SOLUTION APPROACHES FOR MULTI OBJECTIVE PARALLEL MACHINE SCHEDULING PROBLEMS PhD Dissertation Aseel N.H. SABTI Eskişehir 2017

SOLUTION APPROACHES FOR MULTI OBJECTIVE PARALLEL MACHINE SCHEDULING PROBLEMS Aseel N.H. SABTI

PhD Dissertation

Statistics Program

Assist. Prof. Dr. Zehra KAMIŞLI ÖZTÜRK

Eskişehir Anadolu University Graduate School of Sciences

December 2017

FINAL APPROVAL FOR THESIS

This thesis titled "Solution Approaches for Multi Objective Parallel Machine Scheduling Problems" has been prepared and submitted by Aseel N.H. SABTI in partial fullfillment of the requirements in "Anadolu University Directive on Graduate Education and Examination" for the Degree of Doctor of Philosophy (PhD) in Statistics Department has been examined and approved on 29/12/2017

Committee Members	<u>Title Name Surname</u>	<u>Signature</u>
Member (Supervisor)	: Assist. Prof. Dr. Zehra KAMIŞLI ÖZTÜRK	
Member	: Prof. Dr. Yeliz MERT KANTAR	
Member	: Assist. Prof. Dr. Nergiz KASIMBEYLİ	
Member	: Prof. Dr. Hasan Kıvanç AKSOY	
Member	: Assist. Prof. Dr. Neslihan IYIT	

Prof.Dr. Ersin YÜCEL Director of Graduate School of Sciences

ABSTRACT

SOLUTION APPROACHES FOR MULTI OBJECTIVE PARALLEL MACHINE SCHEDULING PROBLEMS

Aseel N.H. SABTI

Statistics Program

Anadolu University, Graduate School of Sciences, December, 2017 Supervisor: Assist. Prof. Dr. Zehra KAMIŞLI ÖZTÜRK

This study considers the multi-objective parallel machine scheduling. A novel algorithm with name Sequence Job Minimum Completion Time (SJMCT) is proposed for unrelated parallel machines and non-identical jobs to minimize the two objectives. These objectives are minimization of maximum job completion time and total tardiness when each job is assigned only to one machine at time. The proposed algorithm's performance is compared with some common dispatching rules based on a small size problem (four machines and nine jobs).

Because of the complexity in multi-objective parallel machine scheduling problems, for large size problems, two novel metaheuristic algorithms SJMCT-NSGA-II based on Non-dominated sorting genetic algorithm (NSGA-II) and SJMCT-SPEA-II based on Strength Pareto evolutionary algorithm (SPEA-II) are proposed to obtain Pareto optimal solutions. The simulation results for 272 tests are reported to show the efficiency of these two algorithms. Two test problems of simulation experiences are done to study effects of the different parameters. In the simulations, the effects of generation numbers and job numbers are investigated. The results demonstrate that the proposed SJMCT-SPEA-II has better performed than the SJMCT-NSGA-II. Besides choosing the appropriate performance measures, Spacing and Spread Diversity Metrics are also ensured this result. Finally, the conclusions and some directions for future research are reported.

Keywords: Operations research; Scheduling; Unrelated parallel machine; Multiobjective evolutionary algorithms; SJMCT-NSGA-II and SJMCT-SPEA-II algorithms.

ÖZET ÇOK AMAÇLI PARALEL MAKİNE ÇİZELGELEME PROBLEMLERİ İÇİN ÇÖZÜM YAKLAŞIMLARI Aseel N.H. SABTI

İstatistik Anabilim Dalı

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Aralık, 2017

Danışman: Yard. Doç. Dr. Zehra KAMIŞLI ÖZTÜRK

Bu çalışmada çok amaçlı paralel makine çizelgeleme problemi ele alınmıştır. Bağımsız paralel makineler ve özdeş olmayan iş dizileri için Ardışık İş Enküçük Tamamlanma Zaman (SJMCT) isimli yeni bir algoritma önerilerek iki amaç eniyilenmiştir. Bu amaçlar; her bir işin sadece tek bir zaman ve makineye atandığı durumdaki enbüyük tamamlanma zamanı ve toplam gecikmenin en küçüklenmesidir. Geliştirilen algoritmanın performansı, küçük boyutlu bir problem (dört makine ve dokuz iş) üzerinden çok kullanılan genel sevk etme kuralları ile karşılaştırılmıştır.

Büyük boyutlu problemler için çok amaçlı makine çizelgeleme problemlerindeki karmaşıklıklardan dolayı, Baskın Olmayan Sıralama Genetik Algoritma (NSGA-II) tabanlı ile Güçlü Pareto Evrimsel Algoritma (SPEA-II) tabanlı SJMCT-NSGA-II ve SJMCT-SPEA-II isimli iki yeni melez metasezgisel algoritma Pareto optimal çözümleri elde etmek için önerilmiştir. 272 simülasyon sonucu, geliştirilen algoritmaların etkinliğini göstermektedir. Değişik parametrelerin etkilerini göstermek için iki farklı problem üzerinden simülasyonlar yapılmıştır. Simülasyonlarda iterasyon sayısı ve iş sayısı etkileri araştırılmıştır. Sonuçlar, önerilen SJMCT-SPEA-II algortimasının SJMCT-NSGA-II'den daha iyi performansa sahip olduğunu göstermektedir. Uygun performans ölçülerini seçmeden önce, elde edilen Pareto çözümlerin etkiliğini göstermek için Yayılma ve Mesafe metrikleri de kullanılmıştır. Son olarak, sonuçlar ve gelecek çalışmalar için bazı öneriler de sunulmuştur.

Anahtar sözcükler: Yöneylem araştırması; Çizelgeleme; Özdeş olmayan paralel makine; Çok amaçlı evrimsel algoritmalar; SJMCT-NSGA-II; SJMCT-SPEA-II.

ACKNOWLEDGEMENTS

Allah the Almighty said: "And those who strive for Us – We will surely guide them to Our ways. And indeed, Allah is with the doers of good" [Quran] (29:69)

First of all, I would like to thank Türkiye Bursları (Scholarships program) for the great experience and support throughout the study period.

I would like to thank the Iraqi government and Ministry of Higher Education and Scientific Research for giving me this opportunity that contributes to my future scientific development. Also, I would like to thank the Iraq Culture Office in Ankara and its staff for their help and support.

Big thanks to AL-Irqia University and its staff for the great help they have provided to me.

I would like to thank my adviser Assist. Prof. Dr. Zehra Kamışlı Öztürk for her guidance and suggestions greatly helped me to focus on the topic of the thesis. Without her academic knowledge and dedications this thesis would not reach this point.

I would like to express my appreciation to my research committee members Prof. Dr. Yeliz Mert Kantar and Assist. Prof. Dr. Nergiz Kasimbeyli. Their willingness to provide assistance and guidance during the writing process was essential to the completion of this study.

I would like to thank my research committee members Assoc. Prof. Dr. Hakan Kıvanç Aksoy and Assist. Prof. Dr. Neslihan Iyit for their time and support.

I am deeply grateful to Prof. Dr. Aladdin Shamilov for his support and valuable information through the course of Entropy Optimization Methods and Applications.

I would like to thank Prof. Dr. Memmedağa Memmedli for his support and science guidance through the courses of Artificial Neural Network I and II.

I would also like to thank Prof. Dr. Refail Kasımbeyli for the knowledge he conveyed to me through the courses in Operations Research, Constrained and Non-constrained Optimization Methods.

It is pleasure to me to thank my friends Res. Asst. Nihal Ince and Res. Asst. Gökçen Uysal for giving me the special help whenever I needed.

I thank my family, especially my mother and my father for being such a great support and for pushing me forward my dreams.

STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES AND RULES

I hereby truthfully declare that this thesis is an original work prepared by me; that I have behaved in accordance with the scientific ethical principles and rules throughout the stages of preparation, data collection, analysis and presentation of my work; that I have cited the sources of all the data and information that could be obtained within the scope of this study, and included these sources in the references section; and that this study has been scanned for plagiarism with "scientific plagiarism detection program" used by Anadolu University, and that "it does not have any plagiarism" whatsoever. I also declare that, if a case contrary to my declaration is detected in my work at any time, I hereby express my consent to all the ethical and legal consequences that are involved.

Aseel N.H. SABTI

CONTENTS

Pages
ГІТLE PAGEi
FINAL APPROVAL FOR THESISii
ABSTRACTiii
ÖZETiv
ACKNOWLEDGEMENTSv
STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES AND
RULESvi
CONTENTSvii
LIST OF TABLESix
LIST OF FIGURESxi
LIST OF ABBREVIATIONSxiii
1.INTRODUCTION1
2.SOME DEFINITIONS AND LITERATURE REVIEW
2.1. Background of Machine Scheduling
2.2. Dispatching Rules
2.3. Literature Review
2.4. Relevant Works in Single Machine Scheduling Problems6
2.5. Relevant Works in Single Objective Parallel Machine Scheduling Problems
2.5.1. Exact solution approaches for single objective parallel machine
scheduling problems7
2.5.2. Heuristic and metaheuristic solution approaches for single objective
parallel machine scheduling problems9
2.6. Relevant Works in Multi-Objectives Parallel Machine Scheduling Problems
2.6.1. Solution approaches for multi-objective parallel machine scheduling problems
2.6.2. Evolutionary solution approaches for multi-objective parallel
machine scheduling problems
2.7. Relevant Works in Shop Scheduling Problems
2.7. Relevant works in Shop Scheduning Problems

3. PROBLEM DEFINITION AND MODELING	18
3.1. Problem Definition	18
3.2. Assumptions	19
3.3. Mathematical Model of the Problem	19
3.4. The Comparison of the SJMCT Algorithm with other Algorithms	22
3.4.1. Scheduling with LPT Balin's rule	23
3.4.2. Scheduling with Balin (GAs)	24
3.4.3. Scheduling with longest processing time dispatching rule (LPT).	25
3.4.4. Scheduling with shortest processing time dispatching rule (SPT).	25
3.4.5. Scheduling with sequence job minimum completion time (SJMC	
3.4.6. The computational results and comparisons	
4. NOVEL MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS	
4.1. Multi-objective Optimization	28
4.2. Non-dominated Sorting Genetic Algorithm II (NSGA-II)	29
4.3. SJMCT- Based NSGA-II (SJMCT -NSGA-II Algorithm)	30
4.4. Strength Pareto Evolutionary Algorithm II (SPEA-II)	37
4.5. SJMCT- Based SPEA-II (SJMCT- SPEA-II Algorithm)	37
5. COMPUTATIONAL RESULTS	44
5.1. Experimental Design	44
5.2. Computational Results	45
5.2.1. Computational results for SJMCT-NSGA-II algorithm	46
5.2.2. Simulation results for SJMCT-SPEA-II algorithm	50
5.3. The Effect of Parameters	71
5.4. Performance Measures	71
6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS	81
REFERENCES	83
APPENDICES	
CURRICULUM VITA	

LIST OF TABLES

Table 2. 1. Summary of dispatching rules	6
Table 3. 1. Processing time of the jobs	23
Table 3. 2. Scheduling with LPT Balin rule	24
Table 3. 3. Scheduling with GAs at iteration 720	
Table 3. 4. Scheduling with LPT rule	25

Table 3. 2. Scheduling with LPT Balin rule
Table 3. 3. Scheduling with GAs at iteration 720 25
Table 3. 4. Scheduling with LPT rule 25
Table 3. 5. Scheduling with SPT rule 26
Table 3. 6. Scheduling with sequence job minimum completion time algorithm
(SJMCT)
Table 3. 7. The total and maximum completion time for all comparison algorithms 27
Table 5. 1. Parameters used for each algorithm
Table 5. 2. The values of the best non-dominated front for 5 machines and 60 jobs with
generation 40 and crossover probability 0.6
Table 5. 3. The values of the best non-dominated front for 5 machines and 60 jobs with
generation 40 and crossover probability 0.7
Table 5. 4. The values of the best non-dominated front for 5 machines and 60 jobs with
generation 40 and crossover probability 0.856
Table 5. 5. The values of the best non-dominated front for 5 machines and 60 jobs with
generation 40 and crossover probability 0.9
Table 5. 6. The values of the best non-dominated front for 5 machines and 60 jobs with
generation 100 and crossover probability 0.6
Table 5. 7. The values of the best non-dominated front for 5 machines and 60 jobs with
generation 100 and crossover probability 0.7 59
Table 5. 8. The values of the best non-dominated front for 5 machines and 60 jobs with
generation 100 and crossover probability 0.8
Table 5. 9. The values of the best non-dominated front for 5 machines and 60 jobs with
generation 100 and crossover probability 0.9
Table 5. 10. The values of the best non-dominated front for 5 machines and 60 jobs
with generation 300 and crossover probability 0.6

Table 5. 11. The values of the best non-dominated front for 5 machines and 60 jobs	
with generation 300 and crossover probability 0.7	. 64
Table 5. 12. The values of the best non-dominated front for 5 machines and 60 jobs	
with generation 300 and crossover probability 0.8	. 64
Table 5. 13. The values of the best non-dominated front for 5 machines and 60 jobs	
with generation 300 and crossover probability 0.9	. 65
Table 5. 14. The values of the best non-dominated front for 5 machines and 60 jobs	
with generation numbers 500 and crossover probability 0.6	. 66
Table 5. 15. The values of the best non-dominated front for 5 machines and 60 jobs	
with generation 500 and crossover probability 0.7	. 67
Table 5. 16. The values of the best non-dominated front for 5 machines and 60 jobs	
with generation 500 and crossover probability 0.8	. 68
Table 5. 17. The values of the best non-dominated front for 5 machines and 60 jobs	
with 500 generation and crossover probability 0.9	. 69
Table 5. 18. Minimum and average values for 60 jobs to all algorithm numbers and	
objectives	. 70
Table 5. 19. The mean of diversity metrics for non-dominated front to each algorithm	n
for 10 runs (second test problems)	76
Table 5. 20. The variance of diversity metrics for non-dominated front to each	
algorithm for 10 runs (second test problems)	76
Table 5. 21. Time in second for the best solution to each algorithm for all the second	l
test problems	. 78

LIST OF FIGURES

Pages
Figure 3. 1. The representation of SJMCT algorithm
Figure 3. 2. Representation of chromosome
Figure 3. 3. The scheduling chart of SJMCT algorithm
Figure 4. 1. Non-dominated and dominated solution
Figure 4. 2. Crowding distance calculation
Figure 4. 3. Schematic representation of the NSGA-II procedure
Figure 4. 4. Flow chart of SJMCT-NSGA-II
Figure 4. 5. Illustration of the archive truncation method used in SPEA-II
Figure 4. 6. Flow chart of SJMCT-SPEA-II
Figure 5. 1. Pareto optimal solutions for SJMCT- NSGA-II with generation 40 and different crossover probabilities
Figure 5. 2. Pareto optimal solutions for SJMCT- NSGA-II with generation 100 and different crossover probabilities
Figure 5. 3. Pareto optimal solutions for SJMCT- NSGA-II with generation 300 and
different crossover probabilities
Figure 5. 4. Pareto optimal solutions for SJMCT- NSGA-II with generation 500 and different crossover probabilities
Figure 5. 5. Pareto optimal solutions for SJMCT- SPEA-II with generation 40 and different crossover probabilities
Figure 5. 6. Pareto optimal solutions for SJMCT- SPEA-II with generation 100 and different crossover probabilities
Figure 5. 7. Pareto optimal solutions for SJMCT- SPEA-II with generation 300 and different crossover probabilities
Figure 5. 8. Pareto optimal solutions for SJMCT- SPEA-II with generation 500 and different crossover probabilities
Figure 5. 9. Solutions at generation 40 for 60 jobs (Crossover probability 0.6)
Figure 5. 10. Solutions at generation 40 for 60 jobs (Crossover probability 0.7)
Figure 5. 11. Solutions at generation 40 for 60 jobs (Crossover probability 0.8)

Figure 5. 12. Solutions at generation 40 for 60 jobs (Crossover probability 0.9) 57
Figure 5. 13. Solutions at generation 100 for 60 jobs (Crossover probability 0.6) 58
Figure 5. 14. Solutions at generation 100 for 60 jobs (Crossover probability 0.7) 59
Figure 5. 15. Solutions at generation 100 for 60 jobs (Crossover probability 0.8) 60
Figure 5. 16. Solutions at generation 100 for 60 jobs (Crossover probability 0.9) 61
Figure 5. 17. Solutions at generation 300 for 60 jobs (Crossover probability 0.6) 62
Figure 5. 18. Solutions at generation 300 for 60 jobs (Crossover probability 0.7) 63
Figure 5. 19. Solutions at generation 300 for 60 jobs (Crossover probability 0.8) 64
Figure 5. 20. Solutions at generation 300 for 60 jobs (Crossover probability 0.9) 65
Figure 5. 21. Solutions at generation 500 for 60 jobs (Crossover probability 0.6) 66
Figure 5. 22. Solutions at generation 500 for 60 jobs (Crossover probability 0.7) 67
Figure 5. 23. Solutions at generation 500 for 60 jobs (Crossover probability 0.8) 68
Figure 5. 24. Solutions at generation 500 for 60 jobs (Crossover probability 0.9) 69
Figure 5. 25. PF _{known} / PF _{true} example 72
Figure 5. 26. The Euclidean distance in the solutions
Figure 5. 27. Time in second with all crossover probabilities for 20 jobs
Figure 5. 28. Time in second with all crossover probabilities for 60 jobs
Figure 5. 29. Time in second with all crossover probabilities for 100 jobs

LIST OF ABBREVIATIONS

Abbreviation	Explanation		
SJMCT	: Sequence Job Minimum Completion Time		
NSGA	: Non-Dominated Sorting Genetic Algorithm		
SPEA	: Strength Pareto Evolutionary Algorithm		
SJMCT-NSGA-II	: Sequence Job Minimum Completion Time Based on NSGA-II		
SJMCT-SPEA-II	: Sequence Job Minimum Completion Time Based on SPEA-II		
ERD	: Earliest Release Date		
EDD	: Earliest Due Date		
MS	: Minimum Slack First		
LPT	: Longest Processing Time		
WSPT	: Weighted Shortest Processing Time		
SPT	: Shortest Processing Time		
СР	: Critical Path		
LNS	: Largest Number Of Successors		
SIRO	: Service In Random Order		
SST	: Shortest Setup Time		
LFJ	: Least Flexible Job		
SQNQ	: Shortest Queue At The Next Operation		
TSA	: Tabu Search Algorithm		
MA	: Memetic Algorithm		
APS	: Advanced Planning And Scheduling Systems		
LS	: List Scheduling Rule		
PMS	: Parallel Machine Scheduling		
PMSP-E/T	: Parallel Machine Scheduling Problem With Earless And Tardiness		
	Penalties		
ML	: Maximum Likelihood		
MCTE	: Maximum Completion Time Estimation		
MLPT	: Modified Longest Processing Time		

SA	: Simulated Annealing	
GAs	: Genetic Algorithms	
GA-DR-P	: Genetic Algorithm With Processing – Time Based Dispatching	
	Rule	
PSO	: Particle Swarm Optimization Algorithm	
SSO	: Simplified Swarm Optimization Algorithm	
MOSA	: Multi-Objective Simulated Annealing	
PMBSP	: Bi-Criteria Scheduling Problem For Parallel Machine	
ANN	: Artificial Neural Networks	
MOPSO	: Multi-Objective Particle Swarm Optimization	
CMOPSO	: Conventional Multi-Objective Particle Swarm Optimization	
GLS	: Genetic Local Search	
MOCO	: Multi-Objective Combinatorial Optimization	
TSP	: Traveling Salesman Problem	
PESA	: Pareto Envelope- Based Selection Algorithm	
MPGA	: Multiple Population Genetic Algorithm	
TWT	: Total Weighted Tardiness	
TWC	: Total Weighted Completion Time	
SPGA	: Sub-Population Genetic Algorithm	
FLC-NSGA-II	: Fuzzy Logic Non-Dominated Sorting Genetic Algorithm	
TPM	: Two Phase Method	
VEGA	: Vector Evaluated Genetic Algorithm	
AL	: Approach By Localization	
CGA	: Controlled Genetic Algorithm	
PVNS	: Parallel Variable Neighborhood Algorithm	
FJSP	: Flexible Job Shop Scheduling	
MOEA	: Multi-Objective Evolutionary Algorithm	
MOP	: Multi-Objective Optimization Problem	
ACO	: Ant Colony Optimization	
PF _{Known}	: Pareto Optimal Front (P)	

PF _{True}	: Pareto Obtained Solution (S)
MOO	: Multi-Objective Optimization
ER	: Error Ratio
GD	: Generational Distance
SP	: Spacing Metric
OS	: Overall Pareto Spread
IGD	: Inverted Generational Distance
MPFE	: Maximum Pareto Front Error

1. INTRODUCTION

Scheduling is a field of study concerned with optimal allocation or assignment of limited resources, over time, to a set of tasks or activities (Parker, 1996). Tasks and resources can stand for jobs and machines in a manufacturing system, patients and hospital equipment in health care problem, class and teachers in educational institution, ships and dockyards in a logistic system, programs and computers, or cities and traveling salesmen.

In each of these different systems, the decision makers try to optimize an objective function. For example, minimization of total tardiness, minimization of total course clashes of students and etc.

As Pinedo, (2008) mentioned, scheduling is a decision-making process, plays an important role in most manufacturing and production systems.

In general, the machine scheduling problems are first classified into two classes in terms of the nature of problem. The first class is the deterministic machine problem when the processing constraints and parameters can be ascertained with certainty. The second is the uncertain machine scheduling problem when some processing conditions or parameters cannot be determined in advance.

The deterministic machine scheduling problems are categorized into four types according to shop configuration. These types are classified as: single machine, parallel machines, flow shop, and job shop. In parallel-machine shop, a number of one operation jobs can be processed on any of machines. In flow shop, machines are arranged in a serial fashion, and each job has to pass through each machine. Job shop is a configuration in which each job has different processing routes.

The uncertain machine scheduling problems are grouped into two types in terms of the description method of uncertainty. The first type is fuzzy machine scheduling problem in which the processing conditions and parameters are modeled using fuzzy number. The second is stochastic machine scheduling problem in which stochastic variables are used to indicate the processing constraints and parameters.

Today's parallel machine scheduling has become one of the most attractive subjects because of the competition in production environments. Parallel machine scheduling is one of the machine scheduling classes. In addition, the unrelated parallel machine scheduling which means there is no relationship among these machines (Eroglu, Ozmutlu and Ozmutlu, 2014). Therefore, this study deals with this type of scheduling problem and the motivation behind this thesis is to solve large size of unrelated parallel machine scheduling with non-identical jobs to optimize two objectives represented by minimizing the maximum completion time and total tardiness.

The organization of this thesis is as follows: Chapter 2 presents a brief overview of the literature related with single machine scheduling, single and multi-objective parallel machine scheduling. Also, flow shop and job shop scheduling problems.

In Chapter 3, a new mathematical model is proposed for unrelated parallel machines with non-identical jobs when jobs have different processing times on each machine. Sequence Job Minimum Completion Time (SJMCT) algorithm is used to solve this model. The minimum random processing time is used to assignment problems. The aim is to minimize two objectives: the maximum completion time and total tardiness. The comparison between SJMCT and some dispatching rules is represented.

In Chapter 4, the most challenge of this study is proposed two novel heuristic algorithms Sequence Job Minimum Completion Time-based NSGA-II (SJMCT-NSGA-II) and Sequence Job Minimum Completion Time-based SPEA-II (SJMCT-SPEA-II). These algorithms are able to solve large and more complex multi-objective parallel machine scheduling problems.

In Chapter 5, firstly, 32 simulation test problems are made with 60 jobs and with different generation numbers (40, 100, 300 and 500). Secondly, 240 simulation test problems are reported with different number of jobs (20, 60 and 100) where the generation number is 500. All of these tests with different crossover and mutation probabilities and with the same size of population are used to compare between these two algorithms. In addition, the spacing and spread diversity metrics are used to find the best algorithms.

In Chapter 6, the conclusions, the contribution of this thesis and some suggesting future research directions are explained.

2. SOME DEFINITIONS AND LITERATURE REVIEW

2.1. Background of Machine Scheduling

In single machine scheduling models, there is only one machine and the routes consist of only one operation performed on this machine (Akyol, 2006). On the other hand, in parallel machine scheduling there are N jobs and M machines and each job can be processed on any one of available machines (Allahverdi, Gupta and Aldowaisan, 1999). Also, there are three types of parallel machines (Ma, Chu and Zuo, 2010) and (Strusevich and Rustogi, 2017):

- **Identical machines:** If each processing time of a job is independent of the machine when performing a job.
- Uniform machines: The machines operated at different speeds.
- Unrelated parallel machines: The processing time of a job depends on the machine assignment.

The basic parameters in machine scheduling are given bellow (Pinado, 2005):

Processing time (P_{ij}) : It is the required time of job *j* to complete its processing on machine *i*.

Release date (r_i) : It is the time at which job $j \in N$ becomes available for processing.

Deadline: It is the time by which a job $j \in N$ must be completed; unlike the due date, a deadline is a hard constraint.

Due date (d_i): It is the time at which job $j \in N$ is expected to complete.

For any scheduling problem, the following primary criteria are used as a function.

Completion time (C_i): It is the popular quality measure, represents the times by which jobs are completed on machine *i*.

Lateness (*L_i*): Lateness is expresses the deviation of the completion time of a job *j* from a due date, it can be positive, negative or zero $L_j = C_j \cdot d_j$.

Tardiness (T_i): Tardiness is the non-negative quantity that can be calculated to show how much time a job is completed after its due date $T_j = max\{0, C_j - d_j\} = max\{L_j, 0\}$.

According to Lawler et al., (1993) and Xing and Zhang, (2000) the three field classification of machine scheduling are $\alpha/\beta/\gamma$, where:

- α describes machine environment, $\alpha \in \{P, Q, R\}$
- $\alpha = P$: Identical parallel machines, $p_{ij} = p_j$ for all M_i ,

 $\alpha = Q$: Uniform parallel machines, $p_{ij} = p_j/r_j$ for a given speed r_i of M_i ,

 $\alpha = R$: Unrelated parallel machines, $p_{ij} = p_j/r_{ij}$ for given job-dependent speeds r_{ij} of M_i .

• β describes job characteristics, $\beta \in \{o, pmtn\}$

 $\beta = pmtn$: Preemption is allowed; the processing of any operation may be interrupted and resumed at a later time.

 $\beta = o$: No preemption is allowed.

• γ describes optimality criteria. In general $\gamma \in \{C_{max}, L_{max}, \sum C_j, \sum T_j, \sum wC_j\}$.

2.2. Dispatching Rules

The term dispatching rule is used to determine the next job waiting in front of a machine when the machine becomes available (Pinedo, 2005). The main advantage of dispatching rules is that, they are easy to understand, easy to apply and require relatively little computer time. Their primary disadvantage is that, they can't guarantee an optimal solution (Akyol, 2006). Dispatching rules can be classified in different ways. Static rules are not time dependent and they are just a function of the job and/or machine data. Dynamic rules are time dependent. Another classification of dispatching rules is according to the information they are based upon. There are many basic dispatching rules but a sample of these rules is given as bellow (Pinedo, 2005) and (Massabò, Paletta and Ruiz-Torres, 2016).

- *The Earliest Release Date first (ERD) rule*: This rule tends to minimize the diversity in the waiting times of the jobs at a machine. The job which has the earliest release date is selected next to be processed.
- The *Earliest Due Date first (EDD) rule*: This rule refers to minimize the maximum lateness among the jobs waiting for processing. The job which has the earliest due date is selected next to be processed.
- The *Minimum Slack first (MS) rule*: When a machine is freed the minimum slack job will schedule next. Also, the remaining slack of each job at that time *t* is defined as $\max(d_j p_j t, 0)$.
- The *Longest Processing Time first (LPT) rule*: The LPT rule sorts jobs in decreasing order of processing times and iteratively assigns each job to the machine which would complete in the shortest processing time.

- The Weighted Shortest Processing Time first (WSPT) rule: This rule schedules the job with highest ratio of weight over processing time. Jobs are ordered in decreasing order of w_j/p_j. If all the weights are equal, the WSPT rule reduces to the Shortest Processing Time first (SPT) rule.
- The *Critical Path (CP) rule*: This rule is related with jobs subject to precedence constraints. The job which has the longest string of processing times in the precedence constraints graph (Prec) is selected next to be processed.
- The *Largest Number of Successors (LNS) rule*: This rule also is used when the jobs are subject to precedence constraints. The job which has the largest number of jobs following it is selected next to be processed.
- The *Service in Random Order (SIRO) rule*: In this rule, the next job is selected at random from those waiting for processing.
- The *Shortest Setup Time first (SST) rule*: In this rule, the job with the shortest setup time is firstly selected for processing.
- The *Least Flexible Job first (LFJ) rule*: This priority rule is used with the nonidentical parallel machine and the jobs are subject to machine eligibility constraints. Job *j* can only be processed on a specific subset of the *m* machines, say *M_j*. It selects the job which is processed on the smallest number of remaining machines i.e., the job with the fewest processing alternatives.
- The *Shortest Queue at the Next Operation (SQNO) rule*: In job shops, this rule selects the job with the shortest queue at the next machine on its route for processing. At the next machine the length of the queue can be measured in different ways. It may be simply the number of jobs waiting in queue or it may be the total amount of work waiting in queue.

Pinedo, (2005) describes the basic dispatching rules mentioned above as given in Table 2.1.

	RULE	DATA	OBJECTIVES
Rules Dependent on Release Dates and Due Dates	ERD EDD MS	$egin{array}{c} r_j \ d_j \ d_j \end{array}$	Variance in Throughput Times Maximum Lateness Maximum Lateness
Rules Dependent on Processing Times	LPT SPT WSPT CP LNS	p_j p_j p_j, w_j $p_j, prec$ $p_j, prec$	Load Balancing Over Parallel Machines Sum of Completion Times, WIP Weighted Sum of Completion Times, WIP Makespan Makespan
Miscellaneous	SIRO STT LFJ SQNQ	 S _{jk} M _j	Ease of Implementation Makespan and Throughput Makespan and Throughput Machine Idleness

Table 2. 1. Summary of dispatching rules (Pinedo, 2005)

2.3. Literature Review

In this section, many relevant works about single machine scheduling problems, single objective parallel machine solved by exact and heuristic solution approaches, multi-objective parallel machine scheduling problems solved by different and evolutionary solution approaches are indicated. Other relevant works in shop scheduling problems are also viewed.

2.4. Relevant Works in Single Machine Scheduling Problems

Dyer and Wolsey (1990) considered the formulation of the single machine sequencing problem with release dates as a mixed integer programming problem to minimize the weighted sum of start (or completion) times for the *n*-jobs *1*-machine problem. They showed that; a first hierarchy of relaxations (obtained by combining enumeration of initial sequences with Smith's rule) and the second hierarchy of relaxations (obtained by studying various relaxations and alternative formulations) can be formulated as a linear programming problem.

Laguna, Barnes and Glover, (1991) used three local searches strategies within tabu search algorithm (TSA) to minimize the sum of the set up costs and linear delay penalties. Firstly, they used TS approach of making a succession of pairwise job exchange or swaps to move from one trail solution to another. Next, they used the insert moves to define the local neighborhood of each trail solution. Finally, a hybrid TSA employed to swap and insert moves. The experiment results for benchmark problem of up to 60 jobs illustrate that, there is an advantage in using more than one strategy to move from one trail solution to another with in a TSA method.

Crauwels, Potts and Van Wassenhove, (1998) presented several local search heuristics to minimize total weighted tardiness. A new binary representation and the additional diversifying element in the tabu search methods are introduced to represent solutions. The extensive computational tests ensure that, binary encoding scheme produces very robust results for the total weighted tardiness problem.

França, Mendes and Moscato, (2001) proposed a new Memetic Algorithm (MA) with due dates and sequence dependent setup time to minimize total tardiness. The Genetic algorithms GAs and MA are compared with three other heuristics. Several neighborhood reduction schemes are improved starting with a set of random generated parameters. The computational results using a non-structured population and less elaborated neighborhoods led to a considerable loss of performance especially for large instances.

2.5. Relevant Works in Single Objective Parallel Machine Scheduling Problems

2.5.1. Exact solution approaches for single objective parallel machine scheduling problems

The most associated studies in parallel machine scheduling for single objective can be summarized as follows:

Balakrishnan, Kanet and Sridharan, (1999) considered the problem of scheduling n jobs on m parallel machines that operating at different speeds (known as uniform parallel machines), to minimize the sum of earliness and tardiness costs. They presented a mixed integer mathematical model to solve small sized problems (10 jobs and 5 machines).

Uma, Wein and Williamson, (2006) investigated from a theoretical perspective, the relationship between combinatorial relaxation and several linear programming relaxation -based lower bounds for three scheduling problems to minimize the average weighted completion time of the jobs scheduled. As a result, they obtained the first worst-case analysis of the quality of the lower bounds delivered by these combinatorial relaxations.

Senthiil, Selladurai and Rajesh, (2007) proposed a new algorithm, the extension of the traveling salesman problem in a parallel machine environment to minimize the makespan. The proposed algorithm extends the optimization of a single machine problem to a parallel machine problem using the traveling salesman problem for scheduling. Moreover, they used the ant colonies optimization algorithm to find a solution for this new proposed problem. The simulation results show that, the algorithm is able to optimize the different scheduling problems.

Lu, Zhang and Yuan, (2008) considered the unbounded parallel batch machine scheduling with release dates and rejection. A job is either rejected with a certain penalty having to be paid, or accepted and processed in batches. The aim is to minimize the sum of the makespan of the accepted jobs and the total rejection penalty of the rejected jobs. They showed that, the problem is binary NP-hard and it can be solved in polynomial time when the jobs have the same rejection penalty.

Lin and Liao, (2008) proposed an optimal algorithm for solving the uniform parallel machine problem to minimize the makespan. Two important theorems are developed for the problem. The first theorem provides an improved lower bound as the starting point for the search, and the second theorem further accelerates the search speed in the algorithm.

Unlu and Mason, (2010) represented different Mixed Integer Programming formulations based on different types of decision variables for non-preemptive parallel machine scheduling problems. Different performance measures such as, total weighted completion time, makespan, maximum lateness, total weighted tardiness and total number of tardy jobs are used to evaluate the formulation efficiency.

Ruiz and Andrés-Romano, (2011) considered a novel complex scheduling problem with unrelated parallel machine problem and job sequence dependent setup times. A combination of total assigned resources and total completion time is used as a criterion. The good performance of the mixed integer programming model with large number of constraints and variables and other heuristics algorithm are obtained.

Zhang and Luo, (2013) studied the rejection and a fixed non-availability interval on two identical parallel machines when the processing time of a job is a simple linear increasing function of its starting time. The objective is to minimize the makespan of the accepted jobs plus the total penalty of the rejected jobs. In addition, for two identical machines a "fully polynomial-time approximation scheme" presented to show that the problem is NP-hard in the ordinary sense only.

Öztürk and Ornek, (2014) improved a mixed integer programming formulations for advanced planning and scheduling systems (APS). The objective function includes the cost of idle times of the machines and penalties on tardiness and earliness. They developed a basic model with sequence dependent setups time and transfer times between machines. They also showed that the presented model can be used to provide delivery times for customer orders in case due dates are not specified.

2.5.2. Heuristic and metaheuristic solution approaches for single objective parallel machine scheduling problems

Frenk and Rinnooy Kan, (1987) studied the behavior of list scheduling rules (LS) to minimize makespan for parallel machines of different speed. The jobs are assigned successively to the first available machine in the order. The processing requirements of the jobs are independent, identically non-negative random variable. They obtained strong asymptotic optimality results for the LPT (longest processing time) rule, when the jobs are assigned to the machines in order of non- increasing processing requirements.

Cheng and Gen, (1997) used Memetic Algorithm (hybrid genetic algorithm) to minimize the maximum weighted absolute lateness. The computational experiments demonstrate that the hybrid genetic algorithm outperforms the genetic algorithms and the conventional heuristics.

Sivrikaya-Şerifoğlu and Ulusoy, (1999) considered the parallel machine problem scheduling with earliness and tardiness penalties (PMSP-E/T). The problem consisted of scheduling a set of independent jobs with sequence-dependent setup times to minimize the sum of the weighted earliness and tardiness values. Also, they employed two

Genetic Algorithms (GAs) approaches. Firstly, they used a crossover operator to solve multi-component combinatorial optimization problems. Secondly, they didn't use a crossover operator. The computational results showed that, GAs with crossover operator is more attractive in large sized and more difficult problems.

Xing and Zhang, (2000) studied the parallel machine scheduling (PMS) problem with a hypothesis: a job cannot be processed on two machines simultaneously if preemption is allowed, and under a hypothesis: any part of a job can be processed on two different machines at the same time, they called it PMS with splitting jobs. They presented some simple cases which are polynomial solvable. Furthermore, a heuristic maximum likelihood (ML) used to convert the original problem to a new problem by using the maximum completion time estimation (MCTE) and its worst-case analysis were shown for *P/split /C_{max}* with independent job setup times. The objective was to minimize the total cost.

Weng, Lu and Ren, (2001) proposed seven heuristic algorithms tested by simulation to scheduling a set of independent jobs on unrelated parallel machines with job sequence dependent setup times to minimize the total weighted completion time.

Gupta and Ho, (2001) developed an optimization algorithm and polynomially bounded heuristic solution procedures for the scheduling jobs on two identical parallel machines to hierarchically minimize the makespan subject to the optimality of the total flow time.

Lin and Liao, (2008) developed the algorithm which has an exponential time complexity in addition to the optimal algorithm mentioned before. They also examined the effectiveness of the popular LPT heuristic for solving the uniform parallel machine problem with the objective of minimizing the makespan.

Koulamas and Kyparisis, (2009) proposed a modified longest processing time (MLPT) heuristic algorithm for the two uniform machine makespan minimization problems. They showed that the performance of the LPT heuristic for the $(Q_2//C_{max})$ problem can be improved by sequencing the longest three jobs optimally. The results demonstrate the applicability of this approach (already implemented for identical parallel machine scheduling problems) to a uniform parallel machine environment.

Yeh et al., (2014) proposed two meta-heuristics, the Simulated Annealing (SA) and the Genetic Algorithm (GA) for parallel machine scheduling with fuzzy processing

times and learning effects with aim to minimize the makespan. The results show that, SA is better than GA for this problem.

Ou, Zhong and Wang, (2015) found new properties and improved an *O* (*n* log $n + n/\varepsilon$) heuristic for parallel machine scheduling with rejection. When the jobs are accepted and processed or rejected and paid a rejection penalty to minimize the completion time of the last accepted job plus the total penalty of all rejected jobs.

