İKİ-FAZLI DOĞRUSAL REGRESYON MODELİNDE DEĞİŞİM NOKTASININ DAYANIKLI TAHMİNİ

Şükrü ACITAŞ Doktora Tezi

İstatistik Anabilim Dalı

Ocak - 2014

JÜRİ VE ENSTİTÜ ONAYI

Şükrü ACITAŞ'ın "İki-Fazlı Doğrusal Regresyon Modelinde Değişim Noktasının Dayanıklı Tahmini" başlıklı İstatistik Anabilim Dalındaki, Doktora Tezi 06.12.2013 tarihinde, aşağıdaki jüri tarafından Anadolu Üniversitesi Lisansüstü Eğitim-Öğretim ve Sınav Yönetmeliğinin ilgili maddeleri uyarınca değerlendirilerek kabul edilmiştir.

		Adı-Soyadı	İmza
Üye (Tez Danışmanı)	:	Prof. Dr. BİRDAL ŞENOĞLU	•••••
Üye	:	Prof. Dr. OLÇAY ARSLAN	•••••
Üye	:	Prof. Dr. YALÇIN KÜÇÜK	•••••
Üye	:	Doç. Dr. YELİZ MERT KANTAR	•••••
Üye	:	Doç. Dr. İLHAN USTA	•••••

Anadolu Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu'nun tarih ve sayılı kararıyla onaylanmıştır.

Enstitü Müdürü

ÖZET

Doktora Tezi

İKİ-FAZLI DOĞRUSAL REGRESYON MODELİNDE DEĞİŞİM NOKTASININ DAYANIKLI TAHMİNİ

Şükrü ACITAŞ

Anadolu Üniversitesi Fen Bilimleri Enstitüsü İstatistik Anabilim Dalı

Danışman: Prof. Dr. Birdal ŞENOĞLU 2013, 129 sayfa

Bu tez çalışmasında, iki-fazlı doğrusal regresyon modelinde değişim noktasının tahmini ele alınmıştır. İki-fazlı doğrusal regresyon modelindeki hata terimlerinin dağılımının uzun kuyruklu simetrik (long-tailed symmetric–LTS), genelleştirilmiş lojistik (generalized logistic–GL) ve Jones ve Faddy'nin (2003) çarpık *t* dağılımı (Jones and Faddy's skew *t* distribution–JFST) olması durumunda değişim noktasının Tiku (1967, 1968) tarafından geliştirilen uyarlanmış en çok olabilirlik (modified maximum likelihood–MML) ve tek-adımlı M- (one-step M–OSM) tahmin edicisi elde edilmiştir. Modelin süreksiz ve sürekli olması ayrı ayrı incelenmiştir. Süreksiz modellerde Quandt (1958, 1960); sürekli modellerde ise Muggeo (2003) ve Hudson (1966) tarafından önerilen yöntemlerin MML ve OSM versiyonları geliştirilmiştir. Yapılan Monte-Carlo simulasyon çalışmasının sonuçları, MML ve OSM tahmin edicilerinin en küçük kareler (least squares–LS) tahmin edicilerinden daha etkin ve dayanıklı olduğunu göstermiştir. Ayrıca, literatürde yer alan gerçek hayat problemleri üzerinde önerilen yöntemler kullanılmış ve LS tahmin edicilerinden daha iyi sonuçlara ulaşılmıştır.

Anahtar Kelimeler:

Değişim noktası, iki-fazlı doğrusal regresyon, parametre tahmini, MML, OSM, etkinlik, dayanıklılık

ABSTRACT

PhD Dissertation

ROBUST ESTIMATION OF CHANGE POINT IN TWO-PHASE LINEAR REGRESSION MODEL

Şükrü ACITAŞ

Anadolu University Graduate School of Sciences Statistics Program

Supervisor: Prof. Dr. Birdal ŞENOĞLU 2013, 129 pages

In this thesis, estimation of the change point in the two-phase linear regression model is considered. The change point in the two-phase linear regression model is estimated by using the modified maximum likelihood (MML) methodology, originated by Tiku (1967, 1968), and the one-step M (OSM) estimation methods under the assumption of long-tailed symmetric (LTS), generalized logistic (GL) and Jones and Faddy's (2003) skew *t* (JFST) error distributions. MML and OSM versions are developed for the methods proposed by Quandt (1958,1960) for discontinuous; Muggeo (2003) and Hudson (1966) for continuous models. The results of the Monte-Carlo simulation study demonstrate that the MML and the OSM estimators are more efficient and robust than least squares (LS) estimators. Furthermore, proposed methods are applied to the real life problems taken from the literature. They are shown to be more efficient than the corresponding LS estimators.

Is: Change point, two-phase linear regression, parameter estimation, MML, OSM, efficiency, robustness

TEŞEKKÜR

Dayanıklı bir tahmin yapmak üzere yola çıktığımız bu tez çalışmasının öncesinde ve sonrasında hayatıma dair pek çok şeyi borçlu olduğum, iyi bir akademisyen olmanın yanı sıra iyi bir insan olmayı da kendisinden öğrendiğim, benim için bir hocadan çok daha fazlasını ifade eden danışmanım, hocam *Prof. Dr. Birdal Şenoğlu*'na,

Tanışmakla ve birlikte çalışmakla kendimi her daim şanslı hissettiğim, tez izleme komitesi üyeleri olmanın yanında yol göstericilerim de olan hocalarım *Prof. Dr. Olçay Arslan* ve *Prof. Dr. Yalçın Küçük*'e,

Her daim sevgi, saygı ve güven duyduğum; kendisine, bu günüm de dahil olmak üzere, çok şey borçlu olduğum *Prof. Dr. Embiya Ağaoğlu*'na,

Huzurlu bir çalışma ortamında, başarılı olmam için desteklerini hep hissetiğim Prof. Dr. Memmedağa Memmedli, Doç. Dr. Yeliz Mert Kantar, Yard. Doç. İlhan Usta, Yard. Doç. Dr. Çiğdem Giriftinoğlu, Araş. Gör. İbrahim Arık'a,

Bir parçası olmaktan dolayı her zaman gurur duyduğum aileme; annem *Zahide Acıtaş*'a, babam *Yaşar Acıtaş*'a ve kardeşim *Emre Acıtaş*'a,

Gönülden, yürekten teşekkür ederim.

Şükrü ACITAŞ Aralık–2013

İÇİNDEKİLER

Sa	ıyfa
ÖZET	i
ABSTRACT	ii
TEŞEKKÜR	iii
İÇİNDEKİLER	iv
ŞEKİLLER DİZİNİ	vii
ÇİZELGELER DİZİNİ	viii
SİMGELER VE KISALTMALAR DİZİNİ	xi
1. GİRİŞ	1
2. DAYANIKLI REGRESYON	9
2.1. Doğrusal Regresyonda Parametrelerin MML Yöntemi ile Tahmini .	10
2.1.1. LTS dağılımı	11
2.1.2. GL dağılımı	16
2.1.3. JFST dağılımı	19
2.2. Doğrusal Regresyonda Parametrelerin OSM Yöntemi ile Tahmini	23
2.2.1. LTS dağılımı	25
2.2.2. GL dağılımı	25
2.2.3. JFST dağılımı	26
2.3. Şekil Parametrelerine İlişin Not	26

3.	SÜR	EKSİZ İKİ-FAZLI DOĞRUSAL REGRESYON MODELİNDE	
	DEČ	İŞİM NOKTASININ TAHMİNİ	28
	3.1.	Değişim Noktasının LS Yöntemi ile Tahmini	28
	3.2.	Değişim Noktasının MML Yöntemi ile Tahmini	30
		3.2.1. LTS dağılımı	30
		3.2.2. GL dağılımı	33
		3.2.3. JFST dağılımı	35
	3.3.	Değişim Noktasının OSM Yöntemi ile Tahmini	37
4.	SÜR	EKLİ İKİ-FAZLI DOĞRUSAL REGRESYON MODELİNDE	
	DEČ	İŞİM NOKTASININ TAHMİNİ	39
	4.1.	Muggeo'nun Parçalara Ayırma Yöntemi ile Değişim Noktasının Tah-	
		mini	39
		4.1.1. Muggeo'nun Parçalara Ayırma Yöntemi: MML Versiyonu	42
		4.1.2. Muggeo'nun Parçalara Ayırma Yöntemi: OSM Versiyonu	43
	4.2.	Değişim Noktasının Hudson Yöntemi ile Tahmini	43
		4.2.1. Hudson Yöntemi: MML Versiyonu	55
		4.2.2. Hudson Yöntemi: OSM Versiyonu	64
5.	MO	NTE-CARLO SİMULASYON ÇALIŞMASI	67
	5.1.	Süreksiz İki-Fazlı Doğrusal Regresyon Modelinde Değişim Noktası-	
		nın Tahmini	67
	5.2.	Sürekli İki-Fazlı Doğrusal Regresyon Modelinde Değişim Noktası-	
		nın Tahmini	85
		5.2.1. Muggeo'nun Parçalara Ayırma Yöntemi	86
		5.2.2. Hudson Yöntemi	90

	5.3.	Dayanıklılık	98
		5.3.1. LTS dağılımı	99
		5.3.2. GL dağılımı	104
		5.3.3. JFST dağılımı	108
6.	UYC	GULAMALAR	112
	6.1.	Galon başına yakıt verisi	112
	6.2.	Metabolik yol verisi	115
7.	SON	NUÇ ve ÖNERİLER	119
K	AYNA	KLAR	122

ŞEKİLLER DİZİNİ

1.1.	Değişim noktası örneği	2
1.2.	Değişim noktası örneği: Süreksiz model	4
4.1.	Muggeo'nun parçalara ayırma yöntemi: İki doğru arasındaki fark . .	41
4.2.	Hudson (1966) örneği için serpilme grafiği	51
4.3.	Hudson (1966) Örneği: Birinci Olası Model	52
4.4.	Hudson (1966) Örneği: İkinci Olası Model	53
4.5.	Hudson (1966) Örneği: Üçüncü Olası Model	53
4.6.	Hudson (1966) Örneği: Kısıtlı Model	55
6.1.	Galon başına yakıt verisi: Serpilme Grafiği 1	13
6.2.	Galon başına yakıt verisi: LS kalıntılarının normallik grafiği 1	13
6.3.	Galon başına yakıt verisi: Fit edilmiş regresyon doğruları 1	15
6.4.	Metabolik yol verisi: LS kalıntılarının normallik grafiği	16
6.5.	Metabolik yol verisi: Fit edilmiş regresyon doğruları 1	18

ÇİZELGELER DİZİNİ

2.1.	Şekil parametresinin farklı değerleri için LTS dağılımının basıklık	
	değerleri	12
2.2.	Şekil parametresinin farklı değerleri için GL dağılımının çarpıklık	
	ve basıklık değerleri	17
2.3.	Şekil parametresinin farklı değerleri için JFST dağılımının çarpıklık	
	ve basıklık değerleri	20
4.1.	Hudson (1966) Örneği: Sonuçlar	55
5.1.	Süreksiz model & Birinci durum: Hata terimlerinin dağılımının LTS	
	olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN,	
	MSE ve RE değerleri	69
5.2.	Süreksiz model & Birinci durum: Hata terimlerinin dağılımının GL	
	olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN,	
	MSE ve RE değerleri	71
5.3.	Süreksiz model & Birinci durum: Hata terimlerinin dağılımının JFST	
	olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN,	
	MSE ve RE değerleri	74
5.4.	Süreksiz model & İkinci durum: Hata terimlerinin dağılımının LTS	
	olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN,	
	MSE ve RE değerleri	77
5.5.	Süreksiz model & İkinci durum: Hata terimlerinin dağılımının GL	
	olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN,	
	MSE ve RE değerleri	79
5.6.	Süreksiz model & İkinci durum: Hata terimlerinin dağılımının JFST	
	olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN,	
	MSE ve RE değerleri	82

5.7. Sürekli model & Muggeo'nun parçalara ayırma yöntemi: Hata terim-	
lerinin dağılımının LTS olması durumunda, LS, MML ve OSM tah-	
min edicilerinin MEAN, MSE ve RE değerleri	87
5.8. Sürekli model & Muggeo'nun parçalara ayırma yöntemi: Hata terim-	
lerinin dağılımının GL olması durumunda LS, MML ve OSM tahmin	
edicilerinin MEAN, MSE ve RE değerleri	88
5.9. Sürekli model & Muggeo'nun parçalara ayırma yöntemi: Hata terim-	
lerinin dağılımının JFST olması durumunda LS, MML ve OSM tah-	
min edicilerinin MEAN, MSE ve RE değerleri	89
5.10.Sürekli model & Hudson yöntemi & Birinci durum: Hata terimleri-	
nin dağılımının LTS olması durumunda LS, MML ve OSM tahmin	
edicilerinin MEAN, MSE ve RE değerleri	92
5.11.Sürekli model & Hudson yöntemi & Birinci durum: Hata terimle-	
rinin dağılımının GL olması durumunda LS, MML ve OSM tahmin	
edicilerinin MEAN, MSE ve RE değerleri	93
5.12.Sürekli model & Hudson yöntemi & Birinci durum: Hata terimleri-	
nin dağılımının JFST olması durumunda LS, MML ve OSM tahmin	
edicilerinin MEAN, MSE ve RE değerleri	94
5.13.Sürekli model & Hudson yöntemi & İkinci durum: Hata terimleri-	
nin dağılımının LTS olması durumunda LS, MML ve OSM tahmin	
edicilerinin MEAN, MSE ve RE değerleri	95
5.14.Sürekli model & Hudson yöntemi & İkinci durum: Hata terimleri-	
nin dağılımının GL olması durumunda LS, MML ve OSM tahmin	
edicilerinin MEAN, MSE ve RE değerleri	96
5.15.Sürekli model & Hudson yöntemi & İkinci durum: Hata terimleri-	
nin dağılımının JFST olması durumunda LS, MML ve OSM tahmin	
edicilerinin MEAN, MSE ve RE değerleri	97
5.16. Süreksiz model & LTS dağılımı: Alternatif modeller altında LS, MML	
ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri	101

5.17.Sürekli model & LTS dağılımı & Muggeo'nun parçalara ayırma yön-
temi: Alternatif modeller altında MEAN, MSE ve RE değerleri 102
5.18. Sürekli model & LTS dağılımı & Hudson yöntemi: Alternatif model-
ler altında MEAN, MSE ve RE değerleri
5.19.Süreksiz model & GL dağılımı: Alternatif modeller altında MEAN,
MSE ve RE değerleri
5.20. Sürekli model & GL dağılımı & Muggeo'nun parçalara ayırma yön-
temi: Alternatif modeller altında MEAN, MSE ve RE değerleri 106
5.21. Sürekli model & GL dağılımı & Hudson yöntemi: Alternatif model-
ler altında MEAN, MSE ve RE değerleri
5.22. Süreksiz model & JFST dağılımı: Alternatif modeller altında MEAN,
MSE ve RE değerleri
5.23. Sürekli model & JFST dağılımı & Muggeo'nun parçalara ayırma yön-
temi: Alternatif modeller altında MEAN, MSE ve RE değerleri 110
5.24. Sürekli model & JFST dağılımı & Hudson yöntemi: Alternatif model-
ler altında MEAN, MSE ve RE değerleri
6.1. Galon başına yakıt veri seti
6.2. Galon başına yakıt verisi: Sonuçlar
6.3. Metabolik yol veri seti
6.4. Metabolik yol verisi: Sonuçlar

SİMGELER VE KISALTMALAR DİZİNİ

LTS	:	Uzun kuyruklu simetik
GL	:	Genelleştirilmiş lojistik
JFST	:	Jones ve Faddy'nin çarpık <i>t</i>
MML	:	Uyarlanmış en çok olabilirlik
OSM	:	Tek-adımlı M- tahmin edicisi
LS	:	En küçük kareler (least squares)
iid	:	Bağımsız ve aynı dağılımlı
NID	:	Bağımsız ve normal dağılımlı
ML	:	En çok olabilirlik
UMVUE	:	Düzgün en küçük varyanslı yansız tahmin edici
$B(\cdot, \cdot)$:	Beta fonksiyonu
diag	:	Köşegen matris
1	:	Elemanları 1 olan sütun vektörü
0	:	Elemanları sıfır olan kare matris
$I(\cdot)$:	Gösterge fonksiyonu

1. GİRİŞ

Regresyon analizinde amaç, bağımlı değişken y ile bazı açıklayıcı değişkenler $x_1, x_2, ..., x_p$ arasındaki fonksiyonel ilişkiyi modellemektir. Doğrusal regresyon ifadesindeki "*doğrusal*" sözcüğü, modelin parametrelere göre doğrusal olması anlamında kullanılmaktadır. Basit doğrusal regresyon ise, y bağımlı değişkeninin tek bir x açıklayıcı değişken ile modellenmesidir. Basit doğrusal regresyonun matematiksel modeli,

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, 2, ..., n$$
 (1.1)

olarak ifade edilir. Burada, β_0 ve β_1 model parametreleri, ε_i de rasgele hata terimleridir.

Klasik yaklaşımda, Model (1.1) de istatistiksel çıkarsama (parametre tahmini ve hipotez testi) yapabilmek için hata terimlerinin 0 ortalama ve σ^2 varyanslı, bağımsız ve aynı (independently and identically distributed–iid) normal dağılımlı olduğu varsayılır. Bu varsayım, normallik varsayımı olarak adlandırılır ve kısaca $\varepsilon_i \sim NID(0, \sigma^2)$ şeklinde gösterilir. Normallik varsayımının sağlanması durumunda en küçük kareler (least squares–LS) tahmin edicileri, tüm yansız tahmin ediciler içinde en küçük varyanslı tahmin edicilerdir. Bir başka deyişle, LS tahmin edicilerinin varyansları, Rao-Cramer alt sınırına eşittir.

Burada belirtmek gerekir ki, bu tez çalışmasında, Model (1.1) de açıklayıcı değişkenlerin rasgele olmadığı ve açıklayıcı değişkenler ile hata terimlerinin ilişkisiz olduğu varsayılmaktadır.

Uygulamalı çalışmalarda, veri yapısının doğasından ya da araştırmanın karakterinden/amacından dolayı, Model (1.1) i kullanmak doğru olmayabilir, bkz. Şekil 1.1. Şekil 1.1 için Model (1.1) i kullanmanın açıklama ve uyum eksikliği meydana getireceği açıktır (Quandt, 1958-1960; Chen, 1998). Şekil 1.1 de açıklayıcı değişkenin belli bir değerinden sonra değişim söz konusudur. Bu nedenle, Şekil 1.1 de açıklayıcı değişkenin belli bir değerinden önce ve sonra iki farklı basit doğrusal regresyon modeli kullanmak daha uygundur. Değişimin olduğu bu gibi durumlarda Model (1.1) de ortaya çıkan açıklama ya da uyum eksikliği, değişim

Şekil 1.1. Değişim noktası örneği

noktası kavramının regresyon analizine dahil edilmesiyle ortadan kaldırılmaya çalışılmıştır, bkz. Quandt (1958, 1960) ve Chen (1998). Burada belirtmek gerekir ki, Şekil 1.1, Bölüm 5'te detayları anlatılan Monte Carlo Simulasyon yapısı kullanılarak elde edilmiştir.

Tek bir değişim noktası olması durumunda basit doğrusal regresyon modeli,

$$y_{i} = \begin{cases} \beta_{0}^{(1)} + \beta_{1}^{(1)} x_{i} + \varepsilon_{i}^{(1)}, & a \le x_{i} \le r \\ \beta_{0}^{(2)} + \beta_{1}^{(2)} x_{i} + \varepsilon_{i}^{(2)}, & r < x_{i} \le b \end{cases}$$
(1.2)

şeklinde ifade edilir. Burada, *r* değişim noktası olarak tanımlanır. $x_k < r < x_{k+1}$ ($2 \le k \le n$) olacak şekilde belirlenen *k* indisine de değişim anı denir (Liu ve Qian, 2010). Bu durumda, açıktır ki, Model (1.2) nin birinci parçası, ilk *k* tane gözleme ilişkin basit doğrusal regresyon modeli iken, ikinci parçası geri kalan n - k tane gözleme ilişkin basit doğrusal regresyon modelidir. Model (1.2), literatürde ikifazlı doğrusal regresyon (two-phase linear regression) olarak da adlandırılmaktadır, bkz. Koul ve Qian (2002), Koul ve ark. (2003), Liu ve Qian (2010). Model (1.2), tek değişim noktasının olduğu duruma örnektir. Eğer veri setinde $k \ge 2$ tane değişim noktası varsa bu durumda model,

$$y_{i} = \begin{cases} \beta_{0}^{(1)} + \beta_{1}^{(1)} x_{i} + \varepsilon_{i}^{(1)}, & a \le x_{i} \le r_{1} \\ \beta_{0}^{(2)} + \beta_{1}^{(2)} x_{i} + \varepsilon_{i}^{(2)}, & r_{1} \le x_{i} \le r_{2} \\ \vdots & \vdots \\ \beta_{0}^{(k)} + \beta_{1}^{(k)} x_{i} + \varepsilon_{i}^{(k)}, & r_{k} \le x_{i} \le b \end{cases}$$
(1.3)

şeklinde ifade edilir. Burada, $r_1, r_2, ..., r_k$ değişim noktalarıdır. Burada belirtmek gerekir ki, bu tez çalışmasında tek değişim noktasının olduğu Model (1.2) kullanılmıştır. Model (1.3) genel olarak parçalı regresyon (piecewise regression) olarak adlanırılır; Model (1.2), Model (1.3) ün özel bir halidir, bkz. örneğin Qian (2007).

Sürekli ve sürekli olmayan regresyon modeli kavramı:

Değişim noktasının olduğu doğrusal regresyon modelleri, sürekli ve süreksiz olarak ikiye ayrılmaktadır (Hawkins, 1980).

Model (1.2) de değişim noktası r olmak üzere

$$\beta_0^{(1)} + \beta_1^{(1)} r = \beta_0^{(2)} + \beta_1^{(2)} r \tag{1.4}$$

eşitliği geçerli ise model sürekli (continuous) olarak adlandırılır. Şekil 1.1 de verilen model sürekli duruma örnektir. Şekil 1.1 den görüldüğü gibi, Model (1.2), değişim noktasında sürekli olmasına rağmen türevlenebilir değildir.

Eğer Model (1.2) için (1.4) eşitliği sağlanmıyorsa; bir başka deyişle,

$$\beta_0^{(1)} + \beta_1^{(1)} r \neq \beta_0^{(2)} + \beta_1^{(2)} r \tag{1.5}$$

ise model süreksiz (discontinuous) olarak adlandırılır. Süreksiz durum için örnek, Şekil 1.2 de verilmiştir. Şekil 1.2 de görüldüğü gibi sürekli olmayan modellerde değişim noktasından sonra regresyon doğrusunda bir sıçrama/kopma oluşmaktadır. Burada belirtmek gerekir ki Şekil 1.2, Monte Carlo Simulasyonu ile elde edilmiştir.

Şekil 1.2. Değişim noktası örneği: Süreksiz model

Literatür çalışması:

Regresyon analizi kapsamında değişim noktası ile ilgili çalışmalar, Quandt (1958, 1960) ile başlamıştır ve halen güncelliğini korumaktadır.

Quandt (1958, 1960), Model (1.2) de $\varepsilon^{(1)} \sim NID(0, \sigma_1^2)$ ve $\varepsilon^{(2)} \sim NID(0, \sigma_2^2)$ varsayımı altıda değişim noktasının en çok olabilirlik (maximum likelihood–ML) tahmin edicisini elde etmiştir. Veri setinde değişim noktası olup olmadığını sınamak için olabilirlik oran testini (likelihood ratio test–LRT) önermiştir. LRT testinin asimptotik dağılımını tartışmıştır. Burada belirtmek gerekir ki, Quandt süreksiz modeller üzerinde çalışmıştır.

Hudson (1966), Model (1.2) de süreklilik kısıtı altında, bir başka deyişle (1.4) de verilen eşitlik sağladığında, değişim noktasının tahmininin nasıl yapıldığını ele almıştır. Hudson, kısıtlı optimizasyon tekniğini kullanarak değişim noktasının LS tahmin edicisini elde etmiştir.

Hinkley (1969, 1971), normallik varsayımı ve süreklilik kısıtı altında değişim noktasının ML tahmin edicisinin asimptotik dağılımı üzerine çalışmıştır.

Brown ve ark. (1975) çoklu regresyon modelinde değişim noktasının olup olmadığını sınamak için yinemeli kalıntılara dayalı bir test istatistiği geliştirmiştir. Feder (1975a, 1975b) de normallik varsayımı ve süreklilik kısıtı altında değişim noktasının LS tahmin edicisinin ve LRT test istatistiğinin asimptotik dağılımını incelemiştir. Feder (1975a, 1975b), kendinden önceki çalışmalarda elde edilenlerden farklı bulgulara ulaşmıştır.

Worsley (1983), Model (1.2) nin çoklu regresyon versiyonunu ele almıştır. Normallik varsayımı altında, değişim noktasının tahminini ve LRT test istatistiğinin asimptotik dağılımını incelemiştir.

Hawkins (1989), değişim noktasının sınanması için birleşim-kesişim (unionintersection) test istatistiğini önermiştir.

Kim ve Siegmund (1989), Model (1.2) de hata terimlerinin homojen varyanslı olduğunu varsaymış ve değişim noktası yoktur sıfır hipotezine karşılık iki farklı alternatif hipotez öne sürmüş, test istatistikleri geliştirmiştir.

Bhattacharya (1990, 1994) normallik varsayımı altında, değişim noktasının ML tahmin edicisinin limit dağılımı üzerine çalışmıştır.

Kim (1993), Kim ve Siegmund (1989) tarafından verilen hipotezleri, hata varyanslarının homojen olmadığı durumlar için incelemiştir.

Bai (1995, 1998) en küçük mutlak sapmalar (least absolute deviations, LAD) yöntemini kullanarak bir ve birden çok değişim noktası olması durumunu ele almış, LAD tahmin edicisinin asimptotik dağılımını incelemiştir.

Csörgö ve Horvath (1997), bazı genel koşullar altında, süreksiz modellerde değişim noktasının olup olmadığını sınamak için kullanılan LRT testinin dağılımının Gumbel ekstrem dağılım olduğunu göstermiştir. Ayrıca, bu eserde değişim noktası ile ilgili bir literatür bilgisi de mevcuttur.

Chen (1998), Schwarz informasyon kriterini (Schwarz information criterion-SIC) kullanarak basit ve çoklu doğrusal regresyon modellerinde değişim noktasının tahmininin nasıl yapılacağını ve veri setinde değişim noktası olup olmadığının nasıl sınanacağını göstermiştir. Chen ve Gupta (2001) çalışması ise değişim noktası ile ilgili bir derleme çalışması niteliğindedir. Julious (2001), parametrik olmayan bootstrap yöntemleri kullanarak veri setinde değişim noktası olup olmadığını sınamak için indirgenmiş-tam model yaklaşmına dayalı olarak önerilen test istatistiğinin dağılımını araştırmıştır. Ayrıca, Julious (2001) sürekli modeller üzerinde çalışmış olup, Hudson (1966) nın önerdiği tahmin sürecini kullanmıştır.

Koul ve Qian (2002), süreksiz ve açıklayıcı değişkenin rasgele olduğu iki-fazlı regresyon modelinde, değişim noktasının ve model parametrelerinin ML tahmin edicilerinin asimptotik dağılımı ve tutarlıklarını incelemiştir. Bu çalışmada, değişim noktasının asimptotik dağılımının bileşik Poisson süreci ile ilgili olduğu gösterilmiştir.

Koul ve ark. (2003) süreksiz ve açıklayıcı değişkenin rasgele olduğu iki-fazlı regresyon modelinde, değişim noktasının ve model parametrelerinin M-tahmin edicilerinin asimptotik dağılımı ve tutarlıklarını incelemiştir. Bu çalışmada, değişim noktasının asimptotik dağılımının bileşik Poisson süreci ile ilgili olduğu gösterilmiştir.

Mueggo (2003), süreklilik kısıtı altında değişim noktasının belirlenmesi için doğrusallaştırmaya dayalı bir yöntem önermiştir.

Osorio ve Galea (2005), hata terimlerinin dağılımının student *t* olması durumunda SIC yöntemini kullanarak değişim noktasının belirlenmesini ele almıştır.

Diniz ve Brochi (2005), Monte Carlo simulasyon çalışması yardımıyla Quandt (1958, 1960), Kim ve Siegmund (1989) ve Kim (1993) tarafından önerilen testlerin dayanıklılığını (robustness) karşılaştırmıştır.

Riffenburgh ve Cummins (2006), durağan olmayan zaman serilerinde değişim noktasını belirlemek için hareketli F testi olarak adlandırdığı bir test önermiştir.

Kim ve ark. (2008) parçalı doğrusal regresyonda (segmented line regression) Hudson (1966) ve Lerman (1980) tarafından önerilen yöntemlerin çıkarımsal prosedürler üzerindeki etkisini ve asimptotik performanslarını simulasyon çalışması yardımıyla incelemiştir. Kim ve ark. (2009) parçalı doğrusal regresyonda Kim ve ark. (2000) tarafından önerilen permütasyon yöntemi ile belirlenen değişim noktası sayısının asimptotik özelliklerini incelemiştir.

Nosek (2010), değişim noktasını sınamak için Schwarz informasyon kriterine dayalı testler kullanmıştır.

Liu ve Qian (2010), iki-fazlı regresyon modelinde, değişim noktasını tahmin etmek için empirik olabilirlik yöntemini kullanmıştır. Bu çalışmada, hata terimlerinin dağılımı için normal dağılımın yanı sıra, log-normal dağılım ve homojen olmayan normal dağılımların karması kullanılmıştır.

Değişim noktası ile ilgili teorik çalışmaların yanı sıra tıp, ekoloji, biyoloji, ekonometri vb birçok uygulamalı alanda da kullanılmaktadır, örneğin bkz. Smith ve Cook (1980), Pastor ve Gullar (1998), Piegorsch ve Bailer (1997), Vieth (1989), Chow (1960), Koul ve Qian (2002).

Parçalı (piecewise) regresyon modellerinin teori ve uygulamaları ile ilgili detaylı bilgi için bkz. Qian (2007).

Çalışmanın amacı ve kapsamı:

Değişim noktası analizi yapılırken, Model (1.2) de, genel olarak, hata terimlerinin iid olarak normal dağılıma sahip olduğu varsayılmıştır. Bu tez çalışmasında ise Model (1.2) de hata terimlerinin dağılımının uzun kuyruklu simetrik (longtailed symmetric–LTS), genelleştirilmiş lojistik (generalized logistic–GL) ve Jones & Faddy (2003) tarafından önerilen çarpık t (Jones and Faddy's skew t distribution–JFST) olduğu varsayılmıştır.

Tez çalışmasının amacı; LTS, GL ve JFST hata dağılımı varsayımı altında dayanıklı yöntemler kullanılarak değişim noktasının belirlenmesidir. Bu nedenle, LTS, GL ve JFST hata dağılımı varsayımı altında, değişim noktasının tahmini Tiku (1967, 1968) tarafından önerilen uyarlanmış en çok olabilirlik (modified maximum likelihood-MML) ve tek adımlı M (one step M-estimator–OSM) tahmin edicileri kullanılarak yapılmıştır. Tezin ilerleyen bölümleri aşağıda açıklandığı gibi düzenlenmiştir.

İkinci bölümde, regresyon analizi için MML ve OSM tahmin yöntemleri ile bu yöntemlerin özellikleri anlatılmıştır.

Üçüncü bölümde Model (1.2) nin süreksiz olması ve hata dağılımının LTS, GL ve JFST olması durumlarında değişim noktasını tahmin etmek için Quandt (1958, 1960) çalışmalarında kullanılan yöntemin MML ve OSM versiyonları geliştirilmiştir.

Tezin dördüncü bölümü, sürekli modellerde değişim noktasının tahminine ayrılmıştır. Bu bölümde, Muggeo (2003) tarafından önerilen "Parçalara Ayırma Yöntemi" ve Hudson (1966) tarafından önerilen yöntemin MML ve OSM versiyonları geliştirilmiştir.

Beşinci bölümde ise üçüncü ve dördüncü bölümde geliştirilen MML ve OSM tahmin edicilerinin etkinlikleri ile LS tahmin edicilerinin etkinliği ve dayanıklılığı Monte-Carlo simulasyon çalışması ile karşılaştırılmıştır. Bu bölümde elde edilen sonuçlar, hata terimlerinin dağılımının LTS, GL ve JFST olması durumunda MML ve OSM tahmin edicilerinin "*daha etkin*" ve "*dayanıklı*" (robust) olduğunu göstermiştir.

Altıncı bölümde, değişim noktası literatüründe yer alan örnek ve uygulamalar, tez çalışmasında geliştirilen yöntemler kullanılarak tekrar analiz edilmiştir.

Sonuç ve önerilerin yer aldığı Yedinci bölümle tez çalışması tamamlanmıştır.

2. DAYANIKLI REGRESYON

Normallik varsayımı, istatistiksel analizin en temel varsayımlarından biridir. Çünkü, normallik varsayımı altında LS tahmin edicileri UMVUE özelliğine sahiptir. Ancak, uygulamada çoğu kez normallik varsayımı sağlanmaz. Çünkü, hata terimlerinde aykırı değer (outlier) olabileceği gibi hata terimlerinin dağılımı, normalden uzun ya da kısa kuyruklu ve/veya çarpık olabilir, bkz. Islam ve ark. (2001), Tiku ve ark. (2001). Ayrıca, Geary (1947), gerçek yaşamda normallik varsayımının çoğu kez sağlanmadığını

"Normallik bir efsanedir, hiçbir zaman olmadı ve hiçbir zaman da olmayacak."

sözü ile vurgulamıştır.

