J9

1;J92;J93;J94;J95;J96;J97;J98;J99;J100]';  

%figure(1);  

%title 'parallel machine'; 

%barh(optjobs ,'stack'); 

%xlabel('JOBS') 

%ylabel('MACHINE')  

z1=CMAX; 

z2=TARD;   

z=[z1 z2]'; 

end 