Joo and Kim, (2015) proposed hybrid Genetic Algorithms with three dispatching rules for unrelated parallel machine scheduling to minimize the total completion time. MIP Mixed Integer Programming model derived to find the optimal solution. The results show that, GA using chromosomes with processing-time-based dispatching rule (GA_DR_P) could offer a better solution in both effectiveness and efficiency.

Yeh, Chuang and Lee, (2015) proposed a scheduling problem on uniform parallel machines where the objective is to minimize the makespan. Three algorithms, Genetic Algorithm (GA), Particle Swarm Optimization Algorithm (PSO), and Simplified Swarm Optimization Algorithm (SSO) are proposed to solve the problem. In results, SSO has better solutions in a small number of jobs, and the GA approach has better solutions for large job-sized problems.

Massabò, Paletta and Ruiz-Torres, (2016) developed a posterior worst-case performance ratio of the LPT heuristic for scheduling independent jobs on two uniform parallel machines to minimize the makespan. The posterior worst-case performance ratio depends on the index of the latest job inserted in the machine where the makespan takes place. They show that the posterior worst-case performance ratio is tight.

Similar to the previous work, other review of the scheduling problems with multiple objectives is given in the next subsection.

2.6. Relevant Works in Multi-Objectives Parallel Machine Scheduling Problems

2.6.1. Solution approaches for multi-objective parallel machine scheduling problems

Suresh and Chaudhuri, (1996) proposed an algorithm based on Tabu Search to minimize the makespan and maximum tardiness when each job has required a single stage of processing for unrelated parallel machine scheduling. Also, they compared their solutions with other heuristic algorithms. The extensive experiments show that, the proposed algorithm outperforms in the quality of solution and execution time.

Loukil, Teghem and Tuyttens, (2005) considered a Multi-objective Simulated Annealing (MOSA) to find the efficient schedules for a large set of scheduling models. They analyzed the solution correspond to one machine, parallel machines and permutation flow shops. Thereafter, they designed a Multi-objective Tabu Search Algorithm (MOTSA) and tested it numerically to compare with MOSA algorithm.

Tavakkoli-Moghaddam, Taheri and Bazzazi, (2008) proposed a new model to minimize the number of tardy jobs and total completion time for unrelated parallel machines scheduling problem with different machine speeds. They used a two-level mixed-integer programming and goal programming approach to solve the scheduling problem with precedence constraints and non-independent jobs. The good performance of proposed model is obtained in small and medium-sized problems. They solved the problem with (6, 8 and 10) jobs, (2, 3 and 4) machines and (3, 4 and 5) number of precedence constraints.

Mazdeh et al., (2010) studied the bi-criteria scheduling problem (PMBSP) for parallel machines with machine effects and job deterioration to minimize total tardiness and machine deteriorating cost. They proposed the LP-metric method and a metaheuristic algorithm based on Tabu Search. Numerical examples used to assess the effectiveness and efficiency of the model.

Cheng et al., (2012) considered the parallel batch processing machines with nonidentical job sizes to minimize makespan and total completion time. They used a mixed integer programming method to find the optimal solution. Thereafter, they proposed a polynomial time algorithm and the worst case ratios to minimize the objective values. The reported results indicate to the efficiency of the algorithm.

Muralidhar and Alwarsamy, (2013) considered parallel machines scheduling problem to minimize the combined objective function of the makespan, total tardiness and total earliness. Artificial Neural Networks (ANN) was applied and compared with heuristic algorithms. The results show that, the adapted procedure is simpler and it can be used for scheduling large number of jobs without training the network again.

Torabi et al., (2013) considered a fuzzy multi-objective programming model for solving an unrelated parallel machine scheduling problem. A Multi-objective Particle Swarm Optimization (MOPSO) algorithm was proposed to find Pareto frontier. The aim is minimizing total weighted flow time, total weighted tardiness and total machine load variation. They compared the proposed algorithm with conventional multi-objective particle swarm optimization algorithm. Results of test problems observed that the proposed MOPSO is better performed than CMOPSO based on the linear statistical model for three hypotheses tests. Also, the ANOVA results have been summarized to study the effect of i^{th} method, j^{th} objective space and the effect of interaction between i^{th} method and j^{th} objective space.

Yang, (2013) presented unrelated parallel machine scheduling problems with deterioration effects and deteriorating multi-maintenance activities. Two models of scheduling have been examined: the job and position dependent on deterioration model and the time dependent deterioration model. The aim is minimizing total completion time to find jointly the optimal maintenance frequencies, the optimal maintenance positions and the optimal job sequences. A polynomial time solution was applied for variant and some special cases.

Lin and Lin, (2015) proposed a bicriteria heuristic and a Tabu Search Algorithm. The objective is to minimize the makespan and total weighted tardiness for unrelated parallel machine scheduling problems with release dates. The results indicate that, the proposed TSA is outperforms other heuristic algorithms.

2.6.2. Evolutionary solution approaches for multi-objective parallel machine scheduling problems

Zitzler, Laumanns and Thiele, (2001) improved Strength Pareto Evolutionary Algorithm (SPEA-II) for finding or approximating the Pareto-optimal set for multiobjective optimization problems and compare SPEA-II with SPEA and two other modern elitist methods, Pareto envelope- based selection algorithm (PESA) and NSGA-II, on different test problems.

Jaszkiewicz, (2002) proposed a novel Genetic Local Search algorithm (GLS) algorithm for multi-objective combinatorial optimization problems (MOCO) to find an efficient solution in both combinatorial optimization and non-convex continuous optimization problems. The results show that, the proposed algorithm has better performance than multi-objective methods based on GLS or based on traveling salesman problem TSP.

Cochran, Horng and Fowler, (2003) proposed a two-stage multiple population genetic algorithms (MPGA). The goal is to minimize makespan and total weighted tardiness (TWT). They also compared MPGA with benchmark method and multiobjective genetic algorithm MOGA. Moreover, The MPGA is extended to scheduling problems with three objectives: makespan, TWT, and total weighted completion times TWC. The experiment results in most of the test problems show that, MPGA has better performs than MOGA.

Chang, Chen and Hsieh, (2006) proposed a modified sub-population genetic algorithm SPGA and an adaptive SPGA for parallel machine scheduling problem to minimize total tardiness time and makespan. They show that, the results obtained by adaptive SPGA and modified SPGA are more efficient than other multi-objective optimization genetic algorithms NSGA-II and SPEA-II for large size problems.

Balasubramanian et al., (2009) proposed iterative SPT–LPT–SPT heuristic and a bicriteria genetic algorithm for interfering job sets. Where, the makespan minimized for one of the sets and the total completion time minimized for the other. Integer programming formulation solution was compared with the heurestic and GA algorithms to show the effeciency of these algorithms. Results show that, the heuristic and the genetic algorithm provide high solution quality and are computationally efficient.

Li et al., (2010) considered an identical parallel machines scheduling problem with release dates, due dates, and sequence-dependent setup times to minimize the makespan and the total tardiness. A new mathematical model and two metaheuristics NSGA-II (Non-dominated Sorting Genetic Algorithm–II) and SPEA-II (Strength Pareto Evolutionary Algorithm-II) were explained. A full enumeration method was applied to find the absolute Pareto optimal solutions. The results show that, the full enumeration method cannot solve the problems with more than 8 jobs.

Mirabedini and Mina, (2012) proposed multi-objective model including the problem of preventive maintenance and production scheduling by one objective. The weighted-sum objective function is considered with five parts; minimizing maintenance cost, makespan, total weighted completion time of jobs, total weighted tardiness, and maximizing machine availability. Multi-objective genetic algorithms solved the model and found a local optimum solution.

Li et al., (2012) presented an identical parallel machine scheduling problem with release dates, due dates and sequence dependent setup times to minimize the makespan and the total tardiness. They proposed a new mathematical model and developed two metahurestics as non-dominated sorting genetic algorithm (NSGA-II) and a fuzzy logic guided NSGA-II (FLC-NSGA-II). Also, two phase method TPM was used as an exact method to solve the problem. The FLC-NSGA-II was compared with the TPM method for the small size problems. Results indicate to the ability of FLC-NSGA-II to find the absolute optimal solutions and the TPM method can solve the problems with maximum 10 jobs.

Bandyopadhyay and Bhattacharya, (2013) represented a multi-objective parallel machine scheduling problem with minimization of three objectives: total cost due to tardiness, deterioration cost for the machines and makespan. They solved the mathematical model by multi-objective evolutionary algorithms modified NSGA-II, NSGA-II and SPEA-II. The processing, setup and deterioration costs were generated randomly to follow uniform distribution. Simulation experiments were performed to compare these algorithms. The comparison shows that, the modified NSGA-II has better performance than the NSGA-II and SPEA-II.

Wang and Liu, (2015) considered a multi-objective parallel machine scheduling problem with flexible preventive maintenance activities and with two kinds of resources (machines and moulds). The aim is to minimize the makespan for the production, the unavailability of the machine system and the unavailability of the mould system. They proposed a multi-objective integrated optimization method and NSGA-II adaption. The computationally results show that, the integrated optimization method of production scheduling and preventive maintenance outperforms the method with periodic preventive maintenance for this problem.

2.7. Relevant Works in Shop Scheduling Problems

Murata, Ishibuchi and Tanaka, (1996) proposed a multi-objective genetic algorithm for flow shop scheduling. They used crossover operation based on a weighted sum of multiple objective functions with variable weighted. The two objectives were determined as minimizing the makespan and total tardiness and three objectives were determined as minimizing the makespan, total tardiness and total flow time are examined. The simulation experience represents the ability of multi-objective genetic algorithm to find Pareto optimal solutions, and it has better performance than the VEGA (Vector Evaluated Genetic Algorithm) and the single-objective genetic algorithm. Ishibuchi and Murata, (1998) proposed a multi-objective genetic local search algorithm on flow shop scheduling problems. A local search procedure was applied to each new solution generated by the genetic operations. They used a multi-objective weighted sum fitness function. The highest quality performance of the algorithm shows the ability of proposed algorithm to handle the non-convex feasible region in the objective space.

Bagchi, (2001) obtained Pareto optimal solutions by using metaheuristic methods. GAs and NSGA are used for sequencing jobs in a flow shop. Multi-objective production scheduling problems such as three-objective flow shops, three-objective job shops and two-objective open shop problems are explained. They demonstrated a statistical comparison between the NSGA and augmented NSGA.

Kacem, Hammadi and Borne, (2002) presented a novel approach by localization (AL) and controlled evolutionary approach CGA (generated by the first approach) to solve assignment and job shop scheduling problem. The considered objectives are minimization of the overall completion time (makespan) and the total workload of the machines.

Rajendran and Ziegler, (2003) proposed two heuristics in a static flow shop with sequence dependent setup time's jobs to minimize the sum of weighted flow time and weighted tardiness of jobs. A random search procedure and a greedy local search are used as benchmark problems to evaluate the proposed heuristic. Computationally, the proposed algorithm has better performance than benchmark procedures in both speed and effective.

Arroyo and Armentano, (2005) proposed a genetic local search algorithm for the flow shop scheduling problem. The algorithm was applied to the flow shop scheduling problem for the following two pairs of objectives: (i) makespan and maximum tardiness; (ii) makespan and total tardiness. The results show the efficiency of the proposed algorithm to find the Pareto optimal set.

Jungwattanakit et al., (2008) formulated a mathematical model to minimize the makespan and the tardy jobs for the flexible flow shop problem with unrelated parallel machines and considering setup times. Firstly, they studied several dispatching rules (constructive algorithms). Secondly, they studied GA-based algorithms as improvement algorithm. They compared the performance of the heuristics algorithms on a set of test

problems up to 50 jobs and 20 stages. They found that, for population sizes, crossover types, and mutation types, there were statistically significant differences.

Yazdani, Amiri and Zandieh, (2010) proposed a PVNS (parallel variable neighborhood algorithm) that solves the FJSP (flexible job shop scheduling) to minimize makespan time. The computational results show that the proposed algorithm is a viable and effective approach for the FJSP.

Moslehi and Mahnam, (2011) proposed a new approach to solve the multiobjective flexible jobs hop scheduling problem based on a hybridization of the Particle Swarm and Local Search algorithms with different release time. They compared the proposed algorithm with other algorithms (weighted summation of objectives and Pareto approaches) to show the performance of presented algorithm.

3. PROBLEM DEFINITION AND MODELING

In this chapter, firstly a novel mixed integer multi-objective mathematical model for parallel machine scheduling problem is introduced. Next, the assumptions for the problem are presented. Finally, the comparison with other dispatching rules and the solutions for the considered problem are provided.

3.1. Problem Definition

The problem considered in this chapter regards with scheduling of unrelated parallel machine when job's processing time is dependent on the completion time of assigned machine. It is worth to mention that, the idea of the Sequence Job Minimum Completion Time (SJMCT) algorithm is associated with a common heuristic used in parallel machine scheduling the longest processing time rule (LPT) in some characteristic features.

In this study, processing times are known and deterministic. Assume that, there is limited number of jobs (2m+1) or more and each job has a single operation that can be performed on one machine only. Therefore, the problem will become an NP hard problem (Frenk and Rinnooy Kan, 1987).

Several researchers such as Tavakkoli-Moghaddam, Taheri and Bazzazi, (2008), Li et al., (2010), Li et al., (2012) and Bandyopadhyay and Bhattacharya, (2013) formulated a mathematical programming model for parallel machine scheduling problems with different assumptions. Also, Kamisli Ozturk and Sabti A.N., (2017) considered a mixed integer programming model for unrelated parallel machine scheduling problems.

In this study, the proposed algorithm Sequence Job Minimum Completion Time (SJMCT) deals with scheduling non-identical jobs $J_1, J_2, ..., J_n$ on unrelated parallel machine $M_1, M_2, ..., M_m$. Every job *j* is considered with a processing time p_{ij} and a due date d_{ij} . Let $p_{ij} = p_j$, $\forall i = j$ be the processing time to the first *m* scheduled job. The SJMCT algorithm is applied at two levels. In the first level, the new job is assigned to machine *i* which has the minimum completion time between the first *m* machines. In the second level, each job will be assigned iteratively to the machine which has the shortest completion time. The algorithm repeats the same operator to schedule all jobs to

minimize the maximum completion time and the total tardiness as given in equations (3.1) and (3.2).

$$Min C_{max} = \max C_j, \forall j = 1, ..., n$$
(3.1)

Where, C_j is the completion time of job *j*.

$$Min\sum_{j=1}^{n}T_{j} \forall j = 1, \dots, n$$
(3.2)

Where, T_j is the tardiness of job *j* and $T_j = max (0, Cj - d_j)$.

Furthermore, if the completion time C_j of job j is greater than its due date d_j , then this job is considered as tardy. Otherwise, the tardiness T_j of job j is equal to 0.

3.2. Assumptions

Before formulating the problem, the following assumptions are considered.

- 1. The machines are unrelated (the processing time of a job depends on the machine assignment).
- 2. The jobs are non- identical (jobs have different processing times on each machine).
- 3. Each machine can process only one job at a time.
- 4. Each machine is available at time zero.
- 5. Preemption and machine breakdowns are not allowed.
- 6. No setup time is required.

3.3. Mathematical Model of the Problem

As mentioned in Section 3.1, the two objectives are minimized simultaneously. The proposed multi-objective mathematical model for parallel machine scheduling model is proposed as follows, where;

Indices and sets:

n: number of jobs.

m: number of machines.

j, *k* : index for jobs, j = 1, ..., n, $k=m+1 \in n$, $\{j:j=1,2,...,k, m+2, ..., n\}$.

i: index for machine, i = 1, ..., m.

Parameters:

 S_{ij} : starting time of job *j* at machine *i*. i=j=1, ..., m, which equal to zero.

 d_{ij} : due date of job j at machine i. i=1,..., m, j = 1,..., n.

 p_{ij} : processing time of job *j* on machine *i*. *i*=1, ..., m and *j* = 1,..., n.

M: a great constant.

Decision variables:

 C_{ij} : completion time of job *j* at machine *i*. i = j = 1, ..., m. C_{ij}^* : minimum completion time of job *j* at machine *i*, i = j = 1, ..., m. C_{ik} : completion time of job *k* at machine *i*. i=1, ..., m, k=m+1. C_{ik}^* : minimum completion time of job *k* at machine *i*. i=1, ..., m, k = m+1, ..., n. $C_{i(k+1)}$: completion time of job k+1 at machine *i*. i=1, ..., m, k=m+1, ..., n. T_{ij} : max(0, C_{ij} - d_{ij}) the real tardiness of job *j*, i=1, ..., m, j = 1, ..., n. C_{max} : maximum completion time.

$$x_{ij} = \begin{cases} 1, & if \text{ job } j \text{ is assigned to machine } i \\ 0, & \text{otherwise} \end{cases}$$
$$x_{ik} = \begin{cases} 1, & if \text{ job } k \text{ is assigned to machine } i \\ 0, & \text{otherwise} \end{cases}$$

Formulated problem:

Minimize
$$\left(C_{max}, \sum_{j=1}^{n} \sum_{i=1}^{m} T_{ij}\right)$$
 (3.3)

Subject to

$$x_{ij} = 1$$
 $\forall i = j = 1, ..., m$ (3.4)

$$S_{ij} = 0$$
 $\exists i = j = 1, ..., m$ (3.5)

$$C_{ij} \ge S_{ij} + P_{ij} x_{ij}$$
 $\exists i = j = 1, ..., m$ (3.6)

Level-I:

$$C_{ij}^* = min\{C_{ij}\}$$
 $\forall i, i = 1, ..., m$ (3.7)

$$C_{ij} + M(1 - x_{ik}) \le C_{ij}^* \quad \forall (i, j), \ i, j = 1, ..., m, \ k = m + 1$$
 (3.8)

$$C_{ik} = C_{ij} + P_{ik} x_{ik}$$
 $\forall i = j = 1, ..., m, k = m + 1$ (3.9)

Level-II:

$$C_{ik}^* = \min\{C_{ik}\} \qquad \forall i = 1, ..., m, \forall k = m + 1, ..., n \qquad (3.10)$$

$$C_{ik} + M(1 - x_{i(k+1)}) \le C_{ik}^* \quad \forall i = 1, ..., m, \forall k = m+1$$
 (3.11)

$$C_{i(k+1)} = C_{ik} + P_{i(k+1)} x_{i(k+1)} \forall i = 1, \dots, m, \forall k = m+1, \dots, n(3.12)$$

$$\sum_{i=1}^{m} x_{ik} = 1$$
 $\forall k = m + 1, ..., n$ (3.13)

$$C_{max} = max\{C_{in}\} \qquad \forall i = j = 1, \dots, m, \ \forall k = m + 1, \dots, n(3.14)$$

$$T_{ij} \ge C_{ij} - d_{ij} \qquad \forall i = 1, \dots, m, \forall j = 1, \dots, n$$
(3.15)

$$T_{ij} \ge 0 \qquad \qquad \forall i = 1, \dots, m, \forall j = 1, \dots, n \qquad (3.16)$$

$$x_{ik} = 0 \text{ or } 1$$
 $\forall i = 1, ..., m, \forall k = m + 1, ..., n$ (3.17)

Equation (3.3) represents the objective functions. Constraint set (3.4) assigns the first *m* jobs to *m* machines, such as 1^{st} job to 1^{st} machine, 2^{st} job to 2^{st} machine and so on. Constraint set (3.5) states that the starting times of the first *m* job on each machine equal to zero. Constraint set (3.6) relates the processing time of the first *m* job with start time. Constraint set (3.7) denotes to select the minimum completion time from the first m job. Constraint set (3.8) guarantees assigning k^{th} job to i^{th} machine which has minimum completion time. Constraint set (3.9) calculates the completion time for k^{th} job on machine *i*. Constraint set (3.10) selects the minimum completion time for all jobs from k^{th} to n^{th} job. Constraint set (3.11) assigns the $(k+1)^{th}$ job to the minimum completion time for all jobs from k+1 to n. Constraint set (3.12) calculates the completion time from k^{th} to n^{th} job on machine *i*. Constraint set (3.13) guarantees that each job is assigned exactly to one machine. Constraint set (3.14) determines completion time as the maximum completion time of all machines. Constraint set (3.15) and (3.16) calculate the tardiness of job *j* ensure that only the positive value of lateness can be considered as tardiness. Constraint set (3.17) defines the decision variable x_{ik} , it is equal to 1 when job k assigned to machine i, 0 otherwise.

For this problem and for more clarity, the solution process can be summarized as follows:

Algorithm: Sequence Job Minimum Completion Time (SJMCT)

Step 1: Start with 2m+1 or more jobs where *m* represents the number of unrelated parallel machine i = 1, ..., m.

Level-I; Starting from the first job to kth job, let k=m+1:

Step 2: Assign the first *m* jobs to machines respectively set i=j=1,...,m.

Step 3: Compute the minimum completion time (release date + processing time) for the first $m \operatorname{job}(C_{ii}^*)$.

Step 4: Assign job *k* to machine which has the minimum job completion time.

Step 5: Update the completion time of job *k*, and go to step 6.

Level-II; *Starting from job k, where* (*k*=m+1,..., n):

Step 6: Select the new minimum completion time(C_{ik}^*).

Step 7: Assign the unscheduled job k+1 to machine has minimum job completion time.

Step 8: Compute the total completion time and repeat level-II in the same way until all jobs are scheduled.

The illustrative representation of SJMCT is given in Figure 3.1.

Jobs Machines	J ₁	J_2	J ₃	J _m	$\mathbf{J}_{\mathbf{k}}$	J_{k+1}		J _n
M_1	C ₁₁				C_{1k}^*	$C_{1(k+1)}$		<i>C</i> _{1<i>n</i>}
M ₂		C ₂₂ *			C_{2k}			C_{2n}
M ₃			C ₃₃			-		C_{3n}
M_4				C _{4m}			•••	C_{4n}

Figure 3. 1. The representation of SJMCT algorithm

3.4. The Comparison of the SJMCT Algorithm with other Algorithms

In order to evaluate the performance of proposed algorithm SJMCT it compared with Balin's (2011) test problems and other dispatching rules (as given in chapter 2). The comparison with respect to one objective function represented by minimize the maximum completion time (makespan). In general, a formulation of the problem uses "binary" variables x_i where, (*i*=1,..., m; *j*=1,..., n), as follows:

$$x_{ij} = \begin{cases} 1 & if job j is assigned to machine i \\ 0 & otherwise \end{cases}$$

The positive variable C_{max} represents the maximum completion time and x_{ij} refers to assignment variables. The problem can be written as (Potts, 1985):

Minimize
$$C_{max}$$
 (3.18)

Subject to

$$\sum_{j=1}^{n} P_{ij} x_{ij} \le C_{\max}$$
 $i = 1, ..., m$ (3.19)

$$\sum_{i=1}^{m} x_{ij} = 1 \qquad j = 1, \dots, n \qquad (3.20)$$

$$x_{ij} \in \{0, 1\} \qquad i = 1, \dots, m; j = 1, \dots, n \qquad (3.21)$$

Constraint (3.19) ensures that C_{max} is at least as large as the total processing time on any machine, while constraints (3.20) and (3.21) ensure that each job is processed on exactly one machine.

Comparisons for some dispatching rules and the analysis of the results are given in the following subsections.

3.4.1. Scheduling with LPT Balin's rule

The scheduling problem solved by Balin, (2011) using LPT dispatching rule. The set data indicates to the processing times for nine jobs and four unrelated parallel machines are given at Table 3.1.

Processing time (min)	Job 1	Job 2	Job 3	Job 4	Job 5	Job 6	Job 7	Job 8	Job 9
Machine 1	18	14	24	30	16	20	22	26	14
Machine 2	9	7	12	15	8	10	11	13	7
Machine 3	4.5	3.5	6	7.5	4	5	5.5	6.5	3.5
Machine 4	3.6	2.8	4.8	6	3.2	4	4.4	5.2	2.8

Table 3. 1. Processing time of the jobs (Balin, 2011)

The obtained scheduling problem of Blain LPT dispatching rule are given in Table 3.2.

Machines		C_i			
M.1	Job 2				14.00
M.2	Job 7				11.00
M.3	Job 8	Job 6	Job 5		15.50
M.4	Job 4	Job 3	Job 1	Job 9	17.20

Table 3. 2. Scheduling with LPT Balin's rule

3.4.2. Scheduling with Balin (GAs)

Genetic algorithms (GAs) are adaptive heuristics search algorithm based on the concepts of natural genetics and natural selection theories proposed by Charles Darwin. In this algorithm the population is defined to be the collection of all the chromosomes. Each chromosome represents a possible solution to the optimization problem, often using strings of 0's and 1's as seen in Figure 3.2. Each bit typically corresponds to a gene. The value for a given gene is called alleles (Mishra and Patnaik, 2009).

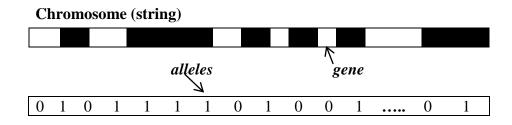


Figure 3. 2 Representation of chromosome

The same scheduling problem is solved with GAs (Balin, 2011). A randomly generated population of 10 chromosomes is solved by using "work center". Several iterations are used to solve the problem and each iteration is provides one solution. The best solutions are given in 12 different schedules. The scheduling results and the minimum completion time at iterations 720 are given in Table 3.3

Machines		Scheduled job		C_i
M.1	Job 2			14.00
M.2	Job 1	Job 9		16.00
M.3	Job 5	Job 7	Job 3	15.50
M.4	Job 6	Job 8	Job 4	15.20

Table 3. 3. Scheduling with GAs at iteration 720

3.4.3. Scheduling with longest processing time dispatching rule (LPT)

A common heuristic used in parallel machine scheduling is the LPT rule. In parallel machine scheduling environments $P_m//C_{max}$, as Hong, Hang and Yu (1998) mentioned jobs are arranged in decreasing order with respect to the processing times, such that $p_1 \ge p_2 \ge ... \ge p_n$. At time t = 0, in this rule the jobs having large values of processing time are given high priority for scheduling on the parallel machine. The results of Balin's scheduling problem are resolved with LPT rule as given in Table 3.4.

Machines		Scheduled job		C_i
M.1	Job 4	Job 2	Job 9	58.00
M.2	Job 8	Job 5		21.00
M.3	Job 3	Job 1		10.50
M.4	Job 7	Job 6		8.40

 Table 3. 4. Scheduling with LPT rule

3.4.4. Scheduling with shortest processing time dispatching rule (SPT)

In SPT dispatching rule, the job with the shortest processing time is chosen fist for processing (Jungwattanakit et al., 2008). The same test problem is solved again according to SPT rule. The obtained schedule is given in Table 3.5.

La La La La La La La La La La La La La L		
b 2 Job 8		30.00
b 9 Job 3		19.00
b 5 Job 7		9.50
b 1 Job 6	Job 4	13.60
	Job 7	b 5 Job 7

 Table 3. 5. Scheduling with SPT rule

3.4.5. Scheduling with sequence job minimum completion time (SJMCT)

The proposed algorithm SJMCT with the same parameters given in Table 3.1 is solved by GAMS v. (24.5.6) optimization software and CPLEX solver. The obtained schedule and the scheduling chart of the algorithm are represented in Table 3.6 and Figure 3.3.

Table 3. 6. Scheduling with sequence job minimum completion time algorithm (SJMCT)

Machines		Scheduled job		C_i
M.1	Job 1			18.00
M.2	Job 2	Job 7		18.00
M.3	Job 3	Job 5	Job 8	16.50
M.4	Job 4	Job 6	Job 9	12.80

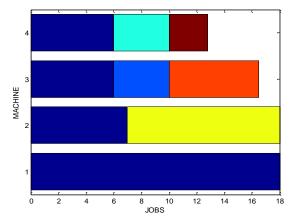


Figure 3. 3. The scheduling chart of SJMCT algorithm

3.4.6. The computational results and comparisons

The proposed algorithm is compared with all algorithms mentioned in Section 3.4. The computational results to Balin's problem with nine jobs which represented by the total and the maximum completion time and for each machine are given in Table 3.7.

Machines		C	ompletion time (-i	
	Balin LPT	Balin GA	LPT	SPT	SJMCT
M_1	14.00	14.00	58.00	30.00	18.00
M_2	11.00	16.00	21.00	19.00	18.00
M ₃	15.50	15.50	10.50	9.50	16.50
\mathbf{M}_4	17.20	15.20	8.40	13.60	12.80

 Table 3. 7. The total and maximum completion time for all comparison algorithms

As given in this table, the maximum completion time is equal to 17.20 at machine (4) in Balin's LPT rule, equal to 16 at machine (2) in Balin's GAs, equal to 58 at machine (1) in LPT dispatching rule, equal to 30 at machine (1) in SPT dispatching rule and equal to 18 at machine (1) and (2).

Among all the results obtained from Balin's test problems, the SJMCT algorithm is better than LPT and SPT dispatching rule because it has the smallest value of maximum completion time. Furthermore, SJMCT algorithm has more convergence as compared with other algorithms in computing the total completion time of each machine. That means, it gives a good assignment of jobs at the machines and it make a good balance in workload over the parallel machines. In addition, in SJMCT algorithm there is no order forced to submit certain job.

The dispatching rule mentioned before are easy to solve small size problems with one objective and it require little computer time. Moreover, it can't guarantee the optimal solution. For all these reasons, novel heuristic algorithms are proposed to solve large size and multi-objective parallel machine scheduling problems.

4. NOVEL MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

As given in the literature review section, multi-objective evolutionary algorithms (MOEA) are performed to solve multi-objective parallel machines scheduling problems. In this section two hybrid multi-objective evolutionary algorithms are proposed based on SJMCT algorithm.

4.1. Multi-objective Optimization

Many real-life optimization problems are actually multi-objective because they involve more than one objective. The solutions of multi-objective problems can provide deeper insights to the decision maker than those of single-objective problems. A multi-objective optimization problem (MOP) can be formulated to find the best solution under multiple objective functions each is either maximized or minimized. As in the single objective optimization problems, there may be some constraints that must be satisfied. In its general form, a multi-objective optimization problem can be formulated as follows (Kasimbeyli et al., 2015):

$$\min_{x \in X} [f_1(x), \dots, f_n(x)]$$

Where X is a nonempty set of feasible solutions and $f_i: X \to R, i = 1, ..., n$ is real-valued functions. Let $(f_1(x), ..., f_n(x))$ for every $x \in X$ and let $Y \coloneqq f(X)$.

For a nontrivial multi-objective optimization problem, there is not exist single solution that simultaneously optimizes each objective. Also, there exist a (possibly infinite) number of Pareto optimal solutions. In that case, a solution is called **non-dominated.** In the same way, (Ehrgott, 2006) introduced the idea of dominance as follows:

Definition 4.1. A feasible solution $\hat{x} \in X$ is called efficient or Pareto optimal, if there is no other $x \in X$ such that $f(x) \leq f(\hat{x})$. If \hat{x} is efficient, $f(\hat{x})$ is called non-dominated point. If $x^1, x^2 \in X$ and $f(x^1) \leq f(x^2)$ we say x^1 dominates x^2 and $f(x^1)$ dominates $f(x^2)$. The set of all efficient solutions $\hat{x} \in X$ is denoted X_E and called the efficient set. The set of all non-dominated points $\hat{y} = f(\hat{x}) \in Y$, where $\hat{x} \in X_E$, is denoted Y_N and called the non-dominated set. The definition of dominated and don-dominated solutions can also illustrate as follows (Ehrgott, 2006).

- Domination: A solution is said to be dominate another if it is better in all objectives.
- Non-Domination: A solution is said to be non-dominated if it is better than other solutions in at least one objective.

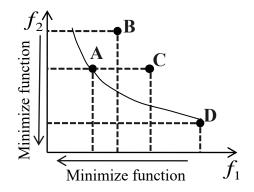


Figure 4. 1. Non-dominated and dominated solution

- A dominates B (better in both f_1 and f_2)
- A dominates C (same in f_1 but better in f_2)
- A does not dominate D (non-dominated points)
- ✤ A and D are in the "Pareto optimal front"
- These non-dominated solutions are called Pareto optimal solutions.
- This non-dominated curve is said to be Pareto front.

Before 1995, the conventional techniques such as linear programming, dynamic programming and nonlinear programming are the main approaches to solve multi and bi-objective problems (Reddy and Kumar, 2007). However, these methods can only solve the small size problems. The evolutionary algorithms have become the main path to solve multi-objective scheduling problems since 1995 (Lei, 2009). Non-dominated sorting genetic algorithm (NSGA), Strength Pareto evolutionary algorithm (SPEA), ant-colony optimization (ACO) and particle swarm optimization (PSO) are some examples of multi-objective evolutionary optimization algorithms.

4.2. Non-dominated Sorting Genetic Algorithm II (NSGA-II)

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) introduced by (Srinivas and Deb, 1994) is an evolutionary multi-objective solution approach used to improve the adaptive fit of a population of candidate solutions to a Pareto front constrained by a set of objective functions. NSGA-II is an extension of the Genetic Algorithms for multi objective problems. It has a better sorting algorithm, incorporates elitism and no sharing parameter need to be chosen a priori (Seshadri, 2006).

Refers to (Srinivas and Deb, 1994), the selection procedure of NSGA-II orders the population into a hierarchy of non-dominated Pareto fronts. Also, sorts the solution by rank and crowding distance then, ranks the non-dominated front of level1 is constituted and includes all the non-dominated solutions. As (Godinez, Espinosa and Montes, 2010) and (Yusoff, Ngadiman and Zain, 2011) described the crowding distance is a measure of how close the solution to its neighbors. Large average crowding distance will result in a better diversity in the population (Seshadri, 2006). Here, the calculation of this quantity in Figure 4.3 and equations (4.1) and (4.2).

Two genetic operators' crossover and mutation with selection operator are used to update the current population and create a new population. The crossover operator combines two solutions (parents) to create two new solutions (children) that may be better than both of the parents. For crossover operators, the binary crossover (Memari et al., 2016) is used. Moreover, mutation operator is an important part of the evolution principle used to add diversity into current population and helps to escape from local optimal to enhance the algorithm and to find better solutions (Fallah-Mehdipour et al., 2012).

4.3. SJMCT- Based NSGA-II (SJMCT -NSGA-II Algorithm)

Non-dominated Sorting Genetic Algorithm (NSGA-II) is combined with proposed SJMCT algorithm to create one unified population able to represent the best possible solutions for multi-objective parallel machine scheduling problem.

The procedure of SJMCT-NSGA-II can be described as follows, where *t* represents number of generations:

- 1. Generate uniform random processing time P_t and due date D_t .
- 2. Evaluate the objective function values based on SJMCT constraints.
- 3. Initialize the population of NSGA-II algorithm randomly and evaluate the objective function values of SJMCT algorithm.
- 4. Create Q_t (offspring) with the operators of selection, crossover and mutation.
- 5. Evaluate the solutions.

- 6. Combine populations P_t and Q_t to create new population R_t of size 2N.
- 7. Sort the solutions of R_t in different non dominated front.
- 8. In the new population P_{t+1} add the best solutions (the best front and the best value of the crowding distance). Use non-dominated and crowding distance equations (4.1) and (4.2) to fulfill the new generation if the number of these solutions is less than the population size.

The crowding distance represents the average distance of two solutions on either side of solutions i along each of the objectives to get an estimate of the density of solutions surrounding a particular solution i in the population (Chand and Mohanty, 2013).

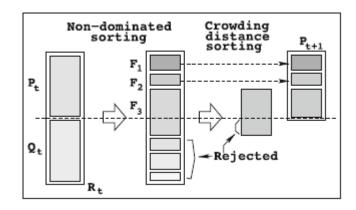
$$C.D(i) = \sum_{j=1}^{n} \left| \frac{f_j(i+1) - f_j(i-1)}{f_j(max) - f_j(min)} \right|$$
(4.1)

$$C.D\left(f_j(max)\right) = C.D\left(f_j(max)\right) = \infty$$
(4.2)

Figure 4.2 represents the crowding distance calculation as follows:

Figure 4. 2. Crowding distance calculation

Where, $f_i(max)$: The maximum value of objective *j*.


 $f_i(min)$: The minimum value of objective *j*.

j=1, 2, ..., n numbers of objective functions.

The crowding tournament selection operator is a measure that guides the selection process at the various stages of the algorithm toward Pareto optimal front, when the following conditions are true:

• If rank $i < \operatorname{rank} j$, (*i* has a better rank).

- If rank $i = \operatorname{rank} j$ but $C.D_{(i)} > C.D_{(i)}$, (*i* has a better crowding distance).
- 9. Repeat the steps 4-6 till the maximum number of generation is reached.

A schematic representation of the NSGA-II procedure is given in Figure 4.3.

Figure 4. 3. Schematic representation of the NSGA-II procedure (Wang 2011)

Crossover and mutation schemes that were developed by (Deb et al., 2000) are employed. The crossover operator used in this study can be seen in the following equations:

$$x_1^{child} = \frac{1}{2} \left[(1+b) * x_1^{parent} + (1-b) * x_2^{parent} \right]$$
(4.3)

$$x_2^{child} = \frac{1}{2} \left[(1-b) * x_1^{parent} + (1+b) * x_2^{parent} \right]$$
(4.4)

Where:

$$b = \begin{cases} (2*r)^{\left(\frac{1}{\mu+1}\right)} & \text{if } r \le 0.5\\ \left(\frac{1}{2*(1-r)}\right)^{\left(\frac{1}{\mu+1}\right)} & \text{if } r > 0.5 \end{cases}$$
(4.5)

b: difference between the objective function values of parents and children.

 μ : a constant which shows the difference between the objective function values of parents and children; a large value of μ gives a higher probability for creating near-parent solutions. *r*: a random value in [0, 1].

The mutation operator is also applied as seen in equations (4.6) and (4.7).

$$d = \begin{cases} (2*r)^{\left(\frac{1}{\eta+1}\right)-1} & \text{if } r \le 0.5\\ \left(1 - \left(2*(1-r)\right)\right)^{\left(\frac{1}{\eta+1}\right)} & \text{if } r > 0.5 \end{cases}$$
(4.6)

Where: *r*: is a random value in [0, 1]

 η : distribution constant of mutation

d: mutation value. This parameter is added to the parent gene value, as given in equation (4.7).

$$x^{child} = x^{parent} + d \tag{4.7}$$

The flow chart of SJMCT-NSGA-II is given in Figure 4.4.