Normallik varsayımının sağlanamadığı durumlarda, alternatif olarak kullanılan yöntemlerden biri, dayanıklı (robust) istatistiksel yöntemlerdir. Dayanıklı yöntemler, normallik varsayımından sapmalara karşı duyarlı değillerdir. Bir başka deyişle, dayanıklı yöntemlerle elde edilen tahmin ediciler, veri setindeki aykırı değerden ve normal dağılımın makul alternatiflerinden önemli ölçüde etkinlenmezler.

Huber'ın 1964'te "*Robust Estimation of a Location Parameter*" başlıklı makalesinde konum parametresinin M-tahmin edicisini tanımlamasından sonra dayanıklı tahmin yöntemleri hızlı bir ilerleme göstermiştir. Bu yöntemlerden M-tahmin edicisi dışındaki bazıları; MML, uyarlanmış (adaptive), kısmi uyarlanmış (partially adaptive) tahmin edicilerdir, bkz. Maronna ve ark. (2006); Tiku ve Akkaya (2004), Dodge ve Jureckova (2002), McDonald ve Newey (1988), Kantar ve ark. (2011).

Regresyon analizinde, klasik teori (parametre tahmini ve istatistisel sonuç çıkarım) normallik varsayımına bağlıdır. Ancak, regresyon modellerinde hata terimlerinin dağılımının normal olması her zaman mümkün değildir. Bu gibi durumlarda dayanıklı regresyon yöntemleri kullanılmaktadır, örneğin bkz. Islam ve Tiku (2004), Marronna ve ark. (2006). Regresyon modellerinde değişim noktası analizi yapılırken de normallik varsayımının sağlandığı genellikle kabul edilmektedir. Açıktır ki, değişim noktası analizi yapılırken hata terimlerinin normallik varsayımını her zaman sağlamasını beklemek doğru değildir. Bölüm 1 in sonunda da belirtildiği gibi, bu tez çalışmasının amacı, Model (1.2) de hata terimlerinin normal olmaması durumunda değişim noktasının belirlenmesidir. Bu nedenle, bu tez çalışmasında, Model (1.2) de hata terimlerinin dağılımının LTS, GL ve JFST olduğu varsayılmış, değişim noktası ve model parametrelerinin MML ve OSM tahmin edicileri elde edilmiştir. Fakat, bu bölümde basit ve çoklu doğrusal regresyon modelleri için MML ve OSM tahmin edicileri anlatılmıştır. Bir başka deyişle, bu bölümde, tez çalışmasında kullanılacak dayanıklı regresyon yöntemleri ile bu yöntemlerin sahip oldukları özellikler genel olarak ele alınmıştır. Tezin diğer bölümlerinde bu bölümde anlatılan temel bilgilerden yararlanılmıştır.

Burada belirtilmelidir ki, tezin dördüncü bölümünde çoklu doğrusal regresyon modelinden yararlanıldığından, bu bölümde çoklu doğrusal regresyon modelli için dayanıklı tahmin yöntemleri anlatılmıştır. Basit doğrusal regresyon modeli için sonuçlar, çoklu regresyon modelinin özel durumu olarak verilmiştir.

2.1. Doğrusal Regresyonda Parametrelerin MML Yöntemi ile Tahmini

Bu bölümde, doğrusal regresyon modelinde hata terimlerinin LTS, GL ve JFST olması durumunda model parametrelerinin MML tahmin edicilerinin bulunuşu açıklanmıştır. Burada belirtmek gerekir ki, basit ve çoklu doğrusal regresyon modellerinde hata terimlerinin LTS ve GL dağılımına sahip olmaları durumunda model parametrelerinin MML tahmin edicileri, Tiku ve ark. (2001), Islam ve ark. (2001) ve Islam ve Tiku (2004) çalışmalarında elde edilmiştir. Hata terimlerinin JFST dağılımına sahip olması durumunda model parametrelerinin MML tahmin edicileri ilk kez bu tez çalışmasında elde edilmiştir.

k tane açıklayıcı değişkene sahip çoklu doğrusal regresyon modeli,

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \tag{2.1}$$

10

şeklinde ifade edilir. Burada,

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix},$$
$$\boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} \quad \text{ve} \quad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

dir.

Model (2.1) için eşit bir gösterim

$$y_i = \mathbf{x}'_i \boldsymbol{\beta} + \varepsilon_i, \quad i = 1, 2, \dots, n \tag{2.2}$$

şeklinde olup burada,

$$\mathbf{x}_{i}^{\prime} = \begin{bmatrix} 1 & x_{i1} & x_{i2} & \cdots & x_{ik} \end{bmatrix} \quad \text{ve} \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{k} \end{bmatrix}$$

dir. Açıktır ki, \mathbf{x}'_i vektörü, **X** matrisinin *i*-inci satırıdır.

İzleyen bölümlerde Model (2.1) (veya denk olarak Model (2.2)) de hata terimlerinin dağılımının LTS, GL ve JFST olması durumunda model parametrelerinin MML tahmin edicilerinin bulunuşu açıklanmıştır.

2.1.1. LTS dağılımı

Islam ve Tiku (2004) çoklu doğrusal regresyon modelinde hata terimlerinin dağılımının iid LTS olması durumunda model parametrelerinin MML tahmin edicilerini elde etmiş, bu tahmin edicilere dayalı olarak test istatistikleri geliştirmiştir. Ayrıca, MML tahmin edicileri ile bu tahmin edicilere dayalı test istatistiklerinin dayanıklılığını incelemiştir. Aşağıda, çoklu doğrusal regresyon modelinde hata terimlerinin dağılımının iid LTS olması durumunda, parametrelerin MML tahmin edicilerinin nasıl bulunduğu, Islam ve Tiku (2004) çalışmasından yararlanılarak, açıklanmıştır.

Model (2.2) de hata terimlerinin dağılımı iid LTS olsun. Bir başka deyişle, hata terimlerinin olasılık yoğunluk fonksiyonu,

$$f_{LTS}(e; p, \sigma) = \frac{1}{\sqrt{q}B(0.5, p - 0.5)\sigma} \left(1 + \frac{e^2}{q\sigma^2}\right)^{-p}, \quad -\infty < e < \infty$$
(2.3)

olsun. Burada, *p* dağılımın şekil parametresi olup q = 2p - 3 ve $p \ge 2$ dir, bkz. Tiku ve Suresh (1992) , Tiku ve ark. (2001). Çizelge 2.1 de, şekil parametresinin farklı değerleri için LTS dağılımının basıklık değerleri verilmiştir. Çizelge 2.1 den açıktır ki, LTS dağılımının basıklığı üçten büyüktür. Şekil parametresi sonsuz olduğunda, LTS dağılımı normal dağılıma yaklaşmaktadır. Detaylı bilgi için bkz. Tiku ve Akkaya (2004). LTS dağılımı literatürde genellikle aykırı değerleri modellemek için kullanılmaktadır (Tiku ve ark., 2001).

Çizelge 2.1. Şekil parametresinin farklı değerleri için LTS dağılımının basıklık değerleri

			р		
	2.5	3.5	5	10	∞
Basıklık	∞	9	4.2	3.4	3

Model parametrelerinin ML tahmin edicileri,

$$\frac{\partial \log L}{\partial \beta_j} = \frac{2p}{q\sigma} \sum_{i=1}^n \frac{z_i}{1 + \frac{z_i^2}{q}} x_{ij} = 0, \quad j = 0, 1, 2, \cdots, k$$
(2.4)

$$\frac{\partial \log L}{\partial \sigma} = -\frac{n}{\sigma} + \frac{2p}{q\sigma} \sum_{i=1}^{n} \frac{z_i}{1 + \frac{z_i^2}{q}} z_i = 0$$
(2.5)

olabilirlik denklem sisteminin çözümüdür. Burada,

$$z_i = \frac{y_i - \mathbf{x}'_i \boldsymbol{\beta}}{\sigma}, \quad i = 1, 2, \dots, n$$

olup x_{i0} 1'e karşılık gelmektedir. Olabilirlik denklemlerinde bulunan

$$g(z_i) = \frac{z_i}{1 + \frac{z_i^2}{q}}, \quad i = 1, 2, ..., n$$

fonksiyonu doğrusal olmadığından, model parametrelerinin ML tahmin edicileri analitik olarak bulunamaz. Bu durumda, parametrelerin ML tahmin edicilerinin nümerik yöntemlerle bulunması gerekir. Nümerik yöntemler kullanmak ise

- i. Hiç köke yakınsamama,
- ii. Yanlış köke yakınsama,
- iii. Birden fazla köke yakınsama

gibi problemlere yol açar bkz. Puthenpura & Sinha (1986), Vaughan (1992, 2002).

Tiku (1967, 1968) tarafından önerilen MML yöntemi ile model parametrelerinin tahmin edicilerinin açık formüllerini elde etmek mümkündür.

MML yöntemi, temel olarak aşağıda açıklanan iki ana adımda elde edilir:

1. Adım z_i (i = 1, 2, ..., n) değerleri küçükten büyüğe doğru sıralanır:

$$z_{(1)} \leq z_{(2)} \leq \dots z_{(n)}.$$

2. Adım $g(z_{(i)})$ fonksiyonu, Taylor polinomu yardımıyla, $t_{(i)} = E(z_{(i)})$ civarında doğrusallaştırılır:

$$g(z_{(i)}) \cong \alpha_i + \delta_i z_{(i)}, \quad i = 1, 2, \dots, n.$$
 (2.6)

Burada,

$$\alpha_{i} = \frac{(2/q)t_{(i)}^{3}}{(1+(1/q)t_{(i)})^{2}}, \quad \delta_{i} = \frac{1-(1/q)t_{(i)}^{2}}{(1+(1/q)t_{(i)})^{2}}, \quad i = 1, 2, \dots, n$$
(2.7)

dır. $t_{(i)} = E(z_{(i)})$ (i = 1, 2, ..., n) değerleri yaklaşık olarak, $F_{LTS}(\cdot)$ LTS dağılımının dağılım fonksiyonu olmak üzere,

$$t_{(i)} = F_{LTS}^{-1}\left(\frac{i}{n+1}\right), \quad i = 1, 2, \dots, n$$

eşitliğinden hesaplanır. Şekil parametresi p nin ve örneklem hacmi n nin farklı değerleri için $t_{(i)}$ (i = 1, 2, ..., n) değerleri Tiku ve Kumra (1981) ile Vaughan (1994) tarafından tablolaştırılmıştır.

Bu adımlar, Tiku ve ark. (2001) çalışmasında da anlatıldığı gibi, olabilirlik denklemlerine uygulandığında,

$$\frac{\partial \log L^*}{\partial \beta_j} = \frac{2p}{q\sigma} \sum_{i=1}^n (\alpha_i + \delta_i z_{(i)}) x_{[i]j} = 0, \quad j = 0, 1, 2, \cdots, k$$
$$\frac{\partial \log L^*}{\partial \sigma} = -\frac{n}{\sigma} + \frac{2p}{q\sigma} \sum_{i=1}^n (\alpha_i + \delta_i z_{(i)}) z_{(i)} = 0$$

uyarlanmış olabilirlik denklemleri elde edilir. Burada, log *L** uyarlanmış log olabilirlik fonksiyonunu ifade etmektedir. Bu denklem sistemi çözüldüğünde model parametrelerinin MML tahmin edicileri,

$$\hat{\boldsymbol{\beta}}_{MML} = \mathbf{K} + \mathbf{L}\hat{\sigma}_{MML}, \qquad (2.8)$$

$$\hat{\sigma}_{MML} = \frac{B + \sqrt{B^2 + 4nC}}{2\sqrt{n(n-k-1)}}$$
(2.9)

olarak bulunur. Burada,

$$\boldsymbol{\delta} = diag(\delta_i)$$
 ve $\boldsymbol{\alpha} = diag(\alpha_i)$

olmak üzere

$$\mathbf{K} = (\mathbf{X}' \boldsymbol{\delta} \mathbf{X})^{-1} (\mathbf{X}' \boldsymbol{\delta} \mathbf{y})$$
$$\mathbf{L} = (\mathbf{X}' \boldsymbol{\delta} \mathbf{X})^{-1} (\mathbf{X}' \boldsymbol{\alpha} \mathbf{1})$$
$$B = \frac{2p}{q} (\mathbf{y} - \mathbf{X} \mathbf{K})' \boldsymbol{\alpha} \mathbf{1},$$
$$C = \frac{2p}{q} (\mathbf{y} - \mathbf{X} \mathbf{K})' \boldsymbol{\delta} (\mathbf{y} - \mathbf{X} \mathbf{K})$$

dir.

Uyarı 2.1. Model (2.2) de hata terimleri, iid olarak LTS dağılımına sahip olduğunda model parametrelerinin MML yöntemiyle tahmin sürecinde dikkat edilmesi gereken noktalar aşağıda verilmiştir.

(i) $z_i = (y_i - \mathbf{x}'_i \boldsymbol{\beta}) / \sigma$, i = 1, 2, ..., n olduğundan z_i değerleri küçükten büyüğe doğru sıralanırken, parametrelerin LS tahmin edicilerinden yararlanılır. İlk sıralama sonucunda elde edilen değerlerle MML tahmin edicileri bulunur. Bulunan bu MML tahmin edicileri ile z_i değerleri yeniden hesaplanır ve küçükten büyüğe sıralanır, MML tahmin edicileri bulunur. Dolayısıyla, MML tahmin edicileri iki iterasyonla elde edilmiş olur, bkz. Tiku ve ark. (2001), Islam ve Tiku (2004).

- (ii) Sıralı $z_{(i)}$ (i = 1, 2, ..., n) değerine karşılık gelen y_i ve x_{ij} değerleri, birlikte değişenler (concomitants) olarak adlandırılır ve sırasıyla, $y_{[i]}$ ve $x_{[i]j}$ ile gösterilir.
- (iii) LTS dağılımı simetrik olduğundan $\alpha_i = -\alpha_{n-i+1}$ (i = 1, 2, ..., n) eşitliği sağlanır. Bunun bir sonucu olarak, $\sum_{i=1}^{n} \alpha_i = 0$ olur.
- (iv) $y_{[i]}$ ve $x_{[i]j}$ (i = 1, 2, ..., n) değerlerine karşılık gelen δ_i (i = 1, 2, ..., n) ağırlıkları, simetriktir. Bir başka anlatımla, ortaki değere kadar artarlar sonra aynı şekilde azalırlar. δ_i (i = 1, 2, ..., n) ağırlıklarının bu özelliği, aykırı değerlerin etkisinin azaltılmasını sağlar.
- (v) Özellikle şekil parametresi p nin küçük değerleri için bazen C değeri negatif bulunabilir. Bu durum da σ nın negatif ya da gerçel olmayan tahminlerine yol açabilir. Bundan dolayı, Islam ve Tiku (2004)

$$\alpha_i^* = \frac{(1/q)t_{(i)}^3}{(1+(1/q)t_{(i)})^2}, \quad \delta_i^* = \frac{1}{(1+(1/q)t_{(i)})^2}, \quad i = 1, 2, \dots, n$$
(2.10)

alınmasını önermektedirler. Bu değişiklik (2.6) eşitliğinde verilen yakınlaştırmayı değiştirmemektedir (Islam ve Tiku, 2004). Bu düzeltme ile σ nın MML tahmin edicisi her zaman pozitif ve gerçel sayı olmaktadır.

- (vi) $\alpha_i = 0$ ve $\delta_i = 1$ (i = 1, 2, ..., n) alınması durumunda (2.8) ve (2.9) da verilen MML tahmin edicileri LS tahmin edicilerine denk olurlar.
- (vii) $\hat{\sigma}_{MML}$ tahmin edicisinin paydasında 2n yerine $2\sqrt{n(n-k)}$ alınarak yan düzeltmesi yapılmıştır.

Detaylı bilgi için bkz. Islam ve Tiku (2004), Tiku ve Akkaya (2004).

Açıktır ki, Model (2.2) de, k = 1 alınırsa Model (1.1) elde edilir. Bu durumda, hata terimlerinin dağılımının LTS olması durumunda MML tahmin edicileri,

$$\hat{\beta}_{0_{MML}} = \bar{y}_{[\cdot]} - \hat{\beta}_{1_{MML}} \bar{x}_{[\cdot]}, \qquad (2.11)$$

$$\hat{\beta}_{1_{MML}} = K + L\hat{\sigma}_{MML}, \qquad (2.12)$$

$$\hat{\sigma}_{MML} = \frac{B + \sqrt{B^2 + 4nC}}{2\sqrt{n(n-2)}}$$
 (2.13)

şeklinde bulunur. Burada,

$$\begin{split} \bar{x}_{[\cdot]} &= \sum_{i=1}^{n} \delta_{i} x_{[i]} / m, \quad \bar{y}_{[\cdot]} = \sum_{i=1}^{n} \delta_{i} y_{[i]} / m, \quad m = \sum_{i=1}^{n} \delta_{i}, \\ K &= \sum_{i=1}^{n} \delta_{i} (x_{[i]} - \bar{x}_{[\cdot]}) y_{[i]} / \sum_{i=1}^{n} \delta_{i} (x_{[i]} - \bar{x}_{[\cdot]})^{2}, \\ L &= \sum_{i=1}^{n} \alpha_{i} (x_{[i]} - \bar{x}_{[\cdot]}) / \sum_{i=1}^{n} \delta_{i} (x_{[i]} - \bar{x}_{[\cdot]})^{2}, \\ B &= \frac{2p}{q} \sum_{i=1}^{n} \alpha_{i} \Big(y_{[i]} - \bar{y}_{[\cdot]} - K(x_{[i]} - \bar{x}_{[\cdot]}) \Big), \\ C &= \frac{2p}{q} \sum_{i=1}^{n} \delta_{i} \Big(y_{[i]} - \bar{y}_{[\cdot]} - K(x_{[i]} - \bar{x}_{[\cdot]}) \Big)^{2} \end{split}$$

dir. Detaylı bilgi bkz. Tiku ve ark. (2001).

2.1.2. GL dağılımı

Islam ve Tiku (2004), çoklu doğrusal regresyon modelinde hata terimlerinin dağılımının iid GL olması durumunda model parametrelerinin MML tahmin edicilerini elde etmiş, bu tahmin edicilere dayalı olarak test istatistikleri geliştirmiş ve MML tahmin edicileri ile bu tahmin edicilere dayalı test istatistiklerinin dayanıklılığını incelemiştir.

Aşağıda, çoklu doğrusal regresyon modelinde hata terimlerinin dağılımının iid GL olması durumunda, parametrelerin MML tahmin edicilerinin nasıl bulunduğu, Islam ve Tiku (2004) çalışmasından yararlanılarak, açıklanmıştır.

Model (2.2) de hata terimlerinin dağılımı iid GL olsun. Bir başka deyişle, hata terimlerinin olasılık yoğunluk fonksiyonu,

$$f_{GL}(e; b, \sigma) = \frac{b}{\sigma} \frac{e^{-e/\sigma}}{\left(1 + e^{-e/\sigma}\right)^{b+1}}, \quad -\infty < e < \infty$$
(2.14)

olsun. Burada, *b*, GL dağılımının şekil parametresi olup b > 0 dır. GL dağılımının çarpıklık ve basıklık değerleri, şekil parametresinin farklı değerleri için Çizelge 2.2 de verilmiştir. Çizelge 2.2 den de görüldüğü gibi GL dağılımı b < 1 için sola çarpık, b > 1 için sağa çarpıktır. GL dağılımında, b = 1 alınırsa literatürde yaygın olarak kullanılan lojistik dağılımı elde edilir.

Çizelge 2.2. Şekil parametresinin farklı değerleri için GL dağılımının çarpıklık ve basıklık değerleri

			b		
	0.5	1	2	4	6
Çarpıklık	-0.86	0	0.33	0.75	0.92
Basıklık	5.40	3.29	4.33	4.76	4.95

Model parametrelerinin ML tahmin edicilerini bulmak için, LTS dağılımında olduğu gibi, model parametrelerine göre kısmi türevler alınıp sıfıra eşitlenirse

$$\frac{\partial \log L}{\partial \beta_j} = \frac{n}{\sigma} - \frac{b+1}{\sigma} \sum_{i=1}^n \frac{e^{-z_i}}{1+e^{-z_i}} x_{ij} = 0, \quad j = 0, 1, 2, \cdots, k$$
(2.15)

$$\frac{\partial \log L}{\partial \sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma} \sum_{i=1}^{n} z_i - \frac{b+1}{\sigma} \sum_{i=1}^{n} \frac{z_i e^{-z_i}}{1+e^{-z_i}} = 0$$
(2.16)

olarak elde edilir.

Olabilirlik denklemlerinde ver alan

$$g(z_i) = \frac{e^{-z_i}}{1 + e^{-z_i}}, \quad z_i = \frac{y_i - \mathbf{x}'_i \boldsymbol{\beta}}{\sigma}, \quad i = 1, 2, \dots, n$$

fonksiyonu doğrusal olmadığından model parametrelerinin ML tahmin edicileri analitik olarak bulunamazlar. Bu durumda, model parametrelerinin MML tahmin edicileri, bu fonksiyonun $t_{(i)} = E(z_{(i)})$ (i = 1, 2, ..., n) etrafında I. dereceden Taylor polinomuna açılmasıyla bulunur:

$$g(z_{(i)}) \cong \alpha_i - \delta_i z_{(i)}, \quad i = 1, 2, \dots, n$$

Burada,

$$\alpha_i = \frac{1 + e^{t_{(i)}} + t_{(i)}e^{t_{(i)}}}{(1 + e^{t_{(i)}})^2}, \quad \delta_i = \frac{e^{t_{(i)}}}{(1 + e^{t_{(i)}})^2}, \quad i = 1, 2, \dots, n$$

dir. LTS dağılımı durumunda anlatılan MML yöntemi adımları izlendiğinde, model parametrelerinin MML tahmin edicileri,

$$\hat{\boldsymbol{\beta}}_{MML} = \mathbf{K} - \mathbf{L} \hat{\sigma}_{MML}, \qquad (2.17)$$

$$\hat{\sigma}_{MML} = \frac{-B + \sqrt{B^2 + 4nC}}{2\sqrt{n(n-k-1)}}$$
(2.18)

olarak bulunur. Burada,

$$\boldsymbol{\delta} = diag(\delta_i)$$
 ve $\boldsymbol{\alpha} = diag(\Delta_i)$

olmak üzere

$$\mathbf{K} = (\mathbf{X}' \boldsymbol{\delta} \mathbf{X})^{-1} (\mathbf{X}' \boldsymbol{\delta} \mathbf{y})$$
$$\mathbf{L} = (\mathbf{X}' \boldsymbol{\delta} \mathbf{X})^{-1} (\mathbf{X}' \boldsymbol{\alpha} \mathbf{1})$$
$$B = (b+1) (\mathbf{y} - \mathbf{X} \mathbf{K})' \boldsymbol{\alpha} \mathbf{1},$$
$$C = (b+1) (\mathbf{y} - \mathbf{X} \mathbf{K})' \boldsymbol{\delta} (\mathbf{y} - \mathbf{X} \mathbf{K})$$

dir. Ayrıca, $t_{(i)} = E(z_{(i)})$ (i = 1, 2, ..., n) değerleri yaklaşık olarak, $F_{GL}(\cdot)$ GL dağılımının dağılım fonksiyonu olmak üzere,

$$t_{(i)} = F_{GL}^{-1}\left(\frac{i}{n+1}\right), \quad i = 1, 2, \dots, n$$

eşitliğinden hesaplanır. Detaylı bilgi için bkz. Tiku ve Akkaya (2004).

Model (2.2) de, k = 1 alınırsa, hata terimlerinin dağılımının GL olması durumunda MML tahmin edicileri,

$$\hat{\beta}_{0_{MML}} = \bar{y}_{[\cdot]} - \hat{\beta}_{1_{MML}} \bar{x}_{[\cdot]} - \frac{\Delta}{m} \hat{\sigma}_{MML}, \qquad (2.19)$$

$$\hat{\beta}_{1_{MML}} = K - L \hat{\sigma}_{MML}, \qquad (2.20)$$

$$\hat{\sigma}_{MML} = \frac{-B + \sqrt{B^2 + 4nC}}{2\sqrt{n(n-2)}}$$
(2.21)

olarak bulunur. Burada,

$$\Delta_i = \alpha_i - (b+1)^{-1}, \quad \Delta = \sum_{i=1}^n \Delta_i,$$

$$K = \sum_{i=1}^{n} \delta_{i} (x_{[i]} - \bar{x}_{[\cdot]}) y_{[i]} / \sum_{i=1}^{n} \delta_{i} (x_{[i]} - \bar{x}_{[\cdot]})^{2},$$

$$L = \sum_{i=1}^{n} \Delta_{i} (x_{[i]} - \bar{x}_{[\cdot]}) / \sum_{i=1}^{n} \delta_{i} (x_{[i]} - \bar{x}_{[\cdot]})^{2},$$

$$B = (b+1) \sum_{i=1}^{n} \Delta_{i} (y_{[i]} - \bar{y}_{[\cdot]} - K(x_{[i]} - \bar{x}_{[\cdot]})),$$

$$C = (b+1) \sum_{i=1}^{n} \delta_{i} (y_{[i]} - \bar{y}_{[\cdot]} - K(x_{[i]} - \bar{x}_{[\cdot]}))^{2}$$

dir. Detaylı bilgi için bkz. Islam ve ark. (2001).

2.1.3. JFST dağılımı

Bu bölümde anlatılanlar, Bölüm 2.1.1 ve 2.1.2 den farklı olarak, ilk kez bu tez çalışmasında yapılmaktadır. Bir başka deyişle, çoklu doğrusal regresyon modelinde hata terimlerinin iid olarak JFST dağılımına sahip olması durumunda model parametrelerinin MML tahmin edicileri ilk kez bu tez çalışmasında bulunmuştur. Ayrıca, Acıtaş ve ark. (2013a) çalışmasında bu bölümde elde edilen sonuçlar kullanılmıştır. Öte yandan, Acıtaş ve ark. (2011) basit konum modelinde hata terimlerinin dağılımının JFST olması durumunda konum ve ölçek parametrelerinin MML tahmin edicilerini bulmuştur. Aşağıda, çoklu doğrusal regresyon modelinde hata terimlerinin JFST olması durumunda, parametrelerin MML tahmin edicilerinin nasıl bulunduğu açıklanmıştır.

Model (2.2) de hata terimlerinin dağılımı iid JFST olsun. Bir başka deyişle, hata terimlerinin olasılık yoğunluk fonksiyonu,

$$f_{JFST}(e; a, b, \sigma) = \frac{C_{a,b}^{-1}}{\sigma} \left\{ 1 + \frac{e/\sigma}{\sqrt{\nu + (e/\sigma)^2}} \right\}^{a+0.5} \left\{ 1 - \frac{e/\sigma}{\sqrt{\nu + (e/\sigma)^2}} \right\}^{b+0.5}, \quad (2.22)$$
$$-\infty < e < \infty$$

olsun. Burada,

 $C_{a,b} = 2^{\nu-1} B(a,b) \sqrt{\nu}, \quad \nu = a+b$

olup *a* ile *b* de dağılımın şekil parametreleridir. JFST dağılımının çarpıklık ve basıklık değerleri, şekil parametrelerinin farklı değerleri için Çizelge 2.3 de verilmiştir. Çizelge 2.3 den de görüldüğü gibi JFST dağılımı a = b için simetrik, a > b iken sağa çarpık, a < b iken de sola çarpıktır. a ve b birlikte sonsuza yaklaştığında JFST dağılımı normal dağılıma yaklaşmaktadır. Detaylı bilgi için bkz. Jones ve Faddy (2003), Jones (2008).

Çizelge 2.3. Şekil parametresinin farklı değerleri için JFST dağılımının çarpıklık ve basıklık değerleri

а	b	Çarpıklık	Basıklık
3	3	0	6
3	9	-1.51	10.33
3	15	-1.84	12.83
15	15	0	3.23
∞	∞	0	0

Model parametrelerinin ML tahmin edicileri,

$$\frac{\partial \log L}{\partial \beta_j} = -\frac{(a+0.5)}{\sigma} \sum_{i=1}^n g_1(z_i) x_{ij} + \frac{(b+0.5)}{\sigma} \sum_{i=1}^n g_2(z_i) x_{ij} = 0, \quad j = 0, 1, 2, \cdots, k$$

$$\frac{\partial \log L}{\partial \sigma} = \frac{-n}{\sigma} - \frac{(a+0.5)}{\sigma} \sum_{i=1}^n g_1(z_i) z_i + \frac{(b+0.5)}{\sigma} \sum_{i=1}^n g_2(z_i) z_i = 0$$

olabilirlik denklem sisteminin çözümüdür. Burada,

$$z_i = \frac{y_i - \mathbf{x}'_i \boldsymbol{\beta}}{\sigma}, \quad g_1(z_i) = \frac{\nu}{(\nu + z_i^2)^{3/2} + z_i(\nu + z_i^2)}$$

ve

$$g_2(z_i) = \frac{\nu}{(\nu + z_i^2)^{3/2} - z_i(\nu + z_i^2)}, \quad i = 1, 2, \dots, n$$

dir.

Olabilirlik denklemlerinde bulunan $g_1(\cdot)$ ve $g_2(\cdot)$ fonksiyonları doğrusal olmadıklarından, model parametrelerinin ML tahmin edicileri analitik olarak bulunamaz. Bu durumda, model parametrelerinin MML tahmin edicileri, $g_1(\cdot)$ ve $g_2(\cdot)$ fonksiyonlarının $t_{(i)} = E(z_{(i)})$ (i = 1, 2, ..., n) civarında I. dereceden Taylor polinomuna açılmasıyla bulunur:

$$g_1(z_{(i)}) \cong \alpha_{1i} - \delta_{1i} z_{(i)}, \quad g_2(z_{(i)}) \cong \alpha_{2i} - \delta_{2i} z_{(i)}, \quad i = 1, 2, \dots, n.$$

Burada,

$$\delta_{1i} = \frac{\nu \left[3t_{(i)}\sqrt{\nu + t_{(i)}^2} + \nu + 3t_{(i)}^2 \right]}{\left[(\nu + t_{(i)}^2)^{3/2} + t_{(i)}(\nu + t_{(i)}^2) \right]^2}, \quad \delta_{2i} = \frac{\nu \left[3t_{(i)}\sqrt{\nu + t_{(i)}^2} - \nu - 3t_{(i)}^2 \right]}{\left[(\nu + t_{(i)}^2)^{3/2} - t_{(i)}(\nu + t_{(i)}^2) \right]^2}$$
$$\alpha_{1i} = g_1(t_{(i)}) + t_{(i)}\delta_{1i}, \quad \alpha_{2i} = g_2(t_{(i)}) + t_{(i)}\delta_{2i}$$

dir. LTS dağılımı durumunda anlatılan MML yöntemi adımları izlendiğinde, model parametrelerinin MML tahmin edicileri,

$$\hat{\boldsymbol{\beta}}_{MML} = \mathbf{K} + \mathbf{L}\hat{\sigma}_{MML}, \qquad (2.23)$$

$$\hat{\sigma}_{MML} = \frac{B + \sqrt{B^2 + 4nC}}{2\sqrt{n(n-k-1)}}$$
(2.24)

olarak bulunur. Burada,

$$\boldsymbol{\delta} = diag(\delta_i)$$
 ve $\boldsymbol{\alpha} = diag(\alpha_i)$,

$$\delta_i = (a+0.5)\delta_{1i} - (b+0.5)\delta_{2i}, \quad \alpha_i = (b+0.5)\alpha_{2i} - (a+0.5)\alpha_{1i}$$

olmak üzere

$$\mathbf{K} = (\mathbf{X}' \boldsymbol{\delta} \mathbf{X})^{-1} (\mathbf{X}' \boldsymbol{\delta} \mathbf{y})$$
$$\mathbf{L} = (\mathbf{X}' \boldsymbol{\delta} \mathbf{X})^{-1} (\mathbf{X}' \boldsymbol{\alpha} \mathbf{1})$$
$$B = (\mathbf{y} - \mathbf{X} \mathbf{K})' \boldsymbol{\alpha} \mathbf{1},$$
$$C = (\mathbf{y} - \mathbf{X} \mathbf{K})' \boldsymbol{\delta} (\mathbf{y} - \mathbf{X} \mathbf{K})$$

dir. Ayrıca, $t_{(i)} = E(z_{(i)})$ (i = 1, 2, ..., n) değerleri yaklaşık olarak, $F_{JFST}(\cdot)$ JFST dağılımının dağılım fonksiyonu olmak üzere,

$$t_{(i)} = F_{JFST}^{-1}\left(\frac{i}{n+1}\right), \quad i = 1, 2, \dots, n$$

eşitliğinden hesaplanır.

Uyarı 2.2. δ_{1i} (i = 1, 2, ..., n) değerlerinden bazılarının negatif olmasından dolayı, C değeri bazen negatif olabilir. Bu durum da $\hat{\sigma}_{MML}$ tahmin edicisinin negatif ya da gerçel olmayan tahminlerine yol açabilir. Bu durumu bertaraf etmek için α_{1i} and δ_{1i} (i = 1, 2, ..., n) değerlerinin

$$\delta_{1i}^{*} = \frac{\nu \left[3\sqrt{\nu + t_{(i)}^{2}} + \nu + 3t_{(i)}^{2} \right]}{\left[(\nu + t_{(i)}^{2})^{3/2} + t_{(i)}(\nu + t_{(i)}^{2}) \right]^{2}}, \ \nu e \ \alpha_{1i}^{*} = g_{1}(t_{(i)}) + t_{(i)}\delta_{1i}^{*}$$

şeklinde alınması önerilmektedir (Acıtaş ve ark., 2011, 2013a). Bu değişiklikle, $\hat{\sigma}_{MML}$ her zaman pozitif ve gerçel olur. Bu tür değişikliklerin MML tahmin edicilerinin asimptotik özellikleri üzerinde bir etkisi olmadığı bilinmektedir (Islam ve Tiku, 2004).