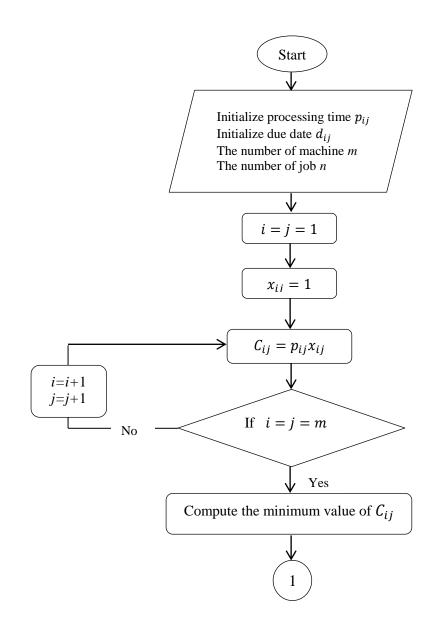


Figure 4.4. Flow chart of SJMCT-NSGA-II

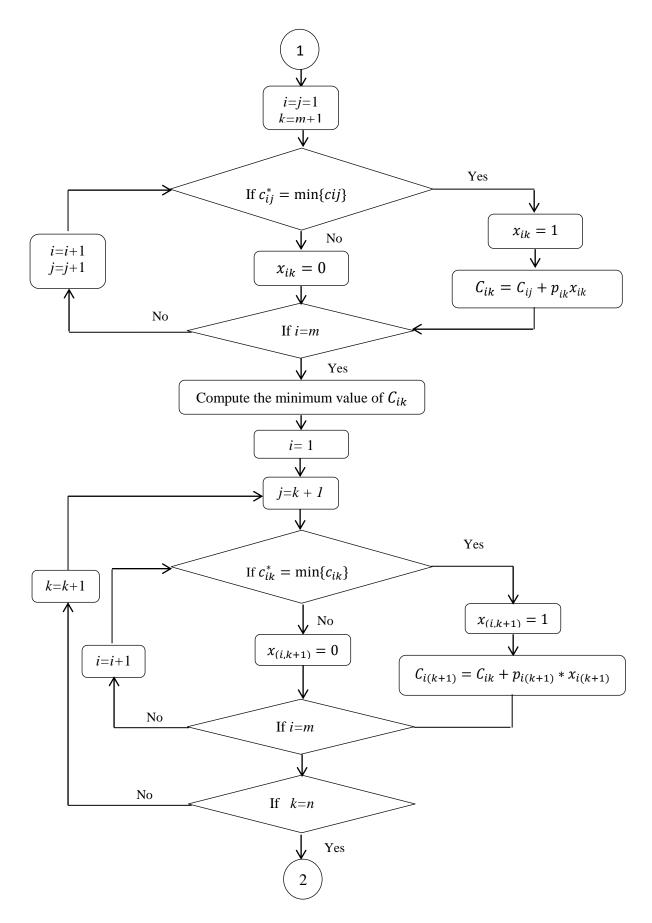


Figure 4.4. (Continue) Flow chart of SJMCT-NSGA-II

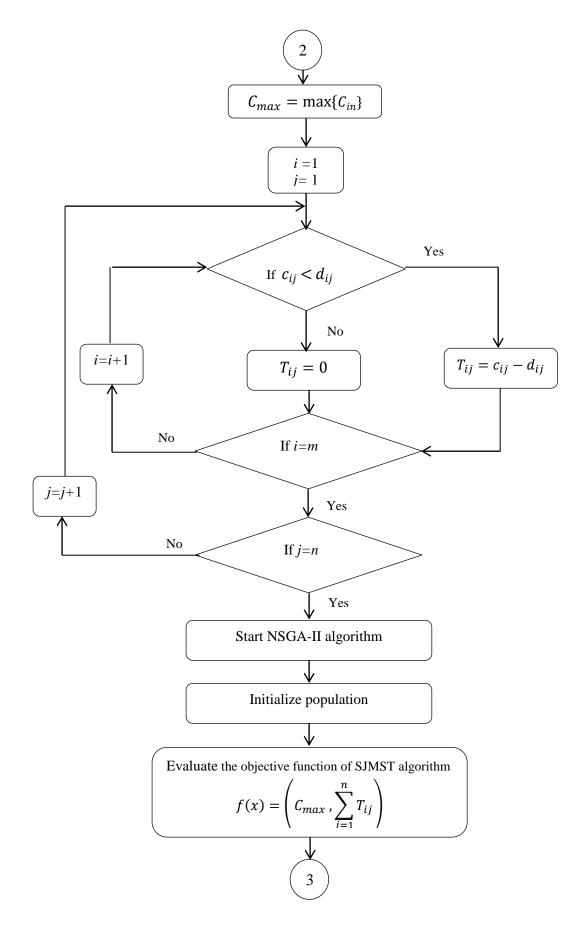


Figure 4.4. (Continue) Flow chart of SJMCT-NSGA-II

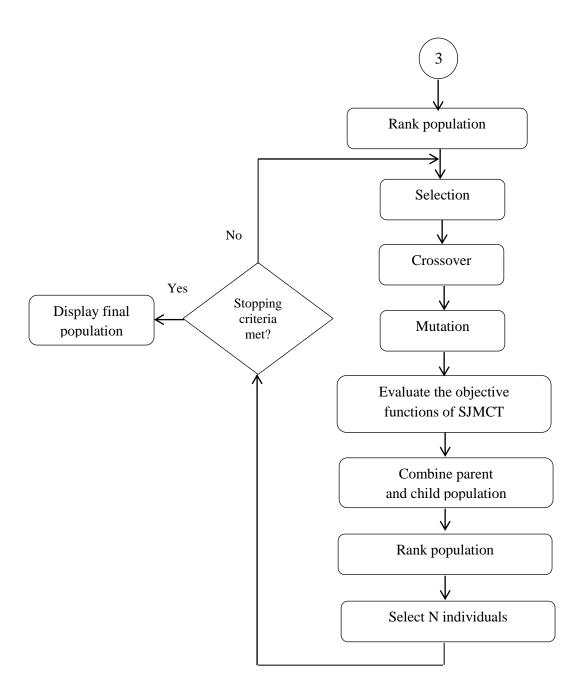


Figure 4. 4. (Continue) Flow chart of SJMCT-NSGA-II

4.4. Strength Pareto Evolutionary Algorithm II (SPEA-II)

Strength Pareto Evolutionary Algorithm (SPEA-II) is an extension of the Genetic Algorithms for multi objective problems. It has been proposed by (Zitzler, Laumanns and Thiele, 2001). Generally, SPEA-II algorithm uses a regular population and archive (external set) to find Pareto optimal set. It is used as an evolutionary algorithm to locate and maintain a set of Pareto optimal solutions.

The algorithm started with an initial population and an empty archive. The raw fitness function represents the summation of the strength values of its dominators in both archive and population. The density function as given in equation (4.11) estimates the density of an area of the Pareto front. The candidate population with the best remaining (non-dominated solution) fills the new archive in order to fitness. It removes the smallest distance values in the archive population by using truncated procedure. It selects the parents from a population using binary tournament selection to fill the archive population. The two genetic operators, crossover and mutation as represented in equations 4.3-4.6.

4.5. SJMCT- Based SPEA-II (SJMCT- SPEA-II Algorithm)

Strength Pareto Evolutionary Algorithm (SPEA-II) is an elitist evolutionary algorithm. The proposed SJMCT algorithm is combined with the mean process of SPEA-II as follows:

- 1. **Input:** *n* (number of jobs), *m* (number of machines), \overline{N} (archive size), *T* (maximum number of generation).
- 2. Initialization-I: At first generation t =0, use the uniform random to initialize the processing time P_0 and due date D_0 for SJMCT algorithm.
- 3. Initialization-II: Initialize the population of SPEA-II to evaluate the objective function values of SJMCT algorithm and create the empty archive $\bar{P}_0 = \emptyset$.
- 4. Fitness assignment: for each individual *i* in the archive \overline{P}_t and the population P_t there is S(i) called the strength Pareto- solution which represents the number of dominated solution:

$$S(i) = |\{j|j \in P_t + \overline{P}_t \land i > j\}|$$

$$(4.8)$$

Where: the symbol + represents multi set union, the symbol > corresponds to the Pareto dominance relation, the symbol \land means AND (Gharari et al., 2016).

For SPEA-II, fitness F(i) is defined by equation (4.9).

$$F(i) = R(i) + D(i)$$
 (4.9)

The raw fitness function R(i) of an individual *i* is calculated by the following equation:

$$R(i) = \sum_{j \in Pt + \bar{P}_t, j > i} S(j) \tag{4.10}$$

Here it is important to note that, fitness is to be minimized, i.e., R(i) = 0 corresponds to a non-dominated individual. The additional density information is incorporated to discriminate between individuals having same raw fitness, where the density at any point is a (decreasing) function of the distance to the k^{th} nearest data point. To be more precise, for each individual *i* the distances (in objective space) to all individuals *j* in archive and population are calculated and stored in a list. After sorting the list in increasing order, the k^{th} element gives the distance denoted as σ_i^k , the density function is defined by:

$$D(i) = \frac{1}{\sigma_i^{k+2}}$$
(4.11)

Where: σ_i^k represents the objective-space distance between the *i*th and *k*th nearest neighbors and $k = \sqrt{N + \overline{N}}$ in equation (4.11).

5. Environmental selection: In this operator, all non-dominated solutions are copied from population and archived to the archive of new iteration \overline{P}_{t+1} . If the archive is too small $|\overline{P}_{t+1}| < \overline{N}$ then \overline{P}_{t+1} is filled with best dominated solutions from P_t and \overline{P}_t . Otherwise, if the archive is too large $|\overline{P}_{t+1}| > \overline{N}$ an **archive truncation procedure is used** until $|\overline{P}_{t+1}| = \overline{N}$. Here, at each iteration individual *i* is chosen for removal for which *i*, $i \leq dj$ for all $j \in \overline{P}_{t+1}$ with $i \leq dj$: $\Leftrightarrow \forall 0 < k <$ $|\overline{P}_{t+1}| : \sigma_i^k = \sigma_j^k \quad \lor$

$$\exists 0 < k < |\bar{P}_{t+1}| : \left[\left(\forall 0 < l < k : \sigma_i^l = \sigma_j^l \right) \land \sigma_i^k < \sigma_j^k \right]$$
(4.12)

In equation (4.12), *i* and *j* are the individuals, and also $i \leq dj$ means that individual *i* dominated individual *j* and σ_i^k denotes the distance of *i* to its k^{th} nearest neighbor in \overline{P}_{t+1} . In other words, at each iteration, the individual which has the minimum distance to another individual is chosen (a connection is broken by considering the second smallest distances and so forth), as given in Figure 4.5.

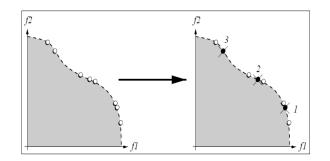


Figure 4. 5. Illustration of the archive truncation method used in SPEA-II

On the right, a non-dominated set is shown. On the left, it is depicted which solutions are removed in which order by the truncate operator (assuming that $\overline{N} = 5$) (Zitzler, Laumanns, and Thiele, 2001)

- 6. Termination: If $t \ge T$ then the archive members \overline{P}_{t+1} presented as a Pareto set, otherwise go to step 3.
- 7. Mating selection: In order to fill the mating pool use binary tournament selection with replacement on \overline{P}_{t+1} .
- 8. Variation: Apply mutation and crossover operators to the mating pool and fill P_{t+1} with the generated solutions. Set t=t+1 and go back to step 4.

The flow chart of SJMCT-SPEA-II is given in Figure 4.6.

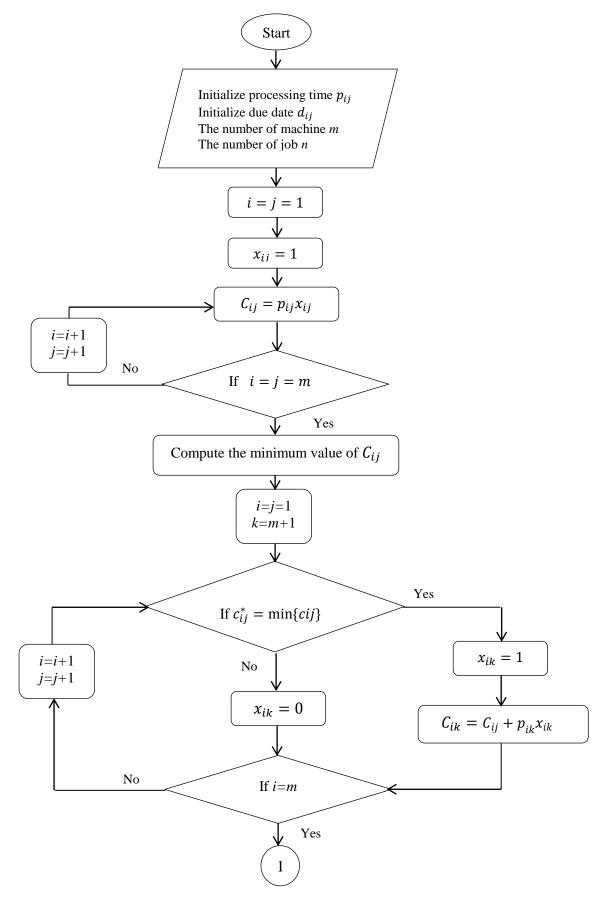


Figure 4.6. Flow chart of SJMCT-SPEA-II

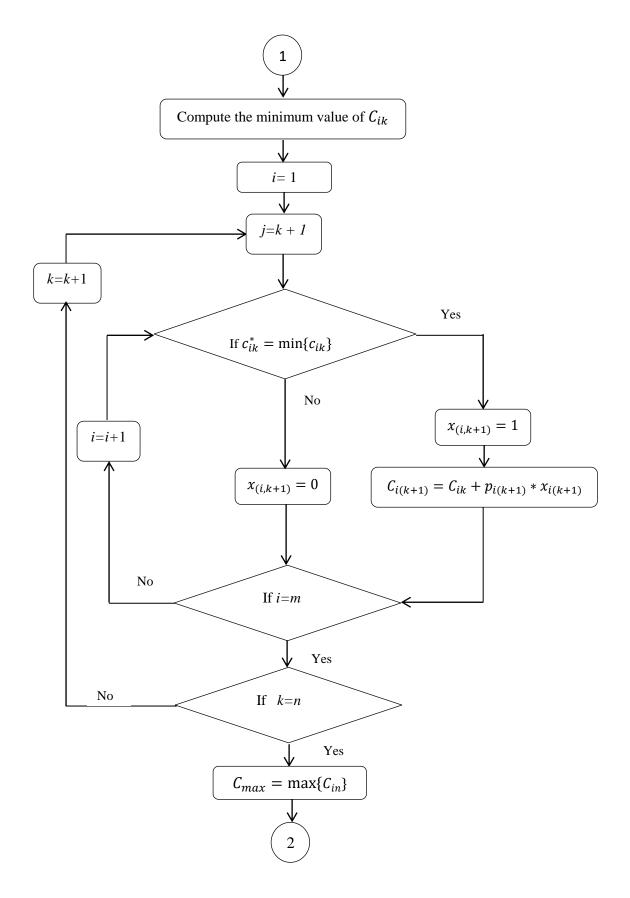


Figure 4.6. (Continue) Flow chart of SJMCT-SPEA-II

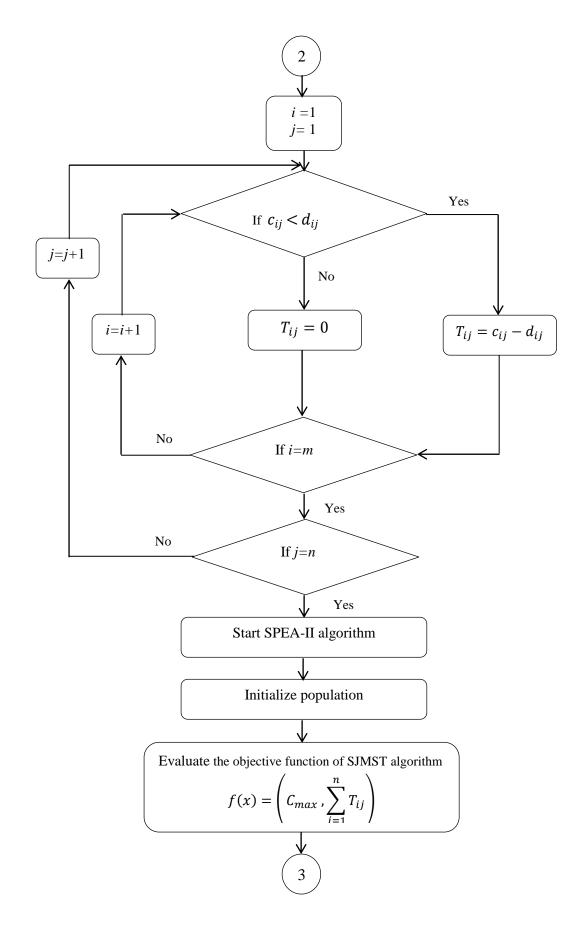


Figure 4.6. (Continue) Flow chart of SJMCT-SPEA-II

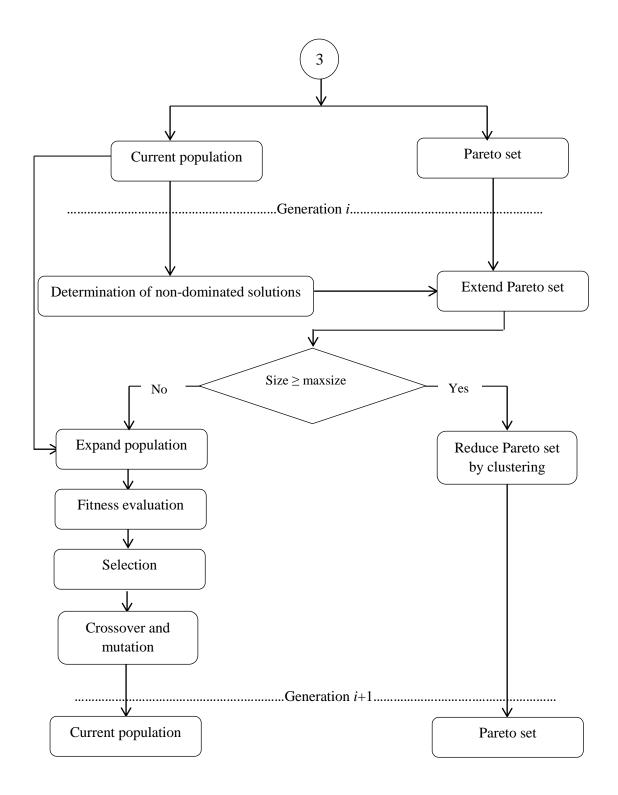


Figure 4. 6. (Continue) Flow chart of SJMCT-SPEA-II

5. COMPUTATIONAL RESULTS

In this section, different parameter values are considered to simulate different cases and to analyze the performances of the proposed algorithms SJMCT-NSGA-II and SJMCT-SPEA-II. For five parallel machines the first test problems is described with 60 jobs and different generation numbers. Thereafter, the second test problems are described with generation 500 and different number of jobs. The Pareto-optimal front are represented to minimize the two criteria scheduling problems, the makespan which represents the completion time of the final job and the total tardiness which represents the sum of tardiness of every job.

5.1. Experimental Design

The processing times and due dates of jobs are generated uniformly between 1 and 20, the population size equals to 100 in each algorithm. Different crossover probabilities (0.6, 0.7, 0.8 and 0.9) and mutation probabilities (0.4, 0.3, 0.2 and 0.1) are used in these tests. In particular, the experiments are designed to test the performance of the proposed algorithms by changing the parameters. The algorithms are tested firstly with 60 jobs and different generation numbers (40, 100, 300 and 500). Secondly, the algorithms are tested with different number of jobs (20, 60 and 100) and number of generation equals to 500. Table 5.1 describes the couple of different parameters setting on both algorithms SJMCT-NSGA-II and SJMCT-SPEA-II in order to show the final Pareto behavior after changing the parameters. In all cases, the number of archive used in SJMCT-SPEA-II algorithm is equal to 60. Moreover, the lower and upper bounds are selected between [-15, 15].

Var Min	Var Max	nArchive	nPop	Va	r Size	Generation	Crossover	Mutation
				-	ochine ob]	Numbers	Probability	Probability
-15	15	60	100	[5	20]	40	0.6	0.4
				[5	60]	100	0.7	0.3
				[5	100]	300	0.8	0.2
						500	0.9	0.1

Table 5. 1. Parameters used for each algorithm

5.2. Computational Results

In this subsection, scheduling problem with 5 parallel machines, 60 jobs and with the parameters given in Table 5.1 is considered. In the first test problems, multiple cases study the effect of increasing the generation numbers from 40 to 500. All test problems for the proposed algorithms are implemented by MATLAB programming Version 8.3.0.532 (R2014a). Figures 5.1-5.4 depict the simulation results obtained by SJMCT-NSGA-II algorithm. Figures 5.5-5.9 give the Pareto solutions obtained by SJMCT-SPEA-II algorithm. In each test the crossover probabilities are 0.6, 0.7, 0.8 and 0.9 respectively.

5.2.1. Computational results for SJMCT-NSGA-II algorithm

Test 1: In the first test problems for 60 jobs, the best solution is obtained for SJMCT-NSGA-II algorithm at generation 40 with number of population 100 and with crossover probabilities 0.6, 0.7, 0.8 and 0.9.

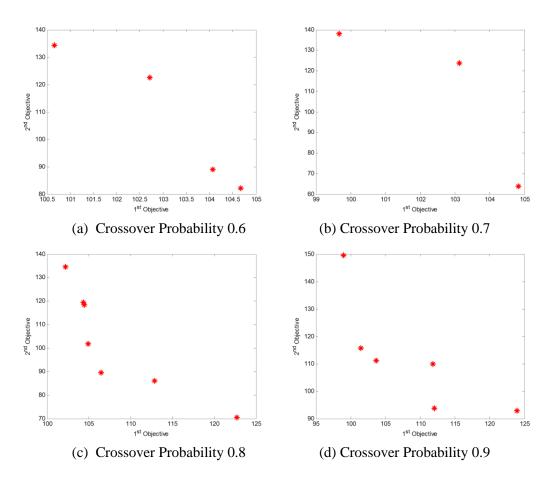


Figure 5. 1. Pareto optimal solutions for SJMCT- NSGA-II with generation 40 and different crossover probabilities

Test 2: In the first test problems for 60 jobs, the best solution is obtained for SJMCT-NSGA-II algorithm at generation 100 with number of population 100 and with crossover probabilities 0.6, 0.7, 0.8 and 0.9.

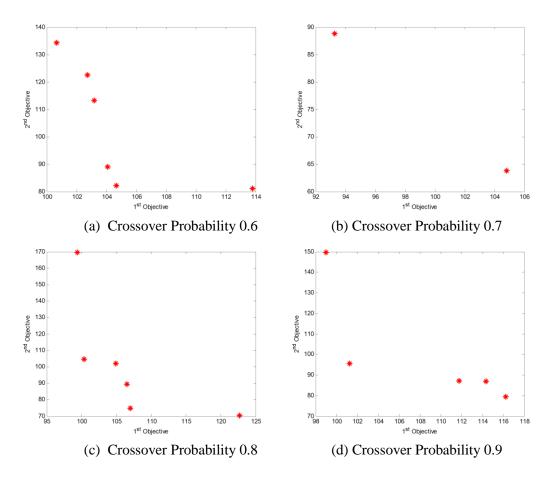


Figure 5. 2. Pareto optimal solutions for SJMCT- NSGA-II with generation 100 and different crossover probabilities

Test 3: In the first test problems for 60 jobs, the best solution is obtained for SJMCT-NSGA-II algorithm at generation 300 with number of population 100 and with crossover probabilities 0.6, 0.7, 0.8 and 0.9.

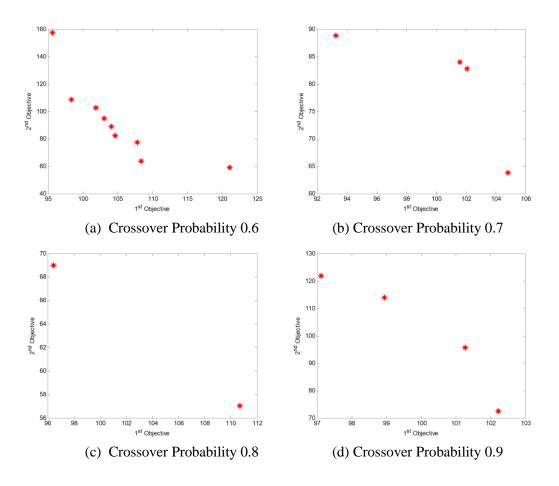


Figure 5. 3. Pareto optimal solutions for SJMCT- NSGA-II with generation 300 and different crossover probabilities

Test 4: In the first test problems for 60 jobs, the best solution is obtained for SJMCT-NSGA-II algorithm at generation 500 with number of population 100 and with crossover probabilities 0.6, 0.7, 0.8 and 0.9.

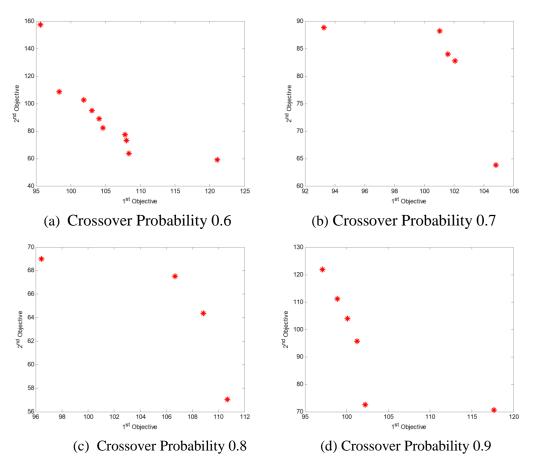


Figure 5. 4. Pareto optimal solutions for SJMCT- NSGA-II with generation 500 and different crossover probabilities

5.2.2. Simulation results for SJMCT-SPEA-II algorithm

Test 1: In the first test problems for 60 jobs, the best solution is obtained for SJMCT-SPEA-II algorithm at generation 40 with number of population 100 and with crossover probabilities 0.6, 0.7, 0.8 and 0.9.

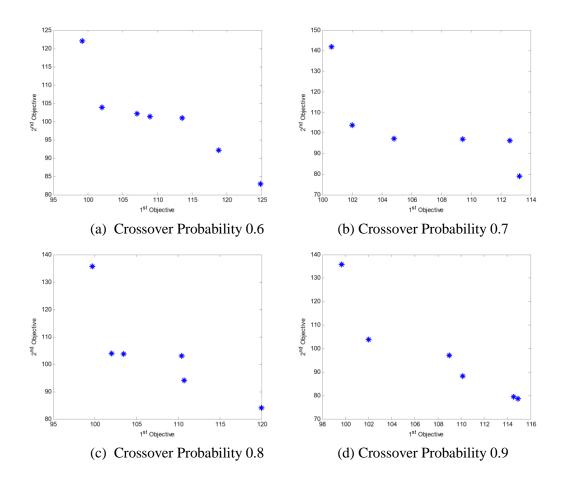


Figure 5. 5. Pareto optimal solutions for SJMCT- SPEA-II with generation 40 and different crossover probabilities

Test 2: In the first test problems for 60 jobs, the best solution is obtained for SJMCT-SPEA-II algorithm at generation 100 with number of population 100 and with crossover probabilities 0.6, 0.7, 0.8 and 0.9.

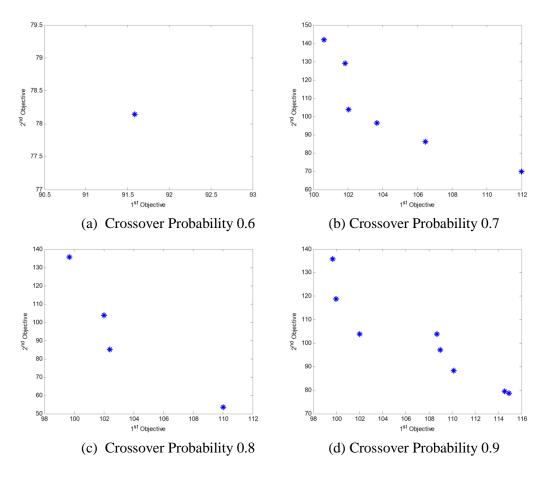


Figure 5. 6. Pareto optimal solutions for SJMCT- SPEA-II with generation 100 and different crossover probabilities

Test 3: In the first test problems for 60 jobs, the best solution is obtained for SJMCT-SPEA-II algorithm at generation 300 with number of population 100 and with crossover probabilities 0.6, 0.7, 0.8 and 0.9.

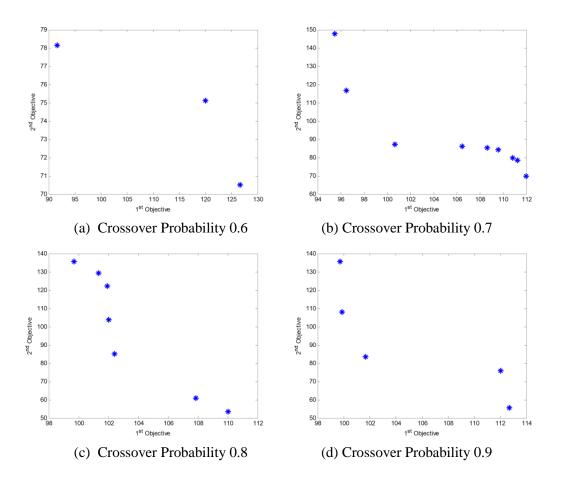


Figure 5. 7. Pareto optimal solutions for SJMCT- SPEA-II with generation 300 and different crossover probabilities

Test 4: In the first test problems for 60 jobs, the best solution is obtained for SJMCT-SPEA-II algorithm at generation 500 with number of population 100 and with crossover probabilities 0.6, 0.7, 0.8 and 0.9.

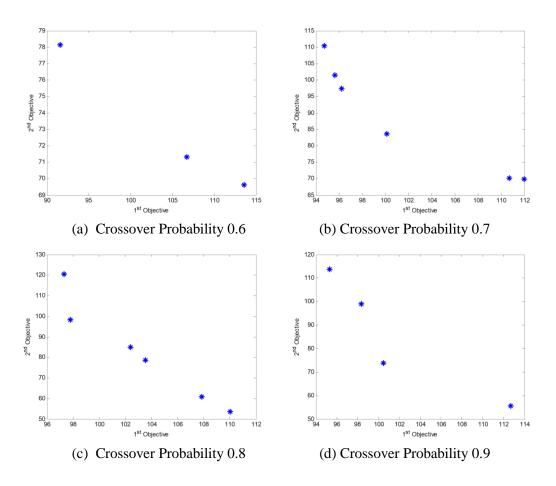


Figure 5. 8. Pareto optimal solutions for SJMCT- SPEA-II with generation 500 and different crossover probabilities

For more clarification, to discover the best configuration of SJMCT-NSGA-II and SJMCT-SPEA-II, Tables 5.2-5.17 and Figures 5.9-5.24 describe all results obtained from the first test problems represented before (in Figures 5.1-5.8) for each algorithm.

Generation	Number of job	Crossover	SJMCT- NS	SGA-II	SJMCT-SPEA-II		
	-	probability	Objective1	Objective2	Objective1	Objective2	
40	60	0.6	100.656	134.337	102.019	103.893	
			104.677	82.166	124.826	82.961	
			102.716	122.604	99.185	121.977	
			104.072	89.047	107.065	102.157	
					108.955	101.377	
					118.807	92.171	
					113.584	101.012	

Table 5. 2. The values of the best non-dominated front for 5 machines and 60 jobs with generation 40and crossover probability 0.6

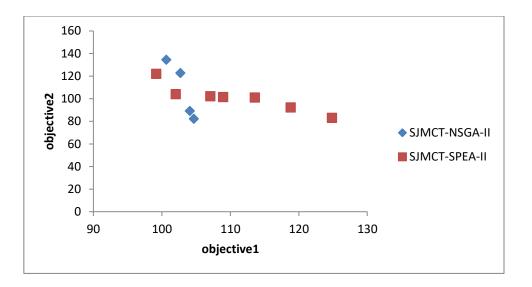


Figure 5. 9. Solutions at generation 40 for 60 jobs (Crossover probability 0.6)

In Table 5.2 and Figure 5.9 for 60 jobs, at generation 40 and crossover probability 0.6, the minimum value of objective1 is **99.185** at SJMCT-SPEA-II algorithm and the minimum value of objective2 equals to **82.166** at SJMCT-NSGA-II algorithm. That means, the Pareto set is all non-dominated individuals between (**99.185, 121.977**) and (**104.677, 82.166**) solutions.

Generation	Number of job	Crossover _ probability	SJMCT-	NSGA-II	SJMCT-SPEA-II	
	9		Objective1	Objective2	Objective1	Objective2
40	60	0.7	99.671	137.937	100.620	141.913
			104.821	63.836	102.019	103.893
			103.123	123.708	113.239	79.024
					104.825	97.297
					109.451	97.028
					112.597	96.278

Table 5. 3. The values of the best non-dominated front for 5 machines and 60 jobs with generation 40and crossover probability 0.7

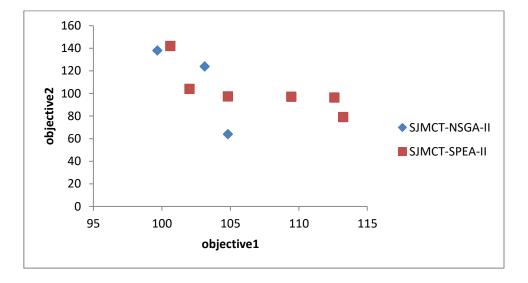


Figure 5. 10. Solutions at generation 40 for 60 jobs (Crossover probability 0.7)

In Table 5.3 and Figure 5.10 for 60 jobs, at generation 40 and crossover probability 0.7, the minimum value of objective1 is **99.671** at SJMCT- NSGA-II algorithm and the minimum value of objective2 equals to **63.836** at SJMCT-NSGA-II algorithm. That means, the Pareto set is all non-dominated individuals between (**99.671**, **137.937**) and (**104.821**, **63.836**) solutions.

Generation	Number of job	Crossover	SJMCT-	NSGA-II	SJMCT-SPEA-II	
	,	probability	Objective1	Objective2	Objective1	Objective2
40	60	0.8	102.229	134.565	99.700	135.708
			122.704	70.499	102.019	103.893
			112.861	86.100	119.957	84.093
			106.509	89.587	103.459	103.713
			104.911	101.917	110.686	94.117
			104.357	119.334	110.393	103.002
			104.459	118.323		

Table 5. 4. The values of the best non-dominated front for 5 machines and 60 jobs with generation 40 andcrossover probability 0.8

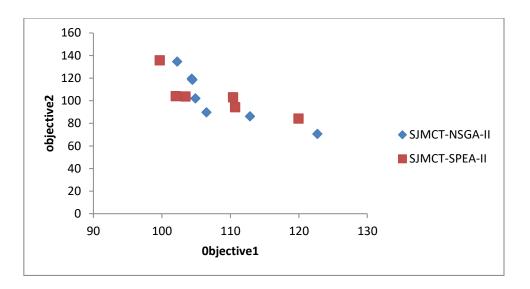


Figure 5. 11. Solutions at generation 40 for 60 jobs (Crossover probability 0.8)

In Table 5.4 and Figure 5.11 for 60 jobs, at generation 40 and crossover probability 0.8, the minimum value of objective1 is **99.700** at SJMCT- SPEA-II algorithm and the minimum value of objective2 equals to **70.499** at SJMCT-NSGA-II algorithm. That means, the Pareto set is all non-dominated individuals between (**99.700**, **135.708**) and (**122.704**, **70.499**) solutions.

Generation	Number of job	Crossover probability	SJMCT- NSGA-II		SJMCT-SPEA-II	
			Objective1	Objective2	Objective1	Objective2
40	60	0.9	123.954	92.965	99.700	135.708
			98.995	149.581	102.019	103.893
			101.449	115.698	114.911	78.628
			112.074	93.737	114.547	79.531
			111.837	109.917	110.128	88.279
			103.685	111.078	108.962	97.073

Table 5. 5. The values of the best non-dominated front for 5 machines and 60 jobs with generation 40and crossover probability 0.9

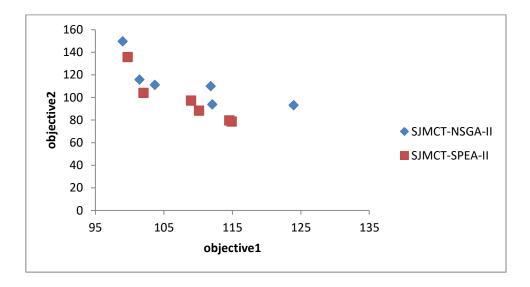


Figure 5. 12. Solutions at generation 40 for 60 jobs (Crossover probability 0.9)

In Table 5.5 and Figure 5.12 for 60 jobs, at generation 40 and crossover probability 0.9, the minimum value of objective1 is **98.995** at SJMCT-NSGA-II algorithm and the minimum value of objective2 equals to **78.628** at SJMCT-SPEA-II algorithm. That means, the Pareto set is all non-dominated individuals between (**98.995**, **149.581**) and (**114.911**, **78.628**) solutions.

Generation	Number of job	Crossover probability	SJMCT- NSGA-II		SJMCT-SPEA-II	
			Objective1	Objective2	Objective1	Objective2
100	60	0.6	100.656	134.337	91.587	78.141
			113.802	81.107		
			104.677	82.166		
			103.183	113.331		
			104.072	89.047		
			102.716	122.604		

Table 5. 6. The values of the best non-dominated front for 5 machines and 60 jobs with generation 100and crossover probability 0.6

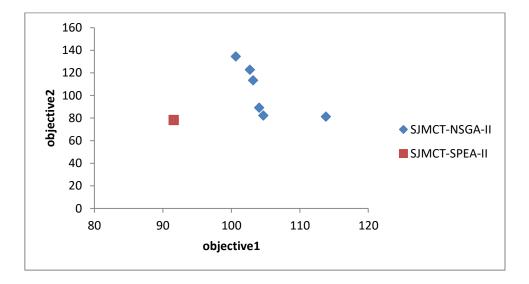


Figure 5. 13. Solutions at generation 100 for 60 jobs (Crossover probability 0.6)

In Table 5.6 and Figure 5.13 for 60 jobs, at generation 100 and crossover probability 0.6, the minimum value of objective1 is **91.587** at SJMCT-SPEA-II algorithm and the minimum value of objective2 equals to **78.141 at** SJMCT-SPEA-II algorithm. That means, the Pareto set is the non-dominated solution (**91.587**, **78.141**).

Generation	Number of job	Crossover probability	SJMCT- NSGA-II		SJMCT-SPEA-II	
			Objective1	Objective2	Objective1	Objective2
100	60	0.7	104.821	63.836	111.988	69.860
			93.275	88.818	100.620	141.913
					106.452	86.186
					102.019	103.893
					103.661	96.431
					101.834	128.962

Table 5. 7. The values of the best non-dominated front for 5 machines and 60 jobs with generation 100and crossover probability 0.7

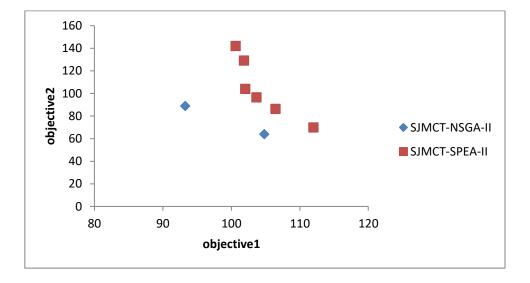


Figure 5. 14. Solutions at generation 100 for 60 jobs (Crossover probability 0.7)

In Table 5.7 and Figure 5.14 for 60 jobs, at generation 100 and crossover probability 0.7, the minimum value of objective1 is **93.275** at SJMCT-NSGA-II algorithm and the minimum value of objective2 equals to **63.836** at SJMCT-NSGA-II algorithm. That means, the Pareto set is all non-dominated individuals between (**93.275**, **88.818**) and (**104.821**, **63.836**) solutions.

Generation Nu	Number of job	Crossover probability	SJMCT- NSGA-II		SJMCT-SPEA-II	
	9		Objective1	Objective2	Objective1	Objective2
100	60	0.8	122.704	70.499	110.019	53.667
			99.356	169.563	102.406	85.020
			100.331	104.701	99.700	135.708
			107.004	74.735	102.019	103.893
			104.911	101.917		
			106.509	89.587		

Table 5. 8. The values of the best non-dominated front for 5 machines and 60 jobs with generation 100and crossover probability 0.8

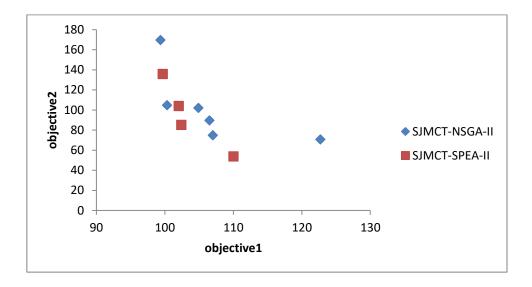


Figure 5. 15. Solutions at generation 100 for 60 jobs (Crossover probability 0.8)

In Table 5.8 and Figure 5.15 for 60 jobs, at generation 100 and crossover probability 0.8, the minimum value of objective1 is **99.356** at SJMCT-NSGA-II algorithm and the minimum value of objective2 equals to **53.667** at SJMCT-SPEA-II algorithm. That means, the Pareto set is all non-dominated individuals between (**99.356**, **169.563**) and (**110.019**, **53.667**) solutions.

Generation Number of job	Number of iob	Crossover probability	SJMCT- NSGA-II		SJMCT-SPEA-II	
			Objective1	Objective2	Objective1	Objective2
100	60	0.9	98.9954	149.5807	99.700	135.708
			116.2029	79.48637	102.019	103.893
			101.2643	95.724	99.974	118.774
			111.7504	87.20371	114.911	78.628
			114.3319	86.9915	114.547	79.531
					110.128	88.279
					108.962	97.073
					108.696	103.788

Table 5. 9. The values of the best non-dominated front for 5 machines and 60 jobs with generation 100and crossover probability 0.9

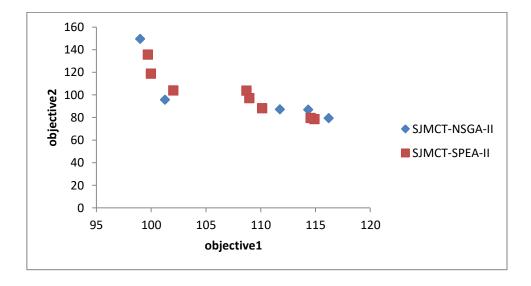


Figure 5. 16. Solutions at generation 100 for 60 jobs (Crossover probability 0.9)

In Table 5.9 and Figure 5.16 for 60 jobs, at generation 100 and crossover probability 0.9, the minimum value of objective1 is **98.9954** at SJMCT-NSGA-II algorithm and the minimum value of objective2 equals to **78.628** at SJMCT-SPEA-II algorithm. That means, the Pareto set is all non-dominated individuals between (**98.9954**, **149.5807**) and (**114.911**, **78.628**) solutions.

Generation.	Number of job	Crossover probability	SJMCT- NSGA-II		SJMCT-SPEA-II	
			Objective1	Objective2	Objective1	Objective2
300	60	0.6	121.113	59.114	91.587	78.141
			95.650	157.273	126.673	70.516
			98.355	108.603	120.030	75.110
			108.409	63.721		
			107.792	77.312		
			101.888	102.758		
			104.677	82.166		
			103.079	94.841		
			104.072	89.047		

Table 5. 10. The values of the best non-dominated front for 5 machines and 60 jobs with generation 300and crossover probability 0.6

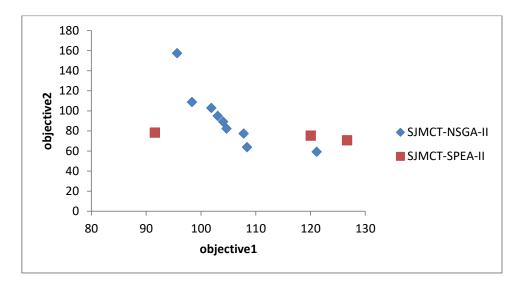


Figure 5. 17. Solutions at generation 300 for 60 jobs (Crossover probability 0.6)

In Table 5.10 and Figure 5.17 for 60 jobs, at generation 300 and crossover probability 0.6, the minimum value of objective1 is **91.587** at SJMCT-SPEA-II algorithm and the minimum value of objective2 equals to **59.114** at SJMCT-NSGA-II algorithm. That means, the Pareto set is all non-dominated individuals between (**91.587**, **78.141**) and (**121.113**, **59.114**) solutions.

Generation	Number of job	Crossover probability	SJMCT- NSGA-II		SJMCT-SPEA-II	
			Objective1	Objective2	Objective1	Objective2
300	60	0.7	104.821	63.836	95.489	147.707
			93.275	88.818	96.482	116.788
			102.093	82.724	100.651	87.274
			101.583	83.964	111.988	69.860
					111.249	78.447
					110.818	79.762
					106.452	86.186
					108.612	85.413
					109.557	84.451

Table 5. 11. The values of the best non-dominated front for 5 machines and 60 jobs with generation 300and crossover probability 0.7

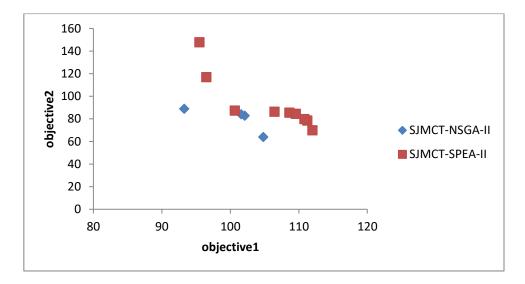


Figure 5. 18. Solutions at generation 300 for 60 jobs (Crossover probability 0.7)

In Table 5.11 and Figure 5.18 for 60 jobs, at generation 300 and crossover probability 0.7, the minimum value of objective1 is **93.275** at SJMCT-NSGA-II algorithm and the minimum value of objective2 equals to **63.836** at SJMCT-NSGA-II algorithm. That means, the Pareto set is all non-dominated individuals between (**93.275**, **88.818**) and (**104.821**, **63.836**) solutions

Generation	Number of job	Crossover probability	SJMCT-	NSGA-II	SJMCT-SPEA-II	
			Objective1	Objective2	Objective1	Objective2
300	60	0.8	110.691	57.063	110.019	53.667
			96.414	68.981	107.844	60.935
					99.700	135.708
					101.338	129.323
					102.406	85.020
					101.929	122.292
					102.019	103.893

Table 5. 12. The values of the best non-dominated front for 5 machines and 60 jobs with generation 300and crossover probability 0.8

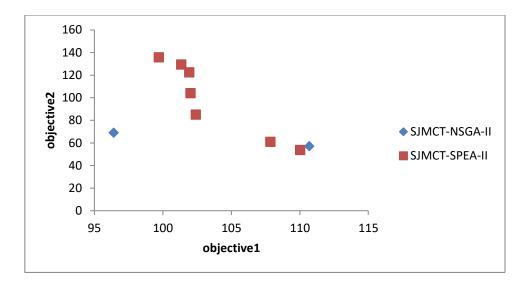


Figure 5. 19. Solutions at generation 300 for 60 jobs (Crossover probability 0.8)

In Table 5.12 and Figure 5.19 for 60 jobs, at generation 300 and crossover probability 0.8, the minimum value of objective1 is **96.414** at SJMCT-NSGA-II algorithm and the minimum value of objective2 equals to **53.667** at SJMCT-SPEA-II algorithm. That means, the Pareto set is all non-dominated individuals between (**96.414**, **68.981**) and (**110.019**, **53.667**) solutions.

Generation	Number of job	Crossover probability	SJMCT- NSGA-II		SJMCT-SPEA-II	
			Objective1	Objective2	Objective1	Objective2
300	60	0.9	102.218	72.547	112.674	55.712
			97.116	121.903	101.679	83.513
			101.264	95.724	99.700	135.708
			98.946	114.026	99.844	108.079
					112.010	75.979

Table 5. 13. The values of the best non-dominated front for 5 machines and 60 jobs with generation 300and crossover probability 0.9

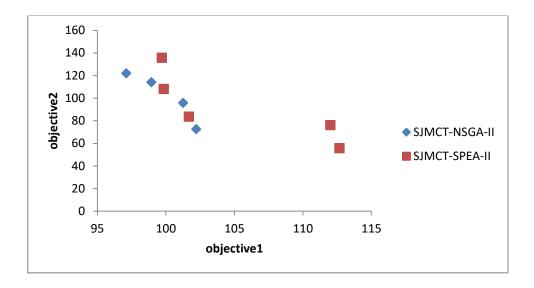


Figure 5. 20. Solutions at generation 300 for 60 jobs (Crossover probability 0.9)

In Table 5.13 and Figure 5.20 for 60 jobs, at generation 300 and crossover probability 0.9, the minimum value of objective1 is **97.116** at SJMCT-NSGA-II algorithm and the minimum value of objective2 equals to **55.712** at SJMCT-SPEA-II algorithm. That means, the Pareto set is all non-dominated individuals between (**97.116**, **121.903**) and (**112.674**, **55.712**) solutions.

Generation	Number of job	Crossover probability	SJMCT- NSGA-II		SJMCT-SPEA-II	
			Objective1	Objective2	Objective1	Objective2
500	60	0.6	121.113	59.114	91.587	78.141
			95.650	157.273	106.759	71.317
			98.355	108.603	113.615	69.618
			108.409	63.721		
			101.888	102.758		
			104.677	82.166		
			103.079	94.841		
			107.792	77.312		
			104.072	89.047		
			108.035	73.248		

Table 5. 14. The values of the best non-dominated front for 5 machines and 60 jobs with generationnumbers 500 and crossover probability 0.6

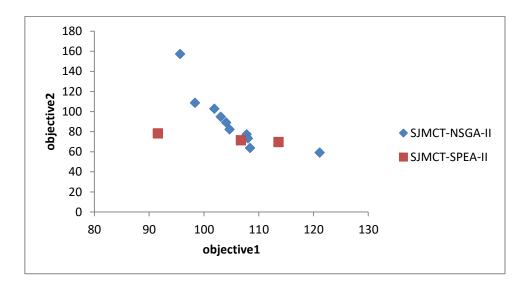


Figure 5. 21. Solutions at generation 500 for 60 jobs (Crossover probability 0.6)

In Table 5.14 and Figure 5.21 for 60 jobs, at generation 500 and crossover probability 0.6, the minimum value of objective1 is **91.587** at SJMCT-SPEA-II algorithm and the minimum value of objective2 equals to **59.114** at SJMCT-NSGA-II algorithm. That means, the Pareto set is all non-dominated individuals between (**91.587**, **78.141**) and (**121.113**, **59.114**) solutions.

Generation	Number of job	Crossover probability	SJMCT- NSGA-II		SJMCT-SPEA-II	
			Objective1	Objective2	Objective1	Objective2
500	60	0.7	104.821	63.836	94.736	110.466
			93.275	88.818	95.634	101.489
			102.093	82.724	96.236	97.437
			101.040	88.182	100.119	83.699
			101.583	83.964	111.988	69.860
					110.708	70.256

Table 5. 15. The values of the best non-dominated front for 5 machines and 60 jobs with generation 500and crossover probability 0.7

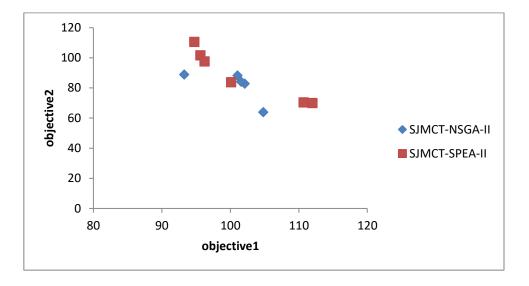


Figure 5. 22. Solutions at generation 500 for 60 jobs (Crossover probability 0.7)

In Table 5.15 and Figure 5.22 for 60 jobs, at generation 500 and crossover probability 0.7, the minimum value of objective1 is **93.275** at SJMCT-NSGA-II algorithm and the minimum value of objective2 equals to **63.836** at SJMCT-NSGA-II algorithm. That means, the Pareto set is all non-dominated individuals between (**93.275**, **88.818**) and (**104.821**, **63.836**) solutions.

Generation	Number of job	Crossover probability	SJMCT- NSGA-II		SJMCT-SPEA-II	
			Objective1	Objective2	Objective1	Objective2
500	60	0.8	110.691	57.063	110.019	53.667
			96.414	68.981	107.844	60.935
			106.689	67.534	97.786	98.376
			108.864	64.371	97.304	120.473
					103.522	78.553
					102.406	85.020

Table 5. 16. The values of the best non-dominated front for 5 machines and 60 jobs with generation 500and crossover probability 0.8

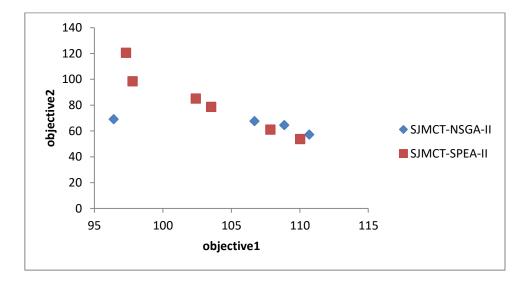


Figure 5. 23. Solutions at generation 500 for 60 jobs (Crossover probability 0.8)

In Table 5.16 and Figure 5.23 for 60 jobs, at generation 500 and crossover probability 0.8, the minimum value of objective1 is **96.414** at SJMCT-NSGA-II algorithm and the minimum value of objective2 equals to **53.667** at SJMCT-SPEA-II algorithm. That means, the Pareto set is all non-dominated individuals between (**96.414**, **68.981**) and (**110.019**, **53.667**) solutions.

Generation	Number of job	Crossover	SJMCT-	NSGA-II	SJMCT-SPEA-II		
	, , , , , , , , , , , , , , , , , , ,	probability	Objective1	Objective2	Objective1	Objective2	
500	60	0.9	97.116	121.903	112.674	55.712	
			117.669	70.647	100.471	73.837	
			102.218	72.547	95.291	113.669	
			101.264	95.724	98.359	99.067	
			98.870	111.135			
			100.098	103.991			

Table 5. 17. The values of the best non-dominated front for 5 machines and 60 jobs with 500 generationand crossover probability 0.9

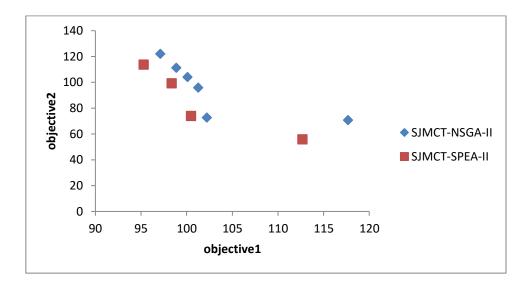


Figure 5. 24. Solutions at generation 500 for 60 jobs (Crossover probability 0.9)

In Table 5.17 and Figure 5.24 for 60 jobs, at generation 500 and crossover probability 0.9, the minimum value of objective1 is **95.291** at SJMCT-SPEA-II algorithm and the minimum value of objective2 equals to **55.712** at SJMCT-SPEA-II algorithm. That means, the Pareto set is all non-dominated individuals between (**95.291**, **113.669**) and (**112.674**, **55.712**) solutions.

As seen in Tables 5.2-5.17 and Figures 5.9-5.24 it is difficult to know the best algorithm. Therefore, we decided to use the performance measures in Section 5.4. Also, as further study, the minimum and average values for the first test problems represented in Table 5.18.

a ii	G	Minimum	Obje	ctive 1	Objec	tive 2
Generation numbers	Crossover Probability	and Average	SJMCT- NSGA-II	SJMCT- SPEA-II	SJMCT- NSGA-II	SJMCT- SPEA-II
40		Min.	100.656	99.185	82.166	82.961
40		Ave.	103.030	110.635	107.039	100.793
100		Min.	100.656	91.587	81.107	78.141
100	0.6	Ave.	104.851	91.587	103.766	78.141
300	0.0	Min.	95.650	91.587	59.114	70.516
500		Ave.	105.004	112.763	92.760	74.589
500		Min.	95.650	91.587	59.114	69.618
500		Ave.	105.307	103.987	90.808	73.025
40		Min.	99.671	100.620	63.836	79.024
40		Ave.	102.538	107.125	108.494	102.572
100		Min.	93.275	100.620	63.836	69.860
100	0.7	Ave.	99.048	104.429	76.327	104.541
300	0.7	Min.	93.275	95.489	63.836	69.860
500		Ave.	100.443	105.700	79.836	92.877
500		Min.	93.275	94.736	63.836	69.860
500		Ave.	100.563	101.570	81.505	88.868
40		Min.	102.229	99.700	70.499	84.093
40		Ave.	108.290	107.702	102.904	104.088
100		Min.	99.356	99.700	70.499	53.667
100	0.8	Ave.	106.803	103.536	101.834	94.572
300	0.8	Min.	96.414	99.700	57.063	53.667
500		Ave.	103.552	103.608	63.022	98.691
500		Min.	96.414	97.304	57.063	53.667
500		Ave.	105.665	103.147	64.487	82.837
40		Min.	98.995	99.700	92.965	78.628
40		Ave.	108.666	108.378	112.163	97.185
100		Min.	98.995	99.700	79.486	78.628
100	0.9	Ave.	108.509	107.367	99.797	100.709
300	0.7	Min.	97.1156	99.700	72.5474	55.712
500		Ave.	99.8861	105.181	101.0502	91.798
500		Min.	97.116	95.291	70.647	55.712
500		Ave.	102.873	101.699	95.991	85.571

Table 5. 18. Minimum and average values for 60 jobs to all algorithm numbers and objectives

Table 5.18 leads to the best generation will be selected in next test problems to indicate the efficiency of proposed algorithms. More details about the effects of parameters for Tables 5.2-5.18 are explained in Section 5.3.

5.3. The Effect of Parameters

The effect of crossover, mutation probabilities and the effect of generation numbers of the best non-dominated front for 5 machines and 60 jobs can be discussed as follows:

• Effect of crossover and mutation probabilities:

The crossover operator used to generate two good individuals, called offspring, from the two selected parents (Vallada and Ruiz, 2011). A standard one-point crossover is used in this study to produce two offspring from two parent solutions and the mutation operator selects two random genes and then exchanges their positions.

Testing different crossover and mutation operators gives us the variety of Pareto frontier sets.

• Effect of generation numbers:

Due to the first test problems concerned with 60 jobs for all objectives, the minimum values and averages at most cases obtained by increasing the generation numbers from 40 to 500 as seen in Table 5.18. Moreover, this table shows that the best minimum value of each objective obtained when the generation number is 500 for each algorithm. So we conclude, there is a need for the second test problems that will be performed at different seeds when the generation number is 500.

Since the comparison of two Pareto front is too difficult because each front is a set of non-dominated solution. Therefore, the diversity metrics of multi-objective optimization (MOO) in Section 5.4 are used to define the best evolutionary performance of SJMCT-NSGA-II and SJMCT-SPEA-II algorithms. The mean and variance of spacing and spread metrics to the second test problems with 20, 60 and 100 jobs and generation number is 500 for 10 runs implemented by MATLAB programming are given respectively in Table 5.19 and Table 5.20.

5.4. Performance Measures

In multi-objective optimization the most important consideration is the quantitative metrics used for defining the optimality of different solution sets. However, comparing two sets of solutions is more complex because of the multi-objectives. These metrics make the comparison between algorithms is relatively easy. Typically, the performance measures help us to find the convergence and the diversity between the Pareto optimal front PF_{Known} and the obtained solutions PF_{True} . Veldhuizen and Lamont, (2000) display the small example to show the relationship between PF_{True} and PF_{Known} as given in Figure (5.25):

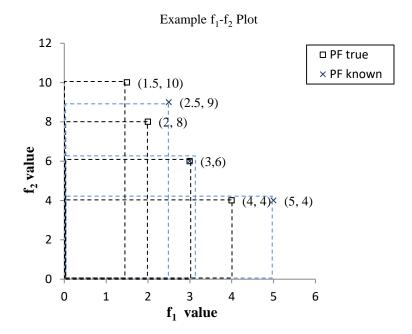


Figure 5. 25. *PF_{known} / PF_{true}* example (Veldhuizen and Lamont, 2000)

Jiang et al., (2014) considered four types of the MOO metrics based on capacity, convergence and diversity of performance criteria as follows:

- A. Capacity metrics: This group of metrics calculates the number or ratio of nondominated solutions in *S* (where, *S* solutions of the best non-dominated front PF_{True}) that satisfies given predefined requirements.
- B. Convergence metrics: These are the metrics for measuring the proximity of solution set *S* to optimal solution *P* (where *P* is the optimal Pareto front PF_{Known}).
- C. Diversity metrics: These metrics include two forms of information:

1) "Distribution" measures how evenly the solutions of S in the objective space scattered.

- 2) Spread indicates how well do the solutions of S arrive at the extreme of true PF_S .
- D. Convergence-diversity metrics: They indicate both the convergence and diversity of *S* on a single scale.

A. Capacity Metrics

The error ratio (ER) measure, indicates the percentage of solutions that are not members of the Pareto optimal set (Godinez, Espinosa, and Montes, 2010).

$$ER = \frac{\sum_{i=1}^{n} e_i}{n} \tag{5.1}$$

Where, *n* is the number of vectors in the current set of non-dominated vectors available, $e_i = 0$ indicates an ideal behavior and ER = 0. If vector *i* is a member of the Pareto optimal set that mean $e_i = 1$.

B. Convergence Metrics

Ghosh and Das, (2008) and Veldhuizen and Lamont, (2000) represented generational distance GD convergence metrics, which measure the degree of proximity based on the distance between the solutions in S to those in P.

$$GD(S,P) = \frac{\left|\sum_{i=1}^{|S|} a_i^q\right|^{1/q}}{|S|}$$
(5.2)

Where; $d_i = \min_{\vec{p} \in P} \left\| F(\vec{S}_i) - F(\vec{p}) \right\|$, $\vec{S}_i \in S$ and q = 2.

 d_i is a smallest distance from $\vec{S} \in S$ to the closet solution in *P*.

C. Diversity Metrics

Diversity metrics indicate the distribution and spread of solutions in the nondominated solution set *S*.

1) Distribution Metrics: (Deb et al., 2000) proposed a metric Δ' that compares all the solutions' consecutive distances with the average distance.

$$\Delta'(S) = \sum_{i=1}^{|S|} \frac{(d_i - \overline{d})}{|S|}$$
(5.3)

Where; d_i is the Euclidean distance between consecutive solutions in *S*, and \overline{d} , is the average of d_i . If all the pair of consecutive solutions have equal distance, then $d_i = \overline{d}$, $\Delta'(S) = 0$, and *S* has a perfect distribution.

Another distribution metrics is spacing metric proposed by (Schott, 1995). A metric measuring the closet distance of pairwise solutions in *S*. (Veldhuizen and Lamont, 2000) defined this metric as given in equation (5.4):

$$SP(S) = \sqrt{\sum_{i=1}^{|S|} (\overline{d} - d_i)^2 / |S| - 1}$$
(5.4)

Where,

$$d_{i} = min_{j}(|f_{1}^{i}(\vec{x}) - f_{1}^{j}(\vec{x})| + |f_{2}^{i}(\vec{x}) - f_{2}^{j}(\vec{x})|) \qquad i, j = 1, \dots, S$$

 \overline{d} is the mean of all d_i and S is the number of obtained solutions. A value of zero for this metric indicates all members of S are equidistantly spaced.

 Spread Metric: The overall Pareto spread (OS) quantifies how much of the extreme regions are covered by set *S* (Jiang et al., 2014).

$$OS(S, P_G, P_B) = \prod_{k=1}^{m} \frac{\left| \max_{\vec{S} \in S} f_k(\vec{S}) - \min_{\vec{S} \in S} f_k(\vec{S}) \right|}{|f_k(P_B) - f_k(P_G)|}$$
(5.5)

Where $\max_{\vec{s}\in S} f_k(\vec{s})$, $\min_{\vec{s}\in S} f_k(\vec{s})$ are the maximum and minimum values of the k^{th} objective in *S*. For more details see (Wu and Azarm, 2000).

Distribution and Spread Metrics: (Deb et al., 2002) have proposed Diversity Metric
 Δ. This metric consider the distribution and spread of obtained solution S simultaneously. It is defined in Equation (5.6):

$$\Delta = \frac{d_f + d_l + \sum_{i=1}^{N-1} |(d_i - \bar{d})|}{d_f + d_l + (S - 1)\bar{d}}$$

$$d_i = \sqrt{\left(f_1^i(\vec{x}) - f_1^j(\vec{x})\right)^2 + \left(f_2^i(\vec{x}) - f_2^j(\vec{x})\right)^2}$$
(5.6)

 d_i is the Euclidean distance between consecutive solutions (Ghosh and Das, 2008) and \bar{d} is the average of all distances d_i . d_f and d_l represent the Euclidean distance between the extreme solutions and the boundary solutions of the obtained non-dominated set. As seen in Figure 5.26. d_i , i=1,2,...,(S-1) and (S-1) the consecutive distance of the best non-dominated front. In this metric, lesser value is the better result (Deb et al., 2000).

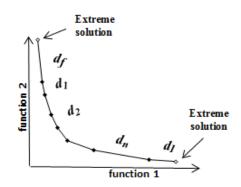


Figure 5. 26. The Euclidean distance in the solutions

D. Convergence-Diversity Metrics

The metric Inverted General Distance (IGD) is introduced by (Jiang et al., 2014) measures the quality of the optimal solution set *S* in terms of convergence and diversity on a single scale.

$$IGD(S,P) = \frac{\left|\sum_{i=1}^{|P|} a_i^q\right|^{1/q}}{|P|}$$
(5.7)

Where, $d_i = \min_{\vec{S} \in S} \left\| F(\vec{P}_i) - F(\vec{S}) \right\|$, $\vec{P}_i \in P$ and q = 2

 d_i is a smallest distance from $\vec{P} \in P$ to the closet solution in *S*.

Instead of measuring the average distance in IGD, the maximum Pareto front error (MPFE) is defined as:

$$MPFE(P,S) = \max_{\vec{P} \in P} \sqrt{\min_{\vec{S} \in S} \sum_{k=1}^{m} |f_k(\vec{S}) - f_k(\vec{P})|^2}$$
(5.8)

This metric finds the maximum distance from solutions in P to the closest solution in S.

In order to satisfy the comparison purpose, the second simulation test problems for each algorithm at generation 500 with different seeds and with different number of jobs (20, 60 and 100) are represented in appendices A, B, C and D.

In appendix A, Tables 1-3 and Figures (Appendix A.1 - Appendix A.30) include the Pareto solutions for unrelated multi-objective parallel machine scheduling problem for 5 machines and (20, 60 and 100) jobs with crossover probability 0.6.

In Appendix B, Tables 1-3 and Figures (Appendix B.1 - Appendix B.30) consist of the Pareto solutions for unrelated multi-objective parallel machine scheduling problem for 5 machines and (20, 60 and 100) jobs with crossover probability 0.7.

In Appendix C, Tables1-3 and Figures (Appendix C.1 - Appendix C.30) consist of the Pareto solutions for unrelated multi-objective parallel machine scheduling problem for 5 machines and (20, 60 and 100) jobs with crossover probability 0.8.

Finally, in Appendix D, Tables1-3 and Figures (Appendix D.1 - Appendix D.30) contain the Pareto solutions for the same problem for 5 machines and (20, 60 and 100) jobs with crossover probability 0.9.

In general, the obtained results show the ability of each algorithm to determine the final non-dominated solutions but it cannot determine the best algorithm because the Pareto solutions are closed to each other. Therefore, the Diversity metrics (spacing diversity metric SP, distribution and spread diversity metric Δ) are selected from all previous measures because it dependent on the obtained Pareto front. Tables 5.19 and 5.20 represent the mean and variance of diversity metrics for 10 run trails to each algorithm.

Normhan of iab	Crossover		ersity Metric P)		ion and Spread ty Metric (Δ)		
Number of job	probability	SJMCT- NSGA-II	SJMCT- SPEA-II	SJMCT- NSGA-II	SJMCT- SPEA-II		
	0.6	3.653	2.415	0.677	0.631		
20	0.7	4.445	4.115	0.717	0.711		
20	0.8	1.925	2.928	0.601	0.682		
	0.9	3.362	2.775	0.644	0.600		
	0.6	8.352	6.159	0.702	0.644		
60	0.7	4.803	7.746	0.617	0.673		
00	0.8	3.917	5.497	0.583	0.621		
	0.9	8.150	7.388	0.686	0.711		
	0.6	11.946	15.168	0.751	0.769		
100	0.7	13.681	9.330	0.763	0.601		
100	0.8	15.592	9.175	0.824	0.762		
	0.9	10.726	10.258	0.783	0.734		

Table 5. 19. The mean of diversity metrics for non-dominated front to each algorithm for 10 runs (secondtest problems)

Table 5. 20. The variance of diversity metrics for non-dominated front to each algorithm for 10 runs(second test problems)

Number of tob	Crossover	Spacing Divers	sity Metric(SP)	Distribution and Sprea Diversity Metric (Δ)		
Number of job	probability	SJMCT- NSGA-II	SJMCT- SPEA-II	SJMCT- NSGA-II	SJMCT- SPEA-II	
	0.6	3.671	1.645	0.013	0.007	
20	0.7	8.983	6.356	0.033	0.004 0.019 0.005 0.045	
20	0.8	2.460	3.129	0.018	0.019	
	0.9	2.963	2.278	0.024	0.005	
	0.6	22.399	6.469	0.010	0.045	
(0	0.7	7.479	7.159	0.022	0.004	
60	0.8	3.672	13.873	0.008	0.044	
	0.9	21.302	11.560	0.011	0.018	
	0.6	123.890	116.747	0.024	0.016	
100	0.7	70.393	66.193	0.024	0.100	
100	0.8	47.570	33.945	0.021	0.026	
	0.9	41.014	67.066	0.018	0.013	

Tables 5.19 and 5.20 consider the diversity metric values for the second test problems. In order to enhance the best performance the comparison between the two algorithms as follows:

- In Table 5.19 the smallest mean value of spacing metric is 1.925 in SJMCT-NSGA-II. That means, SJMCT-NSGA-II has the small distance at test with crossover probability 0.8 and with 20 jobs. While the smallest mean value equal to 2.415 in SJMCT-SPEA-II at test with crossover probability 0.6 and with 20 jobs.
- In Table 5.19 the smallest mean value of spread metric is 0.583 in SJMCT-NSGA-II at test with crossover probability 0.8 and with 60 jobs. Also, the smallest mean value 0.600 at test with crossover probability 0.9 and with 20 jobs.
- In Table 5.20 the smallest variance value of spacing metric is 1.645 at test with crossover probability 0.6 and with 20 jobs in SJMCT-SPEA-II. Also, it equal to 2.460 at test with crossover probability 0.8 and with 20 jobs in SJMCT-NSGA-II. Furthermore, the smallest variance value of spread metric is 0.004 at test with crossover probability 0.7 with 20 and 60 jobs in SJMCT-SPEA-II. While, it equals to 0.008 in SJMCT-NSGA-II algorithm at test with crossover probability 0.8 and with 60 jobs.

In other words, for each job Tables 5.19 and 5.20 can be explained as follows:

- For 20 jobs the mean and variance values of diversity metrics in SJMCT-SPEA-II is smaller than SJMCT-NSGA-II by 75% precent.
- For 60 jobs the mean and the variance values of spread metric in SJMCT-NSGA-II is smaller than SJMCT-SPEA-II by 75% precent. Also, the mean values of spacing metric in both algorithms equal to 50% precent and the variance values in 60 jobs of spacing metric in SJMCT-SPEA-II is smaller than SJMCT-NSGA-II by 75% precent.
- For 100 jobs the mean and the variance values of spacing metric in SJMCT-SPEA-II is smaller than SJMCT-NSGA-II by 75% precent. Also, and the mean values of spread metric in SJMCT-SPEA-II is smaller than SJMCT-NSGA-II by 75% precent and the variance values of spread metric in both algorithms equal to 50% precent.

According to the experimintal results, on most cases, SJMCT-SPEA-II algorithm is better than the SJMCT-NSGA-II algorithm based on the mean and variance values of diversity metrics. That means the SJMCT-SPEA-II algorithm outperformes than SJMCT-NSGA-II.

5.5. The time of implementation

In this section, the feasible running time during executing the proposed algorithms SJMCT-NSGA-II and SJMCT-SPEA-II for all jobs with respect to crossover probabilities (0.6, 0.7, 0.8 and 0.9) are given in Table 5.21.

		Crossover	r Prob. 0.6	Crossover	r Prob. 0.7	Crossover	r Prob. 0.8	Crossover	r Prob. 0.9
Number	D	Time in	Time in	Time in	Time in	Time in	Time in	Time in	Time in
of jobs	Run	second	second	second	second	second	second	second	second
		SJMCT- NSGA-II	SJMCT- SPEA-II	SJMCT- NSGA-II		SJMCT- NSGA-II	SJMCT- SPEA-II	SJMCT- NSGA-II	SJMCT- SPEA-II
	1	967.471	571.390	1058.079	689.900	1085.146	683.118	1106.223	721.679
	2	980.014	583.901	1245.825	626.850	1164.926	701.433	1059.521	646.834
	3	1104.007	635.357	1084.479	662.924	1065.065	641.520	1039.019	635.490
	4	998.972	680.116	1132.613	611.302	1084.335	737.335	1080.692	803.987
20	5	1007.078	666.725	1174.816	645.403	1078.374	623.905	1109.272	680.713
20	6	1026.416	580.067	1041.795	670.298	1102.594	694.027	1107.050	648.016
	7	952.461	586.704	1236.804	704.621	1202.466	727.222	1106.783	799.539
	8	998.456	592.224	1183.025	613.109	1024.877	800.919	1122.158	843.626
	9	1050.007	552.026	1094.522	786.645	1187.786	732.809	1126.215	790.031
	10	1115.048	557.017	1127.016	805.425	1081.074	766.746	1116.350	655.506
	1	2046.756	2391.281	1957.160	1812.959	2120.108	1587.196	2246.470	1623.477
	2	2553.467	2273.719	2398.855	2037.075	2244.856	1713.006	2560.084	2133.748
	3	2374.902	2338.787	2411.098	2089.031	2543.429	2138.496	2633.918	2179.575
	4	2551.688	2315.890	2423.819	2070.147	2378.141	2180.710	2707.688	2234.209
60	5	2581.791	2316.141	2409.290	2221.823	2334.725	2183.359	2658.536	2244.689
60	6	2537.604	2400.167	2505.478	2199.132	3551.508	2459.062	2653.767	2226.643
	7	2590.568	2305.287	2520.043	2243.515	2798.671	2230.224	2615.379	2300.624
	8	2603.123	2317.850	2580.543	2204.830	2757.490	2277.624	2702.401	2257.214
	9	2508.108	2316.629	2640.918	2129.395	3306.445	2340.241	2741.937	2211.559
	10	2564.135	2372.476	2643.406	2181.727	2777.679	2181.572	2757.501	2211.103
	1	2884.634	2777.606	3097.011	2565.551	2928.928	2990.946	3507.810	3146.403
	2	4026.407	3688.663	3020.067	3214.600	3876.872	3551.773	3987.180	3573.405
	3	4049.246	3486.287	4080.368	3676.209	4057.971	3664.288	4013.143	3708.259
	4	4089.591	3646.479	4147.180	3456.658	4115.976	3519.977	3962.430	3662.431
100	5	4003.891	3713.938	4022.216	3716.522	4067.952	3727.317	4035.916	3598.593
100	6	4059.865	3681.047	4046.430	3576.281	4143.247	3639.772	3972.169	3614.173
	7	4151.922	3620.690	4056.137	3727.200	3938.903	3672.502	4097.809	3693.397
	8	4099.609	3669.987	4039.054	3713.942	4086.299	3521.890	4055.563	3639.965
	9	3964.667	3659.561	4026.973	3592.622	4029.191	3760.300	4072.633	3679.504
	10	4087.830	3629.579	4100.362	3581.727	4120.590	3655.493	4085.536	3702.196

Table 5. 21. Time in second for the best solution to each algorithm for all the second test problems

Figures 5.27-5.29 represent the starting and ending time in seconds to each algorithm for (20, 60 and 100) jobs respectively.

For 20 jobs, in view of Figure 5.27 and Table 5.21, the smallest time is **552.026** seconds in SJMCT-SPEA-II at crossover probability 0.6. Moreover, the largest time is **1245.825** seconds in SJMCT-NSGA-II at crossover probability 0.7.