Model (2.2) de k = 1 alınırsa, hata terimlerinin dağılımının JFST olması durumunda MML tahmin edicileri,

$$\hat{\beta}_{0_{MML}} = \bar{y}_{[\cdot]} - \hat{\beta}_{1_{MML}} \bar{x}_{[\cdot]} + \frac{\Delta}{m} \sigma_{MML}, \qquad (2.25)$$

$$\hat{\beta}_{1_{MML}} = K + L\hat{\sigma}_{MML}, \qquad (2.26)$$

$$\hat{\sigma}_{MML} = \frac{B + \sqrt{B^2 + 4nC}}{2\sqrt{n(n-2)}}$$
(2.27)

olarak bulunur. Burada,

$$\begin{split} \Delta_{i} &= (b+0.5)\alpha_{2i} - (a+0.5)\alpha_{1i}, \quad \Delta = \sum_{i=1}^{n} \Delta_{i} \\ K &= \sum_{i=1}^{n} \delta_{i} (x_{[i]} - \bar{x}_{[\cdot]}) y_{[i]} \Big/ \sum_{i=1}^{n} \delta_{i} (x_{[i]} - \bar{x}_{[\cdot]})^{2} \\ L &= \sum_{i=1}^{n} \Delta_{i} (x_{[i]} - \bar{x}_{[\cdot]}) \Big/ \sum_{i=1}^{n} \delta_{i} (x_{[i]} - \bar{x}_{[\cdot]})^{2} , \\ B &= \sum_{i=1}^{n} \Delta_{i} \Big(y_{[i]} - \bar{y}_{[\cdot]} - K(x_{[i]} - \bar{x}_{[\cdot]}) \Big) , \\ C &= \sum_{i=1}^{n} \delta_{i} \Big(y_{[i]} - \bar{y}_{[\cdot]} - K(x_{[i]} - \bar{x}_{[\cdot]}) \Big)^{2} \end{split}$$

dir.

NOT:

 MML tahmin edicileri, düzgünlük koşulları (regularity conditions) altında asimptotik olarak ML tahmin edicilerine denk olup, asimptotik olarak yansız ve etkindirler, bkz. Bhattacharyya (1985), Vaughan ve Tiku (2000). Islam ve ark. (2001) çalışmasının ek kısmında (sayfa 1016) bu durum, basit doğrusal regresyonda hata terimlerinin dağılımının GL olduğu durum için detaylı olarak açıklanmıştır. Ayrıca, küçük örneklem hacimlerinde bile MML tahmin edicilerinin, ML tahmin edicilerinin var olması durumunda, ML tahmin edicilerine nümerik olarak çok yakın oldukları bilinmektedir, bkz. Vaughan (2002), Şenoğlu & Tiku (2002), Şenoğlu & Avcıoğlu (2009) ve bu çalışmalarda verilen referanslar.

 Model (2.2) nin parametrelerinin LS tahmin edicisi bir çok temel istatistik ya da regresyon analizi kitaplarında bulunmaktadır, örneğin bkz. Maronna ve ark. (2006). Burada belirtilmelidir ki, hata dağılımı çarpık olduğunda, LS tahmin edicilerinde yan düzeltmesi yapılması gerekmektedir. Hata terimlerinin dağılımı GL ise yan düzeltmesi yapılmış LS tahmin edicileri için bkz Islam ve ark. (2001), Islam ve Tiku (2004). Benzer yol izlenerek, hata terimlerinin dağılımının JFST olması durumunda yan düzeltmesi yapılmış LS tahmin edicileri elde edilir.

2.2. Doğrusal Regresyonda Parametrelerin OSM Yöntemi ile Tahmini

İlk kez Huber (1964) tarafından önerilen M-tahmin edicileri, belli özellikleri taşıyan, $\rho(\cdot)$ amaç fonksiyonunun parametrelere göre minimum yapılması mantığına dayanır. Bir başka deyişle, θ parametresinin M-tahmin edicisi,

$$\min_{\theta} \sum_{i=1}^{n} \rho(z_i, \theta) \tag{2.28}$$

veya denk olarak, $\psi(\cdot) = \rho'(\cdot)$ olmak üzere,

$$\sum_{i=1}^{n} \psi(z_i, \theta) = 0$$
 (2.29)

denkleminin çözümüdür. Bu problemin çözümünde çeşitli algoritmalar kullanılmaktadır. Açıktır ki, $\psi(\cdot)$ fonksiyonu doğrusal değilse, bu denklem sisteminin çözümünü analitik olarak elde etmek mümkün değildir. Bu durumda, nümerik yöntemlere ya da algoritmalara başvurmak gerekir. Bölüm 2.1 de de belirttildiği gibi nümerik yöntemler kullanmanın bazı dezavantajları söz konusudur. Bu nedenle, bu bölümde, hesaplama kolaylığı açısından OSM tahmin yöntemi kullanılmıştır. OSM tahmin edicileri, (2.29) minimizasyon probleminin çözümü için kullanılan Newton yönteminin ilk adımı olarak,

$$\hat{\theta}_{OSM} = \hat{\theta}_0 + \hat{\sigma}_0 \frac{\frac{1}{n} \sum_{i=1}^n \psi\left(\frac{y_i - \hat{\theta}_0}{\hat{\sigma}_0}\right)}{\frac{1}{n} \sum_{i=1}^n \psi'\left(\frac{y_i - \hat{\theta}_0}{\hat{\sigma}_0}\right)}$$
(2.30)
elde edilir, bkz. Huber (1981). Burada, $\hat{\theta}_0$ ve $\hat{\sigma}_0$ sırasıyla θ ve σ parametrelerinin başlangıç değerleridir. Acıtaş ve ark. (2011, 2013a) tarafından konum modeli için, hata terimlerinin JFST olması durumunda konum parametresinin OSM tahmin edicisini hesaplamak için gerekli başlangıç değerler, konum ve ölçek parametrelerinin MML tahmin edicileri olarak önerilmiştir. Adı geçen çalışmalarda, MML tahmin edicilerine dayalı OSM tahmin edicisinin özellikle çarpık dağılımlarda klasik başlangıç değerler olan medyan ve mutlak sapmaların medyanından (median absolute deviations) daha etkin sonuçlar verdiği gösterilmiştir.

Lineer modellerde OSM tahmin edicileri ise Bickel (1975) tarafından tanıtılmıştır. Welsh ve Ronchetti (2002) farklı algoritmalara dayanan OSM tahmin edicilerinin değişik başlangıç değerlerden ne derecede etkilendiklerini araştırmış ve Newton-Raphson algoritmasına dayanan OSM tahmin edicisinin daha iyi olduğunu göstermiştir. Ayrıca, Acıtaş ve ark. (2013a) çalışmasının giriş kısmında bu konu ile ilgili bir literatür bilgisi mevcuttur.

Model (2.2) de parametre vektörü β nın OSM tahmin edicisinin elde edilişi aşağıda anlatılmıştır.

Model (2.2) de $\boldsymbol{\beta}$ parametresinin M-tahmin edicisi,

$$\sum_{i=1}^{n} \psi \Big((y_i - \mathbf{x}'_i \boldsymbol{\beta}) / \sigma \Big) \mathbf{x}_i = 0$$
(2.31)

eşitliğinin çözümüdür, bkz. Marrona ve ark. (2006). Bu ifadede $\psi(\cdot)$ fonksiyonu $(y_i - \mathbf{x}'_i \hat{\boldsymbol{\beta}}_0) / \hat{\sigma}_0$ civarında I. dereceden Taylor polinomuna açılır ve ifade düzenlenirse,

$$\hat{\boldsymbol{\beta}}_{OSM} = \hat{\boldsymbol{\beta}}_0 + \hat{\sigma}_0 \left[\sum_{i=1}^n \psi' \left(\frac{y_i - \mathbf{x}'_i \hat{\boldsymbol{\beta}}_0}{\hat{\sigma}_0} \right) \mathbf{x}_i \mathbf{x}'_i \right]^{-1} \sum_{i=1}^n \psi \left(\frac{y_i - \mathbf{x}'_i \hat{\boldsymbol{\beta}}_0}{\hat{\sigma}_0} \right) \mathbf{x}_i$$
(2.32)

 $\boldsymbol{\beta}$ parametre vektörünün OSM tahmin edicisi elde edilir, bkz. Welsh ve Ronchetti (2002), Jureckova ve Picek (2006). Bu tez çalışmasında, Acıtaş ve ark. (2011, 2012a, 2012b, 2013a) çalışmalarına paralel olarak, OSM tahmin edicisi bulunurken başlangıç değerler,

$$\hat{\boldsymbol{\beta}}_{0} = \left[\begin{array}{ccc} \hat{\boldsymbol{\beta}}_{0_{MML}} & \hat{\boldsymbol{\beta}}_{1_{MML}} & \cdots & \hat{\boldsymbol{\beta}}_{k_{MML}} \end{array} \right]', \quad \hat{\boldsymbol{\sigma}}_{0} = \hat{\boldsymbol{\sigma}}_{MML}$$

olarak alınmıştır.

İlerleyen alt bölümlerde Model (2.2) nin parametrelerinin OSM tahmin edicilerinin bulunuşu, hata terimlerinin dağılımının LTS, GL ve JFST olması durumunda incelenmiştir.

2.2.1. LTS dağılımı

Model (2.2) de hata terimlerinin dağılımı iid LTS olsun. Bu durumda β parametre vektörünün OSM tahmin edicisini bulmak için $\rho(\cdot)$ amaç fonksiyonu

$$\rho(z) = -\ln f_{LTS}(z) \tag{2.33}$$

olarak alsın. Bunun bir sonucu olarak,

$$\psi(z) = -\frac{\partial \ln f_{LTS}(z)}{\partial z}$$
(2.34)

olur. Tüm bu ifadeler (2.32) denkleminde yazılarak, $\boldsymbol{\beta}$ parametresinin OSM tahmin edicisi bulunur.

 β parametresinin OSM tahmin edicisi bulunurken kullanılan $\psi(\cdot)$ ve $\psi'(\cdot)$ fonksiyonları sırasıyla aşağıdaki gibidir:

$$\psi(z) = \frac{2p}{q} \frac{z}{1 + \frac{1}{q}z^2},$$

$$\psi'(z) = \frac{2p}{q} \frac{1 - \frac{1}{q}z^2}{\left(1 + \frac{1}{q}z^2\right)^2}$$

2.2.2. GL dağılımı

Model (2.2) de hata terimlerinin dağılımı iid GL olsun. Bu durumda $\boldsymbol{\beta}$ parametre vektörünün OSM tahmin edicisini bulmak için $\rho(\cdot)$ amaç fonksiyonu

$$\rho(z) = -\ln f_{GL}(z) \tag{2.35}$$

olarak alsın. Bunun bir sonucu olarak,

$$\psi(z) = -\frac{\partial \ln f_{GL}(z)}{\partial z}$$
(2.36)

olur. Tüm bu ifadeler (2.32) denkleminde yazılarak, $\boldsymbol{\beta}$ parametresinin OSM tahmin edicisi bulunur.

 β parametresinin OSM tahmin edicisi bulunurken kullanılan $\psi(\cdot)$ ve $\psi'(\cdot)$ fonksiyonları sırasıyla aşağıdaki gibidir:

$$\begin{split} \psi(z) &= 1 - \frac{(b+1)e^{-z}}{1+e^{-z}}, \\ \psi'(z) &= \frac{(b+1)e^{-z}}{(1+e^{-z})^2}. \end{split}$$

2.2.3. JFST dağılımı

Model (2.2) de hata terimlerinin dağılımı iid JFST olsun. Bu durumda β parametre vektörünün OSM tahmin edicisini bulmak için $\rho(\cdot)$ amaç fonksiyonu

$$\rho(z) = -\ln f_{JFST}(z) \tag{2.37}$$

olarak alsın. Bunun bir sonucu olarak,

$$\psi(z) = -\frac{\partial \ln f_{JFST}(z)}{\partial z}$$
(2.38)

olur. Tüm bu ifadeler (2.32) denkleminde yazılarak, $\boldsymbol{\beta}$ parametresinin OSM tahmin edicisi bulunur.

 β parametresinin OSM tahmin edicisi bulunurken kullanılan $\psi(\cdot)$ ve $\psi'(\cdot)$ fonksiyonları sırasıyla aşağıdaki gibidir:

$$\begin{split} \psi(z) &= -\frac{(a+0.5)v}{(v+z^2)^{3/2}+vz+z^3} + \frac{(b+0.5)v}{(v+z^2)^{3/2}-vz-z^3}, \\ \psi'(z) &= \frac{(a+0.5)v[3z\sqrt{v+z^2}+v+3z^2]}{[(v+z^2)^{3/2}+vz+z^3]^2} - \frac{(b+0.5)v[3z\sqrt{v+z^2}-v-3z^2]}{[(v+z^2)^{3/2}-vz-z^3]^2}. \end{split}$$

2.3. Şekil Parametrelerine İlişin Not

Bu tez çalışmasında, değişim noktası tahmin edilirken LTS, GL ve JFST dağılımlarının şekil parametrelerinin bilindiği varsayılmıştır. Bu varsayımın sebebi, şekil parametresinin diğer parametrelerle eş anlı tahmin edilmesi durumunda elde edilen tahminlerin güvenilir olmamasıdır. Bowman and Shenton (2001) da belirtildiği gibi şekil parametresi için güvenilir tahminler elde edebilmek için örneklem hacminin büyük olması gerekmektedir, ayrıca bkz. Kantar ve Şenoğlu (2008).

Öte yandan, uygulamalı çalışmalarda şekil parametesinin belirlenmesi gerekmektedir. Bu tez çalışmasında, şekil parametresi, Islam ve Tiku (2004) çalışmasında anlatılan yöntem kullanılarak belirlenmiştir. Bu yöntemin adımları, hata dağılımının JFST olması durumu için aşağıda açıklanmıştır.

- **1. Adım** Şekil parametreleri *a* ve *b* nin verilen değerleri için $\hat{\beta}_{MML}$ ve $\hat{\sigma}_{MML}$ hesaplanır.
- **2. Adım** Birinci adımda elde edilen tahmin ediciler ile *a* ve *b* değerleri için log olabilirlik fonksiyonunun değerleri,

$$\log L(\hat{\beta}_{MML}, \hat{\sigma}_{MML}, a, b) = -n \log \hat{\sigma}_{MML} - n \log C_{a, b}^{-1} + (a + 0.5) \sum_{i=1}^{n} \log \left(1 + \frac{\hat{z}_i}{\sqrt{v + \hat{z}_i^2}} \right) + (b + 0.5) \sum_{i=1}^{n} \log \left(1 - \frac{\hat{z}_i}{\sqrt{v + \hat{z}_i^2}} \right)$$

eşitliği yardımıyla hesaplanır. Burada, $\hat{z}_i = (y_i - \mathbf{x}'_i \hat{\boldsymbol{\beta}}_{MML}) / \hat{\sigma}_{MML}$ (i = 1, 2, ..., n) dir.

- 3. Adım Birinci ve ikinci adımlar *a* ve *b* nin çeşitli değerleri için tekrarlanır.
- **4. Adım** Log olabilirlik fonksiyonunu maksimum yapan *a* and *b* değerleri şekil parametrelerinin makul değerleri olarak alınır.

Bu yöntem, Acıtaş (2013a, 2013b) çalışmalarında da kullanılmıştır.

3. SÜREKSİZ İKİ-FAZLI DOĞRUSAL REGRESYON MODELİNDE DEĞİŞİM NOKTASININ TAHMİNİ

Bu bölümde, Model (1.2) de süreklilik kısıtı sağlanmadığında değişim noktasının tahmin edilmesi ele alınmıştır. Bölüm 3.1 de, Quandt (1958, 1960) çalışmaları temel alınarak değişim noktasının ML tahmin edicisi geleneksel normallik varsayımı altında verilmiştir. Hata terimlerinin dağılımının LTS, GL ve JFST olması durumunda değişim noktasının MML ve OSM tahmin edicileri ise sırasıyla Bölüm 3.2 ve 3.3 de anlatılmıştır.

Bu bölümde, Model (1.2) yerine Quandt (1958, 1960) çalışmalarında yer alan

$$y_{i} = \begin{cases} \beta_{0}^{(1)} + \beta_{1}^{(1)} x_{i} + \varepsilon_{i}^{(1)}, & i = 1, 2, \dots, r \\ \beta_{0}^{(2)} + \beta_{1}^{(2)} x_{i} + \varepsilon_{i}^{(2)}, & i = r + 1, \dots, n \end{cases}$$
(3.1)

modeli kullanılmıştır. Bu modelde, r ya da buna karşılık gelen x_r değişim noktası olmaktadır. Ayrıca, Model (3.1) de x_i değerlerinin küçükten büyüğe doğru sıralı bir şekilde verildiği ve her iki fazdaki hata terimlerinin birbirinden bağımsız olduğu varsayılmaktadır, bkz. Quandt (1958, 1960). Burada belirtilmelidir ki, bu tez çalışmasında hata terimlerinin varyanslarının homojen olduğu durum ele alınmıştır.

3.1. Değişim Noktasının LS Yöntemi ile Tahmini

Quandt (1958), Model (3.1) de hata terimleri $\varepsilon_i^{(1)}$ ve $\varepsilon_i^{(2)}$ nin dağılımlarının sırasıyla iid $N(0, \sigma_1^2)$ ve $N(0, \sigma_2^2)$ olduğunu varsayarak değişim noktasının ve model parametrelerinin ML tahmin edicilerini elde etmiştir. Bu alt bölümde, Quandt (1958) çalışması referans alınarak, $\sigma_1^2 = \sigma_2^2 = \sigma^2$ durumunda, değişim noktasının ve model parametrelerinin, geleneksel normallik varsayımı altında ML tahmin edicilerinin bulunuşu açıklanmıştır. Normallik varsayımı altında, olabilirlik fonksiyonu

$$L_{0}(\beta_{0}^{(1)},\beta_{1}^{(1)},\beta_{0}^{(2)},\beta_{1}^{(2)},\sigma^{2},r) = \left(\frac{1}{2\pi\sigma^{2}}\right)^{n/2} \exp\left(-\frac{1}{2\sigma^{2}}\sum_{i=1}^{r}(y_{i}-\beta_{0}^{(1)}-\beta_{1}^{(1)}x_{i})^{2}\right)$$
$$\exp\left(-\frac{1}{2\sigma^{2}}\sum_{i=r+1}^{n}(y_{i}-\beta_{0}^{(2)}-\beta_{1}^{(2)}x_{i})^{2}\right)$$
(3.2)

şeklinde ifade edilir. Burada, logaritma alınarak

$$\log L_0(\beta_0^{(1)}, \beta_1^{(1)}, \beta_0^{(2)}, \beta_1^{(2)}, \sigma^2, r) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^r (y_i - \beta_0^{(1)} - \beta_1^{(1)} x_i)^2 - \frac{1}{2\sigma^2} \sum_{i=r+1}^n (y_i - \beta_0^{(2)} - \beta_1^{(2)} x_i)^2$$
(3.3)

elde edilir. $\log L_0$ fonksiyonunu parametrelere göre maximum yapan değer, ilgili parametrelerin ML tahmin edicisi olduğundan model parametrelerinin ML tahmin edicileri,

$$\hat{\beta}_{0}^{(1)} = \bar{y}^{(1)} - \hat{\beta}_{1}^{(1)} \bar{x}^{(1)}$$
(3.4)

$$\hat{\beta}_{1}^{(1)} = \frac{S_{xy}^{(1)}}{S_{xx}^{(1)}}$$
(3.5)

$$\hat{\beta}_{0}^{(2)} = \bar{y}_{1}^{(2)} - \hat{\beta}_{1}^{(2)} \bar{x}^{(2)}$$
(3.6)

$$\hat{\beta}_{1}^{(2)} = \frac{S_{xy}^{(2)}}{S_{xx}^{(2)}}$$
(3.7)

ve

$$\hat{\sigma}^2 = \frac{1}{n} \left\{ \sum_{i=1}^r (y_i - \hat{\beta}_0^{(1)} - \hat{\beta}_1^{(1)} x_i)^2 + \sum_{i=r+1}^n (y_i - \hat{\beta}_0^{(2)} - \hat{\beta}_1^{(2)} x_i)^2 \right\}$$
(3.8)

olarak bulunur. Burada,

$$\bar{x}^{(1)} = \sum_{i=1}^{r} x_i / r, \quad \bar{y}^{(1)} = \sum_{i=1}^{r} y_i / r,$$

$$S^{(1)}_{xy} = \sum_{i=1}^{r} (x_i - \bar{x}^{(1)})(y_i - \bar{y}^{(1)}), \quad S^{(1)}_{xx} = \sum_{i=1}^{r} (x_i - \bar{x}^{(1)})^2,$$

$$\bar{x}^{(2)} = \sum_{i=r+1}^{n} x_i / (n-r), \quad \bar{y}^{(2)} = \sum_{i=r+1}^{n} y_i / (n-r),$$

$$S^{(2)}_{xy} = \sum_{i=r+1}^{n} (x_i - \bar{x}^{(2)})(y_i - \bar{y}^{(2)}), \quad S^{(2)}_{xx} = \sum_{i=r+1}^{n} (x_i - \bar{x}^{(2)})^2,$$

dir.

Değişim noktası r nin ML tahmin edicisi, $\log L_0(\hat{\beta}_0^{(1)}, \hat{\beta}_1^{(1)}, \hat{\beta}_0^{(2)}, \hat{\beta}_1^{(2)}, \hat{\sigma}^2, r) \log$ olabilirlik fonksiyonunu maksimum yapan r değeri olarak tanımlanır. Bir başka ifade ile,

$$\hat{r} = \underset{1 \le r \le n}{\operatorname{argmax}} \log L_0(\hat{\beta}_0^{(1)}, \hat{\beta}_1^{(1)}, \hat{\beta}_0^{(2), r}, \hat{\beta}_1^{(2)}, \hat{\sigma}^2, r)$$
(3.9)

dir (Quandt, 1958).

Açıktır ki, normallik varsayımı altında elde edilen ML tahmin edicileri, LS tahmin edicilerine denktir. Ancak, $\hat{\sigma}$ nın yansız olması için paydasının n - 4 olarak değiştirilmesi gerekmektedir. Bu nedenle, bu ve bu bölümün geri kalan kısmında bu tahmin ediciler, LS tahmin edicileri olarak adlandırılmıştır.

3.2. Değişim Noktasının MML Yöntemi ile Tahmini

Bu bölümde, basit doğrusal regresyon modelinde hata terimlerinin LTS, GL ve JFST olması durumunda değişim noktasının MML tahmin edicisinin elde edilişi açıklanmıştır.

3.2.1. LTS dağılımı

Model (3.1) de hata terimleri $\varepsilon_i^{(1)}$ ve $\varepsilon_i^{(2)}$ nin dağılımı iid $LTS(p,\sigma)$ olsun. Bu durumda, log olabilirlik fonksiyonu

$$\log L_{1}(\beta_{0}^{(1)}, \beta_{1}^{(1)}, \beta_{0}^{(2)}, \beta_{1}^{(2)}, \sigma, p, r) = -n \log(\sqrt{q}B(0.5, p - 0.5)) - n \log \sigma$$
$$- p \sum_{i=1}^{r} \log\left(1 + \frac{z_{i}^{(1)^{2}}}{q}\right)$$
$$- p \sum_{i=r+1}^{n} \log\left(1 + \frac{z_{i}^{(2)^{2}}}{q}\right)$$
(3.10)

olur. Buradan, model parametrelerinin ML tahmin edicileri

$$\frac{\partial \log L_1}{\partial \beta_0^{(1)}} = \frac{2p}{q\sigma} \sum_{i=1}^r \frac{z_i^{(1)}}{1 + \frac{z_i^{(1)^2}}{q}} = 0$$
$$\frac{\partial \log L_1}{\partial \beta_1^{(1)}} = \frac{2p}{q\sigma} \sum_{i=1}^r \frac{z_i^{(1)}}{1 + \frac{z_i^{(1)^2}}{q}} x_i = 0$$

$$\frac{\partial \log L_1}{\partial \beta_0^{(2)}} = \frac{2p}{q\sigma} \sum_{i=r+1}^n \frac{z_i^{(2)}}{1 + \frac{z_i^{(2)^2}}{q}} = 0$$
$$\frac{\partial \log L_1}{\partial \beta_1^{(2)}} = \frac{2p}{q\sigma} \sum_{i=r+1}^n \frac{z_i^{(2)}}{1 + \frac{z_i^{(2)^2}}{q}} x_i = 0$$

ve

$$\frac{\partial \log L_1}{\partial \sigma} = -\frac{n}{\sigma} + \frac{2p}{q\sigma} \sum_{i=1}^r \frac{z_i^{(1)}}{1 + \frac{z_i^{(1)^2}}{q}} z_i^{(1)} + \frac{2p}{q\sigma} \sum_{i=r+1}^n \frac{z_i^{(2)}}{1 + \frac{z_i^{(2)^2}}{q}} z_i^{(2)} = 0$$

denklem sisteminin çözümüdür. Burada, $z_i^{(1)} = (y_i - \beta_0^{(1)} - \beta_1^{(1)} x_i)/\sigma$, i = 1, 2, ..., rve $z_i^{(2)} = (y_i - \beta_0^{(2)} - \beta_1^{(2)} x_i)/\sigma$, i = r + 1, r + 2, ..., n dir. Olabilirlik denklemlerinde bulunan

$$g(z_i^{(1)}) = \frac{z_i^{(1)}}{1 + \frac{z_i^{(1)^2}}{q}}, \quad i = 1, 2, \dots, r$$

ve

$$g(z_i^{(2)}) = \frac{z_i^{(2)}}{1 + \frac{z_i^{(2)^2}}{q}}, \quad i = r+1, r+2, \dots, n$$

fonksiyonları doğrusal olmadığından, model parametrelerinin ML tahmin edicileri analitik olarak bulunamaz. Bu durumda, MML yöntemi kullanılarak model parametrelerinin MML tahmin edicileri, Bölüm 2.1.1 de açıklanan adımlar izlenerek, aşağıdaki gibi bulunur:

$$\hat{\beta}_{0_{MML}}^{(1)} = \bar{y}_{[\cdot]}^{(1)} - \hat{\beta}_{1_{MML}}^{(1)} \bar{x}_{[\cdot]}^{(1)}, \qquad (3.11)$$

$$\hat{\beta}_{1_{MML}}^{(1)} = K^{(1)} + L^{(1)} \hat{\sigma}_{MML}, \qquad (3.12)$$

$$\hat{\beta}_{0_{MML}}^{(2)} = \bar{y}_{[\cdot]}^{(2)} - \hat{\beta}_{1_{MML}}^{(2)} \bar{x}_{[\cdot]}^{(2)}, \qquad (3.13)$$

$$\hat{\beta}_{1_{MML}}^{(2)} = K^{(2)} + L^{(2)} \hat{\sigma}_{MML}, \qquad (3.14)$$

$$\hat{\sigma}_{MML} = \frac{\mathscr{B} + \sqrt{\mathscr{B}^2 + 4n\mathscr{C}}}{2\sqrt{n(n-4)}}.$$
(3.15)

Burada,

$$\delta_i^{(1)} = \frac{1 - (1/q) t_{(i)}^{(1)^2}}{(1 + (1/q) t_{(i)}^{(1)})^2}, \quad \alpha_i^{(1)} = g(t_{(i)}^{(1)}) - \delta_i^{(1)} t_{(i)}^{(1)}, \quad m^{(1)} = \sum_{i=1}^r \delta_i^{(1)},$$

$$\begin{split} \delta_{i}^{(2)} &= \frac{1 - (1/q) t_{(i)}^{(2)}{}^{(2)}}{(1 + (1/q) t_{(i)}^{(2)}{}^{(2)}}, \quad \alpha_{i}^{(2)} = g(t_{(i)}^{(2)}) - \delta_{i}^{(2)} t_{(i)}^{(2)}, \quad m^{(2)} = \sum_{i=r+1}^{n} \delta_{i}^{(2)}, \\ &\quad \bar{x}_{[\cdot]}^{(1)} = \sum_{i=1}^{r} \delta_{i}^{(1)} x_{[i]} / m^{(1)}, \quad \bar{y}_{[\cdot]}^{(1)} = \sum_{i=1}^{r} \delta_{i}^{(1)} y_{[i]}^{(1)} / m^{(1)}, \\ &\quad \bar{x}_{[\cdot]}^{(2)} = \sum_{i=r+1}^{n} \delta_{i}^{(2)} x_{[i]} / m^{(2)}, \quad \bar{y}_{[\cdot]}^{(2)} = \sum_{i=r+1}^{n} \delta_{i}^{(2)} y_{[i]}^{(2)} / m^{(2)}, \\ &\quad K^{(1)} = \sum_{i=1}^{r} \delta_{i}^{(1)} (x_{[i]} - \bar{x}_{[\cdot]}^{(1)}) y_{[i]} / \sum_{i=1}^{r} \delta_{i}^{(1)} (x_{[i]} - \bar{x}_{[\cdot]}^{(1)})^{2}, \\ &\quad L^{(1)} = \sum_{i=1}^{r} \alpha_{i}^{(1)} (x_{[i]} - \bar{x}_{[\cdot]}^{(1)}) y_{[i]} / \sum_{i=1}^{r} \delta_{i}^{(2)} (x_{[i]} - \bar{x}_{[\cdot]}^{(1)})^{2}, \\ &\quad K^{(2)} = \sum_{i=r+1}^{n} \delta_{i}^{(2)} (x_{[i]} - \bar{x}_{[\cdot]}^{(2)}) y_{[i]} / \sum_{i=r+1}^{n} \delta_{i}^{(2)} (x_{[i]} - \bar{x}_{[\cdot]}^{(2)})^{2}, \\ &\quad L^{(2)} = \sum_{i=r+1}^{n} \alpha_{i}^{(2)} (x_{[i]} - \bar{x}_{[\cdot]}^{(2)}) y_{[i]} / \sum_{i=r+1}^{n} \delta_{i}^{(2)} (x_{[i]} - \bar{x}_{[\cdot]}^{(2)})^{2}, \\ &\quad B^{(1)} = \frac{2p}{q} \sum_{i=1}^{r} \alpha_{i}^{(1)} \left(y_{[i]} - \bar{y}_{[\cdot]}^{(1)} - K^{(1)} (x_{[i]} - \bar{x}_{[\cdot]}^{(1)}) \right), \\ &\quad C^{(1)} = \frac{2p}{q} \sum_{i=1}^{r} \delta_{i}^{(1)} \left(y_{[i]} - \bar{y}_{[\cdot]}^{(1)} - K^{(2)} (x_{[i]} - \bar{x}_{[\cdot]}^{(2)}) \right)^{2}, \\ &\quad B^{(2)} = \frac{2p}{q} \sum_{i=r+1}^{n} \alpha_{i}^{(2)} \left(y_{[i]} - \bar{y}_{[\cdot]}^{(2)} - K^{(2)} (x_{[i]} - \bar{x}_{[\cdot]}^{(2)}) \right), \end{aligned}$$

ve

$$\mathcal{B} = B^{(1)} + B^{(2)}, \quad \mathcal{C} = C^{(1)} + C^{(2)}$$

dir.

 $t_{(i)}^{(1)} = E(z_{(i)}^{(1)})$ ve $t_{(i)}^{(2)} = E(z_{(i)}^{(2)})$ değerleri ise yaklaşık olarak sırasıyla $t_{(i)}^{(1)} = F_{LTS}^{-1}\left(\frac{i}{r+1}\right), \quad i = 1, 2, ..., r$

ve

$$t_{(i)}^{(2)} = F_{LTS}^{-1}\left(\frac{i}{(n-r)+1}\right), \quad i = r+1, \dots, n$$

eşitliklerinden hesaplanır.

Model (3.1) de hata terimlerinin dağılımının LTS olması durumunda değişim noktası *r* nin MML tahmin edicisi, $\log L_1(\hat{\beta}_{0_{MML}}^{(1)}, \hat{\beta}_{1_{MML}}^{(1)}, \hat{\beta}_{0_{MML}}^{(2)}, \hat{\beta}_{1_{MML}}^{(2)}, \hat{\sigma}_{MML}, p, r)$

log olabilirlik fonksiyonunu maksimum yapan r değeri olarak tanımlanır. Bir başka ifade ile,

$$\hat{r}_{MML} = \underset{1 < r < n}{\operatorname{argmaxlog}} L_1(\hat{\beta}_{0_{MML}}^{(1)}, \hat{\beta}_{1_{MML}}^{(1)}, \hat{\beta}_{0_{MML}}^{(2)}, \hat{\beta}_{1_{MML}}^{(2)}, \hat{\sigma}_{MML}, p, r)$$
(3.16)

dir.

3.2.2. GL dağılımı

Model (3.1) de hata terimleri $\varepsilon_i^{(1)}$ ve $\varepsilon_i^{(2)}$ nin dağılımı iid $GL(b,\sigma)$ olsun. Bu durumda, log olabilirlik fonksiyonu

$$\log L_{2}(\beta_{0}^{(1)},\beta_{1}^{(1)},\beta_{0}^{(2)},\beta_{1}^{(2)},\sigma,b,r) = n\log b - n\log \sigma + \sum_{i=1}^{r} \log \left(\frac{e^{-z_{i}^{(1)}}}{\left(1+e^{-z_{i}^{(1)}}\right)^{b+1}}\right)$$
$$\sum_{i=r+1}^{n} \log \left(\frac{e^{-z_{i}^{(2)}}}{\left(1+e^{-z_{i}^{(2)}}\right)^{b+1}}\right)$$
(3.17)

olur. Buradan, model parametrelerinin MML tahmin edicileri

$$\hat{\beta}_{0_{MML}}^{(1)} = \bar{y}_{[\cdot]}^{(1)} - \hat{\beta}_{1_{MML}}^{(1)} \bar{x}_{[\cdot]}^{(1)} - \frac{\Delta^{(1)}}{m^{(1)}} \hat{\sigma}_{MML}, \qquad (3.18)$$

$$\hat{\beta}_{1_{MML}}^{(1)} = K^{(1)} - L^{(1)} \hat{\sigma}_{MML}, \qquad (3.19)$$

$$\hat{\beta}_{0_{MML}}^{(2)} = \bar{y}_{[\cdot]}^{(2)} - \hat{\beta}_{1_{MML}}^{(2)} \bar{x}_{[\cdot]}^{(2)} - \frac{\Delta^{(2)}}{m^{(2)}} \hat{\sigma}_{MML}, \qquad (3.20)$$

$$\hat{\beta}_{1_{MML}}^{(2)} = K^{(2)} - L^{(2)} \hat{\sigma}_{MML}, \qquad (3.21)$$

$$\hat{\sigma}_{MML} = \frac{-\mathscr{B} + \sqrt{\mathscr{B}^2 + 4n\mathscr{C}}}{2\sqrt{n(n-4)}}.$$
(3.22)

olarak bulunur. Burada,

$$\alpha_{i}^{(1)} = \frac{1 + e^{t_{(i)}^{(1)}} + t_{(i)}^{(1)} e^{t_{(i)}^{(1)}}}{(1 + e^{t_{(i)}^{(1)}})^{2}}, \quad \alpha_{i}^{(2)} = \frac{1 + e^{t_{(i)}^{(2)}} + t_{(i)}^{(2)} e^{t_{(i)}^{(2)}}}{(1 + e^{t_{(i)}^{(2)}})^{2}},$$

$$\delta_{i}^{(1)} = \frac{e^{t_{(i)}^{(1)}}}{(1+e^{t_{(i)}^{(1)}})^{2}}, \quad \delta_{i}^{(2)} = \frac{e^{t_{(i)}^{(2)}}}{(1+e^{t_{(i)}^{(2)}})^{2}}, \quad m^{(1)} = \sum_{i=1}^{r} \delta_{i}^{(1)}, \quad m^{(2)} = \sum_{i=r+1}^{n} \delta_{i}^{(2)},$$
$$\Delta^{(1)} = \sum_{i=1}^{r} \left(\alpha_{i}^{(1)} - (b+1)^{-1}\right), \quad \Delta^{(2)} = \sum_{i=r+1}^{n} \left(\alpha_{i}^{(2)} - (b+1)^{-1}\right)$$

$$\begin{split} K^{(1)} &= \sum_{i=1}^{r} \delta_{i}^{(1)}(x_{[i]} - \bar{x}_{[\cdot]}^{(1)}) y_{[i]} \Big/ \sum_{i=1}^{r} \delta_{i}^{(1)}(x_{[i]} - \bar{x}_{[\cdot]}^{(1)})^{2}, \\ K^{(2)} &= \sum_{i=r+1}^{n} \delta_{i}^{(2)}(x_{[i]} - \bar{x}_{[\cdot]}^{(2)}) y_{[i]} \Big/ \sum_{i=r+1}^{n} \delta_{i}^{(2)}(x_{[i]} - \bar{x}_{[\cdot]}^{(2)})^{2}, \end{split}$$

$$\begin{split} L^{(1)} &= \sum_{i=1}^{r} \Delta_{i}^{(1)}(x_{[i]} - \bar{x}_{[\cdot]}^{(1)}) \Big/ \sum_{i=1}^{r} \delta_{i}^{(1)}(x_{[i]} - \bar{x}_{[\cdot]}^{(1)})^{2}, \\ L^{(2)} &= \sum_{i=r+1}^{n} \Delta_{i}^{(2)}(x_{[i]} - \bar{x}_{[\cdot]}^{(2)}) \Big/ \sum_{i=r+1}^{n} \delta_{i}^{(2)}(x_{[i]} - \bar{x}_{[\cdot]}^{(2)})^{2}, \\ B^{(1)} &= (b+1) \sum_{i=1}^{r} \Delta_{i}^{(1)} \Big(y_{[i]} - \bar{y}_{[\cdot]}^{(1)} - K^{(1)}(x_{[i]} - \bar{x}_{[\cdot]}^{(1)}) \Big), \\ C^{(1)} &= (b+1) \sum_{i=1}^{r} \delta_{i}^{(1)} \Big(y_{[i]} - \bar{y}_{[\cdot]}^{(1)} - K^{(1)}(x_{[i]} - \bar{x}_{[\cdot]}^{(1)}) \Big)^{2}, \\ B^{(2)} &= (b+1) \sum_{i=r+1}^{n} \Delta_{i}^{(2)} \Big(y_{[i]} - \bar{y}_{[\cdot]}^{(2)} - K^{(2)}(x_{[i]} - \bar{x}_{[\cdot]}^{(2)}) \Big), \\ C^{(2)} &= (b+1) \sum_{i=r+1}^{n} \delta_{i}^{(2)} \Big(y_{[i]} - \bar{y}_{[\cdot]}^{(2)} - K^{(2)}(x_{[i]} - \bar{x}_{[\cdot]}^{(2)}) \Big)^{2} \end{split}$$

ve

$$\mathscr{B} = B^{(1)} + B^{(2)}, \quad \mathscr{C} = C^{(1)} + C^{(2)}$$

dir.

$$t_{(i)}^{(1)} = E(z_{(i)}^{(1)})$$
 ve $t_{(i)}^{(2)} = E(z_{(i)}^{(2)})$ değerleri yaklaşık olarak sırasıyla
$$t_{(i)}^{(1)} = F_{GL}^{-1}\left(\frac{i}{r+1}\right), \quad i = 1, 2, \dots, r$$

ve

$$t_{(i)}^{(2)} = F_{GL}^{-1}\left(\frac{i}{(n-r)+1}\right), \quad i = r+1, \dots, n$$

eşitliklerinden hesaplanır.

Model (3.1) de hata terimlerinin dağılımının GL olması durumunda değişim noktası *r* nin MML tahmin edicisi, $\log L_2(\hat{\beta}_{0_{MML}}^{(1)}, \hat{\beta}_{1_{MML}}^{(2)}, \hat{\beta}_{1_{MML}}^{(2)}, \hat{\sigma}_{MML}, b, r)$ log olabilirlik fonksiyonunu maksimum yapan *r* değeri olarak tanımlanır. Bir başka ifade ile,

$$\hat{r}_{MML} = \underset{1 < r < n}{\operatorname{argmaxlog}} L_2(\hat{\beta}_{0_{MML}}^{(1)}, \hat{\beta}_{1_{MML}}^{(1)}, \hat{\beta}_{0_{MML}}^{(2)}, \hat{\beta}_{1_{MML}}^{(2)}, \hat{\sigma}_{MML}, b, r)$$
(3.23)

dir.

3.2.3. JFST dağılımı

Model (3.1) de hata terimleri $\varepsilon_i^{(1)}$ ve $\varepsilon_i^{(2)}$ nin dağılımı iid $JFST(a, b, \sigma)$ olsun. Bu durumda, log olabilirlik fonksiyonu

$$\log L_{3}(\beta_{0}^{(1)},\beta_{1}^{(1)},\beta_{0}^{(2)},\beta_{1}^{(2)},\sigma,a,b,r) = -n\log C_{a,b} - n\log \sigma$$

$$+ (a+0.5)\sum_{i=1}^{r} \log \left(1 + \frac{z_{i}^{(1)}}{\sqrt{\nu + (z_{i}^{(1)})^{2}}}\right)$$

$$+ (b+0.5)\sum_{i=1}^{r} \log \left(1 - \frac{z_{i}^{(1)}}{\sqrt{\nu + (z_{i}^{(1)})^{2}}}\right) +$$

$$+ (a+0.5)\sum_{i=r+1}^{n} \log \left(1 + \frac{z_{i}^{(2)}}{\sqrt{\nu + (z_{i}^{(2)})^{2}}}\right)$$

$$+ (b+0.5)\sum_{i=r+1}^{n} \log \left(1 - \frac{z_{i}^{(2)}}{\sqrt{\nu + (z_{i}^{(2)})^{2}}}\right) (3.24)$$

olur. Buradan, model parametrelerinin ML tahmin edicileri

$$\hat{\beta}_{0_{MML}}^{(1)} = \bar{y}_{[\cdot]}^{(1)} - \hat{\beta}_{1_{MML}}^{(1)} \bar{x}_{[\cdot]}^{(1)} + \frac{\Delta^{(1)}}{m^{(1)}} \hat{\sigma}_{MML}, \qquad (3.25)$$

$$\hat{\beta}_{1_{MML}}^{(1)} = K^{(1)} + L^{(1)} \hat{\sigma}_{MML}, \qquad (3.26)$$

$$\hat{\beta}_{0_{MML}}^{(2)} = \bar{y}_{[\cdot]}^{(2)} - \hat{\beta}_{1_{MML}}^{(2)} \bar{x}_{[\cdot]}^{(2)} + \frac{\Delta^{(2)}}{m^{(2)}} \hat{\sigma}_{MML}, \qquad (3.27)$$

$$\hat{\beta}_{1_{MML}}^{(2)} = K^{(2)} + L^{(2)}\hat{\sigma}_{MML}, \qquad (3.28)$$

$$\hat{\sigma}_{MML} = \frac{\mathscr{B} + \sqrt{\mathscr{B}^2 + 4n\mathscr{C}}}{2\sqrt{n(n-4)}}.$$
(3.29)

olarak bulunur. Burada,

$$\begin{split} \delta_{1i}^{(1)} &= \frac{\nu \left[3t_{(i)}^{(1)} \sqrt{\nu + t_{(i)}^{(1)^2}} + \nu + 3t_{(i)}^{(1)^2} \right]}{\left[(\nu + t_{(i)}^{(1)^2})^{3/2} + t_{(i)}^{(1)} (\nu + t_{(i)}^{(1)^2}) \right]^2}, \quad \delta_{2i}^{(1)} &= \frac{\nu \left[3t_{(i)}^{(1)} \sqrt{\nu + t_{(i)}^{(1)^2}} - \nu - 3t_{(i)}^{(1)^2} \right]}{\left[(\nu + t_{(i)}^{(1)^2})^{3/2} - t_{(i)}^{(1)} (\nu + t_{(i)}^{(1)^2}) \right]^2} \\ \delta_{1i}^{(2)} &= \frac{\nu \left[3t_{(i)}^{(2)} \sqrt{\nu + t_{(i)}^{(2)^2}} + \nu + 3t_{(i)}^{(2)^2} \right]}{\left[(\nu + t_{(i)}^{(2)^2})^{3/2} + t_{(i)}^{(2)} (\nu + t_{(i)}^{(2)^2}) \right]^2}, \quad \delta_{2i}^{(2)} &= \frac{\nu \left[3t_{(i)}^{(2)} \sqrt{\nu + t_{(i)}^{(2)^2}} - \nu - 3t_{(i)}^{(2)^2} \right]}{\left[(\nu + t_{(i)}^{(2)^2})^{3/2} - t_{(i)}^{(2)} (\nu + t_{(i)}^{(2)^2}) \right]^2} \\ \alpha_{1i}^{(1)} &= g_1(t_{(i)}^{(1)}) + t_{(i)}^{(1)} \delta_{1i}^{(1)}, \quad \alpha_{2i}^{(1)} &= g_2(t_{(i)}^{(1)}) + t_{(i)}^{(1)} \delta_{2i}^{(1)} \\ \alpha_{1i}^{(2)} &= g_1(t_{(i)}^{(2)}) + t_{(i)}^{(2)} \delta_{1i}^{(2)}, \quad \alpha_{2i}^{(2)} &= g_2(t_{(i)}^{(2)}) + t_{(i)}^{(2)} \delta_{2i}^{(2)} \end{split}$$

$$\begin{split} g_{1}(t_{i}^{(1)}) &= \frac{\nu}{(\nu + t_{i}^{(1)^{2}})^{3/2} + t_{i}^{(1)}(\nu + t_{i}^{(1)^{2}})}, \quad g_{2}(t_{i}^{(1)}) &= \frac{\nu}{(\nu + t_{i}^{(1)^{2}})^{3/2} - t_{i}^{(1)}(\nu + t_{i}^{(1)^{2}})}, \\ g_{1}(t_{i}^{(2)}) &= \frac{\nu}{(\nu + t_{i}^{(2)^{2}})^{3/2} + t_{i}^{(2)}(\nu + t_{i}^{(2)^{2}})}, \quad g_{2}(t_{i}^{(2)}) &= \frac{\nu}{(\nu + t_{i}^{(2)^{2}})^{3/2} - t_{i}^{(2)}(\nu + t_{i}^{(2)^{2}})}, \\ \delta_{i}^{(1)} &= (a + 0.5)\delta_{1i}^{(1)} - (b + 0.5)\delta_{2i}^{(1)}, \quad m^{(1)} &= \sum_{i=1}^{r} \delta_{i}^{(1)}, \\ \delta_{i}^{(2)} &= (a + 0.5)\delta_{1i}^{(2)} - (b + 0.5)\delta_{2i}^{(2)}, \quad m^{(2)} &= \sum_{i=r+1}^{n} \delta_{i}^{(2)}, \\ \Delta_{i}^{(2)} &= (a + 0.5)\alpha_{2i}^{(1)} - (a + 0.5)\alpha_{1i}^{(1)}, \quad \Delta^{(1)} &= \sum_{i=1}^{r} \Delta_{i}^{(1)}, \\ \Delta_{i}^{(2)} &= (b + 0.5)\alpha_{2i}^{(2)} - (a + 0.5)\alpha_{1i}^{(2)}, \quad \Delta^{(2)} &= \sum_{i=r+1}^{n} \Delta_{i}^{(2)}, \\ K^{(1)} &= \sum_{i=1}^{r} \delta_{i}^{(1)}(x_{[i]} - \bar{x}_{[\cdot]}^{(1)})y_{[i]} / \sum_{i=1}^{r} \delta_{i}(x_{[i]} - \bar{x}_{[\cdot]}^{(1)})^{2}, \\ K^{(2)} &= \sum_{i=r+1}^{n} \delta_{i}^{(2)}(x_{[i]} - \bar{x}_{[\cdot]}^{(2)})y_{[i]} / \sum_{i=r+1}^{n} \delta_{i}^{(1)}(x_{[i]} - \bar{x}_{[\cdot]}^{(2)})^{2}, \\ L^{(1)} &= \sum_{i=r+1}^{r} \Delta_{i}^{(1)}(x_{[i]} - \bar{x}_{[\cdot]}^{(2)}) y_{[i]} / \sum_{i=r+1}^{n} \delta_{i}^{(2)}(x_{[i]} - \bar{x}_{[\cdot]}^{(2)})^{2}, \\ L^{(2)} &= \sum_{i=r+1}^{n} \Delta_{i}^{(2)}(x_{[i]} - \bar{x}_{[\cdot]}^{(2)}) / \sum_{i=r+1}^{n} \delta_{i}^{(2)}(x_{[i]} - \bar{x}_{[\cdot]}^{(2)})^{2}, \\ B^{(1)} &= \sum_{i=r+1}^{r} \Delta_{i}^{(1)}(y_{[i]} - \bar{y}_{[\cdot]}^{(1)} - K^{(1)}(x_{[i]} - \bar{x}_{[\cdot]}^{(1)})), \\ B^{(2)} &= \sum_{i=r+1}^{n} \Delta_{i}^{(1)}(y_{[i]} - \bar{y}_{[\cdot]}^{(2)} - K^{(2)}(x_{[i]} - \bar{x}_{[\cdot]}^{(2)})), \\ C^{(1)} &= \sum_{i=r+1}^{r} \delta_{i}^{(1)}(y_{[i]} - \bar{y}_{[\cdot]}^{(1)} - K^{(1)}(x_{[i]} - \bar{x}_{[\cdot]}^{(2)}))^{2} \\ C^{(2)} &= \sum_{i=r+1}^{n} \delta_{i}^{(2)}(y_{[i]} - \bar{y}_{[\cdot]}^{(2)} - K^{(2)}(x_{[i]} - \bar{x}_{[\cdot]}^{(2)}))^{2} \\ \end{array}$$

ve

$$\mathscr{B} = B^{(1)} + B^{(2)}, \quad \mathscr{C} = C^{(1)} + C^{(2)}$$

dir.

$$\begin{split} t_{(i)}^{(1)} &= E(z_{(i)}^{(1)}) \text{ ve } t_{(i)}^{(2)} = E(z_{(i)}^{(2)}) \text{ değerleri yaklaşık olarak sırasıyla} \\ t_{(i)}^{(1)} &= F_{JFST}^{-1} \left(\frac{i}{r+1}\right), \quad i = 1, 2, \dots, r \end{split}$$

$$t_{(i)}^{(2)} = F_{JFST}^{-1}\left(\frac{i}{(n-r)+1}\right), \quad i = r+1, \dots, n$$

eşitliklerinden hesaplanır. Diğer tüm notasyonlar, LTS dağılımında verildiği gibidir.

Model (3.1) de hata terimlerinin dağılımının JFST olması durumunda değişim noktası *r* nin MML tahmin edicisi, $\log L_3(\hat{\beta}_{0_{MML}}^{(1)}, \hat{\beta}_{1_{MML}}^{(2)}, \hat{\beta}_{1_{MML}}^{(2)}, \hat{\sigma}_{MML}, a, b, r)$ log olabilirlik fonksiyonunu maksimum yapan *r* değeri olarak tanımlanır. Bir başka ifade ile,

$$\hat{r}_{MML} = \underset{1 < r < n}{\operatorname{arg\,maxlog}} L_3(\hat{\beta}_{0_{MML}}^{(1)}, \hat{\beta}_{1_{MML}}^{(1)}, \hat{\beta}_{0_{MML}}^{(2)}, \hat{\beta}_{1_{MML}}^{(2)}, \hat{\sigma}_{MML}, a, b, r)$$
(3.30)

dir.

3.3. Değişim Noktasının OSM Yöntemi ile Tahmini

Bu bölümde, basit doğrusal regresyon modelinde hata terimlerinin LTS, GL ve JFST olması durumunda değişim noktasının OSM tahmin edicisinin elde edilişi açıklanmıştır.

Model (3.1) deki parametrelerinin OSM tahmin edicileri, Bölüm 2.2 de anlatılan bilgilerden yararlanılarak

$$\hat{\boldsymbol{\beta}}_{OSM}^{(1)} = \begin{bmatrix} \hat{\boldsymbol{\beta}}_{0_{OSM}}^{(1)} \\ \hat{\boldsymbol{\beta}}_{1_{OSM}}^{(1)} \end{bmatrix} = \hat{\boldsymbol{\beta}}_{0}^{(1)} + \hat{\sigma}_{0} \begin{bmatrix} \sum_{i=1}^{r} \psi' \left(\frac{y_{i} - \mathbf{x}_{i}' \hat{\boldsymbol{\beta}}_{0}^{(1)}}{\hat{\sigma}_{0}} \right) \mathbf{x}_{i} \mathbf{x}_{i}' \end{bmatrix}^{-1} \times \\ \sum_{i=1}^{r} \psi \left(\frac{y_{i} - \mathbf{x}_{i}' \hat{\boldsymbol{\beta}}_{0}^{(1)}}{\hat{\sigma}_{0}} \right) \mathbf{x}_{i} \qquad (3.31)$$

$$\hat{\boldsymbol{\beta}}_{OSM}^{(2)} = \begin{bmatrix} \hat{\boldsymbol{\beta}}_{0_{OSM}}^{(2)} \\ \hat{\boldsymbol{\beta}}_{1_{OSM}}^{(2)} \end{bmatrix} = \hat{\boldsymbol{\beta}}_{0}^{(2)} + \hat{\sigma}_{0} \begin{bmatrix} \sum_{i=r+1}^{n} \psi' \left(\frac{y_{i} - \mathbf{x}_{i}' \hat{\boldsymbol{\beta}}_{0}^{(2)}}{\hat{\sigma}_{0}} \right) \mathbf{x}_{i} \mathbf{x}_{i}' \end{bmatrix}^{-1} \times \\ \sum_{i=r+1}^{n} \psi \left(\frac{y_{i} - \mathbf{x}_{i}' \hat{\boldsymbol{\beta}}_{0}^{(2)}}{\hat{\sigma}_{0}} \right) \mathbf{x}_{i} \qquad (3.32)$$

şeklinde bulunur. Burada,

$$\hat{\boldsymbol{\beta}}_{OSM}^{(1)} = \begin{bmatrix} \hat{\beta}_{0_{MML}}^{(1)} \\ \hat{\beta}_{1_{MML}}^{(1)} \end{bmatrix}, \quad \hat{\boldsymbol{\beta}}_{OSM}^{(2)} = \begin{bmatrix} \hat{\beta}_{0_{MML}}^{(2)} \\ \hat{\beta}_{1_{MML}}^{(2)} \end{bmatrix}$$

ve

olarak alınmıştır, bkz. Acıtaş ve ark. (2011, 2012a, 2012b, 2013a). Hata terimlerinin dağılımının LTS, GL ve JFST olması durumunda, sırasıyla Bölüm 2.2.1, 2.2.2 ve 2.2.3 de verilen $\psi(\cdot)$ ve $\psi'(\cdot)$ fonksiyonları ve ilgili MML tahmin edicileri, (3.31) ve (3.32) yerlerine yazılarak OSM tahmin edicileri elde edilir.

Değişim noktası *r* nin OSM tahmin edicisi $\log L(\hat{\boldsymbol{\beta}}_{OSM}^{(1)}, \hat{\boldsymbol{\beta}}_{OSM}^{(2)}, \hat{\sigma}_{MML}, r) \log$ olabilirlik fonksiyonunu maksimum yapan *r* değeri olarak tanımlanır. Bir başka ifade ile,

$$\hat{r}_{OSM} = \underset{1 < r < n}{\operatorname{argmaxlog}} L(\hat{\boldsymbol{\beta}}_{OSM}^{(1)}, \hat{\boldsymbol{\beta}}_{OSM}^{(2)}, \hat{\sigma}_{MML}, r)$$
(3.33)

dir. Burada berlirtmek gerekir ki, $\log L(\cdot)$ hata dağılımının LTS, GL ve JFST olması durumunda, sırasıyla $\log L_1(\hat{\boldsymbol{\beta}}_{OSM}^{(1)}, \hat{\boldsymbol{\beta}}_{OSM}^{(2)}, \hat{\sigma}_{MML}, p, r), \log L_2(\hat{\boldsymbol{\beta}}_{OSM}^{(1)}, \hat{\boldsymbol{\beta}}_{OSM}^{(2)}, \hat{\sigma}_{MML}, b, r),$ ve $\log L_3(\hat{\boldsymbol{\beta}}_{OSM}^{(1)}, \hat{\boldsymbol{\beta}}_{OSM}^{(2)}, \hat{\sigma}_{MML}, a, b, r)$ olarak alınmalıdır.

4. SÜREKLİ İKİ-FAZLI DOĞRUSAL REGRESYON MODELİNDE DEĞİŞİM NOKTASININ TAHMİNİ

Bu bölümde, Model (1.2) de süreklilik kısıtının sağlanması durumunda değişim noktasının tahmini, literatürde yer alan iki farklı yöntemin dayanıklı versiyonları geliştirilerek yapılmıştır. Bölüm 4.1 de Muggeo (2003), Bölüm 4.2 de ise Hudson (1966) tarafından önerilen yöntemler ile bu yöntemlerin dayanıklı versiyonları anlatılmıştır.

4.1. Muggeo'nun Parçalara Ayırma Yöntemi ile Değişim Noktasının Tahmini

Bu alt bölümde, Muggeo (2003) tarafından önerilen parçalara ayırma (segmentation) yöntemi ile değişim noktasının belirlenmesi anlatılmış; parçalara ayırma yönteminin MML ve OSM versiyonları geliştirilmiştir.

Muggeo (2003) tarafından önerilen parçalara ayırma yöntemi, modelin sürekli olması kısıtına bağlıdır. Bir başka anlatımla, Model (1.2) de

$$\beta_0^{(1)} + \beta_1^{(1)} r = \beta_0^{(2)} + \beta_1^{(2)} r$$

koşulunun sağlanması gereklidir. Bunun yanı sıra, Model (1.2) nin aşağıda verilen yeniden parametrelendirilmiş hali ele alınır:

$$y_i = \beta_0^{(1)} + \beta_1^{(1)} x_i + \beta_1^{(*)} (x_i - r)_+ + \varepsilon_i, \quad i = 1, 2, \cdots, n.$$
(4.1)

Burada,

$$(x_i - r)_+ = (x_i - r)I(x_i > r)$$

dir. Bu gösterim göz önüne alındığında, Model (1.2) ile Model (4.1)

$$\beta_0^{(2)} = \beta_0^{(1)} - \beta_1^{(*)} r, \quad \beta_1^{(2)} = \beta_1^{(1)} + \beta_1^{(*)}$$

olması durumunda denktir. Yeniden parametrelendirme ile elde edilen Model (4.1) de süreklilik kısıtının sağlandığı açık olarak görülmektedir.

Muggeo (2003), değişim noktası r nin Model (4.1) de yer alan ve modelin doğrusal olmayan kısmı olarak ifade edilen $(x_i - r)_+$ nın bir r_0 değeri etrafında birinci dereceden Taylor açılımının yapılmasıyla tahmin edilebileceğini göstermiştir. Aşağıda bu yöntemin süreçleri adım adım anlatılmıştır.

Muggeo'nun Parçalara Ayırma Yöntemi: Algoritma

1. Adım: $(x_i - r)_+$ nın birinci dereceden Taylor açılımı yapılır:

$$f(r) = (x_i - r)_+ = (x_i - r)I(x_i > r)$$

olmak üzere, $f(\cdot)$ fonksiyonun bir r_0 değeri etrafında birinci dereceden Taylor açılımı

$$f(r) \cong f(r_0) + f'(r_0)(r - r_0)$$

şeklinde ifade edilir. Burada,

$$f'(r_0) = (-1)I(x_i > r_0)$$

olduğu açıktır. Sonuç olarak,

$$f(r) \cong (x_i - r_0)I(x_i > r_0) + (r - r_0)(-1)I(x_i > r_0)$$
(4.2)

elde edilir.

2. Adım Denklem (4.2) de verilen Taylor açılımı Model (4.1) de yerine yazılır. Bu durumda,

$$y_i \cong \beta_0^{(1)} + \beta_1^{(1)} x_i + \beta_1^{(*)} \Big((x_i - r_0) I(x_i > r_0) + (r - r_0)(-1) I(x_i > r_0) \Big) + \varepsilon_i, (4.3)$$

$$\cong \beta_0^{(1)} + \beta_1^{(1)} + \beta_1^{(*)} (x_i - r_0) I(x_i > r_0) + \beta_1^{(*)} (r - r_0)(-1) I(x_i > r_0) + \varepsilon_i, (4.4)$$

 $(i = 1, 2, \dots, n)$ elde edilir. Denklem (4.4) de

$$\gamma = \beta_1^{(*)}(r - r_0) \tag{4.5}$$

denirse,

$$y_i \cong \beta_0^{(1)} + \beta_1^{(1)} x_i + \beta_1^{(*)} (x_i - r_0) I(x_i > r_0) + \gamma(-1) I(x_i > r_0) + \varepsilon_i, \quad i = 1, 2, \cdots, n$$
(4.6)

modeline ulaşılır. Model (4.6) da

$$U = (x_i - r_0)I(x_i > r_0)$$
 ve $V = (-1)I(x_i > r_0)$

olarak alınırsa,

$$y_i \cong \beta_0^{(1)} + \beta_1^{(1)} x_i + \beta_1^{(*)} U + \gamma V + \varepsilon_i, \quad i = 1, 2, \cdots, n$$
(4.7)

üç tane açıklayıcı değişkene sahip çoklu regresyon modeli elde edilir.

- **3.** Adım Model (4.7) de verilen parametrelerin tahmin edicileri elde edilir. Bu tahmin ediciler, $\hat{\beta}_0^{(1)}$, $\hat{\beta}_1^{(1)}$, $\hat{\beta}_1^{(*)}$ ve $\hat{\gamma}$ sembolleri ile gösterilir.
- 4. Adım Denklem (4.5) den yararlanılarak değişim noktası r,

$$\hat{r} = r_0 + \frac{\hat{\gamma}}{\hat{\beta}_1^{(*)}}$$
(4.8)

şeklinde tahmin edilir.

Burada, γ parametresi, r_0 değerinden önceki ve sonraki fit edilmiş regresyon doğruları arasındaki farkı ölçer, bkz. Şekil 4.1. Süreklilik kısıtı altında doğruların kesişim noktaları arasındaki farkın 0 olması gerektiğinden yukarıda ifade edilen 4 adım, $\hat{\gamma}$ yaklaşık olarak 0 oluncaya kadar devam ettirilir (Muggeo, 2003). Bir başka anlatımla, $\hat{\gamma} \approx 0$ durdurma koşuluna sahip iteratif bir süreç izlenir.

Şekil 4.1. Muggeo'nun parçalara ayırma yöntemi: İki doğru arasındaki fark

Muggeo (2003), Model (4.7) nin parametrelerini ve değişim noktasını tahmin etmek için ML yöntemini kullanmış, aynı süreç temel alınarak değişim noktası *r* nin dayanıklı yöntemlerle tahmin edilebileceğinden bahsetmiştir; detaylı bilgi için bkz. Muggeo (2003) çalışmasının tartışma (discussion) bölümü. Ayrıca Chen ve ark. (2011), değişim noktası tahmininde kullanılan dört yöntem için bir karşılaştırma yapmışlardır. Bu dört yöntemden biri de Muggeo'nun parçalara ayırma yöntemidir. Chen ve ark. (2011) LS yöntemini kullanarak Model (4.7) nin parametrelerini ve değişim noktasını tahmin etmiştir. Adı geçen çalışmada ayrıca hata terimlerinin normal ve t dağılımına sahip olduğu durumlar için tahmin edicilerin etkinliği Monte-Carlo simulasyon çalışması ile karşılaştırılmıştır.

İzleyen alt bölümlerde Muggeo'nun parçalara ayırma yönteminin MML ve OSM versiyonları geliştirilmiştir.

4.1.1. Muggeo'nun Parçalara Ayırma Yöntemi: MML Versiyonu

Bu bölümde, Model (1.2) de hata terimlerinin dağılımının iid LTS, GL ve JFST olması durumunda ve süreklilik kısıtı altında değişim noktasının ve model parametrelerinin MML tahmin edicilerinin Muggeo'nun parçalara ayırma yöntemi kullanılarak bulunuşu açıklanmıştır.

Değişim noktasının tahmin edilmesine yönelik Bölüm 4.1 de verilen algoritmanın ilk iki adımı aynıdır. Üçüncü ve dördüncü adımlarda ise sırasıyla aşağıda açıklanan işlemler yapılır.

- **3.** Adım Bölüm 2.1 de anlatılan bilgilerden yararlanılarak model parametrelerinin MML tahmin edicileri elde edilir. Bu tahmin ediciler, $\hat{\beta}_{0_{MML}}^{(1)}$, $\hat{\beta}_{1_{MML}}^{(1)}$, $\hat{\beta}_{1_{MML}}^{(1)}$, ve $\hat{\gamma}_{MML}$ sembolleri ile gösterilir.
- **4. Adım** Denklem (4.5) den ve üçüncü adımda bulunan tahmin edicilerden yararlanılarak değişim noktasının MML tahmin edicisi,

$$\hat{r}_{MML} = r_0 + \frac{\hat{\gamma}_{MML}}{\hat{\beta}^*_{1_{MML}}}$$
(4.9)

olarak elde edilir.

Burada belirtmek gerekir ki, MML tahmin edicileri, $\hat{\gamma}_{MML} \approx 0$ oluncaya kadar sürdürülen iterasyonlar sonucunda elde edilir.

4.1.2. Muggeo'nun Parçalara Ayırma Yöntemi: OSM Versiyonu

Bu bölümde, Model (1.2) de hata terimlerinin dağılımının iid LTS, GL ve JFST olması durumunda ve süreklilik kısıtı altında değişim noktasının ve model parametrelerinin OSM tahmin edicilerinin Muggeo'nun parçalara ayırma yöntemi kullanılarak bulunuşu açıklanmıştır.

Değişim noktasının tahmin edilmesine yönelik Bölüm 4.1 de verilen algoritmanın ilk iki adımı aynıdır. Üçüncü ve dördüncü adımlarda ise sırasıyla aşağıda açıklanan işlemler yapılır.

- **3.** Adım Bölüm 2.2 de anlatılan bilgilerden yararlanılarak model parametrelerinin OSM tahmin edicileri elde edilir. Bu tahmin ediciler, $\hat{\beta}_{0_{OSM}}^{(1)}$, $\hat{\beta}_{1_{OSM}}^{(1)}$, $\hat{\beta}_{1_{OSM}}^{*}$, $\hat{\beta}_{1_{OSM}}^{*}$ ve $\hat{\gamma}_{OSM}$ sembolleriyle gösterilir.
- **4. Adım** Denklem (4.5) den ve üçüncü adımda bulunan tahmin edicilerinden yararlanılarak değişim noktasının OSM tahmin edicisi,

$$\hat{r}_{OSM} = r_0 + \frac{\hat{\gamma}_{OSM}}{\hat{\beta}_{1_{OSM}}^*} \tag{4.10}$$

olarak elde edilir.

Burada belirtmek gerekir ki, OSM tahmin edicileri, $\hat{\gamma}_{OSM} \approx 0$ oluncaya kadar sürdürülen iterasyonlar sonucunda elde edilir.

4.2. Değişim Noktasının Hudson Yöntemi ile Tahmini

Bu bölümde Hudson (1966) tarafından önerilen ve Julious (2001) tarafından da ele alınan yöntem kullanılarak değişim noktasının belirlenmesi anlatılmış; bu yöntemin MML ve OSM versiyonları geliştirilmiştir.

Hudson (1966) tarafından önerilen yöntem, modelin sürekli olması kısıtına bağlıdır. Bir başka deyişle, Model (1.2) de

$$\beta_0^{(1)} + \beta_1^{(1)} r = \beta_0^{(2)} + \beta_1^{(2)} r \tag{4.11}$$

eşitliğinin sağlanması gereklidir.