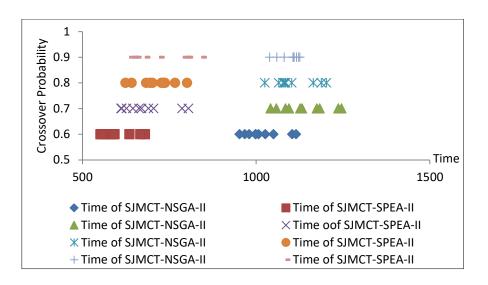


Figure 5. 27. Time in second with all crossover probabilities for 20 jobs

For 60 jobs, Figure 5.28 and Table 5.21 illustrate the smallest time is **1587.196** seconds in SJMCT-SPEA-II at crossover probability 0.8. The largest time is **3551.508** seconds in SJMCT-NSGA-II at crossover probability 0.8.

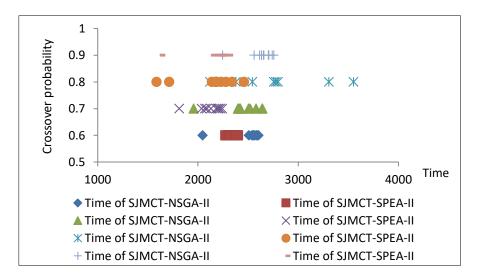


Figure 5. 28. Time in second with all crossover probabilities for 60 jobs

For 100 jobs, it can be observed from Figure 5.29 and Table 5.21, the smallest time is **2565.551** seconds in SJMCT-SPEA-II at crossover probability 0.7. The largest time is **4151.922** seconds in SJMCT-NSGA-II at crossover probability 0.6.

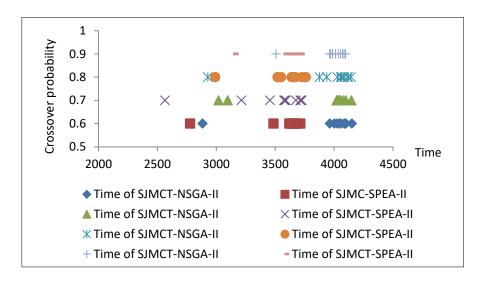


Figure 5. 29. Time in second with all crossover probabilities for 100 jobs

During the performance of the two algorithms, it is clear to see that SJMCT-SPEA-II algorithm has the smallest running time as compared with SJMCT-NSGA-II as seen in Table 5.21 and Figures 5.27-5.29.

6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this thesis, a novel algorithm with name Sequence Job Minimum Completion Time (SJMCT) is proposed to represent the scheduling of unrelated parallel machines with non-identical jobs. The proposed algorithm was compared with other dispatching rules (LPT and SPT). Numerical example is solved by using GAMS-CPLEX programming to show the efficiency of proposed algorithm. The associated promising result with small size one objective problem is a motivation to use it with large size multi-objective problems.

As seen in the literature review, many real life multi-objective scheduling problems solved by mathematical programming, dispatching rules, neighborhood search, genetic and heuristic algorithms. Therefore, the main contribution of this thesis is to develop the multi-objective hybrid evolutionary algorithms and find the best Pareto front with more than one objective.

Two algorithms named Sequence Job Minimum Completion Time based on Non-dominated Sorting Genetic Algorithm (SJMCT-NSGA-II) and Sequence Job Minimum Completion Time based on Strength Pareto (SJMCT-SPEA-II) have been proposed to minimize the maximum completion time and the total tardiness.

The performance of the two algorithms SJMCT-NSGA-II and SJMCT-SPEA-II are tested by using MATLAB programming Version 8.3.0.532 (R2014a). It is interested to know, this program is suitable to solve large particular scheduling problem with small changes.

The proposed algorithms are able to find the best non-dominated Pareto front by each algorithm for big dimensional multi-objective parallel machine scheduling problem.

An intensive work of numerical experimentations has been performed. The first test problems are done with 5 parallel machines and 60 jobs and generation numbers from 40-500. The second test problems are done with 5 parallel machines and 20, 60 and 100 jobs and generation 500.

For most problems, several good solutions are introduced by changing the crossover and mutation probabilities.

To compare multi-objective evolutionary algorithms performance, we need to use some metrics. Therefore, the results of two algorithms have been compared by using two performance diversity metrics as spacing and spread metrics. In the simulation results of 60 jobs, a reasonably good minimum value of solutions and good spread are obtained at generation 500. Therefore, in order to observe the consistency of outcome of the proposed algorithms with different initial populations are selected at generation equals to 500.

During the performance evaluation of proposed algorithm, it is observed that, the SJMCT-SPEA-II algorithm has the smaller mean and variance values for each spacing and spread metrics in most of the second test problems. Also, the performance of SJMCT-SPEA-II has smallest running time than SJMCT-NSGA-II in second test problems. The smallest running time of SJMCT-SPEA-II was between 9 minutes at 20 jobs and 43 minutes at 100 jobs, while the running time of SJMCT-NSGA-II was between 21 minutes at 20 jobs and 69 minutes at 100 jobs.

In general, we conclude that, the proposed algorithm SJMCT has more convergence as compared with other algorithms in computing the total completion time of each machine. That means, it gives a good assignment of jobs at the machines and it make a good balance in workload over the parallel machines. In addition, there is no order forced to submit certain job. Also, the two hybrid algorithms are efficient and practical for solving large size problems. Moreover, SJMCT-SPEA-II has the highest quality performance than SJMCT-NSGA-II in both efficiency and the running time.

In future work, some comparison for the performance of proposed algorithm with other metaheuristic method can be done. It may also interest to apply other genetic operator (crossover and mutation) and generate a new different offspring. Also, other performance measures can be implemented as a future research direction.

Another future research direction is related with it could be interesting to develop other complex scheduling problems, such as flow shop problems, preceding constraints, deterioration or the machine with interrupted and unavailability periods. In addition, the current scheduling model can be developed by adding the rejection job constraint and rejection penalty.

Another opportunity for this research is the consideration of the problem with the other optimization objectives such as minimization of early and tardy penalties or weighted completion time and weighted tardiness. It also could be interesting to extend this study for more than two objectives.

REFERENCES

- Akyol, D. (2006). Neural network based optimization in production scheduling. Ph.D.Thesis. Izmir: Dokuz Eylul University, Industrial Engineering.
- Allahverdi, A., Gupta, J. N. D. and Aldowaisan, T. (1999). A review of scheduling research involving setup considerations. *Omega* 27(2): 219–239.
- Muralidhar, A. and Alwarsamy, T. (2013). Multi-objective optimization of parallel machine scheduling using neural networks. *International Journal of Latest Trends in Engineering and Technology (IJLTET)* 2(2): 127-132.
- Arroyo, J.E.C. and Armentano, V.A. (2005). Genetic local search for multi-objective fowshop scheduling problems. *European Journal of Operational Research* 167(3). *Multicriteria Scheduling*: 717–738.
- Bagchi, T.P. (2001). Pareto-optimal solutions for multi-objective production scheduling problems. Evolutionary multi-criterion optimization Pp. 458–471. *Springer, Berlin, Heidelberg.* https://link.springer.com/chapter/10.1007/3-540-44719-9_32, accessed March 17, 2017.
- Balakrishnan, N., Kanet, J.J. and Sridharan, V. (1999). Early/tardy scheduling with sequence dependent setups on uniform parallel machines. *Computers & Operations Research* 26(2): 127–141.
- Balasubramanian, H., Fowler, J., Keha, A. and Pfund, M. (2009). Scheduling interfering job sets on parallel machines. *European Journal of Operational Research* 199(1): 55–67.
- Balin, S. (2011). Non-identical parallel machine scheduling using genetic algorithm. *Expert Systems with Applications* 38(6): 6814–6821.
- Bandyopadhyay, S. and Bhattacharya, R. (2013). Solving multi-objective parallel machine scheduling problem by a modified NSGA-II. *Applied Mathematical Modelling* 37(10–11): 6718–6729.
- Chand, P. and Mohanty, J.R. (2013). Solving vehicle routing problem with proposed non-dominated sorting genetic algorithm and comparison with classical evolutionary algorithms. *International Journal of Computer Applications* 69(26): 34–41.
- Chang, P-C., Chen, S-H. and Hsieh J-C. (2006). A global archive sub-population genetic algorithm with adaptive strategy in multi-objective parallel-machine scheduling problem. *Advances in Natural Computation* Pp. 730–739. Springer, Berlin, Heidelberg.://link.springer.com/chapter/10.1007/11881070_98, accessed March 17, 2017.
- Cheng, B., Yang S., Hu, X. and Chen, B. (2012). Minimizing makespan and total completion time for parallel batch processing machines with non-identical job sizes. *Applied Mathematical Modelling* 36(7): 3161–3167.

- Cheng, R. and Gen, M. (1997). Parallel machine scheduling problems using memetic algorithms. *Computers & Industrial Engineering* 33(3). Selected Papers from the Proceedings of 1996 ICC&IC: 761–764.
- Cochran, J.K., Horng, S-M. and Fowler, J.W. (2003). A Multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. *Computers & Operations Research* 30(7): 1087–1102.
- Crauwels, H.A.J., Potts, C.N. and Van Wassenhove L.N. (1998). Local search heuristics for the single machine total weighted tardiness scheduling problem. *INFORMS Journal on Computing* 10(3): 341–350.
- Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. *IEEE Transactions on Evolutionary Computation* 6(2): 182–197.
- Deb, K., Agrawal, S. Pratap, A. and Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. *Parallel Problem Solving from Nature PPSN VI* Pp. 849–858. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg. https://link.springer.com/ chapter/10.1007/3-540-45356-3_83, accessed November 15, 2017.
- Dyer, M.E. and Wolsey, L.A. (1990). Formulating the Single machine sequencing problem with release dates as a mixed integer program. *Discrete Applied Mathematics* 26(2): 255–270.
- Ehrgott, M. (2006). Multicriteria optimization, 2nd Edition. *Springer science & business media*.
- Eroglu, D.Y., Ozmutlu, H.C. and Ozmutlu, S. (2014). Genetic algorithm with local search for the unrelated parallel machine scheduling problem with sequencedependent set-up times. *International Journal of Production Research* 52(19): 5841–5856.
- Fallah-Mehdipour, E., Haddad, O.B., Tabari, M.M.R. and Mariño, M.A. (2012). Extraction of decision alternatives in construction management projects: application and adaptation of NSGA-II and MOPSO. *Expert Systems with Applications* 39(3): 2794–2803.
- França, P.M., Mendes, A. and Moscato, P. (2001). A memetic algorithm for the total tardiness single machine scheduling problem. *European Journal of Operational Research* 132(1): 224–242.
- Frenk, J.B.G., and Rinnooy Kan, A.H.G. (1987). The asymptotic optimality of the LPT rule. *Mathematics of Operations Research* 12(2): 241–254.
- Gharari, R., Poursalehi, N., Abbasi, M., and Aghaie, M. (2016). Implementation of strength Pareto evolutionary algorithm II in the multi-objective burnable poison placement optimization of KWU pressurized water reactor. *Nuclear Engineering and Technology* 48(5): 1126–1139.

- Ghosh, A. and Das, M.K. (2008). Non-dominated rank based sorting genetic algorithms. *Fundamenta Informaticae* 83(3): 231–252.
- Godinez, A.C., Espinosa, L.E.M. and Montes, E.M. (2010). An experimental comparison of multi-objective algorithms: NSGA-II and OMOPSO. 2010 IEEE Electronics, Robotics and Automotive Mechanics Conference Pp. 28–33.
- Gupta, J.N.D. and Ho, J.C. (2001). Minimizing makespan subject to minimum flowtime on two identical parallel machines. *Computers & Operations Research* 28(7): 705–717.
- Hong, T-P., Huang, C-M. and Yu, K-M. (1998). LPT scheduling for fuzzy tasks. Fuzzy Sets and Systems 97(3): 277-286.
- Ishibuchi, H. and Murata, T. (1998). A multi-objective genetic local search algorithm and its application to flowshop scheduling. *IEEE Transactions on Systems*, *Man, and Cybernetics, Part C (Applications and Reviews)* 28(3): 392–403.
- Jaszkiewicz, A. (2002). Genetic local search for multi-objective combinatorial optimization. *European Journal of Operational Research* 137(1): 50–71.
- Jiang, S., Ong, Y-S., Zhang, J. and Feng, L. (2014). Consistencies and contradictions of performance metrics in multiobjective optimization. *IEEE Transactions on Cybernetics* 44(12): 2391–2404.
- Joo, C.M. and Kim, B.S. (2015). Hybrid genetic algorithms with dispatching rules for unrelated parallel machine scheduling with setup time and production availability. *Computers & Industrial Engineering* 85: 102–109.
- Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P. and Werner, F. (2008). Algorithms for flexible flow shop problems with unrelated parallel machines, setup times, and dual criteria. *The International Journal of Advanced Manufacturing Technology* 37(3–4): 354–370.
- Kacem, I., Hammadi, S. and Borne, P. (2002). Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems. *IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)* 32(1): 1–13.
- Kamisli Ozturk, Z. and Sabti, A. (2017). Novel solution approaches for multi-objective parallel machine scheduling. 21st Conference of the international federation of operational research societies. Quebec, Canada / 17.07.2017-21.07.2017.
- Kasimbeyli, R., Ozturk, Z.K., Kasimbeyli, N., Yalcin, G.D. and Icmen, B. (2015). Conic scalarization method in multiobjective optimization and relations with other scalarization methods. *Modelling, Computation and Optimization in Information Systems and Management Sciences* Pp. 319–329. Advances in Intelligent Systems and Computing. Springer, Cham. https://link.springer.com/ chapter/10.1007/978-3-319-18161-5_27, accessed November 5, 2017.

- Koulamas, C. and Kyparisis, G.J. (2009). A modified LPT algorithm for the two uniform parallel machine makespan minimization problem. *European Journal* of Operational Research 196(1): 61–68.
- Laguna, M., Barnes, J.W. and Glover, F.W. (1991). Tabu search methods for a single machine scheduling problem. *Journal of Intelligent Manufacturing* 2(2): 63–73.
- Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B. (1993). Chapter 9 sequencing and scheduling: algorithms and complexity. Handbooks in Operations Research and Management Science Pp. 445–522. Logistics of Production and Inventory. Elsevier. http://www.sciencedirect.com/science/ article/pii/S0927050705801896.
- Lei, D. (2009). Multi-objective production scheduling: A survey. *The International Journal of Advanced Manufacturing Technology* 43(9–10): 926.
- Li, X., Amodeo, L., Yalaoui, F. and Chehade, H. (2010). A multiobjective optimization approach to solve a parallel machines scheduling problem. *Adv. in Artif. Intell.* 2010: 2:1–2:10.
- Li, X., Yalaoui, F., Amodeo, L. and Chehade, H. (2012). Metaheuristics and exact methods to solve a multiobjective parallel machines scheduling problem. *Journal of Intelligent Manufacturing* 23(4): 1179–1194.
- Lin, C-H., and Liao, C-J. (2008). Makespan minimization for multiple uniform machines. *Computers & Industrial Engineering* 54(4): 983–992.
- Lin, Y-K. and Lin, H-C. (2015). Bicriteria scheduling problem for unrelated parallel machines with release dates. *Computers & Operations Research* 64: 28–39.
- Loukil, T., Teghem, J. and Tuyttens, D. (2005). Solving multi-objective production scheduling problems using metaheuristics. *European Journal of Operational Research* 161(1). IEPM: Focus on Scheduling: 42–61.
- Lu, L., Zhang, L. and Yuan, J. (2008). The unbounded parallel batch machine scheduling with release dates and rejection to minimize makespan. *Theoretical Computer Science* 396(1): 283–289.
- Ma, Y., Chu, C. and Zuo, C. (2010). A Survey of scheduling with deterministic machine availability constraints. *Computers & Industrial Engineering* 58(2). Scheduling in Healthcare and Industrial Systems: 199–211.
- Massabò, I., Paletta, G. and Ruiz-Torres, A.J. (2016). A note on longest processing time algorithms for the two uniform parallel machine makespan minimization problem. *Journal of Scheduling* 19(2): 207–211.
- Mazdeh, M.M., Zaerpour, F., Zareei, A. and Hajinezhad, A. (2010). Parallel machines scheduling to minimize job tardiness and machine deteriorating cost with deteriorating jobs. *Applied Mathematical Modelling* 34(6): 1498–1510.

- Memari, A., Rahim, A.R.A., Hassan, A. and Ahmad, R. (2016). A tuned NSGA-II to optimize the total cost and service level for a just-in-time distribution network. *Neural Computing and Applications*: 1–15.
- Mirabedini, S.N. and Mina, H. (2012). Multi-objective optimization research on multi parallel machine with different preventive maintenance planning and scheduling with genetic algorithm. *International Journal of Academic Research in Business and Social Sciences* 2(12): 129–139.
- Mishra, B. and Patnaik R.K. (2009). Genetic Algorithm and Its Variants: Theory and Applications. BTech. http://ethesis.nitrkl.ac.in/199/ accessed January 9, 2018.
- Moslehi, G. and Mahnam, M. (2011). A Pareto approach to multi-objective flexible jobshop scheduling problem using particle swarm optimization and local search. *International Journal of Production Economics* 129(1): 14–22.
- Murata, T., Ishibuchi, H. and Tanaka, H. (1996). Multi-objective genetic algorithm and its applications to flowshop scheduling. *Computers & Industrial Engineering* 30(4): 957–968.
- Ou, J., Zhong, X. and Wang, G. (2015). An improved heuristic for parallel machine scheduling with rejection. *European Journal of Operational Research* 241(3): 653–661.
- Öztürk, C. and Ornek, A.M. (2014). Operational extended model formulations for advanced planning and scheduling systems. *Applied Mathematical Modelling* 38(1): 181–195.
- Parker, R. G.(1996). Deterministic scheduling theory. CRC Press.
- Pinedo, M. L. (2008). Scheduling: Theory, algorithms, and systems. 3rd edition. Springer Publishing Company, Incorporated.
- Pinedo, M.L. (2005). Planning and scheduling in manufacturing and services. Springer Series in Operations Research. New York: Springer-Verlag. http://link. springer.com/10.1007/b139030.
- Potts, C.N. (1985). Analysis of a linear programming heuristic for scheduling unrelated parallel machines. Discrete Applied Mathematics 10(2): 155–164.
- Rajendran, C. and Ziegler, H. (2003). Scheduling to minimize the sum of weighted flowtime and weighted tardiness of jobs in a flowshop with sequence-dependent setup times. *European Journal of Operational Research* 149(3): 513–522.
- Reddy M.J., and Kumar D.N. (2007). Multi-objective differential evolution with application to reservoir system optimization. *Journal of Computing in Civil Engineering* 21(2): 136–146.
- Ruiz, R. and Andrés-Romano, C. (2011). Scheduling unrelated parallel machines with resource-assignable sequence-dependent setup times. *The International Journal* of Advanced Manufacturing Technology 57(5–8): 777–794.

- Schott, J.R. (1995). Fault tolerant design using single and multi-criteria genetic algorithm optimization. AFIT/CI/CIA-95-039. air force inst of tech wright-patterson afb oh, air force inst of tech wright-patterson afb oh. http://www.dtic.mil/docs/citations/ADA296310.
- Senthiil, P.V., Selladurai, V. and Rajesh, R. (2007). Parallel machine scheduling (pms) in manufacturing systems using the ant colonies optimization algorithmic rule. Journal of Applied Sciences 7: 208–213.
- Seshadri, A., (2006). Multi-objective optimization using evolutionary algorithms (MOEA). https://www.scribd.com/document/263374723/NSGA-2-tutorial.
- Sivrikaya-Şerifoğlu, F. and Ulusoy, G. (1999). Parallel machine scheduling with earliness and tardiness penalties. *Computers & Operations Research* 26(8): 773–787.
- Srinivas, N. and Deb, K. (1994). Multi-objective optimization using nondominated sorting in genetic algorithms. *Evolutionary Computation* 2: 221–248.
- Strusevich, V.A. and Rustogi, K. (2017). Scheduling with time-changing effects and rate-modifying activities, vol.243. International Series in Operations Research & Management Science. Cham: Springer International Publishing. http://link.springer.com/10.1007/978-3-319-39574-6.
- Suresh, V. and Chaudhuri, D. (1996). Bicriteria scheduling problem for unrelated parallel machines. *Computers & Industrial Engineering* 30(1): 77–82.
- Tavakkoli-Moghaddam, R., Taheri, F. and Bazzazi, M. (2008). Multi-objective unrelated parallel machines scheduling with sequence-dependent setup times and precedence constraints. *International Journal of Engineering -Transactions A: Basics* 21(3): 269-278.
- Torabi, S.A., Sahebjamnia, N., Mansouri, S. A. and Bajestani, M.A. (2013). A particle swarm optimization for a fuzzy multi-objective unrelated parallel machines scheduling problem. *Applied Soft Computing* 13(12): 4750–4762.
- Uma, R.N., Wein, J. and Williamson, D.P. (2006). On the relationship between combinatorial and LP-based lower bounds for NP-hard scheduling problems. *Theoretical Computer Science* 361(2). 241–256.
- Unlu, Y. and Mason, S.J. (2010). Evaluation of mixed integer programming formulations for non-preemptive parallel machine scheduling problems. *Comput. Ind. Eng.* 58(4): 785–800.
- Vallada, E. and Ruiz, R. (2011). A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times. *European Journal of Operational Research* 211(3): 612–622.
- Veldhuizen, D.A.V. and Lamont, G.B. (2000). On measuring multi-objective evolutionary algorithm performance. *In* Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512) Pp. 204–211 vol.1.

- Wang, S. and Liu, M. (2015). Multi-objective optimization of parallel machine scheduling integrated with multi-resources preventive maintenance planning. *Journal of Manufacturing Systems* 37, Part 1: 182–192.
- Weng, M.X., Lu, J. and Ren, H. (2001). Unrelated parallel machine scheduling with setup consideration and a total weighted completion time objective. *International Journal of Production Economics* 70(3): 215–226.
- Wu, J. and Azarm, S. (2000). Metrics for quality assessment of a multi-objective design optimization solution set. *Journal of Mechanical Design* 123(1): 18–25.
- Xing, W. and Zhang, J. (2000). Parallel machine scheduling with splitting jobs. *Discrete Applied Mathematics* 103(1–3): 259–269.
- Yang, S-J. (2013). Unrelated parallel-machine scheduling with deterioration effects and deteriorating multi-maintenance activities for minimizing the total completion time. *Applied Mathematical Modelling* 37(5): 2995–3005.
- Yazdani, M., Amiri, M. and Zandieh, M. (2010). Flexible job-shop scheduling with parallel variable neighborhood search algorithm. *Expert Systems with Applications* 37(1): 678–687.
- Yeh, W-C., Chuang, M-C. and Lee, W-C. (2015). Uniform parallel machine scheduling with resource consumption constraint. *Applied Mathematical Modelling* 39(8): 2131–2138.
- Yeh, W-C., Lai, P-J., Lee, W-C. and Chuang, M-C. (2014). Parallel-machine scheduling to minimize makespan with fuzzy processing times and learning effects. *Information Sciences* 269: 142–158.
- Yusoff, Y., Ngadiman, M.S. and Zain, A.M. (2011). Overview of NSGA-II for optimizing machining process parameters. *Proceedia Engineering* 15. CEIS 2011: 3978–3983.
- Zhang, M. and Luo, C. (2013). Parallel-machine scheduling with deteriorating jobs, rejection and a fixed non-availability interval. *Applied Mathematics and Computation* 224: 405–411.
- Zitzler, E., Laumanns, M. and Thiele, L. (2001). SPEA2: Improving the Strength Pareto Evolutionary Algorithm. http://kdd.cs.ksu.edu/Courses/Spring-2007/ CIS830 / Handouts/P8.pdf

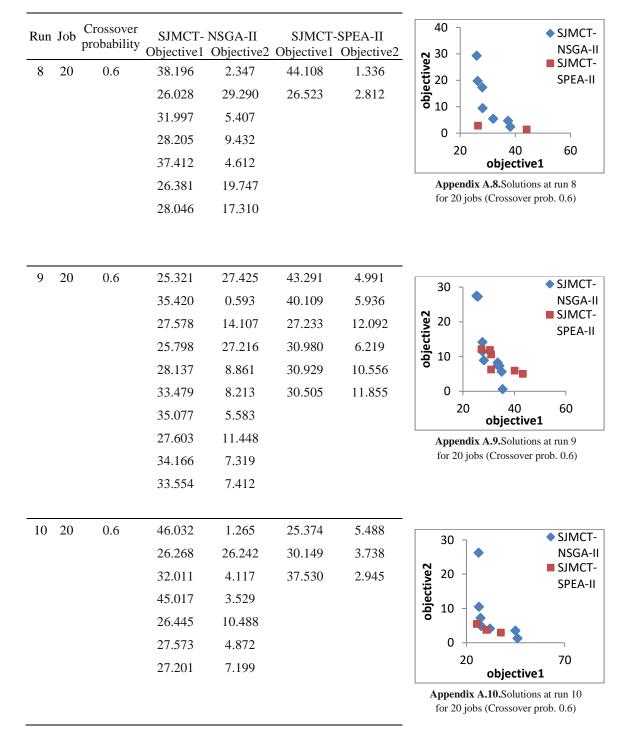
APPENDIX A

Simulation results for second test problems to each algorithm for 5 machines and 20 jobs. The values of the best non-dominated front at generation 500 with number of population are 100 and crossover probability 0.6 as given in APPENDIX A. Table 1.

> ♦ SJMCT-NSGA-II SJMCT-SPEA-II

SJMCT-NSGA-II SJMCT-SPEA-II

SJMCT-NSGA-II SJMCT-SPEA-II


Ru	ı Job	Crossover probability	SJMCT- Objective1	NSGA-II Objective2	SJMCT- Objective1	SPEA-II Objective2		25 20 -		SJMC NSGA
1	20	0.6	25.021	10.590	23.496	19.752	ve2	15 -		SJMC
			35.994	2.487	23.717	18.722	objective2	10 -		SPEA-
			31.792	6.433	27.585	10.272	bo	5 -	*	
			29.422	7.226	27.809	9.549		0 ∔		
					26.970	17.568		20	objective	70 1
					39.481	2.802			x A.1. Solution	
					29.906	7.988		for 20 job	os (Crossover p	prob. 0.6)
					36.069	7.421				
					37.767	3.207				
2	20	0.6	36.556	1.501	24.120	19.202		25		SIMC
			25.589	11.867	41.584	1.006	e2	20 -		NSGA SJMC
			25.786	5.658	26.543	15.684	objective2	15 -		SPEA
			34.456	2.882	31.245	5.443	obj	10 - 5 -	•	
					34.463	3.556		0		
					28.755	11.392		20	40 objective	60
					36.421	2.981		Appendi	A.2.Solution	
									os (Crossover p	
3	20	0.6	33.437	1.307	24.976	20.661		25 ¬		SJMC
			25.807	14.119	27.641	12.737		20 -		NSGA SJMC
			25.986	1.339	37.578	4.470	objective2	15 -		SPEA-
					31.524	7.458	ject	10 -		_
					37.366	5.660	o d	5 -	•	1 4 - J
					32.432	7.122		0 +		
					30.530	11.831		20	30 objective	40 • 1
					35.096	7.081			A.3. Solution (Crossover p	

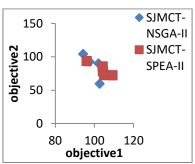
APPENDIX A. Table 1 The values of the best non-dominated front for 20 jobs to each algorithm at crossover probability 0.6

APPENDIX A. Table 1 (Continue) The values of the best non-dominated front for **20 jobs** to each algorithm at crossover probability 0.6

Run	Job	Crossover probability		NSGA-II <i>Objective2</i>		-SPEA-II <i>Objective2</i>	40 ¬	♦ SJI
4	20	0.6	25.620	7.221	24.479	29.934		NS
			35.584	1.404	25.863	15.282	4 30 -	SJ 📕 SJ
			28.848	3.104	37.128	2.054	3 30 - 3 3 3 3 3 3 3 3 3 3	JF
			33.376	2.820	34.548	4.192	් ⁸ 10 -	L.
					29.064	11.643	0	
					29.558	10.066	20 objecti	4
					33.551	5.989	Appendix A.4. Solu	
					29.015	12.835	for 20 jobs(Crossov	
					31.767	8.807		
5	20	0.6	26.918	31.410	25.090	20.867	40 ¬	♦ SJ
			39.866	3.733	30.905	0.269		• 55 N
			27.405	12.943	28.151	10.735	20 -	SJ
			31.592	4.619	28.930	6.813	je 🔰	SF
			29.870	9.353				•
			30.304	8.080			0	
							20 30 objecti	40 50 ve1
							Appendix A.5. Solu	
6	20	0.6	29.360	3.311	25.439	22.909	for 20 jobs(Crossov	er prob. 0.
			24.366	30.934	26.322	14.422	40]	♦ SJ
			26.055	9.143	27.911	12.467	N 30 -	N
					31.340	3.688		SJ 🔳 SJ
					30.847	5.786	20 -	51
					29.581	9.851	5 10 -	L
							0	
							20 30 Object	
7	20	0.6	26.183	22.040	25.224	29.298	Appendix A.6.Solut for 20 jobs (Crossov	
,	20	0.0	37.430	5.047	35.398	1.549	for 20 jobs (Crossov	er prob. 0
			37.430	5.230	27.448	9.878	30	♦ SJ
			28.700	16.036	31.667	3.838		NS SJ
			28.700 29.159	10.030	29.118	5.838 6.381		SP
			29.139 30.914	6.028	29.118	9.861		
			29.807	9.226	27.838 30.847	9.801 4.944		
			29.807	9.226 20.052	26.694	4.944 28.497	0	
				20.052 18.516			20 30 object	4 ive1
			28.474	10.310	26.965	20.485	Appendix A.7.Solut	
			26.771	21.472			Appendix A.7.5010	at in at in

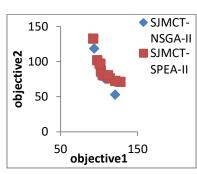
APPENDIX A. Table 1 (Continue) *The values of the best non-dominated front for 20 jobs to each algorithm at crossover probability 0.6*

Simulation results for second test problems to each algorithm for 5 machines and **60 jobs**. The values of the best non-dominated front at generation 500 with number of population are 100 and **crossover probability 0.6** as given in APPENDIX A. Table 2.

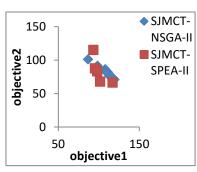

	-		-		•			
Run	Job	Crossover probability		NSGA-II <i>Objective2</i>		-SPEA-II <i>Objective2</i>	200 ¬ ◆ SJI	MCT-
1	60	0.6	121.113	59.114	91.587	78.141	NS	SGA-I
			95.650	157.273	106.759	71.317	Ψ I	MCT- PEA-II
			98.355	108.603	113.615	69.618		
			108.409	63.721			ö 50 -	
			101.888	102.758			0	
			104.677	82.166			⁰ objective1 ²⁰⁰	
			103.079	94.841			Appendix A.11. Solutions at rur	
			107.792	77.312			for 60 jobs (Crossover prob. 0.6	6)
			104.072	89.047				
			108.035	73.248				
2	60	0.6	96.736	119.493	94.009	98.918	150 J	
			105.499	68.327	96.218	87.134		GA-I
			102.750	73.093	122.600	63.796	1 100	EA-II
			98.352	82.241	93.975	107.597	1 1 1 1 1 1 1 1 1 1	
			97.272	93.487	106.122	76.479	30	
					105.219	80.293	0	
					104.487	82.218	⁸⁰ objective1 ¹³⁰	
					117.126	69.234	Appendix A.12. Solutions at run	
					104.248	84.974	for 60 jobs (Crossover prob. 0.6	6)
3	60	0.6	92.030	149.055	112.328	68.482	⊃oo ♦ SJI	MCT
			100.803	72.282	99.014	87.615		SGA-
			93.857	124.826	96.924	96.352	Ŋ 150 - ♦ SJI	MCT PEA-I
			97.739	78.066	105.360	74.060	SP 150 - SP	EA-II
					102.220	85.967	iqo 50 -	
					104.823	76.788	0	
					101.953	87.612	⁶⁰ objective1 ¹⁶⁰	
							Appendix A.13. Solutions at run for 60 jobs (Crossover prob. 0.6	

APPENDIX A. Table 2 *The values of the best Non-dominated front for* **60** *jobs to each algorithm at crossover probability* 0.6

_		Crossover					100	•	SJMCT-
Run	Job	probability		NSGA-II <i>Objective2</i>		SPEA-II Objective2	100 -		NSGA-II
4	60	0.6	94.642	93.708	93.984	86.393	- 08 ii		SJMCT- SPEA-II
			103.948	56.587	101.320	78.663	objective2		
					117.544	68.344	iq iqiq iqi		
					111.868	78.541	0 -		
					114.928	77.468	5	⁰ objective1 ¹⁵	0
								lix A.14. Solutions a	at run 4
5	60	0.6	93.347	85.354	96.814	77.332		jobs (Crossover pro	b. 0.6) SJMCT-
			129.167	66.819	112.821	57.596	100 -		NSGA-II
			105.110	74.072	100.306	76.899	- 08 ivel		SJMCT- SPEA-II
			115.067	67.858	111.340	75.652	objective2		-
			107.053	70.942			e ₂₀ -		
							0 -		
							6	0 160 objective1)
							Append	dix A.15.Solutions a	t run 5
							for 60	jobs (Crossover prol	5. 0.6)
6	60	0.6	121.290	69.968	105.385	52.590	150 -	1	SJMCT-
			94.213	120.628	95.500	113.680			NSGA-II SJMCT-
			95.976	94.404	97.644	106.724	100 -		SPEA-II
			100.401	77.097	99.359	98.362	opjective2 - 001 - 002		
			107.462	71.268	104.217	76.864	0		
			104.604	72.912	101.531	96.879	0 -		`
					102.772	90.545	5	objective1)
7	60	0.6	95.857	139.358	91.216	66.180		lix A.16. Solutions a jobs (Crossover prol	
			130.800	71.350			101 00	jobs (Clossover ploi	5. 0.0)
			104.574	72.307			150 -		SJMCT-
			99.109	115.622			8.00	•	NSGA-II SJMCT-
			101.735	81.098			100 -		SPEA-II
			100.126	95.858			- 001 62 - 05 -		
			101.239	95.627					
							0 +	0 150	
								objective1	
								dix A.17.Solutions a jobs (Crossover pro	
							50	,	/


APPENDIX A. Table 2 (Continue) *The values of the best Non-dominated front for* **60** *jobs to each algorithm at crossover probability* 0.6

APPENDIX A. Table 2 (Continue) <i>The values of the best non-dominated front</i>	
for 60 jobs to each algorithm at crossover probability 0.6.	



Run	Job	Crossover probability		NSGA-II		SPEA-II
		probability	Objective1	Objective2	Objective1	Objective2
8	60	0.6	94.336	104.296	96.095	93.662
			102.754	59.522	105.106	72.494
			102.155	90.233	104.461	78.103
			97.572	92.709	109.237	72.291
					104.307	85.480

Appendix A.18.Solutions at run8 for 60 jobs (Crossover prob. 0.6)

Appendix A.19.Solutions at run 9 for 60 jobs (Crossover prob. 0.6)

Appendix A.20.Solutions at run 10 for 60 jobs (Crossover prob. 0.6)

					104.307	05.400
9	60	0.6	93.808	118.336	127.836	70.998
			121.025	52.721	92.481	132.596
			120.227	71.409	121.189	72.247
			107.624	75.554	97.634	101.831
			98.222	100.635	114.165	75.737
			102.768	79.327	105.097	80.293
			100.862	91.676	100.887	97.045
					102.481	86.818
					111.800	80.194
					101.854	96.160
10	60	0.6	119.581	70.939	93.406	115.177
			86.839	101.173	95.474	87.660
			98.558	91.515	98.270	83.079
			108.070	86.177	101.747	67.711
			113.419	76.239	117.240	66.243
			112.000	79.988		
			111.006	82.272		
			113.069	78.986		
			108.475	83.400		
			109.380	82.740		

Simulation results for second test problems to each algorithm for 5 machines and **100 jobs**. The values of the best non-dominated front at generation 500 with number of population are 100 and **crossover probability 0.6** as given in APPENDIX A. Table 3.

	v		0	*			
Run	Job	Crossover probability		NSGA-II <i>Objective2</i>		-SPEA-II Objective2	250 SJMCT-
1	100	0.6	166.570	199.784	169.921	179.988	NSGA-II
			204.570	133.042	197.226	145.079	SJMCT-
			186.807	141.220	186.611	152.402	SJMCT- SPEA-II 150 - 100 - 0 50 -
			170.260	185.250	186.402	169.524	50 -
			179.558	160.923	180.864	171.506	0 + 150 250
			181.668	159.463			objective1
							Appendix A.21. Solutions at run 1 for 100 jobs (Crossover prob. 0.6)
2	100	0.6	164.236	157.312	180.764	162.159	◆ SJMCT-
			197.090	157.086	174.666	192.319	
					185.072	160.156	150 - ◆ ™ ◆ SPEA-II
					179.480	190.181	200 - SJMCT- SJMCT- SPEA-II 9 50 -
					174.270	225.228	
							150 200
							objective1
							Appendix A.22. Solutions at run 2 for 100 jobs (Crossover prob. 0.6)
3	100	0.6	173.692	140.047	163.607	208.228	
			173.649	224.271	196.345	154.137	◆ SJMCT- 250 → NSGA-II
			175.017	221.271	173.575	179.472	and SIMCT-
						179.472	SPEA-II 150 - 100 - 5
					180.795	155.445	100 -
							ö _{50 -}
							0
							¹⁰⁰ objective1 ³⁰⁰
							Appendix A.23. Solutions at run 3
							for 100 jobs (Crossover prob. 0.6)

APPENDIX A. Table 3 *The values of the best Non-dominated front for* **100** *jobs to each algorithm at crossover probability* 0.6.

Run	Job	Crossover probability		NSGA-II <i>Objective</i> 2		SPEA-II <i>Objective2</i>	250 SJMCT- NSGA-II
4	100	0.6	165.803	186.365	162.885	191.022	
			197.053	153.142	169.108	168.015	SPEA-II
			183.169	164.118	168.766	190.730	
			182.350	178.628	188.067	151.104	
			188.575	156.590	186.835	159.354	¹⁰⁰ objective1 ³⁰⁰
			175.139	181.452	184.177	166.857	Appendix A.24. Solutions at run 4
					183.792	167.998	for 100 jobs (Crossover prob. 0.6)
5	100	0.6	173.596	137.552	176.217	140.846	250 _
			171.493	217.320	169.939	225.698	NSGA-II
			172.729	215.052	171.955	219.415	SJMCT- SPEA-II 150 - SPEA-II 100 - 50 -
					173.145	212.482	
					176.068	180.736	• 50 - 0
					174.496	195.294	160 170 180
							objective1
							Appendix A.25. Solutions at run 5 for 100 jobs (Crossover prob. 0.6)
6	100	0.6	172.674	219.376	168.961	192.934	
			182.761	142.934	167.882	204.417	250 SJMCT- NSGA-II
			175.380	183.000	168.692	200.662	SJ 200 - SJMCT- 150 - SPEA-II
			174.961	216.079	188.229	150.820	SJMCT- 150 - 100 - 50 - SPEA-II
					181.139	159.952	8 _{50 -}
					178.316	172.434	
							150 200 objective1
							Appendix A.26. Solutions at run 6
							for 100 jobs (Crossover prob. 0.6)
7	100	0.6	197.962	143.994	173.478	141.029	300 ¬ ◆ SJMCT-
			172.523	240.573	172.240	259.055	NSGA-II
			182.935	149.655	173.442	243.230	SPEA-II
			180.414	183.039			SJMCT- SPEA-II
			176.939	201.635			
			175.541	217.850			0 +
			173.421	222.900			objective1
			178.639	188.585			Appendix A.27. Solutions at run7 for 100 jobs (Crossover prob. 0.6)
							-34 100 Joos (01000 for prov. 0.0)

APPENDIX A. Table 3 (Continue): The values of the best Non-dominated front for **100 jobs** to each algorithm at crossover probability 0.6

Run	Job	Crossover probability		NSGA-II <i>Objective2</i>		-SPEA-II <i>Objective2</i>	250 200 150 150 50	◆ SJM NSG ■ SJM SPE/
8	100	0.6	168.075	226.019	164.324	193.095		51 64
			201.622	160.239	180.455	139.998	ig 50 -	
			172.487	200.299	172.984	192.372	0	1
			196.882	172.141	176.446	173.452	100 objectiv	300 e1
			186.693	172.449	175.268	184.221	Appendix A.28.Solu	
			174.996	187.367			for 100 jobs (Crosso	ver prob. 0.6)
			200.634	164.065				
			179.674	187.122				
			184.861	185.782				
			186.367	180.661				
			185.507	183.130				
9	100	0.6	169.695	221.387	216.391	154.145	250	 SJM NSG
			180.177	132.583	164.668	185.129	ເ _{ລີ} 200 -	SJM0
			172.349	189.802	173.275	184.790	S ²⁰⁰ - isin 150 - isin 100 - 50 -	SPE4
			177.557	175.920	186.492	158.833	ie 100 - ie 50 -	
			177.549	181.623	178.630	178.511	0	
					183.535	163.475	150	250
					183.046	164.301	objective Appendix A.29.Solu	
							for 100 jobs (Crosso	
10	100	0.6	168.075	226.019	209.848	132.051		
			201.622	160.239	173.907	162.895		
			172.487	200.299	187.358	146.989	250	 SJM0 NSG2
			196.882	172.141	172.535	220.062	ເ _{ລີ} 200 -	SJM0
			186.693	172.449	182.465	157.111	opjectives	SPEA
			174.996	187.367			 	
			200.634	164.065			0	
			179.674	187.122			100 objectiv	300
			184.861	185.782			Appendix A.30.Solut	
			186.367	180.661			for 100 jobs (Crosso	
			185.507	183.130				

APPENDIX A. Table 3 (Continue) The values of the best Non-dominated front for 100 jobs to each algorithm at crossover probability 0.6

APPENDIX B

Simulation results for second test problems to each algorithm for 5 machines and **20 jobs**. The values of the best non-dominated front at generation 500 with number of population are 100 and **crossover probability 0.7** as given in APPENDIX B. Table 1.

APPENDIX B. Table 1 *The values of the best non-dominated front for 20 jobs to each algorithm at crossover probability 0.7*

Run	Job	Crossover probability		NSGA-II <i>Objective2</i>	SJMCT- Objective1		30 SJN	1CT- GA-II
1	20	0.7	35.349	0.000	27.316	7.933		
			26.694	24.531	29.174	7.720	SJN = SJN SPE	A-II
			30.125	3.813	27.295	18.160		
			27.654	20.671	39.462	3.024		
			27.912	10.350	31.639	3.831	20 40 60 objective1)
			29.422	7.226			Appendix B.1. Solutions at run1	
			28.787	9.299			for 20 jobs (Crossover prob. 0.7))
2	20	0.7	26.326	29.389	31.368	1.278	40 _ \$JN	1CT-
			27.026	2.310	29.314	11.370	NSC	GA-II
			26.662	25.616	26.299	26.816		1CT- A-II
			26.592	25.750	26.492	25.744	SJM SPE	
			0.00		30.764	10.742	8 10 -	
					29.066	19.026	0	
							25 30 35 objective1	
					27.306	23.990	Appendix B.2.Solutions at run 2	,
					28.753	22.353	for 20 jobs (Crossover prob. 0.7)	
3	20	0.7	47.296	2.279	47.367	2.360	25 SJN	
			25.508	8.475	40.858	4.864		GA-II 1CT-
			32.780	3.077	41.795	4.030		A-II
			39.749	2.954	26.289	11.877	ig 10	
			29.088	6.203	26.208	22.651		
			32.164	6.001	29.760	5.225	20 40 6 objective1	0
					29.616	5.606	Appendix B 3 Solutions at run 3	

Appendix B.3.Solutions at run 3 for 20 jobs (Crossover prob. 0.7)

APPENDIX B. Table 1 (Continue) *The values of the best non-dominated front for 20 jobs to each algorithm at crossover probability 0.7*

Run	Job	Crossover probability	SJMCT- Objective1			SPEA-II Obiective2		JMCT- ISGA-II
4	20	0.7	38.561	1.880	54.238	5.586		JMCT-
			27.460	22.330	23.892	21.201	15 - S	PEA-II
			32.951	4.852	26.822	11.912	S 20 - S 50 50 50 50 50 50 50 50 50 50 50 50 50	
			27.826	18.097	26.394	14.579		
			28.081	6.240	31.488	7.755		
			29.616	5.606	37.649	6.039	20 40 6 objective1	50
			29.010	5.000	31.332	9.204	Appendix B.4. Solutions at r	un 4
					36.143	6.896	for 20 jobs (Crossover prob.	
					30.143	0.890		
5	20	0.7	24.558	13.880	24.740	14.883	20	JMCT- ISGA-II
			32.505	2.601	34.890	0.889		JMCT-
			30.314	5.804	27.104	10.639		PEA-II
			27.501	8.173	33.034	5.686		
			25.052	9.836	32.915	8.865	ō 5 -	
					32.400	9.052	0	
					32.298	10.534	20 objective1	0
6	20	0.7	36.113 26.035 32.971	2.126 9.855 5.980	33.788 26.743 28.096	0.703 19.964 14.956	20 - N S.	
			27.825	8.392	29.110	13.076	8 ₅	
			32.871	7.677	30.444	8.328	0	
					31.077	8.325	20 40	0
					31.717	7.229	objective1	
					33.206	6.929	Appendix B.6. Solutions at ru for 20 jobs (Crossover prob. (
7	20	0.7	26.620	19.134	25.733	38.543		JMCT-
			32.796	0.236	28.923	0.168		ISGA-II JMCT-
			29.870	8.421	25.860	20.413	30 - S	PEA-II
			27.746	16.808	26.602	12.800	S = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	
			28.889	11.814	27.742	6.882	0 10 -	
			29.010	10.393			0	Г
							20 30 4 objective1	10
							Appendix B.7. Solutions at ru for 20 jobs (Crossover prob. 0	

APPENDIX B. Table 1 (Continue) *The values of the best non-dominated front for 20 jobs to each algorithm at crossover probability 0.7*

probability Objective1 Objective2 Objective1 Objective2

33.407

0.000

14.942

22.863

15.589

32.408

SJMCT-SPEA-II

11.039

8.499

2.341

24.309

27.249

35.220

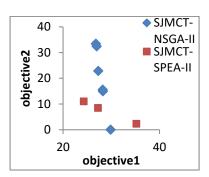
SJMCT- NSGA-II

26.810

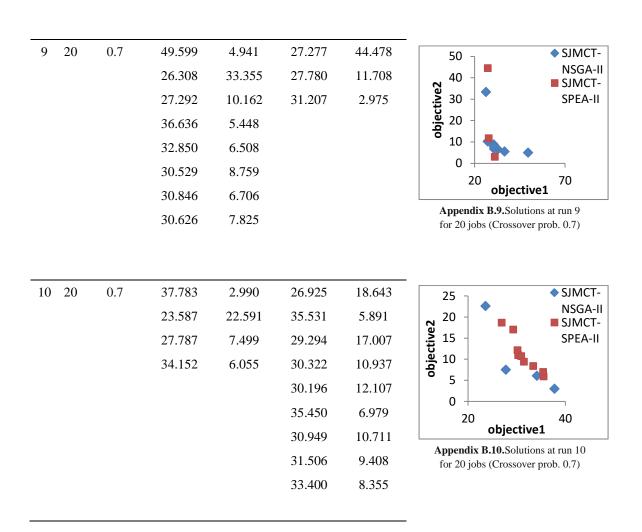
29.864

28.289

27.323


28.255

26.984


Run Job Crossover

0.7

8 20

Appendix B.8.Solutions at run 8 for 20 jobs (Crossover prob. 0.7)

Simulation results for second test problems to each algorithm for 5 machines and 60 jobs. The values of the best non-dominated front at generation 500 with number of population are 100 and **crossover probability 0.7** as given in APPENDIX B. Table 2.

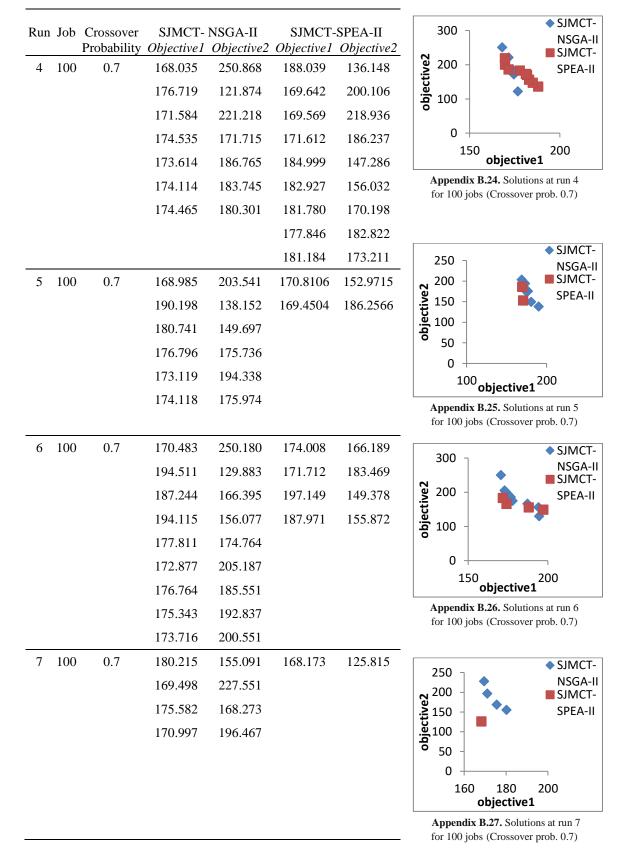
Run	Job	Crossover probability		NSGA-II <i>Objective2</i>		-SPEA-II <i>Objective2</i>	150 SJMCT NSGA
1	60	0.7	104.821	63.836	94.736	110.466	SJMCT
			93.275	88.818	95.634	101.489	ecti
			102.093	82.724	96.236	97.437	ig 50 -
			101.040	88.182	100.119	83.699	0
			101.583	83.964	111.988	69.860	⁵⁰ objective1 ¹⁵⁰
					110.708	70.256	Appendix B.11. Solutions at run 1 for 60 jobs (Crossover prob. 0.7)
2	60	0.7	88.232	86.529	93.853	90.203	
			112.694	69.091	121.512	63.301	
			105.031	84.060	104.070	69.677	op jective 2 op
			112.155	74.504			1 1 1 1 1 1 1 1 1 1
			96.594	86.109			° 20 -
							0
							⁵⁰ objective1 ¹⁵⁰
							Appendix B.12. Solutions at run 2 for 60 jobs (Crossover prob. 0.7)
3	60	0.7	126.743	67.194	110.099	62.376	
			95.522	127.240	97.348	120.363	
			98.328	115.203	100.938	78.687	150 J
			123.127	73.341	97.871	106.802	NSGA
			117.979	74.563	109.121	75.191	SJMC - SPEA-
			114.370	80.390	107.278	77.507	iq 50 -
			100.138	100.987			
			102.166	90.880			80 130
			109.918	80.521			objective1
			107.388	83.809			Appendix B.13. Solutions at run 3 for 60 jobs (Crossover prob. 0.7)
			106.586	87.785			
			99.376	109.938			
			103.177	89.012			
			100.024	105.288			

APPENDIX B. Table 2 The values of the best non-dominated front for 60 jobs to each algorithm at crossover probability 0.7

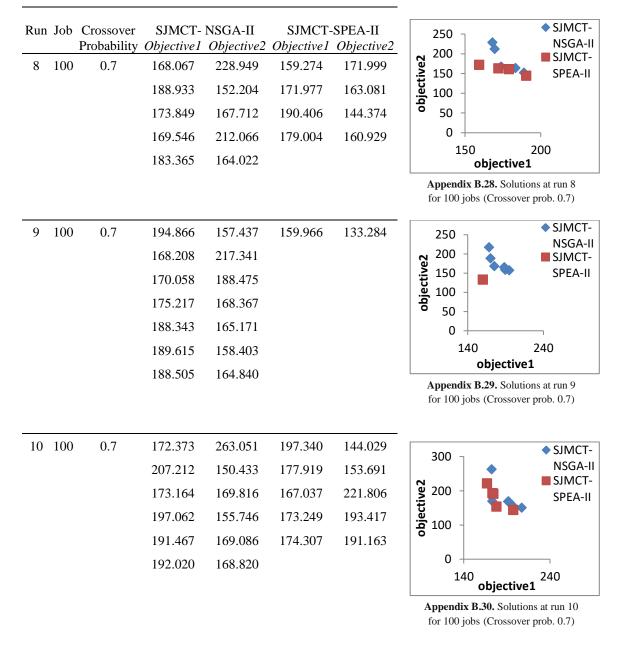
APPENDIX B. Table 2 (Continue) *The values of the best non-dominated front for* **60** *jobs to each algorithm at crossover probability* 0.7

Run	Job	Crossover probability		NSGA-II <i>Objective2</i>		-SPEA-II <i>Objective2</i>	150 SIMCT
4	60	0.7	95.711	100.573	109.535	43.770	150 NSGA
			123.767	61.925	100.042	60.636	
			105.886	62.106	96.653	140.600	SJMCT SPEA-1
			103.708	81.848	98.387	92.795	a 50 -
			100.808	92.271	97.641	107.435	0
			97.283	95.851			50 150 objective1
			100.124	93.305			Appendix B.14. Solutions at run 4
			96.719	97.846			for 60 jobs (Crossover prob. 0.7)
5	60	0.7	96.585	157.090	95.372	101.970	
			114.992	57.673	99.469	84.920	
			107.080	61.193	97.835	99.634	NSGA- № 150 - SJMCT
			97.920	134.544	98.981	94.320	SJMCT SPEA-1 SPEA-1 SPEA-1
			104.826	64.605	106.818	72.468	jiqo 50 -
			101.909	74.830	111.545	67.915	0
			99.853	106.974			50 150 objective1
			100.687	90.037			Appendix B.15.Solutions at run 5
			98.555	119.295			for 60 jobs (Crossover prob. 0.7)
			101.667	87.142			
			99.175	118.722			
6	60	0.7	120.788	70.258	125.732	54.494	
			94.750	93.850	93.680	127.881	150 J
			110.357	79.038	113.180	55.789	NSGA-
			102.415	88.287	98.275	71.530	SPEA-II
			104.611	85.555	94.986	111.597	ig 50 -
			109.366	81.749	103.471	67.708	
			109.831	79.707			0 +
							Appendix B.16. Solutions at run 6 for 60 jobs (Crossover prob. 0.7)

APPENDIX B. Table 2 (Continue) *The values of the best non-dominated front for* **60** *jobs to each algorithm at crossover probability* 0.7


Run	Job	Crossover Probability	SJMCT- Objective1		SJMCT- Objective1		↓FO ♦ SJMCT-
7	60	0.7	116.783	70.433	126.473	64.645	NSGA-I
			97.160	122.815	98.318	85.456	
			108.297	72.102	117.757	71.607	
			104.648	85.178	99.552	84.048	ig 50 -
			97.615	112.242	105.423	81.803	0
			102.500	98.843	110.261	75.910	⁸⁰ objective1 ¹³⁰
			107.672	78.981			Appendix B.17. Solutions at run 7
			100.181	106.322			for 60 jobs (Crossover prob. 0.7)
			103.509	93.072			
			100.462	100.422			
			98.910	110.857			
			103.899	88.059			
			107.755	78.559			NSGA-
8	60	0.7	117.956	58.393	119.014	45.700	SJMCT → SPEA-I → SPEA-I
			90.333	80.200	93.884	77.963	e 40 - e 20 -
			109.607	79.081	110.947	68.540	
					108.545	76.742	80 130
							objective1 Appendix B.18. Solutions at run 8
9	60	0.7	94.513	83.359	95.165	103.567	for 60 jobs (Crossover prob. 0.7)
			113.399	65.838	110.813	62.456	150 SJMCT- NSGA-I
			105.140	80.587	101.025	74.916	
			107.322	70.116	103.840	71.533	SPEA-II
					99.907	96.333	i ģ 50 -
					99.582	102.918	0
10	60	0.7	114.906	61.809	121.246	62.761	80 130 objective1
			96.807	139.091	95.657	101.199	Appendix B.19. Solutions at run 9
			114.228	75.201	98.204	90.054	for 60 jobs (Crossover prob. 0.7)
			99.880	78.033	120.661	75.396	NSGA-I
			97.359	128.988	119.514	76.812	
			98.828	79.489	111.184	79.298	SJMCT- SPEA-II
			98.528	106.423	110.566	80.940	0 0 0
			98.361	110.574	103.144	88.759	0
					110.255	84.073	80 130 objective1
							-

Simulation results for second test problems to each algorithm for 5 machines and **100 jobs**. The values of the best non-dominated front at generation 500 with number of population are 100 and **crossover probability 0.7** as given in APPENDIX B. Table 3.

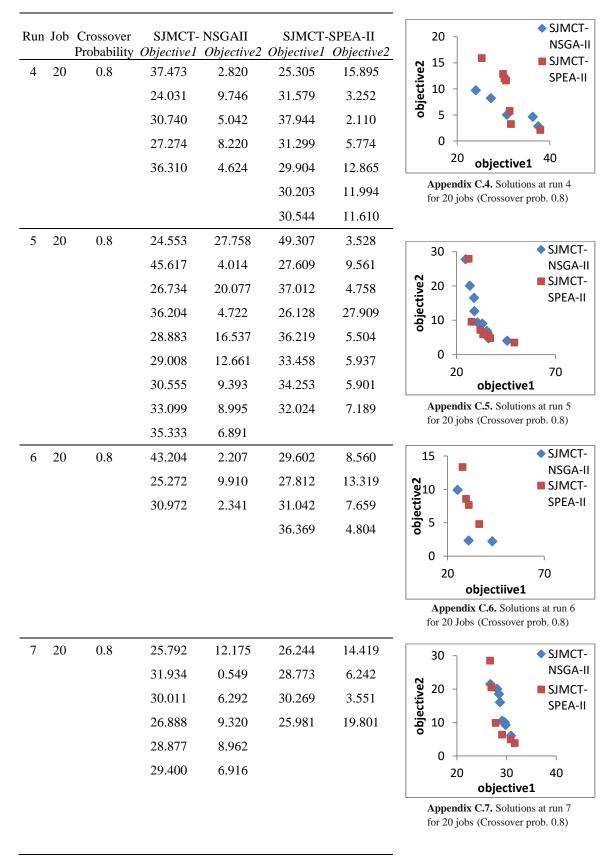

Run	Job	Crossover		NSGA-II		-SPEA-II	250 SJMCT- NSGA-II
	100		V	Objective2	V	v	200
1	100	0.7	195.765	149.480	211.794	146.034	🛔 150 - 🐂 SPEA-II
			168.559	206.506	162.763	220.543	SJMCT- SPEA-II SPEA-II
			177.587	153.048	175.186	158.695	o 50 -
			174.221	192.986	172.312	209.608	0
			177.113	170.523	185.070	154.951	100 300 objective1
			175.205	177.084	173.394	203.838	Appendix B.21. Solutions at run 1 for 100 jobs (Crossover prob. 0.7)
2	100	0.7	161.546	187.237	183.002	139.518	250 J SJMCT-
			179.671	145.442	174.934	157.491	NSGA-II
			175.169	184.582	173.422	215.603	SJMCT- SPEA-II 150 - 100 - 50 -
					175.422	215.005	1 00 -
			179.369	169.824			
			177.771	181.086			0
							150 200 objective1
							Appendix B.22. Solutions at run 2 for
							100 jobs (Crossover prob. 0.7)
3	100	0.7	219.205	147.972	175.856	172.820	250 J SJMCT-
			168.796	188.493	183.376	154.564	NSGA-II
			170.338	151.360	179.779	168.164	SJINCI- SPEA-II
					173.768	231.295	ig 100 -
					182.464	162.714	8 ₅₀
							0
							¹⁰⁰ objective1 ³⁰⁰
							Appendix B.23. Solutions at run 3 for 100 jobs (Crossover prob. 0.7)

APPENDIX B. Table 3 *The values of the best non-dominated front for* **100** *jobs to each algorithm at crossover probability* 0.7

APPENDIX B. Table 3 (Continue) The values of the best non-dominated front for **100 jobs** to each algorithm at crossover probability 0.7

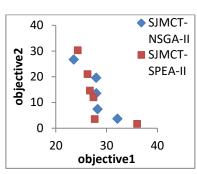
APPENDIX B. Table 3 (Continue) The values of the best non-dominated front for **100 jobs** to each algorithm at crossover probability 0.7

APPENDIX C


Simulation results for second test problems to each algorithm for 5 machines and **20 jobs**. The values of the best non-dominated front at generation 500 with number of population are 100 and **crossover probability 0.8** as given in APPENDIX C. Table 1.

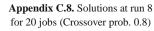
Run	Job	Crossover Probability		NSGAII <i>Objective2</i>		-SPEA-II <i>Objective2</i>	40 SJMCT- NSGA-II
1	20	0.8	27.756	30.153	24.148	21.409	S 30 - ◆ SJMCT-
			45.806	3.364	25.991	12.191	SJMCT- SPEA-II
			27.924	11.564	27.100	9.332	
			31.691	7.364	26.480	11.940	0
			38.241	7.336	30.670	1.102	20 30 40 50 objective1
			29.104	10.719			Appendix C.1. Solutions at run 1
			44.235	4.510			for 20 jobs (Crossover prob. 0.8)
			41.432	6.310			
			43.038	6.021			
			39.202	6.498			
2	20	0.8	25.910	23.951	34.031	0.516	30 ¬ ◆ SJMCT-
			36.599	0.291	26.616	20.258	NSGA-II
			27.522	12.080	27.108	14.707	SJIVICI-
			33.635	2.444	28.325	14.465	SJMCT- SPEA-II
			27.093	20.210	30.348	9.915	
			32.751	11.687	28.825	13.012	
			32.956	9.528	32.052	8.030	objective1
					33.348	7.218	Appendix C.2. Solutions at run 2 for 20 jobs (Crossover prob. 0.8)
					30.169	12.736	
							5 ¬ ◆ SJMCT-
3	20	0.8	26.596	2.127	22.212	3.966	NSGA-II
			34.755	0.705	36.142	0.504	SJMCT-
							SJMCT- SPEA-II
							20 40 objective1
							Appendix C.3. Solutions at run 3

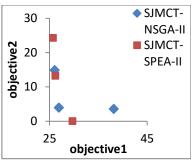
for 20 jobs (Crossover prob. 0.8)


APPENDIX C. Table 1 *The values of the best non-dominated front for 20 jobs to each algorithm at crossover probability 0.8*

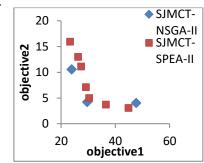
APPENDIX C. Table 1 (Continue) *The values of the best non-dominated front for 20 jobs to each algorithm at crossover probability 0.8*

APPENDIX C. Table 1 (Continue) The values of the best non-dominated front for 20 jobs to each algorithm at crossover probability 0.8


SJMCT-SPEA-II



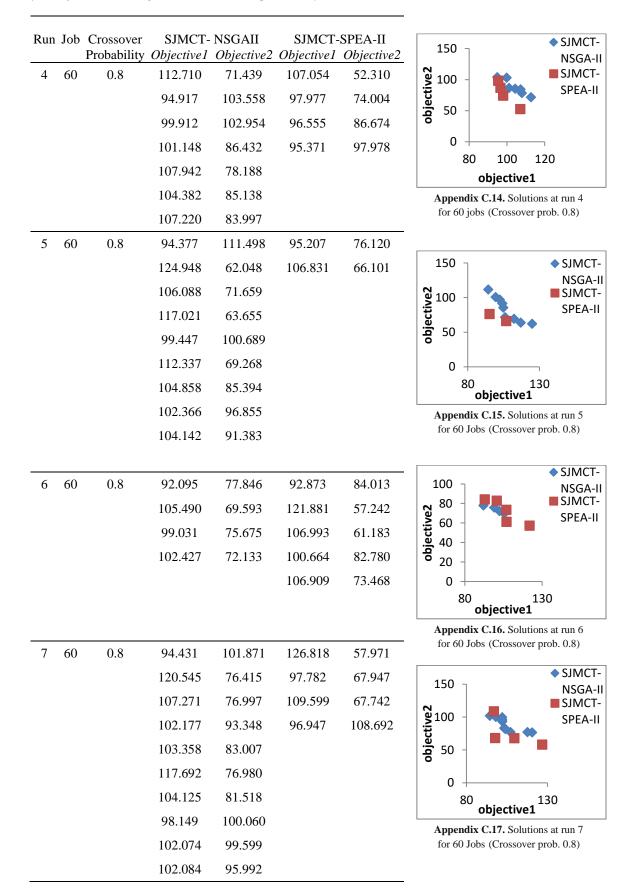
Dun	Ich	Crossover	SJUIC I -	NOOAII	SJUIC I	SI LA-II
Kuli	100	Crossover Probability	Objective1	Objective2	Objective1	Objective2
8	20	0.8	32.140	3.632	24.321	30.224
			23.547	26.644	27.671	3.505
			27.970	19.526	26.241	20.964
			28.236	7.340	36.013	1.624
			27.990	13.498	27.409	11.932
					26.726	14.570


SJMCT- NSGAII

Run Job Crossover

Appendix C.9. Solutions at run 9 for 20 jobs (Crossover prob. 0.8)

ns at run 10 prob. 0.8)


9	20	0.8	38.148	3.560	29.692	0.000
			26.050	14.827	26.167	13.229
			26.897	3.938	25.690	24.263

Simulation results for second test problems to each algorithm for 5 machines and **60 jobs**. The values of the best non-dominated front at generation 500 with number of population are 100 and **crossover probability 0.8** as given in APPENDIX C. Table 2.

Run	Job	Crossover Probability		NSGAII <i>Objective2</i>	SJMCT- Objective1		150	SJMCT- NSGA-II
1	60	0.8	110.691	57.063	110.019	53.667	S 100 -	SJMCT- SPEA-II
			96.414	68.981	107.844	60.935	opi opi opi opi opi opi opi opi	
			106.689	67.534	97.786	98.376		
			108.864	64.371	97.304	120.473	0 +	
					103.522	78.553	objective1	
					102.406	85.020	Appendix C.11. Solutions for 60 jobs (Crossover pro	
2	60	0.8	118.016	58.020	94.131	110.563	[
_			95.292	112.492	101.802	80.294	150	SJMCT NSGA-I
			100.920	65.539	98.886	93.964	S ₁₀₀	
			98.651	97.249	113.262	73.713	S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S 100 - S	SPEA-II
					106.106	76.860	ig 50 -	
							0	
							⁸⁰ objective1 ¹³	80
							Appendix C.12. Solutions for 60 jobs (Crossover pro	
3	60	0.8	105.817	67.444	118.229	63.539		SJMCT-
			93.143	77.321	97.784	96.745		NSGA-I
			99.484	75.261	100.238	91.977	b 100 - b b c c c c c c c c c c	SJMCT- SPEA-II
			105.109	73.068	108.106	75.668		51 27 11
					101.277	90.487	e ⁵⁰	
					105.060	81.841	0	
							⁸⁰ objective1	0
							Appendix C.13. Solutions for 60 jobs (Crossover pro	

APPENDIX C. Table 2 <i>The values of the best non-dominated front</i>	
for 60 jobs to each algorithm at crossover probability 0.8	

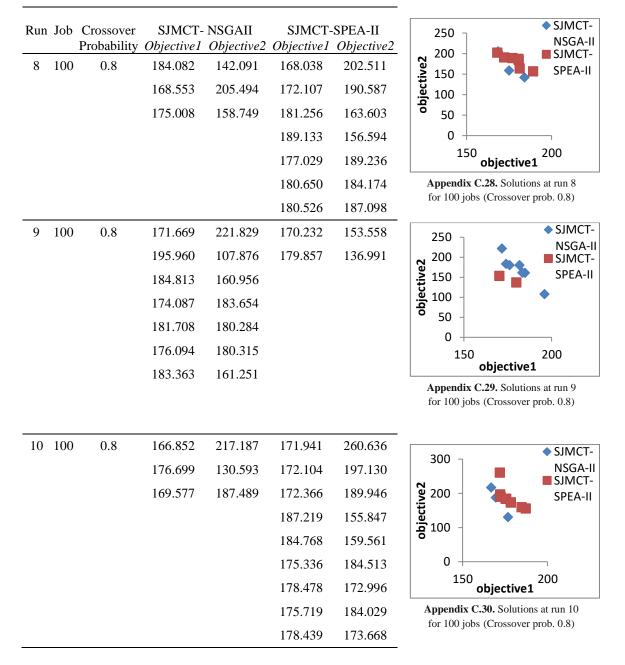
APPENDIX C. Table 2 (Continue) *The values of the best non-dominated front for 60 jobs to each algorithm at crossover probability 0.8*

Run	Job	Crossover Probability	SJMCT- Objective1			-SPEA-II <i>Objective2</i>	150	 SJMCT- NSGA-II SJMCT-
8	60	0.8	103.377	66.503	95.593	61.327		SPEA-II
			92.764	109.257			opjective2	
			93.986	84.206			0	_
			102.774	80.638				20
							objective1	
							Appendix C.18. Soluti for 60 jobs (Crossover	
9	60	0.8	98.510	85.615	96.719	71.760	100 _	SJMCT-
			107.322	70.116	107.457	57.846	N 80 -	NSGA-II SJMCT-
			102.727	82.378	103.301	68.160	oppietrixe7	SPEA-II
			102.727	02.070	105.501	00.100	opi 20 -	
							0	1
							80 100 12	20
							objective1	
							Appendix C.19. Soluti for 60 jobs (Crossover	
10	60	0.8	107.561	68.425	97.238	79.379	150 ¬	 SJMCT-
			93.571	104.359	114.118	66.122	8	NSGA-I SJMCT-
			101.662	76.839	108.004	72.850		SPEA-II
			99.412	93.131	107.784	75.447	5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5 0 - 5	
			94.873	99.110				
			97.583	93.989			0 80 objective1	¬ 130
							Appendix C.20. Solutio for 60 jobs (Crossover	

APPENDIX C. Table 2 (Continue) *The values of the best non-dominated front for* **60** *jobs to each algorithm at crossover probability* 0.8

Simulation results for second test problems to each algorithm for 5 machines and **100 jobs**. The values of the best non-dominated front at generation 500 with number of population are 100 and **crossover probability 0.8** as given in APPENDIX C. Table 3.

◆ SJMCT	250 ¬	SPEA-II Objective2			SJMCT- Objective1	Crossover Probability	Job	Run
NSGA-		152.963	180.245	223.981	167.181	0.8	100	1
SPEA-I	it 150 -	208.761	175.445	132.031	184.241			
	200 - 005 6 150 - 100 - 100 - 50 - 100 - 1	179.920	178.668	192.467	170.738			
		205.708	175.671	181.610	177.539			
180 200	160	181.728	178.566	166.259	180.946			
objective1		188.460	176.878	173.797	180.234			
21. Solutions at run 1 (Crossover prob. 0.8)	••	204.967	176.319					
◆ SJMCT		138.621	186.035	156.305	208.500	0.8	100	2
NSGA-	250	187.047	173.733	201.794	168.239			
SJMCT SPEA-I	200 - 1 2 1 5 1 5 0	206.551	172.179	172.043	170.015			
	200 - 150 - 150 - 100 -	161.852	184.189	195.586	169.031			
	g 50 -	181.496	183.717	168.434	179.995			
1	0 -	175.399	184.145	159.730	200.213			
bjective1 ²⁵⁰	150	184.551	183.667	168.081	191.119			
.22. Solutions at run 2 (Crossover prob. 0.8)	••			161.834	192.386			
◆ SJMCT-		146.663	203.295	208.324	169.683	0.8	100	3
NSGA-I	250	193.933	168.859	123.328	191.280			
SJMCT- SPEA-II	200 - 150 -	161.187	175.436	159.932	182.548			
•	opjective2	158.189	179.456	179.645	177.989			
	iq 50 -	192.017	171.532	184.732	174.104			
1	0 +	176.520	173.896	202.469	170.914			
objective1 ²⁵⁰	150	180.186	173.690					


APPENDIX C. Table 3 *The values of the best non-dominated front for 100 jobs to each algorithm at crossover probability 0.8*

APPENDIX C. Table 3 (Continue) The values of the best non-dominated front
for 100 jobs to each algorithm at crossover probability 0.8

Run	Job	Crossover	SJMCT-	NSGAII	SJMCT-	SPEA-II	250 SJMCT-
			Objective1		Objective1	Objective2	200 - NSGA-II
4	100	0.8	186.402	121.310	167.042	199.407	150 - • • • • • • • • • • • • • • • • • •
			172.032	164.179	169.504	189.299	S 150 - SPEA-II
			185.014	151.948	195.911	156.803	5 0 -
					172.268	187.619	0
					184.266	161.548	¹⁵⁰ objective1 ²⁰⁰
					180.458	172.799	Appendix C.24. Solutions at run 4
					182.462	169.136	for 100 jobs (Crossover prob. 0.8)
					179.970	179.497	
					179.316	182.870	
5	100	0.8	168.231	242.052	162.387	188.046	300 − SJMCT- NSGA-II
			185.719	142.625	170.811	152.972	SJMCT-
			170.388	194.631	167.727	182.930	SPEA-II
			180.994	192.664	197.508	131.297	Spea-II ig 100 - SPEA-II
			183.524	164.242			0
			183.111	185.356			0
			183.243	175.480			⁰ objective1 ⁵⁰⁰
			183.208	182.291			Appendix C.25. Solutions at run 5 for 100 jobs (Crossover prob. 0.8)
6	100	0.8	181.743	159.591	185.988	147.358	300 7 SJMCT-
			172.277	281.347	175.539	162.857	NSGA-II
			172.607	201.433	171.060	188.972	SJMCT- SPEA-II 9 100 -
			178.290	166.750	175.190	175.216	
			174.206	180.669			3 100
			181.728	166.439			0 +
			173.904	188.020			160 180 200 objective1
							Appendix C.26. Solutions at run 6
7	100	0.8	199.247	157.870	171.263	209.356	for 100 jobs (Crossover prob. 0.8)
			170.060	257.022	175.684	187.488	300 SJMCT- NSGA-II
			172.845	216.095	173.356	200.789	
			188.565	162.844	187.748	164.369	SPEA-II
			181.785	169.867	190.736	160.308	SJMCT- SPEA-II SPEA-II
			174.708	183.809	180.270	182.152	
			195.685	161.193	186.786	170.837	150 200 250
			174.475	209.376	182.898	180.932	objective1
			177.473	172.368	185.438	176.055	Appendix C.27. Solutions at run 7 for 100 jobs (Crossover prob. 0.8)
			176.677	174.668			101 100 Juns (Crossover pron. 0.8)

APPENDIX C. Table 3 (Continue) The values of the best non-dominated front for **100 jobs** to each algorithm at crossover probability 0.8

APPENDIX D

Simulation results for second test problems to each algorithm for 5 machines and 20 jobs. The values of the best non-dominated front at generation 500 with number of population are 100 and crossover probability 0.9 as given in APPENDIX D. Table 1.