Burada belirtmek gerekir ki, bu bölümde, Model (1.2) nin

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} = \begin{cases} \mathbf{X}_1 \boldsymbol{\beta}^{(1)} + \boldsymbol{\varepsilon}^{(1)}, & a \le x_i \le r \\ \mathbf{X}_2 \boldsymbol{\beta}^{(2)} + \boldsymbol{\varepsilon}^{(2)}, & r < x_i \le b. \end{cases}$$
(4.12)

matris/vektör formatı ele alınarak işlemler yapılmıştır. Burada,

$$\mathbf{y}_{1} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{k} \end{bmatrix}, \quad \mathbf{y}_{2} = \begin{bmatrix} y_{k+1} \\ y_{k+2} \\ \vdots \\ y_{n} \end{bmatrix}, \quad \mathbf{X}_{1} = \begin{bmatrix} 1 & x_{1} \\ 1 & x_{2} \\ \vdots & \vdots \\ 1 & x_{k} \end{bmatrix},, \quad \mathbf{X}_{2} = \begin{bmatrix} 1 & x_{k+1} \\ 1 & x_{k+2} \\ \vdots & \vdots \\ 1 & x_{n} \end{bmatrix},$$
$$\boldsymbol{\beta}_{1} = \begin{bmatrix} \beta_{0}^{(1)} \\ \beta_{1}^{(1)} \end{bmatrix}, \quad \boldsymbol{\beta}_{2} = \begin{bmatrix} \beta_{0}^{(2)} \\ \beta_{1}^{(2)} \end{bmatrix}$$

dir. Benzer şekilde, denklem (4.11) de verilen süreklilik kısıtının da matris/vektör formatı

$$g(\boldsymbol{\beta}^{(1)}, \boldsymbol{\beta}^{(2)}) = \begin{bmatrix} \boldsymbol{\eta}_1' & \boldsymbol{\eta}_2' \end{bmatrix}' \begin{bmatrix} \boldsymbol{\beta}^{(1)} \\ \boldsymbol{\beta}^{(2)} \end{bmatrix} = \boldsymbol{\eta}' \boldsymbol{\beta} = 0$$
(4.13)

olarak alınmıştır. Burada,

$$\boldsymbol{\eta} = \begin{bmatrix} \boldsymbol{\eta}_1 \\ \boldsymbol{\eta}_2 \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \end{bmatrix}, \quad \boldsymbol{\eta}_1 = \begin{bmatrix} 1 \\ r \end{bmatrix}, \quad \boldsymbol{\eta}_2 = \begin{bmatrix} -1 \\ -r \end{bmatrix}$$

dir.

Aşağıda verilen Teorem 4.1, süreklilik kısıtı altında model parametrelerinin LS tahmin edicilerinin bulunuşu ile ilgilidir. Bu teoremin kanıtı, Hudson (1966) tarafından verilmiştir.

Teorem 4.1. *Model* (4.12) *nin parametrelerinin,* (4.13) *kısıtı altındaki LS tahmin edicileri*

$$\begin{bmatrix} \hat{\boldsymbol{\beta}}_1 \\ \hat{\boldsymbol{\beta}}_2 \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{\beta}}_1^* \\ \hat{\boldsymbol{\beta}}_2^* \end{bmatrix} - \frac{s}{t} \mathbf{C}^{-1} \boldsymbol{\eta}$$
(4.14)

dir. Burada, $\hat{\boldsymbol{\beta}}_1^*$ ve $\hat{\boldsymbol{\beta}}_2^*$ kısıtsız modelden elde edilen LS tahmin edicileri olup

$$\hat{\beta}_{1}^{*} = (\mathbf{X}_{1}'\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'\mathbf{y}_{1}$$

$$\hat{\beta}_{2}^{*} = (\mathbf{X}_{2}'\mathbf{X}_{2})^{-1}\mathbf{X}_{2}'\mathbf{y}_{2}$$

$$s = \eta'\hat{\beta}$$

$$t = \eta'\mathbf{C}^{-1}\eta$$

$$\mathbf{C}^{-1} = \begin{bmatrix} (\mathbf{X}_{1}'\mathbf{X}_{1})^{-1} & \mathbf{0} \\ \mathbf{0} & (\mathbf{X}_{2}'\mathbf{X}_{2})^{-1} \end{bmatrix}$$

dir.

Kanıt. Model (4.12) nin parametrelerinin, (4.13) kısıtı altındaki LS tahmin edicilerinin bulunması işlemi, bir kısıtlı optimizasyon problemidir. Bu problem, matematiksel olarak aşağıdaki gibi ifade edilir.

Problem

$$\min_{\boldsymbol{\beta}_1,\boldsymbol{\beta}_2} \left\{ \mathbb{S} = (\mathbf{y}_1 - \mathbf{X}_1 \boldsymbol{\beta}_1)' (\mathbf{y}_1 - \mathbf{X}_1 \boldsymbol{\beta}_1) + (\mathbf{y}_2 - \mathbf{X}_2 \boldsymbol{\beta}_2)' (\mathbf{y}_2 - \mathbf{X}_2 \boldsymbol{\beta}_2) \right\}$$
(4.15)

Kısıt

 $g = \boldsymbol{\eta}' \boldsymbol{\beta} = 0.$

Denklem (4.15) de ifade edilen kısıtlı optimizasyon probleminin çözümü Lagrange çarpanları yöntemiyle yapılır. Bu durumda,

$$\mathbb{L}(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, r, \lambda) = \mathbb{S}(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2) + \lambda g(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2)$$
(4.16)

Lagrange fonksiyonu ve λ Lagrange çarpanı olmak üzere

$$\frac{\partial \mathbb{L}}{\partial \boldsymbol{\beta}_1} = (\mathbf{X}_1' \mathbf{X}_1) \hat{\boldsymbol{\beta}}_1 - \mathbf{X}_1' \mathbf{y}_1 + \lambda \boldsymbol{\eta}_1 = 0$$
(4.17)

$$\frac{\partial \mathbb{L}}{\partial \boldsymbol{\beta}_2} = (\mathbf{X}_2' \mathbf{X}_2) \hat{\boldsymbol{\beta}}_2 - \mathbf{X}_2' \mathbf{y}_2 + \lambda \boldsymbol{\eta}_2 = 0$$
(4.18)

$$\frac{\partial \mathbb{L}}{\partial r} = \lambda h'(\hat{r}) = 0 \tag{4.19}$$

$$\frac{\partial \mathbb{L}}{\partial \lambda} = g(\hat{\boldsymbol{\beta}}_1, \hat{\boldsymbol{\beta}}_2) = 0$$
(4.20)

denklem sistemi elde edilir. Burada, $h(r) = (\beta_1^{(1)} - \beta_1^{(2)})r$ dir. Denklem (4.19), $\partial \mathbb{L}/\partial r$ nin \hat{r} noktasında var olması durumunda söz konusudur. (4.17) ve (4.20) denklem sisteminin çözümünün, denklem (4.15) ile ifade edilen kısıtlı optimizasyon probleminin çözümü olduğu bilinmektedir.

Denklem (4.17) ve (4.18) çözüldüğünde,

$$\hat{\boldsymbol{\beta}}_1 = -2(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{y}_1 + \lambda(\mathbf{X}_1'\mathbf{X}_1)^{-1}\boldsymbol{\eta}_1$$
(4.21)

$$\hat{\boldsymbol{\beta}}_2 = -2(\mathbf{X}_2'\mathbf{X}_2)^{-1}\mathbf{X}_2'\mathbf{y}_2 + \lambda(\mathbf{X}_2'\mathbf{X}_2)^{-1}\boldsymbol{\eta}_2$$
(4.22)

bulunur. Açıktır ki, $\hat{\beta}_1$ ve $\hat{\beta}_2$ λ nın bir fonksiyonudur. Ayrıca, (4.21) ve (4.22) eşitliklerinde yer alan

$$(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{y}_1$$
 ve $(\mathbf{X}_2'\mathbf{X}_2)^{-1}\mathbf{X}_2'\mathbf{y}_2$

kısıtsız modeldeki $\pmb{\beta}_1$ ve $\pmb{\beta}_2$ nin LS tahmin edicileridir. Bunun bir sonucu olarak,

$$\hat{\boldsymbol{\beta}}_1 = \hat{\boldsymbol{\beta}}_1^* + \frac{\lambda}{2} (\mathbf{X}_1' \mathbf{X}_1)^{-1} \boldsymbol{\eta}_1$$
(4.23)

$$\hat{\boldsymbol{\beta}}_2 = \hat{\boldsymbol{\beta}}_2^* - \frac{\lambda}{2} (\mathbf{X}_2' \mathbf{X}_2)^{-1} \boldsymbol{\eta}_2$$
(4.24)

olarak ifade edilir. Burada,

$$\hat{\boldsymbol{\beta}}_1^* = (\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{y}_1$$
$$\hat{\boldsymbol{\beta}}_2^* = (\mathbf{X}_2'\mathbf{X}_2)^{-1}\mathbf{X}_2'\mathbf{y}_2$$

dir.

(4.23) ve (4.24) eşitlikleri, denklem (4.20) de yerlerine yazılıp ifade düzenlenirse

$$\boldsymbol{\eta}_1'\left(\hat{\boldsymbol{\beta}}_1^* - \frac{\lambda}{2} (\mathbf{X}_1'\mathbf{X}_1)^{-1} \boldsymbol{\eta}_1\right) + \boldsymbol{\eta}_2'\left(\hat{\boldsymbol{\beta}}_2^* - \frac{\lambda}{2} (\mathbf{X}_2'\mathbf{X}_2)^{-1} \boldsymbol{\eta}_2\right) = 0$$

olarak elde edilir veya denk olarak

$$\boldsymbol{\eta}' \hat{\boldsymbol{\beta}}^* - \frac{\lambda}{2} \boldsymbol{\eta}' \begin{bmatrix} [\mathbf{X}_1' \mathbf{X}_1)^{-1} & \mathbf{0} \\ \mathbf{0} & (\mathbf{X}_2' \mathbf{X}_2)^{-1} \end{bmatrix} \boldsymbol{\eta} = 0$$

bulunur. Son ifade de

$$s = \boldsymbol{\eta}' \hat{\boldsymbol{\beta}}^*$$

$$t = \boldsymbol{\eta}' \mathbf{C}^{-1} \boldsymbol{\eta}$$

$$\mathbf{C}^{-1} = \begin{bmatrix} (\mathbf{X}_1' \mathbf{X}_1)^{-1} & \mathbf{0} \\ \mathbf{0} & (\mathbf{X}_2' \mathbf{X}_2)^{-1} \end{bmatrix}$$

olarak tanımlanırsa

$$s - \frac{\lambda}{2}t = 0 \tag{4.25}$$

şeklinde yazılabilir. Buradan

$$\frac{\lambda}{2} = \frac{s}{t}$$

bulunur. Bu sonuç, denklem (4.23) ve (4.24) de yerine yazıldığında istenen sonuç elde edilir. □

Açıktır ki, süreklilik kısıtından dolayı, Model (4.12) de verilen iki doğrunun kesişim noktası, bu modelin değişim noktası olacaktır. Hudson (1966), bu değişim noktası için iki farklı tanım yapmıştır.

Tanım 4.2. $x_1, x_2, ..., x_i$ ve $x_{i+1}, x_{i+2}, ..., x_n$ noktaları yardımıyla elde edilen ikifazlı doğrusal regresyon modelinde (bkz. Model (4.12)) her iki-fazda yer alan doğruların değişim (kesişim) noktası \hat{r} olsun.

- **1. Tip Değişim Noktası:** Eğer *î* için aşağıdaki iki koşul sağlanıyorsa *î* birinci tip değişim noktası olarak adlandırılır.
 - (a) \hat{r} , ardışık x_i ve x_{i+1} noktaları arasındadır, bir başka ifade ile $x_i < \hat{r} < x_{i+1}$ dir.
 - (b) Her iki fazda yer alan doğruların eğimleri farklıdır.

2. Tip Değişim Noktası: Eğer î için

$$\hat{r} = x_i$$
 bazı i ler için

eşitliği söz konusu ise r ikinci tip değişim noktası olarak adlandırılır.

Değişim noktasının birinci ve ikinci tip olmasına göre model parametrelerinin LS tahmin edicileri farklılaşmaktadır. Hudson (1966) çalışmasına bağlı olarak bu tahmin ediciler Teorem 4.3 ve 4.4 de açıklanmıştır.

Teorem 4.3. Eğer \hat{r} nin birinci tip ve $\beta_1^{(1)} \neq \beta_1^{(2)}$ olduğu biliniyor ise Model (4.12) nin parametrelerinin, (4.13) kısıtı altındaki LS tahmin edicileri,

$$\hat{\boldsymbol{\beta}}_1 = \hat{\boldsymbol{\beta}}_1^* = (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1' \mathbf{y}_1$$
(4.26)

$$\hat{\boldsymbol{\beta}}_2 = \hat{\boldsymbol{\beta}}_2^* = (\mathbf{X}_2'\mathbf{X}_2)^{-1}\mathbf{X}_2'\mathbf{y}_2$$
(4.27)

1

Kanıt. Teorem 4.1 in kanıtındaki yol izlendiğinde, $\beta_1^{(1)} \neq \beta_1^{(2)}$ olduğundan $h'(r) \neq 0$ olur. Bu bilgi ve denklem (4.19) göz önüne alındığında $\lambda = 0$ elde edilir. Bu da istenen sonucu verir.

Teorem (4.3) ün bir sonucu olarak, \hat{r} nin birinci tip olması durumunda, regresyon parametrelerinin tahmin edicileri, kısıtsız modelden elde edilen LS tahmin edicileridir.

Teorem 4.4. Eğer değişim noktası \hat{r} nin ikinci tip olduğu biliniyor ise Model (4.12) nin parametrelerinin LS tahmin edicileri,

$$\beta_0^{(1)} + \beta_1^{(1)} x_i = \beta_0^{(2)} + \beta_1^{(2)} x_i \tag{4.28}$$

kısıtı altında Teorem 4.1 de verilen tahmin edicilerdir.

Teorem 4.4 ün bir sonucu olarak, \hat{r} nin ikinci tip olması durumunda, regresyon parametrelerinin LS tahmin edicileri, süreklilik kısıtının x_i noktasında geçerli olması durumunda elde edilen kısıtlı LS tahmin edicileridir.

Detaylı bilgi için bkz. Hudson (1966), sayfa 1102 Bölüm 3.1, sayfa 1105 not (ii) ve Teorem 2, sayfa 1107 Bölüm 4.2.1, sayfa 1126 Ek 2.

Uygulamada değişim noktasının hangi tipte olduğu genellikle bilinmez. Bu durumda, Hudson (1966) aşağıda verilen Teorem 4.5 e bağlı olarak değişim noktasının belirlenebileceğini göstermiştir. Teorem 4.5 e göre değişim noktası ve model parametrelerinin tahmin edicileri, Model (1.2) için oluşturulan olası tüm ikifazlı doğrusal regresyon modellerinin kalıntı kareler toplamı en küçük olanının belirlenmesine dayalı olarak elde edilir. Literatürde, Julious (2001) ile Chen ve ark. (2011) yine bu Teoreme bağlı olarak değişim noktasının tahmini için algoritmalar yazmışlardır.

Burada belirtmek gerekir ki, bu ve bundan sonraki bölümlerde kısıtsız modelden elde edilen kalıntı kareler toplamı S_U ; kısıtlı modelden elde edilen kalıntı kareler toplamı S_R ile gösterilmiştir.

Teorem 4.5. (Hudson, 1966)

(a) Eğer \hat{r} birinci tip ise bu durumda

$$S_R(i) \ge S_U(i)$$
 ve $S_R(i+1) \ge S_U(i)$

dir.

(b) Eğer

$$\mathbb{S}_U(i) \ge \min_j \mathbb{T}(j) = \mathbb{T}(J)$$

ise

$$\mathbb{S}_R(i) \ge \mathbb{T}(J)$$
 ve $\mathbb{S}_R(i+1) \ge \mathbb{T}(J)$

dir. Burada, $\mathbb{T}(i)$, değişim noktası birinci tip olduğunda $\mathbb{S}_U(i)$; diğer durumda ∞ değerini alan niceliği göstermektedir.

(c) Eğer

- (*i*) Bazı k lar için $S_R(k)$ belirlenmiş
- (*ii*) $\mathbb{S}_U(i) \ge \min \mathbb{S}_R(k) = \mathbb{S}_R(K)$

ise bu durumda

$$\mathbb{S}_R(i) \ge \mathbb{S}_R(K)$$
 ve $\mathbb{S}_R(i+1) \ge \mathbb{S}_R(K)$

dır.

Teorem 4.5 in kanıtı ve ayrıntılı bilgi için bkz. Hudson (1966). Ayrıca Hudson (1966, sayfa 1110), bazı koşullar altında, eğer ikinci tip değişim noktası söz konusu ise $\hat{r} = x_i$ yi denemenin yeterli olduğunu belirtmiştir.

Teorem 4.5 temel alınarak aşağıda verilen algoritma yardımıyla değişim noktası ve model parametrelerinin tahmin edicileri bulunur.

Algoritma

- **1. Adım:** Model (1.2) için olası tüm iki-fazlı regresyon modellerini kur ve bu regresyon modellerinin kesişim noktalarını hesapla.
- **2. Adım:** Birinci adımda bulunan tüm iki-fazlı regresyon modelleri için bulunan kesişim noktalarının tiplerini belirle.
 - Eğer kesişim noktası birinci tip ise bu modellere karşılık gelen kısıtsız kalıntı kareler toplamlarını bul.
 - Eğer kesişim noktası ikinci tip ise bu modellere karşılık gelen kısıtlı kalıntı kareler toplamlarını bul.

3. Adım: İkinci adımda de bulunan kalıntı kareler toplamlarının (kısıtsız veya kısıtlı olmasına bakmaksızın) en küçüğünü belirle. Daha sonra bu değere karşılık gelen iki-fazlı regresyon modeli için parametre tahmin değerlerini ve kesişim noktasının tahmin değerini birinci adımdan den al.

Aşağıda, Hudson (1966) çalışmasında incelenen örnek yer almaktadır. Örneğin burada tekrar incelenmesinin amacı, algoritmanın işleyişinin ve bunun bir sonucu olarak değişim noktasının tahmin sürecinin detaylı olarak anlatılmasıdır.

Örnek:

Açıklayıcı değişken x ve bağımlı değişken y nin aldığı değerler aşağıda verildiği gibi olsun (Hudson, 1966).

x	1	2	3	4	5	6
y	1	2	4	4	3	1

Bu veri setine ilişkin serpilme grafiği Şekil 4.2 de verilmiştir. Şekil 4.2 den görüldüğü gibi regresyon modelinde bir değişim noktası vardır.

Model (1.2) kullanılarak, yukarıda verilen algoritma yardımıyla değişim noktası aşağıdaki adımlar izlenerek bulunur.

Şekil 4.2. Hudson (1966) örneği için serpilme grafiği

1. Adım: Model (1.2) için olası tüm iki-fazlı regresyon modellerini kur ve bu regresyon modellerinin kesişim noktalarını hesapla.

Birinci Olası Model		İkinci Olası Model			Üçüncü Olası Model						
x_1	y_1	<i>x</i> ₂	<i>y</i> ₂	x_1	y_1	x_2	<i>y</i> ₂	x_1	y_1	<i>x</i> ₂	<i>y</i> 2
1	1	3	4	1	1	4	4	1	1	5	3
2	2	4	4	2	2	5	3	2	2	6	1
		5	3	3	4	6	1	3	4		
		6	1					4	4		

• Birinci olası model,

x_1	<i>y</i> ₁	<i>x</i> ₂	<i>y</i> ₂
1	1	3	4
2	2	4	4
		5	3
		6	1

olmak üzere,

$$\hat{y}_1 = x_1$$

 $\hat{y}_2 = 7.5 - x_2$

şeklinde elde edilir. Bu iki doğrunun kesişim noktasının apsisi 3.75 olarak bulunur, bkz. Şekil 4.3. Şekil 4.3 deki mavi ve kırmızı doğrular sırasıyla, $\hat{y}_1 = x_1$ ve $\hat{y}_2 = 7.5 - x_2$ dir.

Şekil 4.3. Hudson (1966) Örneği: Birinci Olası Model

• İkinci olası model,

x_1	y_1	<i>x</i> ₂	<i>y</i> ₂
1	1	4	4
2	2	5	3
3	4	6	1

olmak üzere,

$$\hat{y}_1 = -0.667 + 1.5x_1$$

 $\hat{y}_2 = 10.1667 - 1.5x_2$

şeklinde elde edilir. Bu iki doğrunun kesişim noktasının apsisi 3.6111 olarak bulunur, bkz. Şekil 4.4. Şekil 4.4 deki mavi ve kırmızı doğrular sırasıyla, $\hat{y}_1 = -0.667 + 1.5x_1$ ve $\hat{y}_2 = 10.1667 - 1.5x_2$ dir.

• Üçüncü olası model,

x_1	<i>y</i> 1	<i>x</i> ₂	<i>Y</i> 2
1	1	5	3
2	2	6	1
3	4		
4	4		

Şekil 4.4. Hudson (1966) Örneği: İkinci Olası Model

olmak üzere,

$$\hat{y}_1 = 1.1 x_1$$

 $\hat{y}_2 = 13 - 2 x_2$

şeklinde elde edilir. Bu iki doğrunun kesişim noktasının apsisi 4.1935 olarak bulunur, bkz. Şekil 4.5. Şekil 4.5 deki mavi ve kırmızı doğrular sırasıyla, $\hat{y}_1 = 1.1x_1$ ve $\hat{y}_2 = 13 - 2x_2$ dir.

Şekil 4.5. Hudson (1966) Örneği: Üçüncü Olası Model

2. Adım: Birinci adımda bulunan kesişim noktalarının tiplerini belirle.

- Eğer kesişim noktası birinci tip ise bu modellere karşılık gelen kısıtsız kalıntı kareler toplamlarını bul.
- Eğer kesişim noktası ikinci tip ise bu modellere karşılık gelen kısıtlı kalıntı kareler toplamlarını bul.

Her bir olası durum için bulunan kesişim noktaları ile tipleri aşağıdaki çizelgede verilmiştir.

Model	\hat{y}_1	\hat{y}_2	ŕ	Tip
1	x_1	$7.5 - x_2$	3.75 ∉ (2,3)	İkinci
2	$-0.667 + 1.5x_1$	$10.1667 - 1.5x_2$	$3.6111 \in (3, 4)$	Birinci
3	$1.1x_1$	$13 - 2x_2$	$4.1935 \in (4,5)$	Birinci

Birinci olası modelde elde edilen kesişim noktası, ikinci tip olduğundan dolayı bu model x = 2 noktasında kesişecek şekilde kısıtlanır. Teorem 4.1 yardımıyla kısıtlı model

$$\hat{y}_1 = -1.4 + 2.4x_1$$

 $\hat{y}_2 = 4 - 0.3x_2$

olarak elde edilir. Şekil 4.6 da bu modele ilişkin grafik verilmiştir. Şekil 4.6 daki mavi ve kırmızı doğrular sırasıyla $\hat{y}_1 = -1.4 + 2.4x_1$ ve $\hat{y}_2 = 4 - 0.3x_2$ dir.

Tüm bu bulgular ışığında olası tüm durumlara ilişkin kalıntı kareler toplamları aşağıda verildiği gibi bulunur.

Model	\mathbb{S}_U	\mathbb{S}_R
1	_	5.90
2	0.33	_
3	0.70	_

Şekil 4.6. Hudson (1966) Örneği: Kısıtlı Model

3. Adım: Kısıtlı, kısıtsız tüm kalıntı kareler toplamlarından en küçük olana karşılık gelen tahmin edicileri al.

Üç adım sonucunda elde edilen tüm bilgiler Çizelge 4.1 de verilmiştir. Çizelgede Model 2'ye karşılık gelen kalıntı kareler toplamının en küçük olduğu görülmektedir. Sonuç olarak, $\hat{r} = 3.6111$ olarak elde edilir.

Çizelge 4.1. Hudson (1966) Örneği: Sonuçlar

\mathbb{S}_U veya \mathbb{S}_R	Model	\hat{y}_1	\hat{y}_2	ŕ
0.33	2	$-0.667 + 1.5x_1$	$10.1667 - 1.5x_2$	3.6111

4.2.1. Hudson Yöntemi: MML Versiyonu

Bu bölümde, Model (4.12) de hata terimlerinin dağılımının iid LTS, GL ve JFST olması durumunda ve (4.13) kısıtı altında değişim noktasının ve model parametrelerinin MML tahmin edicilerinin bulunuşu Hudson (1966) yöntemi kullanılarak açıklanmıştır.

LTS Dağılımı

Model (4.12) de hata terimleri $\varepsilon_i^{(1)}$ ve $\varepsilon_i^{(2)}$ nin dağılımı iid $LTS(p,\sigma)$ olsun. Ayrıca, Model (4.12) de (4.13) kısıtı sağlansın. Bu durumda, değişim noktasının ve model parametrelerinin MML tahmin edicilerinin bulunuşu Teorem 4.6 da verilmiştir.

Teorem 4.6. Model (4.12) nin her bir fazındaki hata terimlerinin dağılımının iid $LTS(p,\sigma)$ olması durumunda model parametrelerinin (4.13) kısıtı altındaki MML tahmin edicileri

$$\begin{bmatrix} \hat{\boldsymbol{\beta}}_{1_{MML}} \\ \hat{\boldsymbol{\beta}}_{2_{MML}} \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{\beta}}_{1_{MML}}^{*} \\ \hat{\boldsymbol{\beta}}_{2_{MML}}^{*} \end{bmatrix} - \frac{s_{MML}}{t_{MML}} \mathbf{C}_{MML}^{-1} \boldsymbol{\eta}$$
(4.29)

dir. Burada,

$$s_{MML} = \boldsymbol{\eta}' \hat{\boldsymbol{\beta}}_{MML}^*,$$

$$t_{MML} = \boldsymbol{\eta}' \mathbf{C}_{MML}^{-1} \boldsymbol{\eta},$$

$$\mathbf{C}_{MML}^{-1} = \begin{bmatrix} (\mathbf{X}_1' \boldsymbol{\delta}_1 \mathbf{X}_1)^{-1} & \mathbf{0} \\ \mathbf{0} & (\mathbf{X}_2' \boldsymbol{\delta}_2 \mathbf{X}_2)^{-1} \end{bmatrix},$$

$$\hat{\boldsymbol{\beta}}_{1_{MML}}^{*} = (\mathbf{X}_{1}'\boldsymbol{\delta}_{1}\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'\boldsymbol{\delta}_{1}\mathbf{y}_{1} + \hat{\sigma}_{MML}(\mathbf{X}_{1}'\boldsymbol{\delta}_{1}\mathbf{X}_{1})^{-1}(\mathbf{X}_{1}'\boldsymbol{\alpha}_{1}\mathbf{y}_{1}),$$
$$\hat{\boldsymbol{\beta}}_{2_{MML}}^{*} = (\mathbf{X}_{2}'\boldsymbol{\delta}_{2}\mathbf{X}_{2})^{-1}\mathbf{X}_{2}'\boldsymbol{\delta}_{2}\mathbf{y}_{2} + \hat{\sigma}_{MML}(\mathbf{X}_{2}'\boldsymbol{\delta}_{2}\mathbf{X}_{2})^{-1}(\mathbf{X}_{1}'\boldsymbol{\alpha}_{2}\mathbf{y}_{1})$$

ve

$$\hat{\sigma}_{MML} = \frac{B + \sqrt{B^2 + 4AC}}{2\sqrt{n(n-4)}}$$
(4.30)

olup

$$A = n - \frac{2p}{q} \left(\mathbf{L}_{1}' (\mathbf{X}_{1}' \boldsymbol{\delta}_{1} \mathbf{X}_{1})^{-1} \mathbf{V}_{1} - \mathbf{L}_{2}' (\mathbf{X}_{2}' \boldsymbol{\delta}_{2} \mathbf{X}_{2})^{-1} \mathbf{V}_{2} \right),$$

$$B = \frac{2p}{q} \left((\mathbf{y}_{1} - \mathbf{X}_{1} \mathbf{K}_{1})' \boldsymbol{\alpha}_{1} \mathbf{1} + (\mathbf{y}_{2} - \mathbf{X}_{2} \mathbf{K}_{2})' \boldsymbol{\alpha}_{2} \mathbf{1} \right),$$

$$C = \frac{2p}{q} \left((\mathbf{y}_{1} - \mathbf{X}_{1} \mathbf{K}_{1})' \boldsymbol{\delta}_{1} (\mathbf{y}_{1} - \mathbf{X}_{1} \mathbf{K}_{1}) + (\mathbf{y}_{2} - \mathbf{X}_{2} \mathbf{K}_{2})' \boldsymbol{\delta}_{2} (\mathbf{y}_{1} - \mathbf{X}_{2} \mathbf{K}_{2}) \right),$$

$$\mathbf{K}_{i} = \mathbf{T}_{i} - \mathbf{W}_{i}, \quad \mathbf{L}_{i} = \mathbf{U}_{i} - \mathbf{V}_{i}, \quad i = 1, 2$$

$$\mathbf{T}_{i} = (\mathbf{X}_{i}' \boldsymbol{\delta}_{i} \mathbf{X}_{i})^{-1} \mathbf{X}_{i}' \boldsymbol{\delta}_{i} \mathbf{y}_{i}, \quad i = 1, 2$$

$$\begin{aligned} \mathbf{U}_{i} &= (\mathbf{X}_{i}^{\prime} \boldsymbol{\delta}_{i} \mathbf{X}_{i})^{-1} \mathbf{X}_{i}^{\prime} \boldsymbol{\alpha}_{i} \mathbf{1}, \quad i = 1, 2 \\ \mathbf{W}_{1} &= (1/t_{MML}) (\boldsymbol{\eta}_{1}^{\prime} \mathbf{T}_{1} + \boldsymbol{\eta}_{2}^{\prime} \mathbf{T}_{2}) (\mathbf{X}_{1}^{\prime} \boldsymbol{\delta}_{1} \mathbf{X}_{1})^{-1} \boldsymbol{\eta}_{1}, \\ \mathbf{W}_{2} &= (1/t_{MML}) (\boldsymbol{\eta}_{1}^{\prime} \mathbf{T}_{1} + \boldsymbol{\eta}_{2}^{\prime} \mathbf{T}_{2}) (\mathbf{X}_{2}^{\prime} \boldsymbol{\delta}_{2} \mathbf{X}_{2})^{-1} \boldsymbol{\eta}_{2}, \\ \mathbf{V}_{1} &= (1/t_{MML}) (\boldsymbol{\eta}_{1}^{\prime} \mathbf{U}_{1} + \boldsymbol{\eta}_{2}^{\prime} \mathbf{U}_{2}) (\mathbf{X}_{1}^{\prime} \boldsymbol{\delta}_{1} \mathbf{X}_{1})^{-1} \boldsymbol{\eta}_{1}, \\ \mathbf{V}_{2} &= (1/t_{MML}) (\boldsymbol{\eta}_{1}^{\prime} \mathbf{U}_{1} + \boldsymbol{\eta}_{2}^{\prime} \mathbf{U}_{2}) (\mathbf{X}_{2}^{\prime} \boldsymbol{\delta}_{2} \mathbf{X}_{2})^{-1} \boldsymbol{\eta}_{2}, \\ \boldsymbol{\delta}_{1} &= diag(\boldsymbol{\delta}_{i}^{(1)}), \quad \boldsymbol{\delta}_{2} = diag(\boldsymbol{\delta}_{i}^{(2)}), \quad \boldsymbol{\alpha}_{1} = diag(\boldsymbol{\alpha}_{i}^{(1)}), \quad \boldsymbol{\alpha}_{2} = diag(\boldsymbol{\alpha}_{i}^{(2)}), \\ dir. (\boldsymbol{\delta}_{i}^{(1)}, \boldsymbol{\delta}_{i}^{(2)}, \boldsymbol{\alpha}_{i}^{(1)} ve \boldsymbol{\alpha}_{i}^{(2)} i \varsigma in b k z. B c lim 3.2.1.) \end{aligned}$$

Kanıt. Model (4.12) nin her iki fazındaki hata terimlerinin dağılımının iid $LTS(p,\sigma)$ olması durumunda model parametrelerinin (4.13) kısıtı altındaki MML tahmin edicilerinin bulunması işlemi, bir kısıtlı optimizasyon problemidir. Bu problem, matematiksel olarak aşağıdaki gibi ifade edilir.

Problem

$$\max_{\beta_1,\beta_2,\sigma} \left\{ \mathbb{S} = -n \ln \sigma - p \sum_{i=1}^r \ln \left(1 + \frac{1}{q} z_{(i)}^{(1)^2} \right) - p \sum_{i=r+1}^n \ln \left(1 + \frac{1}{q} z_{(i)}^{(2)^2} \right) \right\}$$

Kısıt

$$g = \boldsymbol{\eta}' \boldsymbol{\beta} = 0. \tag{4.31}$$

Denklem (4.31) de ifade edilen kısıtlı optmizasyon probleminin çözümü, Lagrange çarpanları yöntemiyle yapılır. Bu durumda,

$$\mathbb{L}(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, r, \lambda) = \mathbb{S}(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2) + \lambda g(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2)$$
(4.32)

Lagrange fonksiyonu olmak üzere

$$\frac{\partial \mathbb{L}}{\partial \beta_0^{(1)}} = \frac{2p}{q\sigma} \sum_{i=1}^r \frac{z_{(i)}^{(1)}}{1 + \frac{1}{q} z_{(i)}^{(1)^2}} + \lambda = 0$$
(4.33)

$$\frac{\partial \mathbb{L}}{\partial \beta_1^{(1)}} = \frac{2p}{q\sigma} \sum_{i=1}^r \frac{z_{(i)}^{(1)}}{1 + \frac{1}{q} z_{(i)}^{(1)^2}} x_{[i]} + \lambda r = 0$$
(4.34)

$$\frac{\partial \mathbb{L}}{\partial \beta_0^{(2)}} = \frac{2p}{q\sigma} \sum_{i=r+1}^n \frac{z_{(i)}^{(2)}}{1 + \frac{1}{q} z_{(i)}^{(2)^2}} - \lambda = 0$$
(4.35)

$$\frac{\partial \mathbb{L}}{\partial \beta_1^{(2)}} = \frac{2p}{q\sigma} \sum_{i=r+1}^n \frac{z_{(i)}^{(2)}}{1 + \frac{1}{q} z_{(i)}^{(2)^2}} x_{[i]} - \lambda r = 0$$
(4.36)

$$\frac{\partial \mathbb{L}}{\partial \sigma} = \frac{-n}{\sigma} + \frac{2p}{q\sigma} \sum_{i=1}^{r} \frac{z_{(i)}^{(1)^2}}{1 + \frac{1}{q} z_{(i)}^{(1)^2}} + \frac{2p}{q\sigma} \sum_{i=r+1}^{n} \frac{z_{(i)}^{(2)^2}}{1 + \frac{1}{q} z_{(i)}^{(2)^2}} = 0$$
(4.37)

$$\frac{\partial \mathbb{L}}{\partial \lambda} = g(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2) = 0$$
(4.38)

denklem sistemi elde edilir.