NSGA-II

SPEA-II

NSGA-II

SPEA-II

100

NSGA-II

SPEA-II

SJMCT-30 Run Job Crossover SJMCT-NSGAII SJMCT-SPEA-II Probability Objective1 Objective2 Objective1 Objective2 **objective2** 10 SJMCT-1 20 0.9 26.570 24.081 23.485 9.939 39.718 2.854 28.446 5.894 33.289 5.249 32.413 4.019 0 27.654 20.671 60 0 20 40 objective1 28.705 12.818 Appendix D.1. Solutions at run 1 7.557 32.686 for 20 jobs (Crossover prob. 0.9) 29.209 10.389 SJMCT-20 22.344 15.560 20 2 0.9 24.772 9.536 47.650 29.188 9.912 15 SJMCT-1.268 objective2 33.767 4.269 31.331 6.781 10 29.281 7.928 34.343 5.371 5 33.217 7.524 0 33.134 7.904 0 50 objective1 Appendix D.2. Solutions at run 2 for 20 jobs (Crossover prob. 0.9) 20 0.9 23.909 26.157 35.216 3 22.752 SJMCT-37.137 1.098 26.479 35.075 40 SJMCT-26.485 5.490 40.520 3.771 30 objective2 32.694 39.545 5.182 1.669 20 25.483 12.652 27.786 27.253 10 24.485 18.908 39.427 5.858 0 27.867 21.083 0 objective1 50 31.789 6.422 Appendix D.3. Solutions at run 3 for 20 jobs (Crossover prob. 0.9) 30.062 13.221 28.523 19.016 30.778 12.669

29.365

31.254

15.828

11.997

APPENDIX D. Table 1 The values of the best non-dominated front for 20 jobs to each algorithm at crossover probability 0.9

APPENDIX D. Table 1 (Continue) *The values of the best non-dominated front for 20 jobs to each algorithm at crossover probability 0.9*

Run	Job	Crossover Probability	SJMCT- Objective1			SPEA-II <i>Objective2</i>	40 ♦ SJMC NSGA NSGA
4	20	0.9	26.059	19.242	45.139	3.363	SPEA-
			47.080	3.623	43.374	3.770	SPEA-
			26.362	10.519	28.304	15.565	ō 10 -
			39.018	4.507	26.910	30.484	0
			27.124	7.129	37.723	4.176	0 50 objective1
			30.719	6.710	27.860	18.948	Appendix D.4. Solutions at run 4
			36.239	5.831	35.038	4.222	for 20 jobs (Crossover prob. 0.9)
			33.568	6.162	27.557	28.116	
					30.100	14.075	
					31.810	9.471	
					33.215	8.002	
					31.937	9.073	
					31.734	12.306	
5	20	0.9	22.282	14.129	23.544	24.280	30 ¬ ◆ SJMC
			35.610	3.946	25.452	21.184	NSGA
			29.981	8.813	29.849	8.006	SPEA
			30.332	4.987	27.945	13.517	SJMC SPEA- SPEA- SPEA-
					33.444	3.126	
					27.717	14.650	0 50
					30.592	7.425	objective1
							Appendix D.5. Solutions at run 5 for 20 jobs (Crossover prob. 0.9)
6	20	0.9	42.229	2.322	24.585	20.119	25 SJMC
			26.202	15.028	26.089	17.564	NSGA
			37.863	5.197	26.931	15.336	15 - SPEA-
			31.774	9.059	34.377	2.707	in 10 -
			32.715	5.533	30.073	6.436	
			29.270	11.556	34.216	6.160	0 50
			27.997	13.061	32.708	6.165	objective1
			21.771	15.001	29.268	10.813	Appendix D.6. Solutions at run 6 for 20 jobs (Crossover prob. 0.9)
					27.200	10.015	
					29.205	15.204	

Run	Job	Crossover Probability		NSGAII <i>Objective2</i>		SPEA-II <i>Objective2</i>	40	 SJMCT- NSGA-II
7	20	0.9	35.803	4.660	26.590	33.258	30 -	SJMCT- SPEA-II
			24.860	17.092	38.600	2.857	30 - 10 - 10 -	JF LA-II
			30.601	6.696	27.285	6.436	් ₁₀ -	
			28.806	14.102	27.150	26.220	0	•
			29.485	12.286			0 objective	50 2 1
			34.102	6.461			Appendix D.7. Solut	ions at run 7
8	20	0.9	39.910	6.028	22.923	6.057	for 20 jobs (Crossove	er prob. 0.9)
			27.308	39.478	25.266	2.576	10 -	NSGA-II
			27.563	29.159	29.303	0.609	30 -	SJMCT- SPEA-II
			27.990	13.498			• 00 bjective2	
			31.701	8.582				•
			35.699	6.535				50
			35.070	7.123			objectiv	
			29.589	9.976			Appendix D.8. Solut for 20 jobs (Crossov	
			28.494	10.683			101 20 jobs (Clossof)	er proo. 0.9)
9	20	0.9	38.323	3.872	48.362	5.475	40	 SJMCT- NSGA-II
			21.732	8.815	42.058	5.573	% 30 -	SJMCT-
			29.700	7.471	24.398	33.479	opjective2	SPEA-II
			33.042	6.763	24.692	26.776	ë 10 -	
			34.601	4.475	40.239	6.253	0	
			33.197	5.502	27.951	12.557	0 objectiv	100 •1
			34.000	4.901	32.012	6.850	Appendix D.9. Solut	
					30.587	10.232	for 20 jobs (Crossov	er prob. 0.9)
10	20	0.9	40.352	3.684	26.176	31.609	40	 SJMCT- NSGA-II
			25.667	28.681	33.541	3.544	S 30 -	SJMCT-
			27.639	8.317	37.959	2.669	- 00 00 00 00 00 00 00 00 00 00 00 00 00	SPEA-II
			26.345	26.871	33.393	5.021	iq 10 -	
			32.802	5.069	29.677	9.382	0	
			30.977	5.399	28.089	13.317	0 objectiv	50
					27.446	19.573	Appendix D.10. Solut	
					30.995	8.900	for 20 jobs (Crossov	
					27.687	17.877		

APPENDIX D. Table 1 (Continue) *The values of the best non-dominated front for 20 jobs to each algorithm at crossover probability 0.9*

Simulation results for second test problems to each algorithm for 5 machines and **60 jobs**. The values of the best non-dominated front at generation 500 with number of population are 100 and **crossover probability 0.9** as given in APPENDIX D. Table 2.

Run	Job	Crossover Probability	SJMCT- Objective1	NSGAII <i>Objective2</i>		-SPEA-II <i>Objective2</i>	150	◆ SJMCT- NSGA-II ■ SJMCT-
1	60	0.9	97.116	121.903	112.674	55.712	§ 100 - 1	SPEA-II
			117.669	70.647	100.471	73.837	opictive2	
			102.218	72.547	95.291	113.669		
			101.264	95.724	98.359	99.067	0	_
			98.870	111.135			80 objective	130 L
			100.098	103.991			Appendix D.11. Solut for 60 jobs (Crossove	
							101 00 5003 (C1033070	r prov. 0. <i>7)</i>
2	60	0.9	108.787	56.472	101.230	77.220	150]	SJMCT-
			92.017	56.968	102.978	75.268	N 100	NSGA-II SJMCT-
					97.926	128.804	opiective2	SPEA-II
					114.463	68.088	opie 50 -	
					107.451	73.593	0	_
					98.486	106.439	50 2	150
					112.355	72.243	objective1	
					99.916	100.958	Appendix D.12. Solut for 60 jobs (Crossove	
3	60	0.9	95.972	113.360	125.316	65.126	150 ¬	♦ SJMCT-
			109.267	70.717	105.268	71.752		NSGA-II SJMCT-
			99.287	90.067	109.489	71.034	100 -	SPEA-II
			102.246	72.364	96.951	117.546	- 100 - ectives - 50 -	
			101.183	83.354	101.093	86.099	o o	
			101.512	72.535	103.716	81.783	0	_
					99.965	99.425	⁰ objective	200
					100.785	97.526	Appendix D.13. Solut for 60 jobs (Crossove	

APPENDIX D. Table 2 The values of the best non-dominated front	
for 60 jobs to each algorithm at crossover probability 0.9	

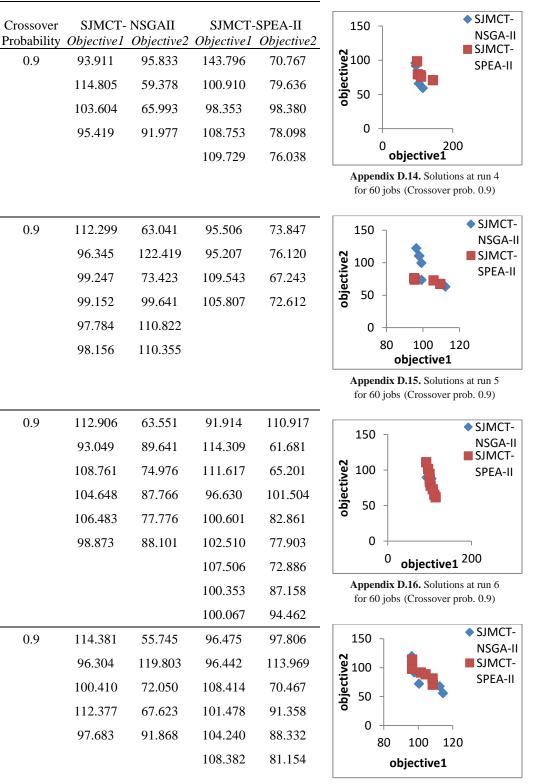
APPENDIX D. Table 2 (Continue) The values of the best non-dominated front for 60 jobs to each algorithm at crossover probability 0.9

Run Job Crossover

0.9

0.9

0.9


0.9

4 60

5 60

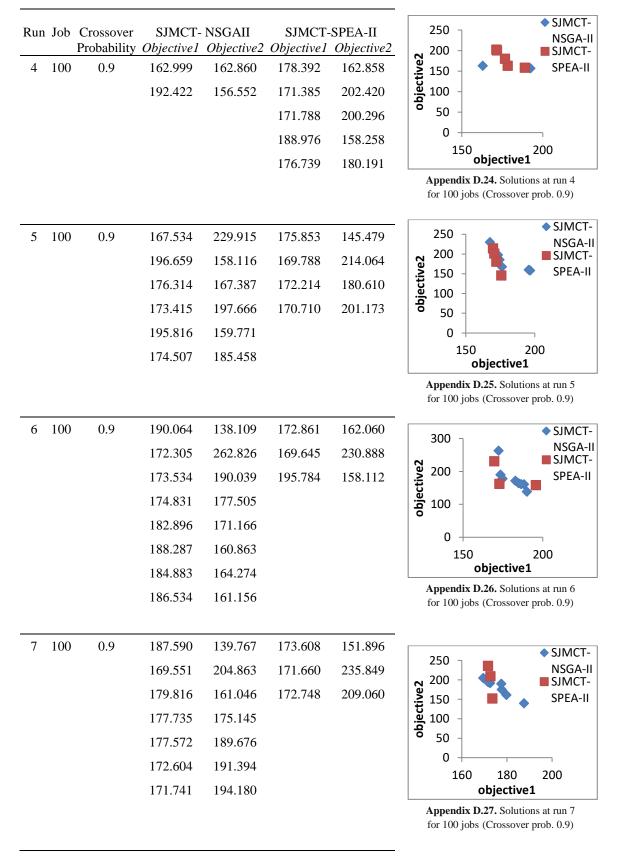
6 60

7 60

Appendix D.17. Solutions at run 7 for 60 jobs (Crossover prob. 0.9)

APPENDIX D. Table 2 (Continue) *The values of the best non-dominated front for* **60** *jobs to each algorithm at crossover probability* 0.9

Run	Job	Crossover Probability		NSGAII <i>Objective2</i>		-SPEA-II <i>Objective2</i>	
8	60	0.9	97.330	161.927	95.576	169.399	200 SJMCT
			123.597	65.153	117.725	65.147	NSGA-I SJMCT
			98.000	110.167	96.257	138.969	SPEA-II
			113.816	72.465	96.803	107.744	SPEA-II
			106.484	72.814	108.387	67.545	
			98.261	88.331	98.337	107.591	0 + 0 objective1200
			104.433	84.527	104.832	75.018	Appendix D.18. Solutions at run 8
			101.458	86.178	100.214	95.240	for 60 jobs (Crossover prob. 0.9)
			102.816	85.286	102.798	89.124	
0	60	0.0	06.405	104 000	07.547	120.002	↓ SJMCT
9	60	0.9	96.495	124.232	97.547	138.893	NSGA-
			117.927	56.965	99.002	78.352	SJMCT
			97.526	82.584	120.244	69.739	S 100 - NSGA- S 50 -
			110.500	60.050	103.464	75.460	ig 50 -
			103.053	68.128	98.818	105.451	0
			101.134	68.853	97.845	123.927	⁰ objective1 ²⁰⁰
					108.736	72.484	Appendix D.19. Solutions at run 9
					98.720	122.473	for 60 jobs (Crossover prob. 0.9)
10	60	0.9	121.585	74.875	93.931	98.276	♦ SJMCT
	00	017	94.058	126.058	100.198	88.855	NSGA-I
			106.398	75.796	102.593	84.115	SJMCT-
			100.520	77.234	111.585	73.364	SPEA-II
			96.797	110.927	106.923	77.016	o o
			97.909	97.459	107.551	76.741	0
			97.268	100.710	106.095	79.775	0 200 objective1
			97.781	98.680			Appendix D.20. Solutions at run 10 for 60 jobs (Crossover prob. 0.9)



Simulation results for second test problems to each algorithm for 5 machines and **100 jobs**. The values of the best non-dominated front at generation 500 with number of population are 100 and **crossover probability 0.9** as given in APPENDIX D. Table 3.

Run		Crossover Probability		NSGAII <i>Objective2</i>		SPEA-II <i>Objective2</i>	250 200	SJMCT- NSGA-I
1	100	0.9	170.778	191.703	172.250	171.500	150 -	SJMCT- SPEA-II
			184.749	121.926	181.295	148.558	op i i i i i i i i i i	
			184.089	152.129			• _{50 -}	
			176.746	161.185			0 +) 200
			176.479	177.755			object	
			175.133	189.760			Appendix D.21. Sol	
			180.493	157.327			for 100 jobs (Crosso	over prob. 0.9)
			183.259	156.085				
			179.558	160.923				
			176.240	189.364				
2	100	0.9	186.949	149.363	187.052	141.244	250 ¬	 SJMCT
			168.717	205.322	171.709	172.688	200	NSGA-
			182.186	167.718			op 50 - 00 - 00 - 00 - 00 - 00 - 00 - 00	SPEA-II
			176.327	197.191			ig 100 -	
			177.980	183.813			° 50 - 0	
			178.099	172.151			150	200
			176.394	192.292			object	
			181.272	169.741			Appendix D.22. Sol for 100 jobs (Crosso	
3	100	0.9	173.816	256.091	164.814	187.278		
			193.809	140.604	188.426	147.073		◆ SJMCT
			182.163	155.198	182.144	156.542	300	NSGA-
			173.865	210.239	174.941	175.282	200 -	SJMCT SPEA-I
			174.768	178.691	182.067	173.360	200 -	
			179.545	169.216			8 100 -	
			179.919	165.856			0	
							150 objecti	200 ve1

APPENDIX D. Table 3 *The values of the best non-dominated front for* **100 jobs** *to each algorithm at crossover probability* 0.9

APPENDIX D. Table 3 (Continue) *The values of the best non-dominated front for 100 jobs to each algorithm at crossover probability 0.9*

Run	Job	Crossover Probability	SJMCT- Objective1			SPEA-II <i>Objective2</i>	300 SJMCT- NSGA-II
8	100	0.9	181.558	141.151	167.505	260.778	200 - SJMCT-
			168.677	214.798	172.279	197.271	
			175.151	168.805	176.008	175.657	<u>ප</u> 100 -
			172.892	199.674	192.596	147.523	0
			170.185	203.970	187.183	161.203	150 200 objective1
			178.593	160.354	186.418	163.436	Appendix D.28. Solutions at run 8
			178.602	151.409	181.932	174.137	for 100 jobs (Crossover prob. 0.9)
					185.761	172.573	
9	100	0.9	193.647	141.060	169.655	246.799	300 J
			170.367	195.866	194.959	152.578	
			170.667	159.490	192.856	152.646	SPPEA-II
					182.935	169.068	SPPEA-II
					175.831	199.930	
					188.043	164.578	0 + 200
					177.315	187.530	objective1
					174.377	225.557	Appendix D.29. Solutions at run 9 for 100 jobs (Crossover prob. 0.9)
					188.548	161.115	
					181.165	179.885	
					179.716	186.558	
					181.646	179.299	
10	100	0.9	205.411	152.837	161.982	177.607	◆ SJMCT-
			163.364	206.852	176.736	159.277	250 NSGA-II 200 - SJMCT-
			176.116	165.169	197.734	150.774	3 150 - SPEA-II
			173.190	195.988			SPEA-II
			175.460	173.614			8 50 -
			175.171	192.188			0
							objective1 500
							Appendix D.30. Solutions at run 10 for 100 jobs (Crossover prob. 0.9)

APPENDIX D. Table 3 (Continue) *The values of the best non-dominated front for* **100 jobs** *to each algorithm at crossover probability* 0.9

APPENDIX E

GAMS PROGRAMMING FOR BALINS TEST PROBLEM BY USING SJMCT ALGORITHM

```
SETS
       machine / 1*4 /
     I
     J job / 1*9 /
TABLE p(I,J) processing time to assigning job J to machine I
        2
                        5
                                              9
   1
              3
                   4
                            6
                                  7
                                       8
                      16
1 18
        14
             24
                   30
                            20
                                  22
                                       26
                                             14
2 9
        7
             12
                           10
                                       13
                                             7
                 15 8
                                11
3 4.5
                  7.5
                                 5.5
                                       6.5
                                             3.5
        3.5
             6
                        4
                            5
4 3.6
             4.8
                 6 3.2 4
                                            2.8 ;
        2.8
                                 4.4
                                       5.2
VARIABLES
Z,Z1,Z2,X15,X25,X35,X45,X16,X26,X36,X46,X17,X27,X37,X47,X18,X28,X38,X4
8, X19, X29, X39, X49;
EQUATIONS
OBJ, kisit1, kisit2, kisit3, kisit4, kisit5, kisit6, kisit7, kisit8, kisit9, kis
it10, kisit11, kisit12, kisit13, kisit14, kisit15, kisit16, kisit17, kisit18, k
isit19,kisit20;
parameter X(I,J),C(I,J),C11,C22,C33,C44
,C15,C25,C35,C45,C16,C26,C36,C46,C17,C27,C37,C47,C18,C28,C38,C48,C19,C
29,C39,C49;
X('1', '1') = 1;
X('2', '2') = 1;
X('3', '3') = 1;
X('4','4') =1;
C11=p('1','1') *X('1','1');
C22=p('2','2')*X('2','2');
C33=p('3','3')*X('3','3');
C44=p('4','4')*X('4','4');
************ The first iteration J=5:
     if (C11 <=C22 and C11 <=C33 and C11 <=C44 ,
display C11;
X('1', '5') = 1;
else
X('1', '5') = 0;
 if (C22 <= C11 and C22 <=C33 and C22 <=C44,
display C22;
X('2', '5') = 1;
else
X('2', '5') = 0;
if (C33 <= C11 and C33 <=C22 and C33 <=C44,
display C33;
X('3','5')=1;
else
X('3', '5') = 0;
if (C44 <= C11 and C44 <=C22 and C44 <=C33 ,
display C44;
X('4', '5') = 1;
else
```

```
X('4', '5') = 0;
);
);
);
);
kisit1.. X('1','5') =E= X15;
kisit2.. X('2','5') =E= X25;
kisit3.. X('3','5') =E= X35;
kisit4.. X('4','5') =E= X45;
C15=p('1','1') *X('1','1') +p('1','5') *X('1','5');
C25=p('2','2') *X('2','2')+p('2','5') *X('2','5');
C35=p('3','3')*X('3','3')+p('3','5')*X('3','5');
C45=p('4','4') *X('4','4') +p('4','5') *X('4','5');
********** The second iteration J=6:
if (C15 <=C25 and C15 <=C35 and C15 <=C45,
display C15;
X('1', '6') = 1;
else
X('1', '6') = 0;
     if (C25 <=C15 and C25 <=C35 and C25 <=C45,
display C25;
X('2', '6') = 1;
else
X('2', '6') = 0;
     if (C35 <=C15 and C35 <=C25 and C35 <=C45,
display C35;
X('3', '6') = 1;
else
X('3', '6') = 0;
     if (C45 <=C15 and C45 <=C25 and C45 <=C35,
display C45;
X('4', '6') = 1;
else
X('4', '6') = 0;
);
);
);
);
C16=p('1','1')*X('1','1')+p('1','5')*X('1','5')+p('1','6')*X('1','6');
C26=p('2','2')*X('2','2')+p('2','5')*X('2','5')+p('2','6')*X('2','6');
C36=p('3','3')*X('3','3')+p('3','5')*X('3','5')+p('3','6')*X('3','6');
C46=p('4','4')*X('4','4')+p('4','5')*X('4','5')+p('4','6')*X('4','6');
kisit5.. X('1','6') =E= X16;
kisit6.. X('2','6') =E= X26;
kisit7.. X('3','6') =E= X36;
kisit8.. X('4','6') =E= X46;
********** The third iteration J=7:
if (C16 <=C26 and C16 <=C36 and C16 <=C46,
display C16;
X('1', '7') = 1;
else
```

```
X('1', '7') = 0;
     if (C26 <=C16 and C26 <=C36 and C26 <=C46,
display C26;
X('2', '7') = 1;
else
X('2', '7') = 0;
     if (C36 <=C16 and C36 <=C26 and C36 <=C46,
display C36;
X('3', '7') = 1;
else
X('3', '7') = 0;
     if (C46 <=C16 and C46 <=C26 and C46 <=C36,
display C46;
X('4', '7') = 1;
else
X('4', '7') = 0;
);
);
);
);
C17=p('1','1')*X('1','1')+p('1','5')*X('1','5')+p('1','6')*X('1','6')+
p('1','7')*X('1','7');
C27=p('2','2')*X('2','2')+p('2','5')*X('2','5')+p('2','6')*X('2','6')+
p('2','7')*X('2','7');
C37=p('3','3')*X('3','3')+p('3','5')*X('3','5')+p('3','6')*X('3','6')+
p('3','7')*X('3','7');
C47=p('4','4')*X('4','4')+p('4','5')*X('4','5')+p('4','6')*X('4','6')+
p('4','7')*X('4','7');
kisit9.. X('1','7') =E= X17;
kisit10.. X('2','7') =E= X27;
kisit11.. X('3','7') =E= X37;
kisit12.. X('4','7') =E= X47;
*********** The forth iteration J=8:
 if (C17 <=C27 and C17 <=C37 and C17 <=C47,
display C17;
X('1', '8') = 1;
else
X('1', '8') = 0;
     if (C27 <=C17 and C27 <=C37 and C27 <=C47,
display C27;
X('2', '8') = 1;
else
X('2', '8') = 0;
     if (C37 <=C17 and C37 <=C27 and C37 <=C47,
display C37;
X('3','8')=1;
else
X('3', '8') = 0;
     if (C47 <=C17 and C47 <=C27 and C47 <=C37,
display C47;
```

```
X('4', '8') = 1;
else
X('4', '8') = 0;
);
);
);
);
C18=p('1', '1') *X('1', '1') +p('1', '5') *X('1', '5') +p('1', '6') *X('1', '6') +
p('1','7')*X('1','7')+p('1','8')*X('1','8');
C28=p('2','2')*X('2','2')+p('2','5')*X('2','5')+p('2','6')*X('2','6')+
p('2','7')*X('2','7')+p('2','8')*X('2','8');
C38=p('3','3')*X('3','3')+p('3','5')*X('3','5')+p('3','6')*X('3','6')+
p('3','7')*X('3','7')+p('3','8')*X('3','8');
C48=p('4','4')*X('4','4')+p('4','5')*X('4','5')+p('4','6')*X('4','6')+
p('4','7')*X('4','7')+p('4','8')*X('4','8');
kisit13.. X('1','8') =E= X18;
kisit14.. X('2','8') =E= X28;
kisit15.. X('3','8') =E= X38;
kisit16.. X('4','8') =E= X48;
********** The fifth iteration J=9:
if (C18 <=C28 and C18 <=C38 and C18 <=C48,
display C18;
X('1', '9') = 1;
else
X('1', '9') = 0;
     if (C28 <=C18 and C28 <=C38 and C28 <=C48,
display C28;
X('2', '9') = 1;
else
X('2', '9') = 0;
     if (C38 <=C18 and C38 <=C28 and C38 <=C48,
display C38;
X('3','9')=1;
else
X('3', '9') = 0;
     if (C48 <=C18 and C48 <=C28 and C48 <=C38,
display C48;
X('4', '9') = 1;
else
X('4', '9') = 0;
);
);
);
);
C19=p('1','1')*X('1','1')+p('1','5')*X('1','5')+p('1','6')*X('1','6')+
p('1','7')*X('1','7')+p('1','8')*X('1','8')+p('1','9')*X('1','9');
C29=p('2','2')*X('2','2')+p('2','5')*X('2','5')+p('2','6')*X('2','6')+
p('2','7')*X('2','7')+p('2','8')*X('2','8')+p('2','9')*X('2','9');
C39=p('3','3')*X('3','3')+p('3','5')*X('3','5')+p('3','6')*X('3','6')+
p('3','7')*X('3','7')+p('3','8')*X('3','8')+p('3','9')*X('3','9');
C49=p('4','4')*X('4','4')+p('4','5')*X('4','5')+p('4','6')*X('4','6')+
p('4','7')*X('4','7')+p('4','8')*X('4','8')+p('4','9')*X('4','9');
```

```
kisit17.. X('1','9') =E= X19;
kisit18.. X('2','9') =E= X29;
kisit19.. X('3','9') =E= X39;
kisit20.. X('4','9') =E= X49;
if (C19> C29 and C19> C39 and C19> C49,
display C19;
else
C19=0;
);
  if (C29> C19 and C29> C39 and C29> C49,
display C29;
else
C29=0;
);
if (C39> C19 and C39> C29 and C39> C49,
display C39;
else
C39=0;
);
if (C49> C19 and C49> C29 and C49> C39,
display C49;
else
C49=0;
);
******
OBJ..
       Z=E=C19+C29+C39+C49;
MODEL SCHEDUALING / ALL /;
SOLVE SCHEDUALING USING MIP MINIMIZING Z ;
```

MATLAB PROGRAMMING (FIRST TEST PROBLEM) TO SOLVE SJMCT-NSGA-II AND SJMCT-SPEA-II ALGORITHM WITH SELECTED PAREMTERS 60 JOBS AND GENERATION 40

COMPUTE THE FITNESS FUNCTION Z=MP60(x)

```
m=5
n=60
p=unifrnd(1,20,[m n]);
t=unifrnd(1,20,[m n]);
for i= 1:m
s(i)=p(i,i)
d1=s
end
for i= 1:m
r(i)=t(i,i)
r1=r
end
for i=1:m
if s(i) ==min(s)
s(i)=s(i)+p(i,m+1)
a6=t(i,m+1);
break
end
end
for j=1:m
```

```
d2(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d2)
s(i)=min(d2)+p(i,m+2)
 a7=t(i,m+2);
break
\operatorname{end}
end
for j=1:m
d3(j) = [s(1, j)]
end
for i=1:m
if s(i) == min(d3)
s(i) = min(d3) + p(i, m+3)
a8=t(i,m+3);
break
end
end
for j=1:m
d4(j)=[s(1,j)]
end
for i=1:m
if s(i) == min(d4)
s(i)=min(d4)+p(i,m+4)
a9=t(i,m+4);
break
end
end
for j=1:m
d5(j)=[s(1,j)]
end
for i= 1:m
if s(i) == min(d5)
s(i)=min(d5)+p(i,m+5)
a10=t(i,m+5);
break
end
end
for j=1:m
d6(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d6)
s(i)=min(d6)+p(i,m+6)
all=t(i,m+6);
break
end
end
for j=1:m
d7(j)=[s(1,j)]
end
for i= 1:m
if s(i) == min(d7)
s(i)=min(d7)+p(i,m+7)
a12=t(i,m+7);
break
end
end
for j=1:m
```

```
d8(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d8)
s(i)=min(d8)+p(i,m+8)
a13=t(i,m+8);
break
end
end
for j=1:m
d9(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d9)
s(i) = min(d9) + p(i, m+9)
a14=t(i,m+9);
break
end
end
for j=1:m
d10(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d10)
s(i)=min(d10)+p(i,m+10)
a15=t(i,m+10);
break
end
end
for j=1:m
d11(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d11)
s(i)=min(d11)+p(i,m+11)
a16=t(i,m+11);
break
end
end
for j=1:m
d12(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d12)
s(i)=min(d12)+p(i,m+12)
a17=t(i,m+12);
break
end
end
for j=1:m
d13(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d13)
s(i)=min(d13)+p(i,m+13)
a18=t(i,m+13);
break
end
end
for j=1:m
```

```
d14(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d14)
s(i)=min(d14)+p(i,m+14)
a19=t(i,m+14);
break
end
end
for j=1:m
d15(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d15)
s(i) = min(d15) + p(i, m+15)
a20=t(i,m+15);
break
end
end
for j=1:m
d16(j) = [s(1,j)]
end
 for i= 1:m
if s(i) ==min(d16)
s(i)=min(d16)+p(i,m+16)
a21=t(i,m+16);
break
end
end
for j=1:m
d17(j)=[s(1,j)]
end
for i=1:m
if s(i) ==min(d17)
s(i)=min(d17)+p(i,m+17)
a22=t(i,m+17);
break
end
end
for j=1:m
d18(j) = [s(1, j)]
end
for i=1:m
if s(i) == min(d18)
s(i)=min(d18)+p(i,m+18);
a23=t(i,m+18);
break
end
end
for j=1:m
d19(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d19)
s(i)=min(d19)+p(i,m+19)
a24=t(i,m+19);
break
end
end
```

```
for j=1:m
d20(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d20)
s(i)=min(d20)+p(i,m+20)
a25=t(i,m+20);
break
end
end
for j=1:m
d21(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d21)
s(i)=min(d21)+p(i,m+21)
a26=t(i,m+21);
break
end
end
for j=1:m
d22(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d22)
s(i)=min(d22)+p(i,m+22)
a27=t(i,m+22);
break
end
end
for j=1:m
d23(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d23)
s(i)=min(d23)+p(i,m+23)
a28=t(i,m+23);
break
end
end
for j=1:m
d24(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d24)
s(i)=min(d24)+p(i,m+24)
a29=t(i,m+24);
break
end
end
for j=1:m
d25(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d25)
s(i)=min(d25)+p(i,m+25)
a30=t(i,m+25);
break
end
end
```

```
for j=1:m
d26(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d26)
s(i)=min(d26)+p(i,m+26)
a31=t(i,m+26);
break
end
end
for j=1:m
d27(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d27)
s(i)=min(d27)+p(i,m+27)
a32=t(i,m+27);
break
end
end
for j=1:m
d28(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d28)
s(i)=min(d28)+p(i,m+28)
a33=t(i,m+28);
break
end
end
for j=1:m
d29(j) = [s(1,j)]
end
for i= 1:m
if s(i) ==min(d29)
s(i)=min(d29)+p(i,m+29)
a34=t(i,m+29);
break
end
end
for j=1:m
d30(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d30)
s(i)=min(d30)+p(i,m+30)
a35=t(i,m+30);
break
end
end
for j=1:m
d31(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d31)
s(i)=min(d31)+p(i,m+31)
a36=t(i,m+31);
break
end
end
```

```
for j=1:m
d32(j) = [s(1,j)]
end
for i= 1:m
if s(i) ==min(d32)
s(i)=min(d32)+p(i,m+32)
a37=t(i,m+32);
break
end
end
for j=1:m
d33(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d33)
s(i) = min(d33) + p(i, m+33)
a38=t(i,m+33);
break
end
end
for j=1:m
d34(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d34)
s(i)=min(d34)+p(i,m+34)
a39=t(i,m+34);
break
end
end
for j=1:m
d35(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d35)
s(i)=min(d35)+p(i,m+35)
a40=t(i,m+35);
break
end
end
for j=1:m
d36(j)=[s(1,j)]
end
for i= 1:m
if s(i) == min(d36)
 s(i)=min(d36)+p(i,m+36)
 a41=t(i,m+36);
break
end
end
for j=1:m
d37(j)=[s(1,j)]
end
for i=1:m
if s(i) ==min(d37)
s(i)=min(d37)+p(i,m+37)
a42=t(i,m+37);
break
end
```

```
end
for j=1:m
d38(j)=[s(1,j)]
end
for i=1:m
if s(i) == min(d38)
s(i)=min(d38)+p(i,m+38)
a43=t(i,m+38);
break
end
end
for j=1:m
d39(j) = [s(1, j)]
end
for i= 1:m
if s(i) ==min(d39)
s(i)=min(d39)+p(i,m+39)
a44=t(i,m+39);
break
end
end
for j=1:m
d40(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d40)
s(i)=min(d40)+p(i,m+40)
a45=t(i,m+40);
break
end
end
for j=1:m
d41(j)=[s(1,j)]
end
for i= 1:m
if s(i) == min(d41)
s(i)=min(d41)+p(i,m+41)
a46=t(i,m+41);
break
end
end
for j=1:m
d42(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d42)
s(i)=min(d42)+p(i,m+42)
a47=t(i,m+42);
break
end
end
for j=1:m
d43(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d43)
s(i)=min(d43)+p(i,m+43)
a48=t(i,m+43);
break
end
```

```
end
for j=1:m
d44(j)=[s(1,j)]
end
for i= 1:m
if s(i) == min(d44)
s(i)=min(d44)+p(i,m+44)
a49=t(i,m+44);
break
end
end
for j=1:m
d45(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d45)
s(i) = min(d45) + p(i, m+45)
a50=t(i,m+45);
break
end
end
for j=1:m
d46(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d46)
s(i)=min(d46)+p(i,m+46)
a51=t(i,m+46);
break
end
end
for j=1:m
d47(j)=[s(1,j)]
\operatorname{end}
for i= 1:m
if s(i) == min(d47)
s(i)=min(d47)+p(i,m+47)
a52=t(i,m+47);
break
end
end
for j=1:m
d48(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d48)
s(i)=min(d48)+p(i,m+48)
a53=t(i,m+48);
break
end
end
for j=1:m
d49(j) = [s(1,j)]
end
for i= 1:m
if s(i) ==min(d49)
s(i)=min(d49)+p(i,m+49)
a54=t(i,m+49);
break
end
```

```
end
for j=1:m
d50(j)=[s(1,j)]
end
for i= 1:m
if s(i) == min(d50)
s(i)=min(d50)+p(i,m+50)
a55=t(i,m+50);
break
end
end
for j=1:m
d51(j) = [s(1, j)]
end
for i= 1:m
if s(i) ==min(d51)
s(i) = min(d51) + p(i, m+51)
a56=t(i,m+51);
break
end
end
for j=1:m
d52(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d52)
s(i)=min(d52)+p(i,m+52)
a57=t(i,m+52);
break
end
end
for j=1:m
d53(j)=[s(1,j)]
end
for i= 1:m
if s(i) == min(d53)
s(i)=min(d53)+p(i,m+53)
a58=t(i,m+53);
break
end
end
for j=1:m
d54(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d54)
s(i)=min(d54)+p(i,m+54)
a59=t(i,m+54);
break
end
end
for j=1:m
d55(j) = [s(1,j)]
end
for i= 1:m
if s(i) ==min(d55)
s(i)=min(d55)+p(i,m+55)
a60=t(i,m+55);
break
end
```

<pre>end for j=1:m d56(j)=[s(1,j)] end</pre>
%%*********************************
J6=d2-d1 J7=d3-d2 J8=d4-d3 J9=d5-d4 J10=d6-d5 J11=d7-d6 J11=d7-d6 J12=d8-d7 J13=d9-d8 J14=d10-d9 J15=d11-d10 J16=d12-d11 J17=d3-d12 J18=d14-d13 J19=d15-d14 J20=d16-d15 J21=d17-d16 J22=d18-d17 J23=d19-d18 J24=d20-d19 J25=d21-d20 J26=d22-d21 J27=d23-d22 J28=d24-d23 J29=d25-d24 J30=d26-d25 J31=d27-d26 J32=d28-d27 J33=d29-d28 J34=d30-d29 J35=d31-d30 J36=d32-d31 J37=d33-d32 J38=d34-d33 J39=d35-d34 J40=d36-d35 J41=d37-d36 J42=d38-d37
J43=d39-d38 J44=d40-d39
J45=d41-d40
J46=d42-d41 J47=d43-d42;
J48=d44-d43
J49=d45-d44
J50=d46-d45
J51=d47-d46
J52=d48-d47
J53=d49-d48
J54=d50-d49
J55=d51-d50
J56=d52-d51
J57=d53-d52 J58=d54-d53

J58=d54-d53

J59=d55-d54
J60=d56-d55
TAR1=d1-r1
TAR6=max(J6)-a6
TAR7=max(J7)-a7
TAR8=max(J8)-a8
TAR9=max(J9)-a9
TAR10=max(J10)-a10
TAR11=max(J11)-a11
TAR12=max(J12)-a12
TAR13=max(J13)-a13
TAR14=max (J14) -a14
TAR15=max(J15)-a15
TAR16=max(J16)-a16
TAR17=max(J17)-a17
TAR18=max(J18)-a18
TAR19=max(J19)-a19
TAR20=max(J20)-a20
TAR21=max(J21)-a21
TAR22=max(J22)-a22
TAR23=max(J23)-a23
TAR24=max(J24)-a24
TAR25=max(J25)-a25
TAR26 = max (J26) - a26
TAR27 = max(J27) - a27
TAR28 = max(J28) - a28
TAR29 = max(J29) - a29
TAR30 = max(J30) - a30
TAR31=max(J31)-a31
TAR32=max(J32)-a32
TAR33=max(J33)-a33
TAR34=max(J34)-a34
TAR35=max(J35)-a35
TAR36=max(J36)-a36
TAR37=max(J37)-a37
TAR38=max(J38)-a38
TAR39=max(J39)-a39
TAR40=max(J40)-a40
TAR41=max(J41)-a41
TAR42=max(J42)-a42
TAR43=max(J43)-a43
TAR44 = max(J44) - a44
TAR45 = max(J45) - a45
TAR46=max(J46)-a46
TAR47 = max(J47) - a47
TAR48 = max(J48) - a48
TAR49 = max(040) = a40 TAR49 = max(J49) = a49
TAR59 = max(059) = a49 TAR50 = max(J50) = a50
TAR51=max(J51)-a51
TAR52=max(J52)-a52
TAR53=max(J53)-a53
TAR54=max(J54)-a54
TAR55=max(J55)-a55
TAR56=max(J56)-a56
TAR57=max(J57)-a57
TAR58=max(J58)-a58
TAR59=max(J59)-a59
TAR60=max(J60)-a60
T=[TAR1, TAR6, TAR7, TAR8, TAR9, TAR10, TAR11, TAR12, TAR13, TAR14, TAR15, TAR16,
TAR17, TAR18, TAR19, TAR20, TAR21, TAR22, TAR23, TAR24, TAR25, TAR26, TAR27, TAR2

```
8, TAR29, TAR30, TAR31, TAR32, TAR33, TAR34, TAR35, TAR36, TAR37, TAR38, TAR39, TA
R40, TAR41, TAR42, TAR43, TAR44, TAR45, TAR46, TAR47, TAR48, TAR49, TAR50, TAR51,
TAR52, TAR53, TAR54, TAR55, TAR56, TAR57, TAR58, TAR59, TAR60]
for j=1:n
if T(j) >0
DD(j)=T(j);
else
DD(j)=0;
end
CMAX=max(s)
TARD=sum(DD)
88
optjobs=[d1;J6;J7;J8;J9;J10;J11;J12;J13;J14;J15;J16;J17;J18;J19;J20;J2
1; J22; J23; J24; J25; J26; J27; J28; J29; J30; J31; J32; J33; J34; J35; J36; J37; J38;
J39;J40;J41;J42;J43;J44;J45;J46;J47;J48;J49;J50;J51;J52;J53;J54;J55;J5
6;J57;J58;J59;J60]';
%figure(1);
%title 'parallel machine';
%barh(optjobs ,'stack');
%xlabel('JOBS')
%ylabel('MACHINE')
%TARD=sum(DD)
%CMAX=max(s)
z1=CMAX;
z2=TARD;
z = [z1 \ z2]';
end
end
```