(4.33) ve (4.38) denklem sisteminin çözümünü, denklem (4.31) ile ifade edilen kısıtlı optimizasyon probleminin çözümüdür.

(4.33) ve (4.36) denklemlerinde yer alan $g(z) = z/(1 + (1/q)z^2))$ fonksiyonu yerine onun t = E(z) civarında açılmış birinci dereceden Taylor polinomu yazılırsa

$$\frac{\partial \mathbb{L}}{\partial \beta_0^{(1)}} \cong \frac{2p}{q\sigma} \sum_{i=1}^r (\alpha_i + \delta_i z_{(i)}^{(1)}) + \lambda = 0, \qquad (4.39)$$

$$\frac{\partial \mathbb{L}}{\partial \beta_1^{(1)}} \cong \frac{2p}{q\sigma} \sum_{i=1}^r (\alpha_i + \delta_i z_{(i)}^{(1)}) x_{[i]} + \lambda r = 0, \qquad (4.40)$$

$$\frac{\partial \mathbb{L}}{\partial \beta_0^{(2)}} \cong \frac{2p}{q\sigma} \sum_{i=r+1}^n (\alpha_i + \delta_i z_{(i)}^{(2)}) - \lambda = 0, \qquad (4.41)$$

$$\frac{\partial \mathbb{L}}{\partial \beta_1^{(2)}} \cong \frac{2p}{q\sigma} \sum_{i=r+1}^n (\alpha_i + \delta_i z_{(i)}^{(2)}) x_{[i]} - \lambda r = 0$$
(4.42)

$$\frac{\partial \mathbb{L}}{\partial \sigma} \cong \frac{-n}{\sigma} + \frac{2p}{q\sigma} \sum_{i=1}^{r} (\alpha_i + \delta_i z_{(i)}^{(1)}) z_{(i)}^{(1)} + \frac{2p}{q\sigma} \sum_{i=r+1}^{n} (\alpha_i + \delta_i z_{(i)}^{(2)}) z_{(i)}^{(2)} = 0$$
(4.43)

elde edilir. $z_{(i)}^{(1)}$ ve $z_{(i)}^{(2)}$ için bkz. Bölüm 3.2.1. (4.39) ve (4.42) denklem sistemi açılıp matris/vektör formatında düzenlenirse

$$\frac{\partial \mathbb{L}}{\partial \boldsymbol{\beta}_{1}} \cong (\mathbf{X}_{1}'\boldsymbol{\delta}_{1}\mathbf{X}_{1})\boldsymbol{\beta}_{1} - \mathbf{X}_{1}'\boldsymbol{\delta}_{1}\mathbf{y}_{1} - \hat{\sigma}_{MML}(\mathbf{X}_{1}'\boldsymbol{\alpha}_{1}\mathbf{y}_{1}) - \frac{q\hat{\sigma}_{MML}^{2}}{2p}\lambda\boldsymbol{\eta}_{1} = 0 \quad (4.44)$$
$$\frac{\partial \mathbb{L}}{\partial \boldsymbol{\beta}_{2}} \cong (\mathbf{X}_{2}'\boldsymbol{\delta}_{2}\mathbf{X}_{2})\boldsymbol{\beta}_{2} - \mathbf{X}_{2}'\boldsymbol{\delta}_{2}\mathbf{y}_{2} - \hat{\sigma}_{MML}(\mathbf{X}_{2}'\boldsymbol{\alpha}_{2}\mathbf{y}_{2}) - \frac{q\hat{\sigma}_{MML}^{2}}{2p}\lambda\boldsymbol{\eta}_{2} = 0 \quad (4.45)$$

bulunur.

Denklem (4.44) ve (4.45) çözüldüğünde

$$\hat{\boldsymbol{\beta}}_{1_{MML}} = (\mathbf{X}_{1}^{\prime}\boldsymbol{\delta}_{1}\mathbf{X}_{1})^{-1}\mathbf{X}_{1}^{\prime}\boldsymbol{\delta}_{1}\mathbf{y}_{1} + \hat{\sigma}_{MML}(\mathbf{X}_{1}^{\prime}\boldsymbol{\delta}_{1}\mathbf{X}_{1})^{-1}(\mathbf{X}_{1}^{\prime}\boldsymbol{\alpha}_{1}\mathbf{y}_{1}) + \frac{q\hat{\sigma}_{MML}^{2}}{2p}\lambda(\mathbf{X}_{1}^{\prime}\boldsymbol{\delta}_{1}\mathbf{X}_{1})^{-1}\boldsymbol{\eta}_{1}$$

$$\hat{\boldsymbol{\beta}}_{2_{MML}} = (\mathbf{X}_{2}^{\prime}\boldsymbol{\delta}_{2}\mathbf{X}_{2})^{-1}\mathbf{X}_{2}^{\prime}\boldsymbol{\delta}_{2}\mathbf{y}_{2} + \hat{\sigma}_{MML}(\mathbf{X}_{2}^{\prime}\boldsymbol{\delta}_{2}\mathbf{X}_{2})^{-1}(\mathbf{X}_{2}^{\prime}\boldsymbol{\alpha}_{2}\mathbf{y}_{2}) + \frac{q\hat{\sigma}_{MML}^{2}}{2p}\lambda(\mathbf{X}_{2}^{\prime}\boldsymbol{\delta}_{2}\mathbf{X}_{2})^{-1}\boldsymbol{\eta}_{2}$$

$$(4.47)$$

elde edilir. Açıktır ki, (4.46) ve (4.47) de verilen tahmin ediciler λ nın fonksiyonudur. Burada da

$$\hat{\boldsymbol{\beta}}_{1_{MML}}^{*} = (\mathbf{X}_{1}'\boldsymbol{\delta}_{1}\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'\boldsymbol{\delta}_{1}\mathbf{y}_{1} + \hat{\sigma}_{MML}(\mathbf{X}_{1}'\boldsymbol{\delta}_{1}\mathbf{X}_{1})^{-1}(\mathbf{X}_{1}'\boldsymbol{\alpha}_{1}\mathbf{y}_{1})$$
$$\hat{\boldsymbol{\beta}}_{2_{MML}}^{*} = (\mathbf{X}_{2}'\boldsymbol{\delta}_{2}\mathbf{X}_{2})^{-1}\mathbf{X}_{2}'\boldsymbol{\delta}_{2}\mathbf{y}_{2} + \hat{\sigma}_{MML}(\mathbf{X}_{2}'\boldsymbol{\delta}_{2}\mathbf{X}_{2})^{-1}(\mathbf{X}_{1}'\boldsymbol{\alpha}_{2}\mathbf{y}_{1})$$

denirse

$$\hat{\boldsymbol{\beta}}_{1_{MML}} = \hat{\boldsymbol{\beta}}_{1_{MML}}^* + \frac{q\hat{\sigma}_{MML}^2}{2p}\lambda(\mathbf{X}_1'\boldsymbol{\delta}_1\mathbf{X}_1)^{-1}\boldsymbol{\eta}_1$$
(4.48)

$$\hat{\boldsymbol{\beta}}_{2_{MML}} = \hat{\boldsymbol{\beta}}_{2_{MML}}^* + \frac{q\hat{\sigma}_{MML}^2}{2p}\lambda(\mathbf{X}_2'\boldsymbol{\delta}_1\mathbf{X}_2)^{-1}\boldsymbol{\eta}_2$$
(4.49)

olur. Burada belirtmek gerekir ki, $\hat{\beta}^*_{1_{MML}}$ ve $\hat{\beta}^*_{2_{MML}}$ kısıtsız MML tahmin edicileridir.

Son iki eşitlik denklem (4.38) de yerlerine yazılıp ifade düzenlenirse

$$\boldsymbol{\eta}_1'\left(\hat{\boldsymbol{\beta}}_{1_{MML}}^* + \frac{q\hat{\sigma}_{MML}^2}{2p}\lambda(\mathbf{X}_1'\boldsymbol{\delta}_1\mathbf{X}_1)^{-1}\boldsymbol{\eta}_1\right) + \boldsymbol{\eta}_2'\left(\hat{\boldsymbol{\beta}}_{2_{MML}}^* + \frac{q\hat{\sigma}_{MML}^2}{2p}\lambda(\mathbf{X}_2'\boldsymbol{\delta}_2\mathbf{X}_2)^{-1}\boldsymbol{\eta}_2\right) = 0$$

veya denk olarak

$$\boldsymbol{\eta}' \hat{\boldsymbol{\beta}}_{MML}^* + \frac{2q\hat{\sigma}_{MML}^2}{p} \lambda \boldsymbol{\eta}' \begin{bmatrix} (\mathbf{X}_1' \boldsymbol{\delta}_1 \mathbf{X}_1)^{-1} & \mathbf{0} \\ \mathbf{0} & (\mathbf{X}_2' \boldsymbol{\delta}_2 \mathbf{X}_2)^{-1} \end{bmatrix} \boldsymbol{\eta} = \mathbf{0}$$

bulunur. Son ifade de

$$s_{MML} = \boldsymbol{\eta} \hat{\boldsymbol{\beta}}_{MML}^*$$

$$t_{MML} = \boldsymbol{\eta}' \mathbf{C}_{MML}^{-1} \boldsymbol{\eta}$$

$$\mathbf{C}_{MML}^{-1} = \begin{bmatrix} (\mathbf{X}_1' \boldsymbol{\delta}_1 \mathbf{X}_1)^{-1} & \mathbf{0} \\ \mathbf{0} & (\mathbf{X}_2' \boldsymbol{\delta}_2 \mathbf{X}_2)^{-1} \end{bmatrix}$$

olmak üzere

$$s + \frac{q\hat{\sigma}_{MML}^2}{2p}\lambda t = 0 \tag{4.50}$$

şeklinde yazılabilir. Buradan

$$\frac{q\hat{\sigma}_{MML}^2}{2p}\lambda = -\frac{s}{t}$$
bulunur. Bu sonuç, denklem (4.48) ve (4.49) da yerine yazıldığında

$$\begin{bmatrix} \hat{\boldsymbol{\beta}}_{1_{MML}} \\ \hat{\boldsymbol{\beta}}_{2_{MML}} \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{\beta}}_{1_{MML}}^* \\ \hat{\boldsymbol{\beta}}_{2_{MML}}^* \end{bmatrix} - \frac{s_{MML}}{t_{MML}} \mathbf{C}_{MML}^{-1} \boldsymbol{\eta}$$
(4.51)

sonucuna ulaşılır.

 $\hat{\sigma}_{MML}$ i bulmak için ise denklem (4.43) ün aşağıda verilen matris/vektör formatındaki yazılışı ele alınsın:

$$\frac{\partial \mathbb{L}}{\partial \sigma} \cong -\frac{n}{\sigma} + \frac{2p}{q\sigma^2} \left(\mathbf{Y}_1 - \mathbf{X}_1 \boldsymbol{\beta}_1 \right)' \boldsymbol{\alpha}_1 \mathbf{1} + \frac{2p}{q\sigma^3} \left(\mathbf{Y}_1 - \mathbf{X}_1 \boldsymbol{\beta}_1 \right)' \boldsymbol{\delta}_1 \left(\mathbf{Y}_1 - \mathbf{X}_1 \boldsymbol{\beta}_1 \right) \\ + \frac{2p}{q\sigma^2} \left(\mathbf{Y}_2 - \mathbf{X}_2 \boldsymbol{\beta}_2 \right)' \boldsymbol{\alpha}_2 \mathbf{1} + \frac{2p}{q\sigma^3} \left(\mathbf{Y}_2 - \mathbf{X}_2 \boldsymbol{\beta}_2 \right)' \boldsymbol{\delta}_2 \left(\mathbf{Y}_2 - \mathbf{X}_2 \boldsymbol{\beta}_2 \right) = 0.(4.52)$$

Burada da β_1 ve β_2 yerine denklem (4.51) de verilen MML tahmin edicileri yazılıp, gerekli işlemler yapıldığında

$$\hat{\sigma}_{MML} = \frac{B + \sqrt{B^2 + 4AC}}{2\sqrt{n(n-4)}}$$
(4.53)

olarak elde edilir.

GL Dağılımı

Model (4.12) de hata terimleri $\varepsilon_i^{(1)}$ ve $\varepsilon_i^{(2)}$ nin dağılımı iid $GL(b,\sigma)$ olsun. Ayrıca, Model (4.12) de (4.13) kısıtı sağlansın. Bu durumda, değişim noktasının ve model parametrelerinin MML tahmin edicilerinin bulunuşu Teorem 4.7 de verilmiştir.

Teorem 4.7. Model (4.12) nin her bir fazındaki hata terimlerinin dağılımının iid $GL(b,\sigma)$ olması durumunda model parametrelerinin, (4.13) kısıtı altındaki MML tahmin edicileri

$$\begin{bmatrix} \hat{\boldsymbol{\beta}}_{1_{MML}} \\ \hat{\boldsymbol{\beta}}_{2_{MML}} \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{\beta}}_{1_{MML}}^* \\ \hat{\boldsymbol{\beta}}_{2_{MML}}^* \end{bmatrix} - \frac{s_{MML}}{t_{MML}} \mathbf{C}_{MML}^{-1} \boldsymbol{\eta}$$
(4.54)

dir. Burada,

$$s_{MML} = \boldsymbol{\eta}' \hat{\boldsymbol{\beta}}_{MML}^*,$$

$$t_{MML} = \boldsymbol{\eta}' \mathbf{C}_{MML}^{-1} \boldsymbol{\eta},$$

$$\mathbf{C}_{MML}^{-1} = \begin{bmatrix} (\mathbf{X}_1' \boldsymbol{\delta}_1 \mathbf{X}_1)^{-1} & \mathbf{0} \\ \mathbf{0} & (\mathbf{X}_2' \boldsymbol{\delta}_2 \mathbf{X}_2)^{-1} \end{bmatrix},$$

$$\hat{\boldsymbol{\beta}}_{1_{MML}}^{*} = (\mathbf{X}_{1}'\boldsymbol{\delta}_{1}\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'\boldsymbol{\delta}_{1}\mathbf{y}_{1} - \hat{\sigma}_{MML}(\mathbf{X}_{1}'\boldsymbol{\delta}_{1}\mathbf{X}_{1})^{-1}(\mathbf{X}_{1}'\boldsymbol{\alpha}_{1}\mathbf{y}_{1}),$$
$$\hat{\boldsymbol{\beta}}_{2_{MML}}^{*} = (\mathbf{X}_{2}'\boldsymbol{\delta}_{2}\mathbf{X}_{2})^{-1}\mathbf{X}_{2}'\boldsymbol{\delta}_{2}\mathbf{y}_{2} - \hat{\sigma}_{MML}(\mathbf{X}_{2}'\boldsymbol{\delta}_{2}\mathbf{X}_{2})^{-1}(\mathbf{X}_{1}'\boldsymbol{\alpha}_{2}\mathbf{y}_{1})$$

ve

$$\hat{\sigma}_{MML} = \frac{-B + \sqrt{B^2 + 4AC}}{2\sqrt{n(n-4)}}$$
(4.55)

olup

$$A = n - (b+1) \left(\mathbf{L}_{1}' (\mathbf{X}_{1}' \boldsymbol{\delta}_{1} \mathbf{X}_{1})^{-1} \mathbf{V}_{1} - \mathbf{L}_{2}' (\mathbf{X}_{2}' \boldsymbol{\delta}_{2} \mathbf{X}_{2})^{-1} \mathbf{V}_{2} \right),$$

$$B = (b+1) \left((\mathbf{y}_{1} - \mathbf{X}_{1} \mathbf{K}_{1})' \boldsymbol{\alpha}_{1} \mathbf{1} + (\mathbf{y}_{2} - \mathbf{X}_{2} \mathbf{K}_{2})' \boldsymbol{\alpha}_{2} \mathbf{1} \right),$$

$$C = (b+1) \left((\mathbf{y}_{1} - \mathbf{X}_{1} \mathbf{K}_{1})' \boldsymbol{\delta}_{1} (\mathbf{y}_{1} - \mathbf{X}_{1} \mathbf{K}_{1}) + (\mathbf{y}_{2} - \mathbf{X}_{2} \mathbf{K}_{2})' \boldsymbol{\delta}_{2} (\mathbf{y}_{1} - \mathbf{X}_{2} \mathbf{K}_{2}) \right),$$

$$\mathbf{K}_{i} = \mathbf{T}_{i} - \mathbf{W}_{i}, \quad \mathbf{L}_{i} = \mathbf{U}_{i} - \mathbf{V}_{i}, \quad i = 1, 2$$

$$\mathbf{T}_{i} = (\mathbf{X}_{i}' \boldsymbol{\delta}_{i} \mathbf{X}_{i})^{-1} \mathbf{X}_{i}' \boldsymbol{\alpha}_{i} \mathbf{1}, \quad i = 1, 2$$

$$\mathbf{U}_{i} = (\mathbf{X}_{i}' \boldsymbol{\delta}_{i} \mathbf{X}_{i})^{-1} \mathbf{X}_{i}' \boldsymbol{\alpha}_{i} \mathbf{1}, \quad i = 1, 2$$

$$\mathbf{W}_{1} = (1/t_{MML}) (\boldsymbol{\eta}_{1}' \mathbf{T}_{1} + \boldsymbol{\eta}_{2}' \mathbf{T}_{2}) (\mathbf{X}_{1}' \boldsymbol{\delta}_{1} \mathbf{X}_{1})^{-1} \boldsymbol{\eta}_{1},$$

$$\mathbf{W}_{2} = (1/t_{MML}) (\boldsymbol{\eta}_{1}' \mathbf{T}_{1} + \boldsymbol{\eta}_{2}' \mathbf{T}_{2}) (\mathbf{X}_{2}' \boldsymbol{\delta}_{2} \mathbf{X}_{2})^{-1} \boldsymbol{\eta}_{2},$$

$$\mathbf{V}_{1} = (1/t_{MML}) (\boldsymbol{\eta}_{1}' \mathbf{U}_{1} + \boldsymbol{\eta}_{2}' \mathbf{U}_{2}) (\mathbf{X}_{2}' \boldsymbol{\delta}_{2} \mathbf{X}_{2})^{-1} \boldsymbol{\eta}_{2},$$

$$\boldsymbol{\delta}_{1} = diag(\boldsymbol{\delta}_{i}^{(1)}), \quad \boldsymbol{\delta}_{2} = diag(\boldsymbol{\delta}_{i}^{(2)}), \quad \boldsymbol{\alpha}_{1} = diag(\boldsymbol{\alpha}_{i}^{(1)}), \quad \boldsymbol{\alpha}_{2} = diag(\boldsymbol{\alpha}_{i}^{(2)}),$$

$$dir. (\boldsymbol{\delta}_{i}^{(1)}, \boldsymbol{\delta}_{i}^{(2)}, \boldsymbol{\alpha}_{i}^{(1)} ve \boldsymbol{\alpha}_{i}^{(2)} icin bkz. Bölüm 3.2.2.)$$

Kanıt. Model (4.12) nin her iki fazındaki hata terimlerinin daılımının iid $GL(b, \sigma)$ olması durumunda model parametrelerinin (4.13) kısıtı altındaki MML tahmin edicilerinin bulunması işlemi, bir kısıtlı optimizasyon problemidir. Bu problem, matematiksel olarak aşağıdaki gibi ifade edilir.

Problem

$$\max_{\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2}} \left\{ \mathbb{S} = -n \ln \sigma + \sum_{i=1}^{r} \ln \left(\frac{e^{-z_{(i)}^{(1)^{2}}}}{(1+e^{-z_{(i)}^{(1)^{2}}})^{b+1}} \right) + \sum_{i=r+1}^{n} \ln \left(\frac{e^{-z_{(i)}^{(2)^{2}}}}{(1+e^{-z_{(i)}^{(2)^{2}}})^{b+1}} \right) \right\}$$
(4.56)

Kısıt

 $g = \boldsymbol{\eta}' \boldsymbol{\beta} = 0.$

Denklem (4.56) da verilen kısıtlı optimizasyon probleminin çözümünü bulmak için Teorem 4.6 nın kanıtında olduğu gibi Lagrange çarpanları yöntemi kullanılır. Bu nedenle, tekrardan kaçınmak için burada detaylara yer verilmemiştir.

JFST Dağılımı

Model (4.12) de hata terimleri $\varepsilon_i^{(1)}$ ve $\varepsilon_i^{(2)}$ nin dağılımının iid *JFST*(*a*, *b*, σ) olsun. Ayrıca, Model (4.12) de (4.13) kısıtı sağlansın. Bu durumda, değişim noktasının ve model parametrelerinin MML tahmin edicilerinin bulunuşu Teorem 4.8 de verilmiştir.

Teorem 4.8. Model (4.12) nin her bir fazındaki hata terimlerinin hata terimlerinin dağılımının iid JFST (a, b, σ) olması durumunda model parametrelerinin, (4.13) kısıtı altındaki MML tahmin edicileri

$$\begin{bmatrix} \hat{\boldsymbol{\beta}}_{1_{MML}} \\ \hat{\boldsymbol{\beta}}_{2_{MML}} \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{\beta}}_{1_{MML}}^{*} \\ \hat{\boldsymbol{\beta}}_{2_{MML}}^{*} \end{bmatrix} - \frac{s_{MML}}{t_{MML}} \mathbf{C}_{MML}^{-1} \boldsymbol{\eta}$$
(4.57)

dir. Burada,

$$s_{MML} = \boldsymbol{\eta}' \boldsymbol{\beta}_{MML}^{*},$$

$$t_{MML} = \boldsymbol{\eta}' \mathbf{C}_{MML}^{-1} \boldsymbol{\eta},$$

$$\mathbf{C}_{MML}^{-1} = \begin{bmatrix} (\mathbf{X}_{1}' \boldsymbol{\delta}_{1} \mathbf{X}_{1})^{-1} & \mathbf{0} \\ \mathbf{0} & (\mathbf{X}_{2}' \boldsymbol{\delta}_{2} \mathbf{X}_{2})^{-1} \end{bmatrix},$$

$$\hat{\boldsymbol{\beta}}_{1_{MML}}^{*} = (\mathbf{X}_{1}'\boldsymbol{\delta}_{1}\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'\boldsymbol{\delta}_{1}\mathbf{y}_{1} + \hat{\boldsymbol{\sigma}}_{MML}(\mathbf{X}_{1}'\boldsymbol{\delta}_{1}\mathbf{X}_{1})^{-1}(\mathbf{X}_{1}'\boldsymbol{\alpha}_{1}\mathbf{y}_{1}),$$
$$\hat{\boldsymbol{\beta}}_{2_{MML}}^{*} = (\mathbf{X}_{2}'\boldsymbol{\delta}_{2}\mathbf{X}_{2})^{-1}\mathbf{X}_{2}'\boldsymbol{\delta}_{2}\mathbf{y}_{2} + \hat{\boldsymbol{\sigma}}_{MML}(\mathbf{X}_{2}'\boldsymbol{\delta}_{2}\mathbf{X}_{2})^{-1}(\mathbf{X}_{1}'\boldsymbol{\alpha}_{2}\mathbf{y}_{1})$$

ve

$$\hat{\sigma}_{MML} = \frac{B + \sqrt{B^2 + 4AC}}{2\sqrt{n(n-4)}}$$
(4.58)

olup

$$\begin{split} A &= n - \left(\mathbf{L}_{1}' (\mathbf{X}_{1}' \boldsymbol{\delta}_{1} \mathbf{X}_{1})^{-1} \mathbf{V}_{1} - \mathbf{L}_{2}' (\mathbf{X}_{2}' \boldsymbol{\delta}_{2} \mathbf{X}_{2})^{-1} \mathbf{V}_{2} \right), \\ B &= \left((\mathbf{y}_{1} - \mathbf{X}_{1} \mathbf{K}_{1})' \boldsymbol{\alpha}_{1} \mathbf{1} + (\mathbf{y}_{2} - \mathbf{X}_{2} \mathbf{K}_{2})' \boldsymbol{\alpha}_{2} \mathbf{1} \right), \\ C &= \left((\mathbf{y}_{1} - \mathbf{X}_{1} \mathbf{K}_{1})' \boldsymbol{\delta}_{1} (\mathbf{y}_{1} - \mathbf{X}_{1} \mathbf{K}_{1}) + (\mathbf{y}_{2} - \mathbf{X}_{2} \mathbf{K}_{2})' \boldsymbol{\delta}_{2} (\mathbf{y}_{1} - \mathbf{X}_{2} \mathbf{K}_{2}) \right), \\ \mathbf{K}_{i} &= \mathbf{T}_{i} - \mathbf{W}_{i}, \quad \mathbf{L}_{i} = \mathbf{U}_{i} - \mathbf{V}_{i}, \quad i = 1, 2 \\ \mathbf{T}_{i} &= (\mathbf{X}_{i}' \boldsymbol{\delta}_{i} \mathbf{X}_{i})^{-1} \mathbf{X}_{i}' \boldsymbol{\delta}_{i} \mathbf{y}_{i}, \quad i = 1, 2, \\ \mathbf{U}_{i} &= (\mathbf{X}_{i}' \boldsymbol{\delta}_{i} \mathbf{X}_{i})^{-1} \mathbf{X}_{i}' \boldsymbol{\alpha}_{i} \mathbf{1}, \quad i = 1, 2, \\ \mathbf{W}_{1} &= (1/t_{MML}) (\boldsymbol{\eta}_{1}' \mathbf{T}_{1} + \boldsymbol{\eta}_{2}' \mathbf{T}_{2}) (\mathbf{X}_{1}' \boldsymbol{\delta}_{1} \mathbf{X}_{1})^{-1} \boldsymbol{\eta}_{1}, \\ \mathbf{W}_{2} &= (1/t_{MML}) (\boldsymbol{\eta}_{1}' \mathbf{T}_{1} + \boldsymbol{\eta}_{2}' \mathbf{T}_{2}) (\mathbf{X}_{2}' \boldsymbol{\delta}_{2} \mathbf{X}_{2})^{-1} \boldsymbol{\eta}_{2}, \\ \mathbf{V}_{1} &= (1/t_{MML}) (\boldsymbol{\eta}_{1}' \mathbf{U}_{1} + \boldsymbol{\eta}_{2}' \mathbf{U}_{2}) (\mathbf{X}_{2}' \boldsymbol{\delta}_{2} \mathbf{X}_{2})^{-1} \boldsymbol{\eta}_{1}, \\ \mathbf{V}_{2} &= (1/t_{MML}) (\boldsymbol{\eta}_{1}' \mathbf{U}_{1} + \boldsymbol{\eta}_{2}' \mathbf{U}_{2}) (\mathbf{X}_{2}' \boldsymbol{\delta}_{2} \mathbf{X}_{2})^{-1} \boldsymbol{\eta}_{2}, \\ \boldsymbol{\delta}_{1} &= diag(\boldsymbol{\delta}_{i}^{(1)}), \quad \boldsymbol{\delta}_{2} = diag(\boldsymbol{\delta}_{i}^{(2)}), \quad \boldsymbol{\alpha}_{1} = diag(\boldsymbol{\alpha}_{i}^{(1)}), \quad \boldsymbol{\alpha}_{2} = diag(\boldsymbol{\alpha}_{i}^{(2)}), \\ dir. (\boldsymbol{\delta}_{i}^{(1)}, \boldsymbol{\delta}_{i}^{(2)}, \boldsymbol{\alpha}_{i}^{(1)} ve \boldsymbol{\alpha}_{i}^{(2)} i \boldsymbol{\varsigma} in bkz. Bölüm 3.2.3.) \end{split}$$

Kanıt. Model (4.12) de hata terimlerinin iid olarak JFST dağılımına sahip olması durumunda model parametrelerinin (4.13) kısıtı altındaki MML tahmin edicilerinin bulunması işlemi, bir kısıtlı optimizasyon problemidir. Bu problem, matematiksel olarak aşağıdaki gibi ifade edilir.

Problem

$$\max_{\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2}} \left\{ \$ = -n \ln \sigma + (a+0.5) \sum_{i=1}^{r} \ln \left(1 + \frac{z_{(i)}^{(1)}}{\sqrt{\nu + z_{(i)}^{(1)^{2}}}} \right) + (b+0.5) \sum_{i=1}^{r} \ln \left(1 - \frac{z_{(i)}^{(1)}}{\sqrt{\nu + z_{(i)}^{(1)^{2}}}} \right) + (a+0.5) \sum_{i=r+1}^{n} \ln \left(1 + \frac{z_{(i)}^{(2)}}{\sqrt{\nu + z_{(i)}^{(2)^{2}}}} \right) + (b+0.5) \sum_{i=r+1}^{n} \ln \left(1 - \frac{z_{(i)}^{(2)}}{\sqrt{\nu + z_{(i)}^{(2)^{2}}}} \right) \right\}$$
(4.59)

Kısıt

 $g = \boldsymbol{\eta}' \boldsymbol{\beta} = 0.$

Denklem (4.59) da verilen kısıtlı optimizasyon probleminin çözümünü bulmak için Teorem 4.6 nın kanıtında olduğu gibi Lagrange çarpanları yöntemi kullanılır. Bu nedenle, tekrardan kaçınmak için burada detaylara yer verilmemiştir.

4.2.2. Hudson Yöntemi: OSM Versiyonu

Bu bölümde, Model (4.12) de (4.13) kısıtı altında değişim noktasının ve model parametrelerinin OSM tahmin edicilerinin bulunuşu Hudson (1966) yöntemi kullanılarak açıklanmıştır.

Teorem 4.9. *Model* (4.12) *nin parametrelerinin* (4.13) *kısıtı altındaki OSM tahmin edicileri*

$$\begin{bmatrix} \hat{\boldsymbol{\beta}}_{1_{OSM}} \\ \hat{\boldsymbol{\beta}}_{2_{OSM}} \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{\beta}}_{1_{OSM}}^* \\ \hat{\boldsymbol{\beta}}_{2_{OSM}}^* \end{bmatrix} - \frac{s}{t} \mathbf{C}^{-1} \boldsymbol{\eta}$$
(4.60)

dir. Burada,

$$s_{OSM} = \boldsymbol{\eta}' \hat{\boldsymbol{\beta}}_{OSM}^{*},$$

$$t_{OSM} = \boldsymbol{\eta}' \mathbf{C}_{OSM}^{-1} \boldsymbol{\eta},$$

$$\mathbf{C}_{OSM}^{-1} = \begin{bmatrix} \left(\sum_{i=1}^{r} \psi'((y_i - \mathbf{x}'_i \hat{\boldsymbol{\beta}}_1^0) / \hat{\sigma}_0) \mathbf{x}_i \mathbf{x}'_i \right)^{-1} & \mathbf{0} \\ \mathbf{0} & \left(\sum_{i=r+1}^{n} \psi'((y_i - \mathbf{x}'_i \hat{\boldsymbol{\beta}}_2^0) / \hat{\sigma}_0) \mathbf{x}_i \mathbf{x}'_i \right)^{-1} \end{bmatrix},$$

$$\hat{\boldsymbol{\beta}}_{1_{OSM}}^{*} = \hat{\boldsymbol{\beta}}_{1}^{0} + \hat{\sigma}_{0} \left(\sum_{i=1}^{r} \psi'((y_{i} - \mathbf{x}_{i}'\hat{\boldsymbol{\beta}}_{1}^{0})/\hat{\sigma}_{0})\mathbf{x}_{i}\mathbf{x}_{i}' \right)^{-1} \sum_{i=1}^{r} \psi((y_{i} - \mathbf{x}_{i}'\hat{\boldsymbol{\beta}}_{1}^{0})/\hat{\sigma}_{0})\mathbf{x}_{i}$$
$$\hat{\boldsymbol{\beta}}_{2_{OSM}}^{*} = \hat{\boldsymbol{\beta}}_{2}^{0} + \hat{\sigma}_{0} \left(\sum_{i=r+1}^{n} \psi'((y_{i} - \mathbf{x}_{i}'\hat{\boldsymbol{\beta}}_{2}^{0})/\hat{\sigma}_{0})\mathbf{x}_{i}\mathbf{x}_{i}' \right)^{-1} \sum_{i=r+1}^{n} \psi((y_{i} - \mathbf{x}_{i}'\hat{\boldsymbol{\beta}}_{2}^{0})/\hat{\sigma}_{0})\mathbf{x}_{i}$$

dır.

Kanıt. Model (4.12) nin (4.13) kısıtı altındaki OSM tahmin edicilerinin bulunması işlemi, bir kısıtlı optimizasyon problemidir. Bu problem, matematiksel olarak aşağıdaki gibi ifade edilir.

Problem

$$\min_{\boldsymbol{\beta}_1, \boldsymbol{\beta}_2} \left\{ \mathbb{S} = \sum_{i=1}^n \rho(z_i^{(1)}, z_i^{(2)}) \right\}$$
(4.61)

Kısıt

 $g = \boldsymbol{\eta}' \boldsymbol{\beta} = 0.$

Burada, $z_i^{(1)} = (y_i - \mathbf{x}'_i \boldsymbol{\beta}_1) / \sigma$, (i = 1, 2, ..., r) ve $z_i^{(2)} = (y_i - \mathbf{x}'_i \boldsymbol{\beta}_2) / \sigma$, (i = r + 1, ..., n) ve $\rho(\cdot)$ amaç fonksiyonudur. Bu tez çalışmasında $\rho = -\ln f$ olarak alınmıştır.

Denklem (4.61) de ifade edilen kısıtlı optmizasyon probleminin çözümü, Lagrange çarpanları yöntemiyle yapılır. Bu durumda,

$$\mathbb{L}(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, r, \lambda) = \mathbb{S}(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2) + \lambda g(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2)$$
(4.62)

Lagrange fonksiyonu olmak üzere

$$\frac{\partial \mathbb{L}}{\partial \boldsymbol{\beta}_1} = \sum_{i=1}^r \psi\left(\frac{y_i - \mathbf{x}_i' \boldsymbol{\beta}_1}{\sigma}\right) \mathbf{x}_i + \lambda \boldsymbol{\eta}_1 = 0, \qquad (4.63)$$

$$\frac{\partial \mathbb{L}}{\partial \boldsymbol{\beta}_2} = \sum_{i=r+1}^n \psi\left(\frac{y_i - \mathbf{x}_i' \boldsymbol{\beta}_1}{\sigma}\right) \mathbf{x}_i + \lambda \boldsymbol{\eta}_2 = 0$$
(4.64)

$$\frac{\partial \mathbb{L}}{\partial \lambda} = g(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2) = 0 \tag{4.65}$$

denklem sistemi elde edilir. Burada, $\psi(\cdot) = \rho'(\cdot) d\ddot{u}r$.

(4.63) ve (4.64) denklem sisteminin çözümü, denklem (4.61) ile ifade edilen kısıtlı optimizasyon probleminin çözümüdür. (4.63) ve (4.64) denklemlerinde yer alan $\psi(\cdot)$ fonksiyonu doğrusal olmadığından onun yerine $z_{i0}^{(1)} = (y_i - \mathbf{x}'_i \hat{\boldsymbol{\beta}}_1^0) / \hat{\sigma}_0$ ve $z_{i0}^{(2)} = (y_i - \mathbf{x}'_i \hat{\boldsymbol{\beta}}_2^0) / \hat{\sigma}_0$ civarında açılmış birinci dereceden Taylor polinomu yazılırsa

$$\frac{\partial \mathbb{L}}{\partial \boldsymbol{\beta}_{1}} = \sum_{i=1}^{r} \psi \left(\frac{y_{i} - \mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\beta}}_{1}^{0}}{\hat{\sigma}_{0}} \right) \mathbf{x}_{i} + \sum_{i=1}^{r} \psi^{\prime} \left(\frac{y_{i} - \mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\beta}}_{1}^{0}}{\hat{\sigma}_{0}} \right) \frac{\hat{\boldsymbol{\beta}}_{1}^{0} - \boldsymbol{\beta}_{1}}{\hat{\sigma}_{0}} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime} + \lambda \boldsymbol{\eta}_{1} = 0,$$

$$\frac{\partial \mathbb{L}}{\partial \boldsymbol{\beta}_{2}} = \sum_{i=r+1}^{n} \psi \left(\frac{y_{i} - \mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\beta}}_{2}^{0}}{\sigma_{0}} \right) \mathbf{x}_{i} + \sum_{i=r+1}^{n} \psi^{\prime} \left(\frac{y_{i} - \mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\beta}}_{2}^{0}}{\sigma_{0}} \right) \frac{\hat{\boldsymbol{\beta}}_{2}^{0} - \boldsymbol{\beta}_{2}}{\hat{\sigma}_{0}} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime} + \lambda \boldsymbol{\eta}_{2} = 0$$

elde edilir. Bölüm 2.2 de ve Teorem 4.6 nın kanıtında anlatılan adımlar izlenerek istenen sonuca ulaşılır.

Model (4.12) nin her bir fazındaki hata terimlerinin dağılımının iid LTS, GL ve JFST olması durumunda ve (4.13) kısıtı altında değişim noktasının ve model parametrelerinin OSM tahmin edicilerini bulmak için Teorem 4.9 da $\psi(\cdot)$ fonksiyonu yerine, sırasıyla Bölüm 2.2.1, 2.2.2 ve 2.2.3 de verilen eşitleri yazılır.

Önceki bölümlerde olduğu gibi, bu bölümde de OSM tahmin edicilerini bulmak için, ilgili parameterlerin MML tahmin edicileri başlangıç değer olarak alınmıştır.

- Hudson (1966) çalışmasına bağlı olarak algoritmada, kalıntı kareler toplamı en küçük olan iki-fazlı doğrusal regresyon modeli seçilerek değişim noktası tahmin edilmektedir. Bu tez çalışmasında ise değişim noktası, $-\log L_1$, $-\log L_2$ ve $-\log L_3$ log olabilirlik fonksiyonun değeri en küçük olan iki-fazlı doğrusal regresyon modeli seçilerek tahmin edilmiştir. Bir başka anlatımda, ilk verilen algoritmada "*kalıntı kareler toplamı*" ifadesinin yerine " $-\log L_i$ " (i = 1, 2, 3) alınmıştır. Böylelikle, algoritmadaki "minimum" mantığı korunmuştur. Burada, $\log L_1$, $\log L_2$ ve $\log L_3$ sırasıyla LTS, GL ve JFST dağılımlarının log olabilirlik fonksiyonularını göstermektedir.
- Bu yöntemin uygulanması için açıklayıcı değişken değerlerinin küçükten büyüğe doğru sıralanmış olması gerekmektedir.
- $\varepsilon_i^{(1)}$ ve $\varepsilon_i^{(2)}$ hata terimleri bağımsız olmalıdır.

5. MONTE-CARLO SİMULASYON ÇALIŞMASI

Bu bölümde, MML ve OSM tahmin edicileri ile LS tahmin edicisinin etkinliği ve dayanıklılığı Monte-Carlo simulasyonu kullanılarak karşılaştırılmıştır.

5.1. Süreksiz İki-Fazlı Doğrusal Regresyon Modelinde Değişim Noktasının Tahmini

Bu bölümde, süreksiz iki-fazlı doğrusal regresyon modeli için önerilen MML ve OSM tahmin edicileri (bkz. Bölüm 3.2 ve 3.3) ile geleneksel LS tahmin edicisinin performansları karşılaştırılmıştır. Tahmin ediciler için performans değerlendirmesi, yan (MEAN), ortalama hata kare (mean square error - MSE) ve göreli etkinlik (relative efficiency - RE) kriterleri kullanılarak yapılmıştır. MML ve OSM tahmin edicilerinin LS tahmin edicisine göre göreli etkinlikleri, sırasıyla

$$RE_{MML} = \frac{MSE_{MML}}{MSE_{LS}} \times 100, \quad RE_{OSM} = \frac{MSE_{OSM}}{MSE_{LS}} \times 100$$

formülleri ile hesaplanmıştır. Simulasyon çalışması yapılırken örneklem hacmi (*n*); 30, 50 ve 100 olarak alınmış ve MATLAB R2010a programı kullanılmıştır. Simulasyon çalışmasında iki model kullanmıştır.

Model I (r = n/2)

$$y_{i} = \begin{cases} x_{i} + \varepsilon_{i}^{(1)}, & i = 1, 2, \dots, n/2 \\ n + 5 - x_{i} + \varepsilon_{i}^{(2)}, & i = n/2 + 1, \dots, n \end{cases}$$
(5.1)

Burada, x_i açıklayıcı değişkenin değerleri, 1'den n ye kadar olan tam sayılardır. Bir başka deyişle $x_i = 1, 2, ..., n$ olarak alınmıştır.

Model II ($x_r = 38$)

$$y_i = \begin{cases} 1 + 0.3x_i + \varepsilon_i^{(1)}, & x_i \le 38, \quad i = 1, 2, \dots, 80\\ -0.5 + 0.5x_i + \varepsilon_i^{(2)}, & x_i > 38 \end{cases}$$
(5.2)

Bu model Chen ve ark. (2011) çalışmasında kullanmıştır. Modelin oluşturulması ile ilgili detaylı bilgi için bkz. Chen ve ark. (2011).

Simulasyon çalışması yapılırken hata terimlerinin dağılımının LTS, GL ve JFST olduğu varsayılarak yukarıda verilen modeller (Model I ve Model II) için değişim noktasının ve parametrelerin tahmin değerleri elde edilmiştir.

Değişim noktası *r* yi tahmin ederken LS tahmini bağlamında iki farklı durum incelenmiştir.

- **Birinci durum:** Hata terimlerinin dağılımının ne olduğuna bakmaksızın Quandt (1958, 1960) tarafından önerilen normal dağılım varsayımına dayalı geleneksel yöntem kullanılmıştır.
- **İkinci durum:** Model parametrelerinin tahmin değerlerini elde etmek için Quandt (1958, 1960) da olduğu gibi LS yöntemi kullanılmış, bununla beraber log olabilirlik fonksiyonu elde edilirken Quandt (1958, 1960) dan farklı olarak ilgilenilen hata dağılımı kullanılmıştır.

Değişim noktasının MML ve OSM tahmin değerlerini elde etmek için ise hem parametre tahmin değeleri hem de log olabilirlik fonksiyonu ilginilen hata dağılımı baz alınarak hesaplanmıştır.

Model I ve Birinci durum için elde edilen sonuçlar, Çizelge 5.1-5.3 de; Model I ve İkinci durum için elde edilen sonuçlar ise Çizelge 5.4-5.6 da verilmiştir.

Burada verilen sonuçlar, sadece Model I içindir. Model II için elde edilen sonuçlar, Model I için elde edilen sonuçlarla benzerdir. Bu nedenle, kısalık olması bakımından Model II için sonuçların tekrar verilmesine gerek duyulmamıştır. Ancak, burada belirtilmelidir ki, Model II de hata terimlerinin dağılımının çok çarpık olduğu durumlarda LS tahmin edicisinin etkinliğinin önemli ölçüde düştüğü gözlemlenmiştir.

Çizelge 5.1. Süreksiz model & Birinci durum: Hata terimlerinin dağılımının **LTS** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	k değer	LS		Ν	MML		(OSM	
,	U	MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				<i>p</i> = 2					
				<i>n</i> = 30					
ŕ	15	15.1610	0.7370	15.1480	0.4980	68	15.1400	0.4680	64
$\hat{eta}_0^{(1)}$	0	-0.0083	0.6005	-0.0059	0.2489	41	-0.0013	0.1906	32
$\hat{eta}_1^{(1)}$	1	1.0067	0.0350	1.0018	0.0048	14	1.0004	0.0024	7
$\hat{eta}_0^{(2)}$	35	35.0229	2.6841	35.0668	1.3893	52	35.0667	1.3100	49
$\hat{\beta}_{1}^{(2)}$	-1	-1.0011	0.0048	-1.0029	0.0025	52	-1.0029	0.0023	49
$\dot{\hat{\sigma}}$	1	0.9335	0.2095	1.1828	0.2079	99			
				<i>n</i> = 50					
\hat{r}	25	25.1570	0.5690	25.1100	0.2860	50	25.1140	0.3020	53
$\beta_{0}^{(1)}$	0	0.0219	0.1747	0.0195	0.1041	60	0.0200	0.1001	57
$\hat{\beta}_{1}^{(1)}$	1	0.9990	0.0008	0.9993	0.0005	63	0.9993	0.0005	60
$\hat{\beta}_{0}^{(2)}$	55	54.9984	1.0308	55.0044	0.6334	61	55.0046	0.6120	59
$\hat{m{eta}}_1^{(2)}$	-1	-1.0000	0.0007	-1.0001	0.0004	61	-1.0001	0.0004	58
$\hat{\sigma}$	1	0.9329	0.1251	1.1409	0.1008	81			
	-0	=0.1=10		n = 100)	10		0.0010	10
r â(1)	50	50.1510	0.5370	50.0900	0.2460	46	50.0850	0.2310	43
$\beta_0^{(1)}$	0	0.0150	0.0767	0.0071	0.0449	59	0.0056	0.0441	57
$\beta_1^{(1)}$	1	0.9996	0.0001	0.9999	0.0001	57	1.0000	0.0001	56
$\beta_0^{(2)}$	105	105.0298	0.6186	105.0151	0.3335	54	105.0106	0.3232	52
$\beta_{1}^{(2)}$	-1	-1.0004	0.0001	-1.0002	0.0001	53	-1.0002	0.0001	51
σ	1	0.9413	0.0445	1.0881	0.0271	61			
				<i>p</i> = 2.5					
	15	15 1750	0 5720	n = 30	0.4700	0.2	15 1650	0.4010	0.4
$\hat{\rho}(1)$	15	15.1750	0.3730	15.1040	0.4780	83	15.1050	0.4810	84 77
$\hat{\rho}_0$	0	-0.0126	0.2898	-0.0092	0.2262	78 00	-0.0094	0.2234	((
$\hat{\rho}_1$	1	1.0027	0.0030	1.0024	0.0029	80	1.0025	0.0029	80
$\hat{\rho}_{0}^{(2)}$	35	34.9474	2.2088	34.9698	1.6728	76	34.9659	1.6790	76
p_1	-1 1	-0.9981	0.0038	-0.9987	0.0029	// 95	-0.9986	0.0029	11
0	1	0.9303	0.0505	$\frac{1.0777}{n-50}$	0.0403	05			
ŕ	25	25,1350	0.4630	$\frac{n = 30}{25.1290}$	0.4010	87	25,1290	0.4010	87
$\hat{\beta}^{(1)}_{\epsilon}$	0	0.0051	0.1788	0.0086	0.1383	77	0.0090	0.1368	76
$\hat{\beta}^{(1)}$	1	0.9995	0.0008	0.9997	0.0006	77	0.9997	0.0006	76
$\hat{\beta}_{1}^{(2)}$	55	55 0238	1 1783	55 0472	0.8939	76	55 0488	0.8883	75
$\hat{\beta}^{(2)}$	-1	-1 0006	0.0008	-1 0011	0.0006	76	-1 0011	0.0006	75
$\hat{\sigma}^{\mu_1}$	1	0.9629	0.0359	1.0450	0.0279	78	1.0011	0.0000	15
				<i>n</i> = 100)				
ŕ	50	50.1180	0.3860	50.1090	0.3450	89	50.1090	0.3450	89
$\hat{eta}_0^{(1)}$	0	0.0106	0.0816	0.0093	0.0550	67	0.0092	0.0542	66
$\hat{eta}_1^{(1)}$	1	0.9998	0.0001	0.9997	0.0001	67	0.9997	0.0001	66
$\hat{\beta}_{0}^{(2)}$	105	105.0337	0.4987	105.0069	0.3763	75	105.0053	0.3755	75
$\hat{\beta}_{1}^{(2)}$	-1	-1.0005	0.0001	-1.0002	0.0001	76	-1.0001	0.0001	75
$\hat{\sigma}$	1	0.9845	0.0219	1.0276	0.0132	60			

Çizelge 5.1. (Devam) Süreksiz model & Birinci durum: Hata terimlerinin dağılımının **LTS** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gerçe	ek değer	LS MML OSM					OSM		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					p = 3.5	5				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					<i>n</i> = 30)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŕ	15	15.2550	0.7550	15.2520	0.7260	96	15.2520	0.7260	96
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{eta}_{0}^{(1)}$	0	-0.0001	0.2917	-0.0032	0.2694	92	-0.0036	0.2659	91
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\hat{eta}_1^{(1)}$	1	1.0004	0.0037	1.0008	0.0034	93	1.0009	0.0034	93
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{\beta}_{0}^{(2)}$	35	34.9610	2.3692	34.9635	2.1531	91	34.9632	2.0910	88
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{\beta}_{1}^{(2)}$	-1	-0.9984	0.0041	-0.9985	0.0038	91	-0.9985	0.0037	89
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\hat{\hat{\sigma}}$	1	0.9675	0.0353	1.0421	0.0336	95			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					n = 50)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŕ	25	25.1690	0.4850	25.1800	0.5040	104	25.1800	0.5040	104
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{eta}_0^{(1)}$	0	0.0015	0.1725	-0.0005	0.1517	88	0.0004	0.1509	87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\hat{eta}_1^{(1)}$	1	1.0002	0.0008	1.0005	0.0007	89	1.0005	0.0007	89
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{eta}_0^{(2)}$	55	55.0719	1.0994	55.0830	0.9854	90	55.0851	0.9814	89
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{eta}_1^{(2)}$	-1	-1.0019	0.0007	-1.0021	0.0006	89	-1.0022	0.0006	89
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{\hat{\sigma}}$	1	0.9831	0.0190	1.0308	0.0171	90			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					<i>n</i> = 10	0				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>î</i>	50	50.1360	0.4260	50.1300	0.4020	94	50.1300	0.4020	94
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{eta}_{0}^{(1)}$	0	-0.0075	0.0773	-0.0086	0.0695	90	-0.0090	0.0697	90
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{eta}_{1}^{(1)}$	1	1.0003	0.0001	1.0004	0.0001	91	1.0004	0.0001	91
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\hat{eta}_0^{(2)}$	105	104.9998	0.5839	105.0084	0.4991	85	105.0087	0.4976	85
$\hat{\sigma}$ 1 0.9914 0.0113 1.0143 0.0080 71 p = 5	$\hat{eta}_1^{(2)}$	-1	-1.0000	0.0001	-1.0001	0.0001	86	-1.0001	0.0001	86
<i>p</i> = 5	$\hat{\sigma}$	1	0.9914	0.0113	1.0143	0.0080	71			
					<i>p</i> = 5					
n = 30					<i>n</i> = 30)				
<i>r</i> 15 15.2000 0.5440 15.2030 0.5550 102 15.2010 0.5490 101	r	15	15.2000	0.5440	15.2030	0.5550	102	15.2010	0.5490	101
$\hat{eta}_0^{(1)}$ 0 -0.0365 0.2947 -0.0376 0.2865 97 -0.0363 0.2856 97	$\hat{eta}_0^{(1)}$	0	-0.0365	0.2947	-0.0376	0.2865	97	-0.0363	0.2856	97
$\hat{eta}_1^{(1)}$ 1 1.0033 0.0037 1.0038 0.0036 97 1.0037 0.0036 97	$\hat{eta}_1^{(1)}$	1	1.0033	0.0037	1.0038	0.0036	97	1.0037	0.0036	97
$\hat{eta}_0^{[2)}$ 35 35.0812 2.7161 35.0740 2.4971 92 35.0785 2.4393 90	$\hat{eta}_0^{(2)}$	35	35.0812	2.7161	35.0740	2.4971	92	35.0785	2.4393	90
$\hat{eta}_1^{(2)}$ -1 -1.0038 0.0048 -1.0035 0.0044 92 -1.0036 0.0043 90	$\hat{\beta}_1^{(2)}$	-1	-1.0038	0.0048	-1.0035	0.0044	92	-1.0036	0.0043	90
$\dot{\hat{\sigma}}$ 1 0.9729 0.0285 1.0209 0.0287 101	$\hat{\hat{\sigma}}$	1	0.9729	0.0285	1.0209	0.0287	101			
n = 50					<i>n</i> = 50)				
\hat{r} 25 25.1770 0.4930 25.1660 0.4620 94 25.1660 0.4620 94	r	25	25.1770	0.4930	25.1660	0.4620	94	25.1660	$0.4\overline{620}$	94
$\hat{m{eta}}_{0}^{(1)}$ 0 -0.0123 0.1731 -0.0136 0.1685 97 -0.0137 0.1689 98	$\hat{m{eta}}_{0}^{(1)}$	0	-0.0123	0.1731	-0.0136	0.1685	97	-0.0137	0.1689	98
$\hat{eta}_1^{(1)}$ 1 1.0011 0.0008 1.0012 0.0008 98 1.0012 0.0008 98	$\hat{eta}_1^{(1)}$	1	1.0011	0.0008	1.0012	0.0008	98	1.0012	0.0008	98
$\hat{eta}_{0}^{(2)}$ 55 55.0367 1.2982 55.0376 1.2290 95 55.0411 1.2195 94	$\hat{eta}_{0}^{(2)}$	55	55.0367	1.2982	55.0376	1.2290	95	55.0411	1.2195	94
$\hat{eta}_1^{(2)}$ -1 -1.0008 0.0009 -1.0008 0.0008 95 -1.0009 0.0008 94	$\hat{eta}_1^{(2)}$	-1	-1.0008	0.0009	-1.0008	0.0008	95	-1.0009	0.0008	94
$\hat{\sigma}$ 1 0.9874 0.0172 1.0197 0.0159 92	σ	1	0.9874	0.0172	1.0197	0.0159	92			
<i>n</i> = 100					n = 10	0				
\hat{r} 50 50.1710 0.4730 50.1710 0.4610 97 50.1710 0.4610 97	\hat{r}	50	50.1710	0.4730	50.1710	0.4610	97	50.1710	0.4610	97
$\beta_{0,1}^{(1)}$ 0 -0.0224 0.0811 -0.0229 0.0755 93 -0.0228 0.0751 93	$\hat{\beta}_{0}^{(1)}$	0	-0.0224	0.0811	-0.0229	0.0755	93	-0.0228	0.0751	93
$\beta_{1}^{(1)}$ 1 1.0009 0.0001 1.0009 0.0001 94 1.0009 0.0001 94	$\hat{\beta}_{1}^{(1)}$	1	1.0009	0.0001	1.0009	0.0001	94	1.0009	0.0001	94
$\hat{eta}_{0}^{(2)}$ 105 104.9902 0.5861 104.9894 0.5585 95 104.9893 0.5580 95	$\hat{eta}_{0}^{(2)}$	105	104.9902	0.5861	104.9894	0.5585	95	104.9893	0.5580	95
$eta_1^{_{(2)}}$ -1 -0.9998 0.0001 -0.9998 0.0001 95 -0.9997 0.0001 95	$\hat{meta}_1^{(2)}$	-1	-0.9998	0.0001	-0.9998	0.0001	95	-0.9997	0.0001	95
$\hat{\sigma}$ 1 0.9931 0.0082 1.0099 0.0075 92	σ	1	0.9931	0.0082	1.0099	0.0075	92			

Çizelge 5.2. Süreksiz model & Birinci durum: Hata terimlerinin dağılımının **GL** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	k değer	LS	6]	MML			OSM	
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				b = 0.5	5				
				<i>n</i> = 30)				
ŕ	15	16.0780	4.8260	15.9600	4.0480	84	15.9660	4.0780	85
$\hat{eta}_0^{(1)}$	0	0.0937	1.9795	0.0396	1.6638	84	0.0399	1.6630	84
$\hat{eta}_1^{(1)}$	1	0.9768	0.0291	0.9828	0.0228	78	0.9832	0.0228	78
$\hat{eta}_0^{(2)}$	35	34.2442	33.6329	34.4035	24.2660	72	34.4329	24.3902	73
$\hat{eta}_1^{(2)}$	-1	-0.9748	0.0531	-0.9819	0.0388	73	-0.9830	0.0390	74
$\hat{\hat{\sigma}}$	1	0.9461	0.0343	0.9177	0.0304	89			
				n = 50)				
<i>r</i>	25	25.9850	4.4670	25.9620	3.9480	88	25.9590	3.9330	88
$\hat{\beta}_{0}^{(1)}$	0	-0.0243	1.1427	-0.0344	0.9369	82	-0.0376	0.9371	82
$\hat{\beta}_{1}^{(1)}$	1	0.9991	0.0055	0.9993	0.0043	79	0.9994	0.0043	79
$\hat{eta}_{0}^{(2)}$	55	54.5095	13.0080	54.5613	10.1667	78	54.5731	10.2055	78
$\hat{eta}_1^{(2)}$	-1	-0.9886	0.0080	-0.9902	0.0063	78	-0.9905	0.0063	78
$\hat{\sigma}$	1	0.9804	0.0205	0.9603	0.0156	76			
				n = 100	0				
<i>r</i>	50	50.8090	3.5630	50.8330	3.1490	88	50.8330	3.1490	88
$\beta_0^{(1)}$	0	-0.0341	0.5166	-0.0390	0.4368	85	-0.0398	0.4359	84
$\beta_1^{(1)}$	1	0.9998	0.0006	0.9999	0.0005	82	1.0000	0.0005	81
$\beta_0^{(2)}$	105	104.9445	4.6136	104.9853	3.3087	72	104.9861	3.2980	71
$\beta_1^{(2)}$	-1	-0.9996	0.0008	-1.0002	0.0005	73	-1.0002	0.0005	72
Ô	1	0.9819	0.0109	0.9769	0.0083	76			
				b = 1					
				<i>n</i> = 30)				
r â(1)	15	15.7590	2.9610	15.7160	2.7360	92	15.7150	2.7310	92
$\beta_0^{(1)}$	0	0.0077	1.0366	0.0011	0.9539	92	0.0013	0.9567	92
$\beta_1^{(1)}$	1	0.9967	0.0127	0.9981	0.0116	91	0.9983	0.0116	91
$\beta_0^{(2)}$	35	34.6667	11.5480	34.7722	10.5385	91	34.7725	10.5716	92
$\beta_1^{(2)}$	-1	-0.9874	0.0190	-0.9913	0.0175	92	-0.9913	0.0176	93
σ	1	0.9681	0.0256	0.9434	0.0252	98			
÷	25	25 6000	2 7100	n = 50	2 6690	00	25 6040	2 6520	00
$\hat{\boldsymbol{\beta}}(1)$	23	20.0900	2.7100	20.0980	2.0000	90 04	20.0940	2.0320	90 02
$\hat{\rho}_{0}$	0	-0.0020	0.0024	-0.0203	0.3457	94	-0.0210	0.0452	95
$p_1^{(2)}$	1	1.0006	0.0029	1.0024	0.0027	93	1.0025	0.0026	92
$\hat{p}_{0}^{(2)}$	55	54.8410	5.3850	54.8864	5.1461	96	54.8838	5.1493	96
p_1	-1 1	-0.9957	0.0034	-0.9968	0.0032	95	-0.9967	0.0032	95
0	1	0.9773	0.0105	$\frac{0.9035}{n-10}$	0.0155	33			
ŕ	50	50,6060	2.4000	$\frac{77}{50.5850}$	2.2410	93	50.5850	2.2410	93
$\hat{\beta}^{(1)}_{\cdot}$	0	-0.0138	0 2643	-0.0124	0 2430	92	-0.0128	0 2430	92
$\hat{\beta}^{(1)}$	1	1 0001	0.0003	1 0003	0.0003	94	1 0003	0.0003	94
$\hat{\beta}^{(2)}$	105	104 9875	2 1070	105 0122	1 9765	9/	105 0125	1 9764	91
$\hat{\beta}^{(2)}$	_1	-U 0008	0.0004	_1 0001	1.27.02	01	_1 0001	0.0003	94 94
$\rho_1 \\ \hat{\sigma}$	-1	0.9996	0.0004	0 9839	0.0003	54 87	-1.0001	0.0005	54
0	T	0.0000	0.0002	0.0000	0.0012	07			

Çizelge 5.2. (Devam) Süreksiz model & Birinci durum: Hata terimlerinin dağılımının **GL** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	k değer	LS	6	Ν	AML		(OSM	
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				<i>b</i> = 2					
				<i>n</i> = 30					
ŕ	15	15.5960	2.1920	15.5590	2.0770	95	15.5600	2.0800	95
$\hat{eta}_0^{(1)}$	0	0.0407	0.6884	0.0648	0.6433	93	0.0548	0.6371	93
$\hat{eta}_1^{(1)}$	1	0.9980	0.0087	1.0000	0.0082	94	1.0002	0.0082	94
$\hat{\beta}_{0}^{(2)}$	35	35.0407	6.8602	35.1312	6.2514	91	35.1241	6.2199	91
$\hat{\beta}_{1}^{(2)}$	-1	-1.0016	0.0116	-1.0033	0.0105	90	-1.0034	0.0104	90
$\hat{\sigma}$	1	0.9682	0.0276	0.9389	0.0263	95			
				<i>n</i> = 50					
ŕ	25	25.5570	2.1670	25.4870	1.9450	90	25.4870	1.9450	90
$\hat{eta}_0^{(1)}$	0	0.0175	0.3805	0.0319	0.3505	92	0.0274	0.3502	92
$\hat{eta}_1^{(1)}$	1	1.0008	0.0018	1.0012	0.0016	91	1.0012	0.0016	91
$\hat{eta}_0^{(2)}$	55	54.9546	3.3227	55.0103	2.9408	89	55.0025	2.9273	88
$\hat{eta}_1^{(2)}$	-1	-0.9987	0.0022	-0.9994	0.0019	88	-0.9994	0.0019	88
$\hat{\sigma}$	1	0.9797	0.0145	0.9638	0.0130	89			
				<i>n</i> = 100)				
r	50	50.4870	1.8710	50.4730	1.8130	97	50.4730	1.8130	97
$\hat{eta}_0^{(1)}$	0	0.0185	0.1878	0.0264	0.1768	94	0.0248	0.1770	94
$\hat{eta}_{1}^{(1)}$	1	0.9995	0.0002	0.9997	0.0002	93	0.9997	0.0002	92
$\hat{eta}_{0}^{(2)}$	105	105.0733	1.4655	105.1085	1.2653	86	105.1064	1.2644	86
$\hat{oldsymbol{eta}}_1^{(2)}$	-1	-1.0008	0.0002	-1.0011	0.0002	86	-1.0011	0.0002	86
$\hat{\sigma}$	1	0.9908	0.0078	0.9849	0.0067	85			
				<i>b</i> = 3					
				<i>n</i> = 30					
ŕ	15	15.5960	2.1640	15.5210	1.9510	90	15.5230	1.9550	90
$\hat{eta}_{0}^{(1)}$	0	0.0545	0.6230	0.1326	0.5527	89	0.1166	0.5497	88
$\hat{oldsymbol{eta}}_1^{(1)}$	1	0.9994	0.0077	0.9991	0.0066	86	0.9992	0.0066	86
$\hat{eta}_0^{(2)}$	35	35.0176	6.2711	35.1437	5.2042	83	35.1286	5.1944	83
$\hat{eta}_1^{(2)}$	-1	-0.9999	0.0107	-1.0020	0.0087	82	-1.0021	0.0087	81
$\hat{\sigma}$	1	0.9736	0.0283	0.9371	0.0243	86			
				<i>n</i> = 50					
\hat{r}	25	25.4890	1.8710	25.3610	1.4350	77	25.3610	1.4350	77
$\beta_0^{(1)}$	0	0.0339	0.3637	0.0730	0.2955	81	0.0644	0.2930	81
$\beta_1^{(1)}$	1	0.9992	0.0016	0.9989	0.0013	77	0.9989	0.0013	77
$\beta_0^{(2)}$	55	55.0032	2.9634	55.1067	2.3709	80	55.1001	2.3738	80
$\hat{eta}_1^{(2)}$	-1	-0.9996	0.0019	-1.0011	0.0015	79	-1.0011	0.0015	79
ô	1	0.9812	0.0170	0.9628	0.0140	82			
				<i>n</i> = 100)				
\hat{r}	50	50.4600	1.7240	50.3680	1.4120	82	50.3680	1.4120	82
$\beta_0^{(1)}$	0	0.0080	0.1687	0.0172	0.1417	84	0.0133	0.1419	84
$\beta_1^{(1)}$	1	1.0001	0.0002	1.0005	0.0002	84	1.0005	0.0002	85
$\beta_0^{(2)}$	105	105.0084	1.1831	105.0499	0.9739	82	105.0463	0.9718	82
$\beta_1^{(2)}$	-1	-1.0000	0.0002	-1.0002	0.0002	82	-1.0002	0.0002	82
Ô	1	0.9952	0.0084	0.9839	0.0064	76			