USING THE FITNESS FUNCTION Z=MP60(x) WITH CROSSOVER PROBABILITY 0.6 AND THE FOLLOWING ASSUMPTIONS TO SOLVE SJMCT-NSGA-II ALGORITHM

```
clc;
clear;
close all;
%% Problem Definition
CostFunction=@(x)MP60(x);
nVar=[5 60];
                       % Number of Decision Variables
VarSize=[nVar 1]; % Decision Variables Matrix Size
VarMin=-15;
                    % Decision Variables Lower Bound
VarMax=15;
                    % Decision Variables Upper Bound
% Number of Objective Functions
nObj=numel(CostFunction(unifrnd(VarMin,VarMax,VarSize)));
%% NSGA-II Parameters
MaxIt=40;
            % Maximum Number of Iterations
nPop=100;
                 % Population Size
Crossover=0.6;
                                       % Crossover Percentage
nCrossover=2*round(pCrossover*nPop/2); %Number of Parnets (Offsprings)
                                        % Mutation Percentage
pMutation=0.4;
nMutation=round(pMutation*nPop);
                                       % Number of Mutants
mu=0.02;
                           % Mutation Rate
sigma=0.1*(VarMax-VarMin); % Mutation Step Size
%% Initialization
empty individual.Position=[];
empty_individual.Cost=[];
empty_individual.Rank=[];
empty_individual.DominationSet=[];
empty individual.DominatedCount=[];
```

```
empty individual.CrowdingDistance=[];
pop=repmat(empty individual,nPop,1);
for i=1:nPop
   pop(i).Position=unifrnd(VarMin,VarMax,VarSize);
    pop(i).Cost=CostFunction(pop(i).Position);
end
% Non-Dominated Sorting
[pop, F]=NonDominatedSorting(pop);
% Calculate Crowding Distance
pop=CalcCrowdingDistance(pop,F);
% Sort Population
[pop, F]=SortPopulation(pop);
%% NSGA-II Main Loop
for it=1:MaxIt
    % Crossover
    popc=repmat(empty individual,nCrossover/2,2);
    for k=1:nCrossover/2
        i1=randi([1 nPop]);
        p1=pop(i1);
        i2=randi([1 nPop]);
        p2=pop(i2);
        [popc(k,1).Position,
popc(k,2).Position]=Crossover(p1.Position,p2.Position);
        popc(k,1).Cost=CostFunction(popc(k,1).Position);
        popc(k,2).Cost=CostFunction(popc(k,2).Position);
        end
   popc=popc(:);
    % Mutation
    popm=repmat(empty individual,nMutation,1);
    for k=1:nMutation
        i=randi([1 nPop]);
        p=pop(i);
        popm(k).Position=Mutate(p.Position,mu,sigma);
        popm(k).Cost=CostFunction(popm(k).Position);
    end
    % Merge
    pop=[pop
         popc
         popm]; %#ok
    % Non-Dominated Sorting
    [pop, F]=NonDominatedSorting(pop);
    % Calculate Crowding Distance
    pop=CalcCrowdingDistance(pop,F);
    % Sort Population
    pop=SortPopulation(pop);
    % Truncate
    pop=pop(1:nPop);
    % Non-Dominated Sorting
    [pop, F]=NonDominatedSorting(pop);
    % Calculate Crowding Distance
    pop=CalcCrowdingDistance(pop,F);
    % Sort Population
    [pop, F]=SortPopulation(pop);
    % Store F1
    F1=pop(F{1});
    % Show Iteration Information
    disp(['Iteration ' num2str(it) ': Number of F1 Members = '
num2str(numel(F1))]);
    % Plot F1 Costs
    figure(1);
```

```
PlotCosts(F1);
    pause(0.3);
end
%% Results
CF1 = [F1.Cost];
for j=1:size(CF1,1)
    disp(['Objective #' num2str(j) ':']);
             Min = ' num2str(min(CF1(j,:)))]);
    disp(['
               Max = ' num2str(max(CF1(j,:))));
    disp(['
             Range = ' num2str(max(CF1(j,:))-min(CF1(j,:)))]);
    disp(['
             St.D. = ' num2str(std(CF1(j,:)))]);
    disp(['
    disp(['
              Mean = ' num2str(mean(CF1(j,:))));
    disp(' ');
end
```

```
USING THE FITNESS FUNCTION Z=MP60(x) WITH CROSSOVER
PROBABILITY 0.6 AND THE FOLLOWING ASSUMPTIONS TO SOLVE
SJMCT-SPEA-II ALGORITHM
```

```
clc;
clear;
close all;
%% Problem Definition
CostFunction=@(x)MP60(x);
nVar=[5 60];
                        % Number of Decision Variables
VarSize=[nVar 1]; % Decision Variables Matrix Size
                    % Decision Variables Lower Bound
VarMin=-15;
                    % Decision Variables Upper Bound
VarMax=15;
%% SPEA2 Settings
MaxIt=40; % Maximum Number of Iterations
                    % Population Size
nPop=100;
nArchive=60; % Archive Size
K=round(sqrt(nPop+nArchive)); % KNN Parameter
pCrossover=0.6;
nCrossover=round(pCrossover*nPop/2)*2;
pMutation=1-pCrossover;
nMutation=nPop-nCrossover;
crossover_params.gamma=0.1;
crossover_params.VarMin=VarMin;
crossover_params.VarMax=VarMax;
mutation params.h=0.2;
mutation params.VarMin=VarMin;
mutation params.VarMax=VarMax;
%% Initialization
empty individual.Position=[];
empty individual.Cost=[];
empty individual.S=[];
empty individual.R=[];
empty individual.sigma=[];
empty individual.sigmaK=[];
empty individual.D=[];
empty individual.F=[];
pop=repmat(empty individual, nPop, 1);
for i=1:nPop
    pop(i).Position=unifrnd(VarMin,VarMax,VarSize);
    pop(i).Cost=CostFunction(pop(i).Position);
end
archive=[];
%% Main Loop
```

```
for it=1:MaxIt
    Q=[pop
       archive];
    nQ=numel(Q);
    dom=false(nQ,nQ);
    for i=1:nQ
        Q(i).S=0;
    end
    for i=1:nQ
        for j=i+1:nQ
            if Dominates(Q(i),Q(j))
                Q(i).S=Q(i).S+1;
                dom(i,j)=true;
            elseif Dominates(Q(j),Q(i))
                Q(j).S=Q(j).S+1;
                dom(j,i)=true;
            end
        end
    end
    S = [Q.S];
    for i=1:nQ
        Q(i).R=sum(S(dom(:,i)));
    end
    Z=[Q.Cost]';
    SIGMA=pdist2(Z,Z,'seuclidean');
    SIGMA=sort(SIGMA);
    for i=1:nQ
        Q(i).sigma=SIGMA(:,i);
        Q(i).sigmaK=Q(i).sigma(K);
        Q(i).D=1/(Q(i).sigmaK+2);
        Q(i).F=Q(i).R+Q(i).D;
    end
    nND=sum([Q.R]==0);
    if nND<=nArchive
        F = [Q.F];
        [F, SO] = sort(F);
        Q=Q(SO);
        archive=Q(1:min(nArchive,nQ));
    else
        SIGMA=SIGMA(:, [Q.R]==0);
        archive=Q([Q.R]==0);
        k=2;
        while numel(archive)>nArchive
            while min(SIGMA(k,:)) == max(SIGMA(k,:)) && k< size(SIGMA,1)</pre>
                 k = k + 1;
            end
            [~, j]=min(SIGMA(k,:));
            archive(j)=[];
            SIGMA(:,j)=[];
        end
    end
    PF=archive([archive.R]==0); % Approximate Pareto Front
    % Plot Pareto Front
    figure(1);
    PlotCosts(PF);
    pause(0.01);
    % Display Iteration Information
    disp(['Iteration ' num2str(it) ': Number of PF members = '
num2str(numel(PF))]);
```

```
if it>=MaxIt
       break;
    end
    % Crossover
    popc=repmat(empty individual,nCrossover/2,2);
    for c=1:nCrossover/2
        p1=BinaryTournamentSelection(archive,[archive.F]);
        p2=BinaryTournamentSelection(archive,[archive.F]);
        [popc(c,1).Position,
popc(c,2).Position]=Crossover(p1.Position,p2.Position,crossover params
);
        popc(c,1).Cost=CostFunction(popc(c,1).Position);
        popc(c,2).Cost=CostFunction(popc(c,2).Position);
    end
   popc=popc(:);
    % Mutation
   popm=repmat(empty individual,nMutation,1);
    for m=1:nMutation
        p=BinaryTournamentSelection(archive,[archive.F]);
        popm(m).Position=Mutate(p.Position,mutation params);
        popm(m).Cost=CostFunction(popm(m).Position);
    end
    % Create New Population
   pop=[popc
        popm];
end
%% Results
disp(' ');
PFC = [PF.Cost];
for j=1:size(PFC,1)
    disp(['Objective #' num2str(j) ':']);
                Min = ' num2str(min(PFC(j,:)))]);
    disp(['
    disp(['
               Max = ' num2str(max(PFC(j,:)))]);
    disp(['
              Range = ' num2str(max(PFC(j,:))-min(PFC(j,:)))]);
    disp(['
              St.D. = ' num2str(std(PFC(j,:)))]);
               Mean = ' num2str(mean(PFC(j,:)))]);
    disp([
    disp(' ');
end
```

MATLAB PROGRAMMING (SECOND TEST PROBLEM) TO SOLVE SJMCT-NSGA-II AND SJMCT-SPEA-II ALGORITHM WITH DIFFERENT NUMBER OF JOBS ANDGENERATION 500

COMPUTETING THE FITNESS FUNCTION FOR 20 JOBS Z=MP20(x)

```
m=5
n=20
p=unifrnd(1,20,[m n]);
t=unifrnd(1,20,[m n]);
for i= 1:m
   s(i)=p(i,i)
   d1=s
end
for i= 1:m
   r(i)=t(i,i)
   r1=r
end
for i=1:m
if s(i)==min(s)
   s(i)=s(i)+p(i,m+1)
```

```
a6=t(i,m+1);
break
 end
end
for j=1:m
d2(j)=[s(1,j)]
end
 for i= 1:m
if s(i) == min(d2)
s(i)=min(d2)+p(i,m+2)
 a7=t(i,m+2);
break
end
end
for j=1:m
d3(j) = [s(1, j)]
end
for i=1:m
if s(i) == min(d3)
s(i)=min(d3)+p(i,m+3)
a8=t(i,m+3);
break
end
end
for j=1:m
d4(j)=[s(1,j)]
end
for i=1:m
if s(i) == min(d4)
s(i)=min(d4)+p(i,m+4)
a9=t(i,m+4);
break
end
end
for j=1:m
d5(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d5)
s(i) = min(d5) + p(i, m+5)
a10=t(i,m+5);
break
end
end
for j=1:m
d6(j)=[s(1,j)]
end
for i= 1:m
if s(i) == min(d6)
s(i)=min(d6)+p(i,m+6)
all=t(i,m+6);
break
end
end
for j=1:m
d7(j)=[s(1,j)]
end
for i= 1:m
if s(i) == min(d7)
s(i)=min(d7)+p(i,m+7)
```

```
a12=t(i,m+7);
break
end
end
for j=1:m
d8(j)=[s(1,j)]
end
for i= 1:m
if s(i) == min(d8)
s(i)=min(d8)+p(i,m+8)
a13=t(i,m+8);
break
end
end
for j=1:m
d9(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d9)
s(i)=min(d9)+p(i,m+9)
a14=t(i,m+9);
break
end
end
for j=1:m
d10(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d10)
s(i)=min(d10)+p(i,m+10)
a15=t(i,m+10);
break
end
end
for j=1:m
d11(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d11)
s(i)=min(d11)+p(i,m+11)
a16=t(i,m+11);
break
end
end
for j=1:m
d12(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d12)
s(i)=min(d12)+p(i,m+12)
a17=t(i,m+12);
break
end
end
for j=1:m
d13(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d13)
s(i)=min(d13)+p(i,m+13)
```

```
a18=t(i,m+13);
break
end
end
for j=1:m
d14(j)=[s(1,j)]
end
for i= 1:m
if s(i) == min(d14)
s(i)=min(d14)+p(i,m+14)
a19=t(i,m+14);
break
end
end
for j=1:m
d15(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d15)
s(i)=min(d15)+p(i,m+15)
a20=t(i,m+15);
break
end
end
for j=1:m
d16(j)=[s(1,j)]
end
J6=d2-d1
J7=d3-d2
J8=d4-d3
J9=d5-d4
J10=d6-d5
J11=d7-d6
J12=d8-d7
J13=d9-d8
J14=d10-d9
J15=d11-d10
J16=d12-d11
J17=d13-d12
J18=d14-d13
J19=d15-d14
J20=d16-d15
TAR1=d1-r1
TAR6=max(J6)-a6
TAR7=max(J7)-a7
TAR8=max(J8)-a8
TAR9=max(J9)-a9
TAR10=max(J10)-a10
TAR11=max(J11)-a11
TAR12=max(J12)-a12
TAR13=max(J13)-a13
TAR14=max(J14)-a14
TAR15=max(J15)-a15
TAR16=max(J16)-a16
TAR17=max(J17)-a17
TAR18=max(J18)-a18
TAR19=max(J19)-a19
TAR20=max(J20)-a20
```

```
T=[TAR1, TAR6, TAR7, TAR8, TAR9, TAR10, TAR11, TAR12, TAR13, TAR14, TAR15, TAR16,
TAR17, TAR18, TAR19, TAR20]
for j=1:n
if T(j) >0
DD(j)=T(j);
else
DD(j)=0;
end
CMAX=max(s)
TARD=sum(DD)
88
optjobs=[d1;J6;J7;J8;J9;J10;J11;J12;J13;J14;J15;J16;J17;J18;J19;J20]';
%figure(1);
%title 'parallel machine';
%barh(optjobs ,'stack');
%xlabel('JOBS')
%ylabel('MACHINE')
z1=CMAX;
z2=TARD;
z=[z1 z2]';
end
```

COMPUTETING THE FITNESS FUNCTION FOR 100 JOBS Z=MP100(x)

```
m=5
n=100
p=unifrnd(1,20,[m n]);
t=unifrnd(1,20,[m n]);
for i= 1:m
    s(i)=p(i,i)
     d1=s
end
 for i= 1:m
   r(i)=t(i,i)
     r1=r
end
for i=1:m
if s(i) == min(s)
s(i) = s(i) + p(i, m+1)
a6=t(i,m+1);
break
end
end
for j=1:m
d2(j) = [s(1, j)]
end
 for i= 1:m
if s(i) == min(d2)
s(i)=min(d2)+p(i,m+2)
a7=t(i,m+2);
break
end
end
for j=1:m
d3(j) = [s(1,j)]
end
for i=1:m
if s(i) == min(d3)
s(i)=min(d3)+p(i,m+3)
a8=t(i,m+3);
```

```
break
end
end
for j=1:m
d4(j)=[s(1,j)]
end
 for i=1:m
if s(i) == min(d4)
s(i)=min(d4)+p(i,m+4)
a9=t(i,m+4);
break
end
end
for j=1:m
d5(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d5)
s(i) = min(d5) + p(i, m+5)
a10=t(i,m+5);
break
end
end
for j=1:m
d6(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d6)
s(i)=min(d6)+p(i,m+6)
all=t(i,m+6);
break
end
end
 for j=1:m
d7(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d7)
s(i) = min(d7) + p(i, m+7)
a12=t(i,m+7);
break
end
end
 for j=1:m
d8(j) = [s(1, j)]
end
 for i= 1:m
if s(i) == min(d8)
s(i)=min(d8)+p(i,m+8)
a13=t(i,m+8);
break
end
end
for j=1:m
d9(j)=[s(1,j)]
end
for i= 1:m
if s(i) == min(d9)
s(i)=min(d9)+p(i,m+9)
a14=t(i,m+9);
```

```
break
end
end
for j=1:m
d10(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d10)
s(i)=min(d10)+p(i,m+10)
a15=t(i,m+10);
break
end
end
for j=1:m
d11(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d11)
s(i)=min(d11)+p(i,m+11)
a16=t(i,m+11);
break
end
end
for j=1:m
d12(j)=[s(1,j)]
end
for i= 1:m
if s(i) == min(d12)
s(i)=min(d12)+p(i,m+12)
a17=t(i,m+12);
break
end
end
 for j=1:m
d13(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d13)
s(i)=min(d13)+p(i,m+13)
a18=t(i,m+13);
break
end
end
 for j=1:m
d14(j) = [s(1,j)]
end
 for i= 1:m
if s(i) == min(d14)
s(i)=min(d14)+p(i,m+14)
a19=t(i,m+14);
break
end
end
for j=1:m
d15(j)=[s(1,j)]
end
for i= 1:m
if s(i) == min(d15)
s(i)=min(d15)+p(i,m+15)
a20=t(i,m+15);
```

```
break
end
end
for j=1:m
d16(j) = [s(1,j)]
end
 for i= 1:m
if s(i) == min(d16)
 s(i)=min(d16)+p(i,m+16)
 a21=t(i,m+16);
break
end
end
 for j=1:m
d17(j) = [s(1,j)]
end
 for i=1:m
if s(i) == min(d17)
s(i)=min(d17)+p(i,m+17)
a22=t(i,m+17);
break
end
end
for j=1:m
d18(j)=[s(1,j)]
end
for i=1:m
if s(i) ==min(d18)
s(i)=min(d18)+p(i,m+18);
a23=t(i,m+18);
break
end
end
for j=1:m
d19(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d19)
s(i)=min(d19)+p(i,m+19)
a24=t(i,m+19);
break
end
end
for j=1:m
d20(j)=[s(1,j)]
end
 for i= 1:m
if s(i) == min(d20)
s(i)=min(d20)+p(i,m+20)
a25=t(i,m+20);
break
end
end
for j=1:m
d21(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d21)
s(i)=min(d21)+p(i,m+21)
```

```
a26=t(i,m+21);
break
end
end
for j=1:m
d22(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d22)
s(i)=min(d22)+p(i,m+22)
a27=t(i,m+22);
break
end
end
for j=1:m
d23(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d23)
s(i)=min(d23)+p(i,m+23)
a28=t(i,m+23);
break
end
end
for j=1:m
d24(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d24)
s(i)=min(d24)+p(i,m+24)
a29=t(i,m+24);
break
end
end
 for j=1:m
d25(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d25)
s(i)=min(d25)+p(i,m+25)
a30=t(i,m+25);
break
end
end
 for j=1:m
d26(j) = [s(1,j)]
end
 for i= 1:m
if s(i) == min(d26)
s(i)=min(d26)+p(i,m+26)
a31=t(i,m+26);
break
end
end
for j=1:m
d27(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d27)
s(i)=min(d27)+p(i,m+27)
```

```
a32=t(i,m+27);
break
end
end
for j=1:m
d28(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d28)
s(i)=min(d28)+p(i,m+28)
a33=t(i,m+28);
break
end
end
for j=1:m
d29(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d29)
s(i)=min(d29)+p(i,m+29)
a34=t(i,m+29);
break
end
end
for j=1:m
d30(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d30)
s(i)=min(d30)+p(i,m+30)
a35=t(i,m+30);
break
end
end
 for j=1:m
d31(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d31)
s(i)=min(d31)+p(i,m+31)
a36=t(i,m+31);
break
end
end
 for j=1:m
d32(j)=[s(1,j)]
end
 for i= 1:m
if s(i) == min(d32)
s(i)=min(d32)+p(i,m+32)
a37=t(i,m+32);
break
end
end
for j=1:m
d33(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d33)
s(i)=min(d33)+p(i,m+33)
```

```
a38=t(i,m+33);
break
end
end
for j=1:m
d34(j)=[s(1,j)]
end
for i= 1:m
if s(i) == min(d34)
s(i)=min(d34)+p(i,m+34)
a39=t(i,m+34);
break
end
end
for j=1:m
d35(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d35)
s(i)=min(d35)+p(i,m+35)
a40=t(i,m+35);
break
end
end
for j=1:m
d36(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d36)
s(i)=min(d36)+p(i,m+36)
a41=t(i,m+36);
break
end
end
for j=1:m
d37(j) = [s(1, j)]
end
for i=1:m
if s(i) == min(d37)
s(i) = min(d37) + p(i, m+37)
a42=t(i,m+37);
break
end
end
 for j=1:m
d38(j)=[s(1,j)]
end
for i=1:m
if s(i) == min(d38)
s(i)=min(d38)+p(i,m+38)
a43=t(i,m+38);
break
end
end
for j=1:m
d39(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d39)
```

```
s(i)=min(d39)+p(i,m+39)
a44=t(i,m+39);
break
end
end
for j=1:m
d40(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d40)
s(i)=min(d40)+p(i,m+40)
a45=t(i,m+40);
break
end
end
 for j=1:m
d41(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d41)
s(i)=min(d41)+p(i,m+41)
a46=t(i,m+41);
break
end
end
for j=1:m
d42(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d42)
s(i)=min(d42)+p(i,m+42)
a47=t(i,m+42);
break
end
end
for j=1:m
d43(j) = [s(1, j)]
end
for i= 1:m
if s(i) ==min(d43)
s(i) = min(d43) + p(i, m+43)
a48=t(i,m+43);
break
end
end
 for j=1:m
d44(j) = [s(1,j)]
end
 for i= 1:m
if s(i) == min(d44)
s(i)=min(d44)+p(i,m+44)
a49=t(i,m+44);
break
end
end
for j=1:m
d45(j)=[s(1,j)]
\operatorname{end}
 for i= 1:m
if s(i) ==min(d45)
```

```
s(i)=min(d45)+p(i,m+45)
a50=t(i,m+45);
break
end
end
for j=1:m
d46(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d46)
s(i)=min(d46)+p(i,m+46)
a51=t(i,m+46);
break
end
end
 for j=1:m
d47(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d47)
s(i)=min(d47)+p(i,m+47)
a52=t(i,m+47);
break
end
end
for j=1:m
d48(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d48)
s(i)=min(d48)+p(i,m+48)
a53=t(i,m+48);
break
end
end
for j=1:m
d49(j) = [s(1, j)]
end
for i= 1:m
if s(i) ==min(d49)
s(i) = min(d49) + p(i, m+49)
a54=t(i,m+49);
break
end
end
 for j=1:m
d50(j)=[s(1,j)]
end
 for i= 1:m
if s(i) == min(d50)
s(i)=min(d50)+p(i,m+50)
a55=t(i,m+50);
break
end
end
for j=1:m
d51(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d51)
```

```
s(i)=min(d51)+p(i,m+51)
a56=t(i,m+51);
break
end
end
for j=1:m
d52(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d52)
s(i)=min(d52)+p(i,m+52)
a57=t(i,m+52);
break
end
end
for j=1:m
d53(j) = [s(1,j)]
end
for i= 1:m
if s(i) ==min(d53)
s(i)=min(d53)+p(i,m+53)
a58=t(i,m+53);
break
end
end
for j=1:m
d54(j)=[s(1,j)]
end
for i= 1:m
if s(i) == min(d54)
s(i)=min(d54)+p(i,m+54)
a59=t(i,m+54);
break
end
end
for j=1:m
d55(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d55)
s(i) = min(d55) + p(i, m+55)
a60=t(i,m+55);
break
end
end
 for j=1:m
d56(j) = [s(1,j)]
end
for i= 1:m
if s(i) ==min(d56)
s(i)=min(d56)+p(i,m+56)
a61=t(i,m+56);
break
end
end
for j=1:m
d57(j) = [s(1,j)]
end
for i=1:m
```

```
if s(i) ==min(d57)
s(i)=min(d57)+p(i,m+57)
a62=t(i,m+57);
break
end
end
for j=1:m
d58(j) = [s(1,j)]
end
for i=1:m
if s(i) ==min(d58)
s(i)=min(d58)+p(i,m+58)
a63=t(i,m+58);
break
end
end
for j=1:m
d59(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d59)
s(i)=min(d59)+p(i,m+59)
a64=t(i,m+59);
break
end
end
for j=1:m
d60(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d60)
s(i)=min(d60)+p(i,m+60)
a65=t(i,m+60);
break
end
end
 for j=1:m
d61(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d61)
s(i)=min(d61)+p(i,m+61)
a66=t(i,m+61);
break
end
end
 for j=1:m
d62(j) = [s(1,j)]
end
 for i= 1:m
if s(i) ==min(d62)
s(i)=min(d62)+p(i,m+62)
a67=t(i,m+62);
break
end
end
for j=1:m
d63(j)=[s(1,j)]
end
for i= 1:m
```

```
if s(i) ==min(d63)
s(i)=min(d63)+p(i,m+63)
a68=t(i,m+63);
break
end
end
for j=1:m
d64(j) = [s(1,j)]
end
for i= 1:m
if s(i) ==min(d64)
s(i)=min(d64)+p(i,m+64)
a69=t(i,m+64);
break
end
end
 for j=1:m
d65(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d65)
s(i)=min(d65)+p(i,m+65)
a70=t(i,m+65);
break
end
end
for j=1:m
d66(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d66)
s(i)=min(d66)+p(i,m+66)
a71=t(i,m+66);
break
end
end
 for j=1:m
d67(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d67)
s(i) = min(d67) + p(i, m+67)
a72=t(i,m+67);
break
end
end
 for j=1:m
d68(j)=[s(1,j)]
end
 for i= 1:m
if s(i) ==min(d68)
s(i)=min(d68)+p(i,m+68)
a73=t(i,m+68);
break
end
end
for j=1:m
d69(j) = [s(1,j)]
end
for i= 1:m
```

```
if s(i) ==min(d69)
s(i)=min(d69)+p(i,m+69)
a74=t(i,m+69);
break
end
end
for j=1:m
d70(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d70)
s(i)=min(d70)+p(i,m+70)
a75=t(i,m+70);
break
end
end
for j=1:m
d71(j)=[s(1,j)]
end
for i= 1:m
if s(i) == min(d71)
s(i)=min(d71)+p(i,m+71)
a76=t(i,m+71);
break
end
end
for j=1:m
d72(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d72)
s(i)=min(d72)+p(i,m+72)
a77=t(i,m+72);
break
end
end
for j=1:m
d73(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d73)
s(i) = min(d73) + p(i, m+73)
a78=t(i,m+73);
break
end
end
 for j=1:m
d74(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d74)
s(i)=min(d74)+p(i,m+74)
a79=t(i,m+74);
break
end
end
for j=1:m
d75(j)=[s(1,j)]
\operatorname{end}
for i= 1:m
```

```
if s(i) ==min(d75)
s(i)=min(d75)+p(i,m+75)
a80=t(i,m+75);
break
end
end
for j=1:m
d76(j) = [s(1, j)]
end
for i= 1:m
if s(i) ==min(d76)
s(i)=min(d76)+p(i,m+76)
a81=t(i,m+76);
break
end
end
 for j=1:m
d77(j)=[s(1,j)]
end
for i=1:m
if s(i) == min(d77)
s(i)=min(d77)+p(i,m+77)
a82=t(i,m+77);
break
end
end
for j=1:m
d78(j)=[s(1,j)]
end
for i=1:m
if s(i) ==min(d78)
s(i)=min(d78)+p(i,m+78)
a83=t(i,m+78);
break
end
end
for j=1:m
d79(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d79)
s(i) = min(d79) + p(i, m+79)
a84=t(i,m+79);
break
end
end
for j=1:m
d80(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d80)
s(i)=min(d80)+p(i,m+80)
a85=t(i,m+80);
break
end
end
for j=1:m
d81(j)=[s(1,j)]
end
```

```
for i= 1:m
if s(i) ==min(d81)
s(i)=min(d81)+p(i,m+81)
a86=t(i,m+81);
break
end
end
for j=1:m
d82(j) = [s(1,j)]
end
for i= 1:m
if s(i) == min(d82)
s(i)=min(d82)+p(i,m+82)
a87=t(i,m+82);
break
end
end
for j=1:m
d83(j) = [s(1,j)]
end
for i= 1:m
if s(i) ==min(d83)
s(i)=min(d83)+p(i,m+83)
a88=t(i,m+83);
break
end
end
for j=1:m
d84(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d84)
s(i)=min(d84)+p(i,m+84)
a89=t(i,m+84);
break
end
end
for j=1:m
d85(j) = [s(1, j)]
end
for i= 1:m
if s(i) == min(d85)
s(i) = min(d85) + p(i, m+85)
a90=t(i,m+85);
break
end
end
for j=1:m
d86(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d86)
s(i)=min(d86)+p(i,m+86)
a91=t(i,m+86);
break
end
end
for j=1:m
d87(j)=[s(1,j)]
end
```

```
for i= 1:m
if s(i) ==min(d87)
s(i)=min(d87)+p(i,m+87)
a92=t(i,m+87);
break
end
end
for j=1:m
d88(j) = [s(1, j)]
end
for i= 1:m
if s(i) ==min(d88)
s(i)=min(d88)+p(i,m+88)
a93=t(i,m+88);
break
end
end
for j=1:m
d89(j) = [s(1,j)]
end
for i= 1:m
if s(i) ==min(d89)
s(i)=min(d89)+p(i,m+89)
a94=t(i,m+89);
break
end
end
for j=1:m
d90(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d90)
s(i)=min(d90)+p(i,m+90)
a95=t(i,m+90);
break
end
end
for j=1:m
d91(j) = [s(1, j)]
end
for i= 1:m
if s(i) ==min(d91)
s(i)=min(d91)+p(i,m+91)
a96=t(i,m+91);
break
end
end
for j=1:m
d92(j)=[s(1,j)]
end
for i= 1:m
if s(i) ==min(d92)
s(i)=min(d92)+p(i,m+92)
a97=t(i,m+92);
break
end
end
for j=1:m
d93(j)=[s(1,j)]
end
```

```
for i= 1:m
if s(i) ==min(d93)
s(i)=min(d93)+p(i,m+93)
a98=t(i,m+93);
break
\operatorname{end}
end
for j=1:m
d94(j) = [s(1, j)]
end
for i= 1:m
if s(i) ==min(d94)
s(i)=min(d94)+p(i,m+94)
a99=t(i,m+94);
break
end
end
 for j=1:m
d95(j)=[s(1,j)]
end
for i= 1:m
if s(i) == min(d95)
s(i)=min(d95)+p(i,m+95)
a100=t(i,m+95);
break
end
end
for j=1:m
d96(j)=[s(1,j)]
end
୫୫********************
J6=d2-d1
J7=d3-d2
J8=d4-d3
J9=d5-d4
J10=d6-d5
J11=d7-d6
J12=d8-d7
J13=d9-d8
J14=d10-d9
J15=d11-d10
J16=d12-d11
J17=d13-d12
J18=d14-d13
J19=d15-d14
J20=d16-d15
J21=d17-d16
J22=d18-d17
J23=d19-d18
J24=d20-d19
J25=d21-d20
J26=d22-d21
J27=d23-d22
J28=d24-d23
J29=d25-d24
J30=d26-d25
J31=d27-d26
J32=d28-d27
J33=d29-d28
J34=d30-d29
```

J35=d31-d30
J36=d32-d31
J37=d33-d32
J38=d34-d33
J39=d35-d34
J40=d36-d35
J41=d37-d36
J42=d38-d37
J43=d39-d38
J43=d39-d38 J44=d40-d39
J45=d41-d40
J46=d42-d41
J47=d43-d42;
J48=d44-d43
J49=d45-d44
J50=d46-d45
J51=d47-d46
J52=d48-d47 J53=d49-d48
J53=d49-d48
J54=d50-d49
J55=d51-d50
J56=d52-d51
J57=d53-d52
J58=d54-d53
J59=d55-d54
J60=d56-d55
J61=d57-d56 J62=d58-d57
J63=d59-d58
J64=d60-d59
J65=d61-d60
J66=d62-d61
J67=d63-d62
J68=d64-d63
J69=d65-d64
J70=d66-d65
J70=d66-d65 J71=d67-d66
J72=d68-d67
J73=d69-d68
J74=d70-d69
J75=d71-d70
J76=d72-d71
J77=d73-d72
J78=d74-d73
J79=d75-d74 J80=d76-d75
J80=d76-d75 J81=d77-d76
J81=d77-d76 J82=d78-d77
J83=d79-d78
J84=d80-d79
J85= d81-d80
J86= d82-d81
J87= d83-d82
J88= d84-d83
J88= d84-d83 J89= d85-d84
J90=d86-d85
J91=d87-d86
J92=d88-d87
J93=d89-d88
J94=d90-d89

J95=d91-d90
J96=d92-d91
J97=d93-d92
J98=d94-d93
J99=d95-d94
J100=d96-d95
TAR1=d1-r1
TAR6=max(J6)-a6
TAR7=max(J7)-a7
TAR8=max(J8)-a8 TAR9=max(J9)-a9
TAR10=max(J10)-a10
TAR11=max(J11)-a11
TAR12=max(J12)-a12
TAR13=max(J13)-a13
TAR14=max(J14)-a14
TAR15=max(J15)-a15
TAR16=max(J16)-a16
TAR17=max(J17)-a17 TAR18=max(J18)-a18
TAR18=max(J18)-a18 TAR19=max(J19)-a19
TAR20=max(J20)-a20
TAR21=max (J21) -a21
TAR22=max(J22)-a22
TAR23=max(J23)-a23
TAR24=max(J24)-a24
TAR25=max(J25)-a25
TAR26=max(J26)-a26
TAR27 = max(J27) - a27
TAR28=max(J28)-a28 TAR29=max(J29)-a29
TAR30=max (J30) -a30
TAR31=max(J31)-a31
TAR32=max(J32)-a32
TAR33=max(J33)-a33
TAR34=max(J34)-a34
TAR35=max(J35)-a35
TAR36=max(J36)-a36 TAR37=max(J37)-a37
TAR38=max (J38) -a38
TAR39=max (J39) -a39
TAR40=max(J40)-a40
TAR41=max(J41)-a41
TAR42=max(J42)-a42
TAR43=max(J43)-a43
TAR44 = max(J44) - a44
TAR45=max(J45)-a45 TAR46=max(J46)-a46
TAR40 = max(040) = a40 TAR47 = max(J47) - a47
TAR48=max (J48) -a48
TAR49=max(J49)-a49
TAR50=max(J50)-a50
TAR51=max(J51)-a51
TAR52=max(J52)-a52
TAR53=max(J53)-a53
TAR54=max(J54)-a54 TAR55=max(J55)-a55
TAR55=max(J55)-a55 TAR56=max(J56)-a56
TAR50 = max(050) = a50 TAR57 = max(J57) - a57
TAR58=max(J58)-a58

```
TAR59=max(J59)-a59
TAR60=max(J60)-a60
TAR61=max(J61)-a61
TAR62=max(J62)-a62
TAR63=max(J63)-a63
TAR64=max(J64)-a64
TAR65=max(J65)-a65
TAR66=max(J66)-a66
TAR67=max(J67)-a67
TAR68=max(J68)-a68
TAR69=max(J69)-a69
TAR70=max(J70)-a70
TAR71=max(J71)-a71
TAR72=max(J72)-a72
TAR73=max(J73)-a73
TAR74=max(J74)-a74
TAR75=max(J75)-a75
TAR76=max(J76)-a76
TAR77=max(J77)-a77
TAR78=max(J78)-a78
TAR79=max(J79)-a79
TAR80=max(J80)-a80
TAR81=max(J81)-a81
TAR82=max(J82)-a82
TAR83=max(J83)-a83
TAR84=max(J84)-a84
TAR85=max(J85)-a85
TAR86=max(J86)-a86
TAR87=max(J87)-a87
TAR88=max(J88)-a88
TAR89=max(J89)-a89
TAR90=max(J90)-a90
TAR91=max(J91)-a91
TAR92=max(J92)-a92
TAR93=max(J93)-a93
TAR94=max(J94)-a94
TAR95=max(J95)-a95
TAR96=max(J96)-a96
TAR97=max(J97)-a97
TAR98=max(J98)-a98
TAR99=max(J99)-a99
TAR100=max(J100)-a100
T=[TAR1, TAR6, TAR7, TAR8, TAR9, TAR10, TAR11, TAR12, TAR13, TAR14, TAR15, TAR16,
TAR17, TAR18, TAR19, TAR20, TAR21, TAR22, TAR23, TAR24, TAR25, TAR26, TAR27, TAR2
8, TAR29, TAR30, TAR31, TAR32, TAR33, TAR34, TAR35, TAR36, TAR37, TAR38, TAR39, TA
R40, TAR41, TAR42, TAR43, TAR44, TAR45, TAR46, TAR47, TAR48, TAR49, TAR50, TAR51,
TAR52, TAR53, TAR54, TAR55, TAR56, TAR57, TAR58, TAR59, TAR60, TAR61, TAR62, TAR6
3, TAR64, TAR65, TAR66, TAR67, TAR68, TAR69, TAR70, TAR71, TAR72, TAR73, TAR74, TA
R75, TAR76, TAR77, TAR78, TAR79, TAR80, TAR81, TAR82, TAR83, TAR84, TAR85, TAR86,
TAR87, TAR88, TAR89, TAR90, TAR91, TAR92, TAR93, TAR94, TAR95, TAR96, TAR97, TAR9
8, TAR99, TAR100]
for j=1:n
if T(j) >0
DD(j)=T(j);
else
  DD(j)=0;
end
CMAX=max(s)
TARD=sum(DD)
```

응응응응응

optjobs=[d1;J6;J7;J8;J9;J10;J11;J12;J13;J14;J15;J16;J17;J18;J19;J20;J2 1;J22;J23;J24;J25;J26;J27;J28;J29;J30;J31;J32;J33;J34;J35;J36;J37;J38; J39;J40;J41;J42;J43;J44;J45;J46;J47;J48;J49;J50;J51;J52;J53;J54;J55;J5 6;J57;J58;J59;J60;J61;J62;J63;J64;J65;J66;J67;J68;J69;J70;J71;J72;J73; J74;J75;J76;J77;J78;J79;J80;J81;J82;J83;J84;J85;J86;J87;J88;J89;J90;J9 1;J92;J93;J94;J95;J96;J97;J98;J99;J100]'; %figure(1); %title 'parallel machine'; %barh(optjobs ,'stack'); %xlabel('JOBS') %ylabel('MACHINE') z1=CMAX; z2=TARD;

z=[z1 z2]';
end