Çizelge 5.2. (Devam) Süreksiz model & Birinci durum: Hata terimlerinin dağılımının **GL** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	ek değer	LS		MML			(DSM	
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				<i>b</i> = 4					
				<i>n</i> = 30					
ŕ	15	15.4490	1.8710	15.4110	1.6370	87	15.4110	1.6370	87
$\hat{eta}_0^{(1)}$	0	0.0618	0.6086	0.1389	0.5247	86	0.1183	0.5195	85
$\hat{eta}_1^{(1)}$	1	0.9995	0.0071	1.0018	0.0059	82	1.0020	0.0059	82
$\hat{\beta}_{0}^{(2)}$	35	34.9266	5.4575	35.1458	4.5095	83	35.1308	4.5158	83
$\hat{\beta}_{1}^{(2)}$	-1	-0.9950	0.0093	-0.9997	0.0077	83	-0.9999	0.0077	83
$\hat{\sigma}$	1	0.9610	0.0312	0.9217	0.0267	86			
				<i>n</i> = 50					
r	25	25.4670	1.6670	25.3900	1.4660	88	25.3900	1.4660	88
$\hat{eta}_0^{(1)}$	0	0.0379	0.3350	0.0886	0.2918	87	0.0775	0.2904	87
$\hat{eta}_1^{(1)}$	1	0.9997	0.0015	1.0002	0.0013	86	1.0001	0.0013	86
$\hat{eta}_0^{(2)}$	55	55.1003	2.5745	55.1928	2.0742	81	55.1811	2.0717	80
$\hat{eta}_1^{(2)}$	-1	-1.0018	0.0017	-1.0025	0.0013	80	-1.0026	0.0013	80
$\hat{\hat{\sigma}}$	1	0.9815	0.0194	0.9551	0.0152	79			
				<i>n</i> = 100					
ŕ	50	50.4250	1.5570	50.3280	1.2660	81	50.3280	1.2660	81
$\hat{eta}_0^{(1)}$	0	0.0134	0.1691	0.0318	0.1330	79	0.0267	0.1328	79
$\hat{eta}_1^{(1)}$	1	1.0000	0.0002	1.0003	0.0001	78	1.0003	0.0001	78
$\hat{\beta}_0^{(2)}$	105	104.9606	1.1053	105.0368	0.8573	78	105.0314	0.8566	78
$\hat{\beta}_{1}^{(2)}$	-1	-0.9993	0.0002	-0.9999	0.0001	78	-0.9999	0.0001	78
$\dot{\hat{\sigma}}$	1	0.9938	0.0092	0.9813	0.0068	74			
				<i>b</i> = 6					
				<i>n</i> = 30					
ŕ	15	15.4790	1.8590	15.4210	1.6790	90	15.4280	1.7060	92
$\hat{eta}_0^{(1)}$	0	0.0588	0.5998	0.1601	0.5024	84	0.1355	0.4966	83
$\hat{\beta}_{1}^{(1)}$	1	0.9998	0.0068	1.0018	0.0055	81	1.0019	0.0055	81
$\hat{\beta}_{0}^{(2)}$	35	34.9757	5.7609	35.2294	4.9280	86	35.1998	4.9250	85
$\hat{\beta}_{1}^{(2)}$	-1	-0.9958	0.0098	-1.0009	0.0082	83	-1.0008	0.0082	83
$\hat{\sigma}$	1	0.9689	0.0309	0.9269	0.0254	82			
				<i>n</i> = 50					
ŕ	25	25.4020	1.5600	25.3590	1.3770	88	25.3590	1.3770	88
$\hat{eta}_0^{(1)}$	0	0.0354	0.3424	0.1059	0.2585	75	0.0918	0.2557	75
$\hat{eta}_1^{(1)}$	1	0.9999	0.0014	1.0005	0.0011	76	1.0005	0.0011	76
$\hat{\beta}_{0}^{(2)}$	55	55.0163	2.5743	55.1413	2.0850	81	55.1279	2.0843	81
$\hat{\beta}_{1}^{(2)}$	-1	-0.9994	0.0016	-1.0005	0.0013	81	-1.0005	0.0013	82
$\hat{\sigma}$	1	0.9804	0.0192	0.9524	0.0149	78			
				<i>n</i> = 100)				
ŕ	50	50.4370	1.5890	50.3420	1.3560	85	50.3380	1.3400	84
$\hat{eta}_0^{(1)}$	0	0.0267	0.1729	0.0645	0.1238	72	0.0571	0.1230	71
$\hat{eta}_1^{(1)}$	1	1.0001	0.0002	0.9999	0.0001	73	0.9999	0.0001	73
$\hat{\beta}_{0}^{(2)}$	105	104.9919	1.1047	105.0505	0.7994	72	105.0435	0.7988	72
$\hat{\beta}_{1}^{(2)}$	-1	-0.9997	0.0002	-1.0000	0.0001	74	-1.0000	0.0001	74
$\hat{\sigma}$	1	0.9902	0.0099	0.9784	0.0069	70			

Çizelge 5.3. Süreksiz model & Birinci durum: Hata terimlerinin dağılımının **JFST** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	k değer	LS	5	I	MML		(DSM	
	0	MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				<i>a</i> = 3; <i>b</i> =	: 3				
				<i>n</i> = 30					
ŕ	15	15.3610	1.1270	15.3420	1.0700	95	15.3410	1.0690	95
$\hat{\beta}_{0}^{(1)}$	0	0.0292	0.4305	0.0246	0.3965	92	0.0219	0.3969	92
$\hat{\beta}_{1}^{(1)}$	1	0.9961	0.0053	0.9963	0.0049	93	0.9966	0.0049	93
$\hat{\beta}_{0}^{(2)}$	35	35.1176	3.5782	35.1313	3.3355	93	35.1327	3.3358	93
$\hat{\beta}_{1}^{(2)}$	-1	-1.0046	0.0063	-1.0050	0.0059	92	-1.0051	0.0058	92
$\hat{\sigma}$	1	0.9706	0.0309	1.0477	0.0331	107			
				<i>n</i> = 50					
ŕ	25	25.2770	0.9210	25.2500	0.7880	86	25.2500	0.7880	86
$\hat{eta}_0^{(1)}$	0	-0.0278	0.2704	-0.0297	0.2311	85	-0.0296	0.2281	84
$\hat{eta}_1^{(1)}$	1	1.0013	0.0012	1.0014	0.0011	86	1.0014	0.0010	85
$\hat{\beta}_{0}^{(2)}$	55	54.9749	1.8611	54.9993	1.6292	88	55.0012	1.6154	87
$\hat{\beta}_{1}^{(2)}$	-1	-0.9993	0.0012	-0.9998	0.0011	88	-0.9999	0.0011	87
$\hat{\sigma}$	1	0.9799	0.0218	1.0253	0.0182	83			
				<i>n</i> = 100					
r	50	50.2810	0.8890	50.2480	0.7700	87	50.2480	0.7700	87
$\hat{eta}_{0}^{(1)}$	0	-0.0170	0.1360	-0.0189	0.1194	88	-0.0188	0.1187	87
$\hat{eta}_1^{(1)}$	1	1.0007	0.0002	1.0008	0.0001	87	1.0008	0.0001	87
$\hat{eta}_0^{(2)}$	105	105.0211	0.8800	105.0253	0.7550	86	105.0244	0.7542	86
$\hat{eta}_1^{(2)}$	-1	-1.0001	0.0001	-1.0002	0.0001	85	-1.0002	0.0001	85
ô	1	0.9928	0.0118	1.0156	0.0086	73			
				a = 3; b =	: 9				
				<i>n</i> = 30					
ŕ	15	15.6520	2.0940	15.6010	1.7010	81	15.6040	1.7100	82
$\hat{eta}_{0}^{(1)}$	0	-0.1256	0.9762	-0.1093	0.6757	69	-0.0839	0.6743	69
$\hat{eta}_1^{(1)}$	1	1.0056	0.0110	1.0064	0.0079	72	1.0064	0.0079	72
$\hat{eta}_0^{(2)}$	35	34.4896	17.4394	34.7139	6.5065	37	34.7394	6.4930	37
$\hat{eta}_1^{(2)}$	-1	-0.9846	0.0260	-0.9925	0.0107	41	-0.9924	0.0107	41
$\hat{\hat{\sigma}}$	1	0.9574	0.0466	1.0047	0.0295	63			
				<i>n</i> = 50					
\hat{r}	25	25.4410	1.3430	25.4550	1.2530	93	25.4550	1.2530	93
$\beta_0^{(1)}$	0	-0.0714	0.5678	-0.0714	0.3622	64	-0.0567	0.3606	64
$\hat{\beta}_{1}^{(1)}$	1	0.9991	0.0023	0.9999	0.0015	65	0.9999	0.0015	65
$\hat{eta}_{0}^{(2)}$	55	54.9912	3.9308	54.9532	2.6464	67	54.9676	2.6417	67
$\hat{eta}_1^{(2)}$	-1	-1.0014	0.0025	-1.0002	0.0017	69	-1.0002	0.0017	68
$\hat{\sigma}$	1	0.9713	0.0321	0.9980	0.0153	48			
				<i>n</i> = 100					
<i>r</i>	50	50.4310	1.3250	50.4230	1.1430	86	50.4270	1.1590	87
$\beta_{0}^{(1)}$	0	-0.0360	0.2675	-0.0157	0.1719	64	-0.0094	0.1719	64
$\beta_{1}^{(1)}$	1	1.0002	0.0003	0.9998	0.0002	65	0.9998	0.0002	65
$\beta_0^{(2)}$	105	104.9950	1.6550	104.9650	1.0708	65	104.9725	1.0697	65
$\beta_1^{(2)}$	-1	-1.0002	0.0003	-0.9998	0.0002	66	-0.9998	0.0002	66
ô	1	0.9875	0.0186	1.0023	0.0072	39			

Çizelge 5.3. (Devam) Süreksiz model & Birinci durum: Hata terimlerinin dağılımının **JFST** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	k değer	r LS MML OSM							
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				<i>a</i> = 3; <i>b</i> =	= 15				
				n = 30	0				
ŕ	15	15.9050	3.6970	15.8400	2.5340	69	15.8390	2.5350	69
$\hat{eta}_0^{(1)}$	0	-0.2389	2.7905	-0.2294	1.3136	47	-0.1817	1.3011	47
$\hat{eta}_1^{(1)}$	1	0.9941	0.0467	1.0039	0.0135	29	1.0035	0.0134	29
$\hat{\beta}_{0}^{(2)}$	35	34.2202	33.1932	34.7625	11.4493	34	34.7945	11.4725	35
$\hat{\beta}_{1}^{(2)}$	-1	-0.9793	0.0519	-0.9985	0.0185	36	-0.9978	0.0186	36
$\hat{\sigma}$	1	0.9481	0.0519	0.9900	0.0287	55			
				n = 50	0				
ŕ	25	25.8230	3.2130	25.7460	2.3120	72	25.7410	2.2690	71
$\hat{eta}_0^{(1)}$	0	-0.0946	1.3960	-0.1115	0.6816	49	-0.0863	0.6772	49
$\hat{eta}_1^{(1)}$	1	0.9937	0.0049	0.9969	0.0028	57	0.9969	0.0028	57
$\hat{eta}_0^{(2)}$	55	54.8761	10.1689	54.9666	5.2949	52	54.9887	5.2683	52
$\hat{\beta}_{1}^{(2)}$	-1	-1.0016	0.0061	-1.0033	0.0033	54	-1.0032	0.0033	54
$\hat{\sigma}$	1	0.9642	0.0379	0.9862	0.0158	42			
				<i>n</i> = 10	0				
ŕ	50	50.6830	2.5850	50.6540	1.9180	74	50.6540	1.9180	74
$\hat{eta}_{0}^{(1)}$	0	-0.0678	0.6861	-0.0410	0.3137	46	-0.0268	0.3133	46
$\hat{eta}_1^{(1)}$	1	0.9997	0.0006	0.9992	0.0003	52	0.9992	0.0003	52
$\hat{eta}_0^{(2)}$	105	104.9130	3.7030	104.9083	1.8775	51	104.9222	1.8757	51
$\hat{eta}_1^{(2)}$	-1	-0.9997	0.0006	-0.9995	0.0003	53	-0.9995	0.0003	53
$\hat{\hat{\sigma}}$	1	0.9846	0.0225	0.9957	0.0071	32			
				<i>a</i> = 15; <i>b</i>	= 15				
				n = 30	0				
ŕ	15	15.2750	0.6810	15.2720	0.6700	98	15.2720	0.6700	98
$\hat{eta}_{0}^{(1)}$	0	-0.0534	0.3236	-0.0560	0.3220	99	-0.0565	0.3218	99
$\hat{eta}_1^{(1)}$	1	1.0071	0.0043	1.0075	0.0043	100	1.0076	0.0043	100
$\hat{eta}_0^{(2)}$	35	35.1178	2.5294	35.1223	2.5214	100	35.1233	2.5182	100
$\hat{eta}_1^{(2)}$	-1	-1.0043	0.0044	-1.0045	0.0044	100	-1.0046	0.0044	100
$\hat{\sigma}$	1	0.9853	0.0193	0.9995	0.0196	102			
				n = 50	0				
\hat{r}	25	25.2040	0.5540	25.2070	0.5670	102	25.2070	0.5670	102
$\beta_0^{(1)}$	0	-0.0063	0.1820	-0.0073	0.1810	99	-0.0077	0.1809	99
$\hat{\beta}_{1}^{(1)}$	1	1.0010	0.0008	1.0011	0.0008	99	1.0011	0.0008	99
$\hat{eta}_{0}^{(2)}$	55	55.0598	1.2692	55.0603	1.2568	99	55.0609	1.2548	99
$\hat{eta}_1^{(2)}$	-1	-1.0016	0.0008	-1.0017	0.0008	99	-1.0017	0.0008	99
σ	1	0.9945	0.0109	1.0042	0.0110	101			
				<i>n</i> = 10	0	a -			a -
<i>r</i>	50	50.2020	0.5580	50.2010	0.5530	99	50.2010	0.5530	99
$\beta_0^{(1)}$	0	-0.0043	0.0894	-0.0051	0.0885	99	-0.0051	0.0885	99
$\beta_1^{(1)}$	1	1.0002	0.0001	1.0002	0.0001	99	1.0002	0.0001	99
$\beta_0^{(2)}$	105	104.9933	0.5881	104.9949	0.5811	99	104.9953	0.5807	99
$\beta_1^{(2)}$	-1	-0.9999	0.0001	-0.9999	0.0001	99	-0.9999	0.0001	99
σ̈́	1	0.9968	0.0058	1.0026	0.0058	100			

Çizelge 5.1 den açıktır ki, Model I in her bir fazındaki hata terimlerinin dağılımının iid LTS olması durumunda, değişim noktasının ve model parametrelerinin MML ve OSM tahmin edicileri LS tahmin edicilerinden daha etkindir. Şekil parametresi p 5'e yaklaştıkça LS tahmin edicilerinin etkinlikleri, MML ve OSM tahmin edicilerinin etkinliklerine yaklaşmaktadır. Bu ise beklenen bir durumdur.

Çizelge 5.2 den görülmektedir ki, Model I in her bir fazındaki hata terimlerinin dağılımının iid GL olması durumunda, değişim noktasının ve model parametrelerinin MML ve OSM tahmin edicileri LS tahmin edicilerinden genel olarak daha etkindir. b = 1 iken LS tahmin edicilerinin etkinliği, MML ve OSM tahmin edicilerinin etkinliklerine yaklaşmakta, dağılımın çarpık olduğu durumlarda ise MML ve OSM tahmin edicileri daha etkin olmaktadır.

Model I in her bir fazındaki hata terimlerinin dağılımının iid JFST olması durumunda, değişim noktasının ve model parametrelerinin MML ve OSM tahmin edicilerinin LS tahmin edicisinden daha etkin olduğu Çizelge 5.3 den açık olarak görülmektedir. Şekil parametreleri *a* ve *b* 15'e yaklaştıkça LS tahmin edicisinin etkinliği, MML ve OSM tahmin edicilerinin etkinliğine yaklaşmakta, dağılımın çarpık olduğu durumda MML ve OSM tahmin edicileri daha etkin olmaktadır.

Çizelge 5.4. Süreksiz model & İkinci durum: Hata terimlerinin dağılımının **LTS** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	k değer	LS	5]	MML			OSM	
,	0	MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				<i>p</i> = 2					
				<i>n</i> = 30)				
ŕ	15	15.1520	0.5020	15.1480	0.4980	99	15.1400	0.4680	93
$\hat{eta}_0^{(1)}$	0	0.0187	0.3280	-0.0059	0.2489	76	-0.0013	0.1906	58
$\hat{\beta}_{1}^{(1)}$	1	0.9988	0.0037	1.0018	0.0048	128	1.0004	0.0024	65
$\hat{\beta}_{0}^{(2)}$	35	35.1164	1.8394	35.0668	1.3893	76	35.0667	1.3100	71
$\hat{\beta}_{1}^{(2)}$	-1	-1.0048	0.0034	-1.0029	0.0025	74	-1.0029	0.0023	69
$\hat{\sigma}$	1	0.9377	0.2213	1.1828	0.2079	94			
				n = 50)				
r	25	25.1340	0.3560	25.1100	0.2860	80	25.1140	0.3020	85
$\hat{\beta}_{0}^{(1)}$	0	0.0202	0.1740	0.0195	0.1041	60	0.0200	0.1001	58
$\hat{m{eta}}_{1_{0}}^{(1)}$	1	0.9992	0.0008	0.9993	0.0005	62	0.9993	0.0005	60
$\hat{\beta}_{0}^{(2)}$	55	55.0252	1.0156	55.0044	0.6334	62	55.0046	0.6120	60
$\hat{eta}_1^{(2)}$	-1	-1.0006	0.0007	-1.0001	0.0004	61	-1.0001	0.0004	59
$\hat{\sigma}$	1	0.9358	0.1268	1.1409	0.1008	79			
				<i>n</i> = 10	0				
\hat{r}	50	50.1030	0.3110	50.0900	0.2460	79	50.0850	0.2310	74
$\hat{\beta}_{0}^{(1)}$	0	0.0158	0.0764	0.0071	0.0449	59	0.0056	0.0441	58
$\beta_1^{(1)}$	1	0.9995	0.0001	0.9999	0.0001	59	1.0000	0.0001	58
$\hat{\beta}_{0}^{(2)}$	105	105.0431	0.6122	105.0151	0.3335	54	105.0106	0.3232	53
$\beta_1^{(2)}$	-1	-1.0006	0.0001	-1.0002	0.0001	53	-1.0002	0.0001	52
σ	1	0.9429	0.0447	1.0881	0.0271	61			
				p=2.	5				
		1 - 1		n = 30)		1= 10=0	0.4010	
r â(1)	15	15.1770	0.5350	15.1640	0.4780	89	15.1650	0.4810	90
$\beta_0^{(1)}$	0	-0.0157	0.2887	-0.0092	0.2262	78	-0.0094	0.2234	77
$\beta_1^{(1)}$	1	1.0032	0.0035	1.0024	0.0029	82	1.0025	0.0029	81
$\beta_0^{(2)}$	35	34.9777	1.9579	34.9698	1.6728	85	34.9659	1.6790	86
$\beta_1^{(2)}$	-1	-0.9992	0.0035	-0.9987	0.0029	85	-0.9986	0.0029	85
σ	1	0.9570	0.0574	1.0777	0.0485	85			
÷	25	25 1420	0.4600	n = 50	J	07	25 1200	0.4010	07
$\hat{\beta}^{(1)}$	25	20.1420	0.4000	20.1290	0.4010	01 77	20.1290	0.4010	01 77
$\hat{\rho}_0$ $\hat{g}^{(1)}$	1	0.0042	0.1700	0.0000	0.1303	((70	0.0090	0.1308	((77
$\hat{\rho}_1$ $\hat{g}^{(2)}$	1	0.3330	1 1620	0.3337	0.0000	(Ö 77	0.3337	0.0000	11
$\hat{\rho}_{0}^{(2)}$	55	1 0000	1.1639	55.0472	0.8939	((55.0488	0.8883	70 70
p_1	-1 1	-1.0008 0.9634	0.0008	-1.0011 1.0450	0.0006	70 79	-1.0011	0.0006	76
0	I	0.3034	0.0333	$\frac{1.0430}{n-10}$	0.0273	70			
ŕ	50	50,1050	0.3450	$\frac{n-10}{50.1090}$	0.3450	100	50,1090	0.3450	100
$\hat{\beta}^{(1)}_{\epsilon}$	0	0.0113	0.0813	0.0093	0.0550	68	0.0092	0.0542	67
$\hat{\beta}^{(1)}_{:}$	1	0.9997	0.0001	0.9997	0.0001	68	0.9997	0.00012	67
$\hat{\beta}^{(2)}_{1}$	105	105 0357	0 4877	105 0069	0.3763	77	105 0053	0.3755	77
$\hat{\beta}^{(2)}$	_1	-1 0005	0.0001	-1 0002	0.0001	77	-1 0001	0.0001	77
$\hat{\sigma}^{P_1}$	-1	0.9846	0.0219	1.0276	0.0132	60	-1.0001	0.0001	
	-	0.0010	0.0210	1.0210	0.0102	00			

Çizelge 5.4. (Devam) Süreksiz model & İkinci durum: Hata terimlerinin dağılımının **LTS** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	k değer	LS]	MML OSM				
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				p = 3.	5				
				<i>n</i> = 30)				
ŕ	15	15.2480	0.7200	15.2520	0.7260	101	15.2520	0.7260	101
$\hat{eta}_0^{(1)}$	0	-0.0008	0.2912	-0.0032	0.2694	93	-0.0036	0.2659	91
$\hat{eta}_1^{(1)}$	1	1.0005	0.0037	1.0008	0.0034	93	1.0009	0.0034	92
$\hat{\beta}_{0}^{(2)}$	35	34.9605	2.3953	34.9635	2.1531	90	34.9632	2.0910	87
$\hat{\beta}_{1}^{(2)}$	-1	-0.9984	0.0042	-0.9985	0.0038	90	-0.9985	0.0037	88
$\hat{\sigma}$	1	0.9677	0.0353	1.0421	0.0336	95			
				n = 50)				
ŕ	25	25.1790	0.4990	25.1800	0.5040	101	25.1800	0.5040	101
$\hat{eta}_0^{(1)}$	0	0.0007	0.1731	-0.0005	0.1517	88	0.0004	0.1509	87
$\hat{eta}_1^{(1)}$	1	1.0003	0.0008	1.0005	0.0007	89	1.0005	0.0007	89
$\hat{eta}_0^{(2)}$	55	55.0741	1.0969	55.0830	0.9854	90	55.0851	0.9814	89
$\hat{\beta}_1^{(2)}$	-1	-1.0019	0.0007	-1.0021	0.0006	90	-1.0022	0.0006	89
$\hat{\sigma}$	1	0.9832	0.0190	1.0308	0.0171	90			
				<i>n</i> = 10	0				
<i>r</i>	50	50.1360	0.4220	50.1300	0.4020	95	50.1300	0.4020	95
$\hat{\beta}_{0}^{(1)}$	0	-0.0076	0.0772	-0.0086	0.0695	90	-0.0090	0.0697	90
$\hat{eta}_{1}^{(1)}$	1	1.0003	0.0001	1.0004	0.0001	91	1.0004	0.0001	91
$\hat{eta}_{0}^{(2)}$	105	105.0004	0.5827	105.0084	0.4991	86	105.0087	0.4976	85
$\hat{oldsymbol{eta}}_1^{(2)}$	-1	-1.0000	0.0001	-1.0001	0.0001	86	-1.0001	0.0001	86
$\hat{\sigma}$	1	0.9914	0.0113	1.0143	0.0080	71			
				<i>p</i> = 5					
				n = 30)				
ŕ	15	15.2010	0.5450	15.2030	0.5550	102	15.2010	0.5490	101
$\hat{eta}_{0}^{(1)}$	0	-0.0363	0.2950	-0.0376	0.2865	97	-0.0363	0.2856	97
$\hat{oldsymbol{eta}}_1^{(1)}$	1	1.0033	0.0037	1.0038	0.0036	97	1.0037	0.0036	96
$\hat{eta}_0^{(2)}$	35	35.0850	2.6590	35.0740	2.4971	94	35.0785	2.4393	92
$\hat{eta}_1^{(2)}$	-1	-1.0039	0.0047	-1.0035	0.0044	94	-1.0036	0.0043	92
$\hat{\sigma}$	1	0.9730	0.0285	1.0209	0.0287	101			
				n = 50)				
\hat{r}	25	25.1730	0.4890	25.1660	0.4620	94	25.1660	0.4620	94
$\beta_0^{(1)}$	0	-0.0121	0.1729	-0.0136	0.1685	97	-0.0137	0.1689	98
$\beta_1^{(1)}$	1	1.0010	0.0008	1.0012	0.0008	98	1.0012	0.0008	98
$\beta_0^{(2)}$	55	55.0338	1.3028	55.0376	1.2290	94	55.0411	1.2195	94
$\hat{meta}_1^{(2)}$	-1	-1.0007	0.0009	-1.0008	0.0008	95	-1.0009	0.0008	94
$\hat{\sigma}$	1	0.9875	0.0172	1.0197	0.0159	92			
				<i>n</i> = 10	0				
\hat{r}	50	50.1710	0.4610	50.1710	0.4610	100	50.1710	0.4610	100
$\beta_0^{(1)}$	0	-0.0227	0.0809	-0.0229	0.0755	93	-0.0228	0.0751	93
$\beta_1^{(1)}$	1	1.0009	0.0001	1.0009	0.0001	94	1.0009	0.0001	94
$\beta_0^{(2)}$	105	104.9919	0.5859	104.9894	0.5585	95	104.9893	0.5580	95
$\beta_1^{(2)}$	-1	-0.9998	0.0001	-0.9998	0.0001	95	-0.9997	0.0001	95
Ô	1	0.9931	0.0082	1.0099	0.0075	92			

Gerçe	k değer	LS MML OSM					OSM		
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				b=0.	5				
				<i>n</i> = 3	0				
ŕ	15	15.9710	4.0770	15.9600	4.0480	99	15.9660	4.0780	100
$\hat{eta}_0^{(1)}$	0	0.0551	1.9372	0.0396	1.6638	86	0.0399	1.6630	86
$\hat{eta}_1^{(1)}$	1	0.9841	0.0264	0.9828	0.0228	86	0.9832	0.0228	86
$\hat{\beta}_{0}^{(2)}$	35	34.6671	27.3025	34.4035	24.2660	89	34.4329	24.3902	89
$\hat{\beta}_{1}^{(2)}$	-1	-0.9906	0.0440	-0.9819	0.0388	88	-0.9830	0.0390	89
$\hat{\sigma}$	1	0.9492	0.0348	0.9177	0.0304	87			
				n = 5	0				
ŕ	25	25.9560	3.8840	25.9620	3.9480	102	25.9590	3.9330	101
$\hat{\beta}_{0}^{(1)}$	0	-0.0451	1.1084	-0.0344	0.9369	85	-0.0376	0.9371	85
$\hat{eta}_1^{(1)}$	1	1.0015	0.0051	0.9993	0.0043	85	0.9994	0.0043	84
$\hat{eta}_0^{(2)}$	55	54.7158	11.6263	54.5613	10.1667	87	54.5731	10.2055	88
$\hat{\beta}_1^{(2)}$	-1	-0.9934	0.0073	-0.9902	0.0063	86	-0.9905	0.0063	87
$\hat{\sigma}$	1	0.9818	0.0206	0.9603	0.0156	76			
				n = 10	00				
r	50	50.8320	3.1780	50.8330	3.1490	99	50.8330	3.1490	99
$\hat{\beta}_{0}^{(1)}$	0	-0.0438	0.5116	-0.0390	0.4368	85	-0.0398	0.4359	85
$\hat{eta}_{1}^{(1)}$	1	1.0004	0.0006	0.9999	0.0005	84	1.0000	0.0005	84
$\hat{eta}_0^{(2)}$	105	105.0176	4.1990	104.9853	3.3087	79	104.9861	3.2980	79
$\hat{eta}_1^{(2)}$	-1	-1.0004	0.0007	-1.0002	0.0005	79	-1.0002	0.0005	78
$\hat{\sigma}$	1	0.9824	0.0109	0.9769	0.0083	76			
				<i>b</i> = 1	-				
				<i>n</i> = 3	0				
r	15	15.7010	2.6630	15.7160	2.7360	103	15.7150	2.7310	103
$\hat{\beta}_{0}^{(1)}$	0	0.0075	1.0148	0.0011	0.9539	94	0.0013	0.9567	94
$\hat{\beta}_{1}^{(1)}$	1	0.9967	0.0123	0.9981	0.0116	94	0.9983	0.0116	95
$\hat{eta}_0^{(2)}$	35	34.7720	10.6460	34.7722	10.5385	99	34.7725	10.5716	99
$\hat{eta}_1^{(2)}$	-1	-0.9913	0.0177	-0.9913	0.0175	99	-0.9913	0.0176	99
$\hat{\sigma}$	1	0.9686	0.0257	0.9434	0.0252	98			
				<i>n</i> = 5	0				
\hat{r}	25	25.6950	2.6550	25.6980	2.6680	100	25.6940	2.6520	100
$\beta_{0}^{(1)}$	0	-0.0055	0.5759	-0.0205	0.5457	95	-0.0218	0.5432	94
$\beta_1^{(1)}$	1	1.0009	0.0028	1.0024	0.0027	94	1.0025	0.0026	94
$\hat{\beta}_{0}^{(2)}$	55	54.8745	5.2338	54.8864	5.1461	98	54.8838	5.1493	98
$\hat{eta}_1^{(2)}$	-1	-0.9965	0.0033	-0.9968	0.0032	97	-0.9967	0.0032	97
$\hat{\sigma}$	1	0.9775	0.0165	0.9635	0.0153	93			
^			0.0100	<i>n</i> = 10	0	1.6-		0.0.17.0	1.07
r â(1)	50	50.5820	2.2160	50.5850	2.2410	101	50.5850	2.2410	101
$\beta_0^{(1)}$	0	-0.0159	0.2651	-0.0124	0.2430	92	-0.0128	0.2430	92
$\beta_1^{(1)}$	1	1.0002	0.0003	1.0003	0.0003	94	1.0003	0.0003	94
$\beta_0^{(2)}$	105	104.9994	2.0781	105.0123	1.9765	95	105.0125	1.9764	95
$\beta_1^{(2)}$	-1	-1.0000	0.0003	-1.0001	0.0003	95	-1.0001	0.0003	95
$\hat{\sigma}$	1	0.9907	0.0083	0.9839	0.0072	87			

Çizelge 5.5. Süreksiz model & İkinci durum: Hata terimlerinin dağılımının **GL** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Çizelge 5.5. (Devam) Süreksiz model & İkinci durum: Hata terimlerinin dağılımının **GL** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	k değer	LS		1	MML			OSM	
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				<i>b</i> = 2					
				<i>n</i> = 30)				
ŕ	15	15.5630	2.0890	15.5590	2.0770	99	15.5600	2.0800	100
$\hat{eta}_0^{(1)}$	0	0.0420	0.6896	0.0648	0.6433	93	0.0548	0.6371	92
$\hat{\beta}_{1}^{(1)}$	1	0.9976	0.0087	1.0000	0.0082	95	1.0002	0.0082	95
$\hat{\beta}_{0}^{(2)}$	35	35.0066	6.7376	35.1312	6.2514	93	35.1241	6.2199	92
$\hat{\beta}_{1}^{(2)}$	-1	-1.0003	0.0114	-1.0033	0.0105	92	-1.0034	0.0104	91
$\hat{\sigma}$	1	0.9690	0.0277	0.9389	0.0263	95			
				<i>n</i> = 50)				
ŕ	25	25.4840	1.9420	25.4870	1.9450	100	25.4870	1.9450	100
$\hat{eta}_0^{(1)}$	0	0.0219	0.3740	0.0319	0.3505	94	0.0274	0.3502	94
$\hat{eta}_1^{(1)}$	1	1.0003	0.0017	1.0012	0.0016	94	1.0012	0.0016	94
$\hat{\beta}_{0}^{(2)}$	55	54.9532	3.2366	55.0103	2.9408	91	55.0025	2.9273	90
$\hat{\beta}_{1}^{(2)}$	-1	-0.9987	0.0021	-0.9994	0.0019	90	-0.9994	0.0019	90
$\hat{\sigma}$	1	0.9805	0.0146	0.9638	0.0130	89			
				<i>n</i> = 10	0				
ŕ	50	50.4840	1.8400	50.4730	1.8130	99	50.4730	1.8130	99
$\hat{eta}_{0}^{(1)}$	0	0.0181	0.1872	0.0264	0.1768	94	0.0248	0.1770	95
$\hat{eta}_1^{(1)}$	1	0.9995	0.0002	0.9997	0.0002	94	0.9997	0.0002	94
$\hat{eta}_{0}^{(2)}$	105	105.0725	1.4605	105.1085	1.2653	87	105.1064	1.2644	87
$\hat{eta}_1^{(2)}$	-1	-1.0008	0.0002	-1.0011	0.0002	86	-1.0011	0.0002	86
$\hat{\sigma}$	1	0.9911	0.0079	0.9849	0.0067	85			
				<i>b</i> = 3					
				<i>n</i> = 30)				
ŕ	15	15.5110	1.9490	15.5210	1.9510	100	15.5230	1.9550	100
$\hat{eta}_0^{(1)}$	0	0.0610	0.6182	0.1326	0.5527	89	0.1166	0.5497	89
$\hat{eta}_1^{(1)}$	1	0.9978	0.0076	0.9991	0.0066	88	0.9992	0.0066	88
$\hat{eta}_0^{(2)}$	35	34.9763	6.0785	35.1437	5.2042	86	35.1286	5.1944	85
$\hat{eta}_1^{(2)}$	-1	-0.9984	0.0103	-1.0020	0.0087	84	-1.0021	0.0087	84
$\hat{\sigma}$	1	0.9755	0.0286	0.9371	0.0243	85			
				<i>n</i> = 50)				
<i>r</i>	25	25.3680	1.4780	25.3610	1.4350	97	25.3610	1.4350	97
$\beta_0^{(1)}$	0	0.0402	0.3599	0.0730	0.2955	82	0.0644	0.2930	81
$\hat{eta}_1^{(1)}$	1	0.9983	0.0016	0.9989	0.0013	79	0.9989	0.0013	79
$\hat{\beta}_{0}^{(2)}$	55	55.0122	2.8345	55.1067	2.3709	84	55.1001	2.3738	84
$\hat{eta}_1^{(2)}$	-1	-0.9999	0.0018	-1.0011	0.0015	82	-1.0011	0.0015	82
$\hat{\sigma}$	1	0.9822	0.0171	0.9628	0.0140	82			
				<i>n</i> = 10	0				
\hat{r}	50	50.3850	1.4530	50.3680	1.4120	97	50.3680	1.4120	97
$\beta_0^{(1)}$	0	0.0089	0.1691	0.0172	0.1417	84	0.0133	0.1419	84
$\beta_1^{(1)}$	1	1.0000	0.0002	1.0005	0.0002	84	1.0005	0.0002	85
$\beta_0^{(2)}$	105	105.0105	1.1879	105.0499	0.9739	82	105.0463	0.9718	82
$eta_1^{(2)}$	-1	-1.0000	0.0002	-1.0002	0.0002	82	-1.0002	0.0002	81
σ	1	0.9956	0.0084	0.9839	0.0064	76			

Çizelge 5.5. (Devam) Süreksiz model & İkinci durum: Hata terimlerinin dağılımının **GL** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	k değer	LS		MML OSM					
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				<i>b</i> = 4					
				<i>n</i> = 30)				
ŕ	15	15.4040	1.6200	15.4110	1.6370	101	15.4110	1.6370	101
$\hat{eta}_0^{(1)}$	0	0.0579	0.6102	0.1389	0.5247	86	0.1183	0.5195	85
$\hat{\beta}_{1}^{(1)}$	1	0.9996	0.0070	1.0018	0.0059	84	1.0020	0.0059	84
$\hat{\beta}_{0}^{(2)}$	35	34.9443	5.2848	35.1458	4.5095	85	35.1308	4.5158	85
$\hat{\beta}_{1}^{(2)}$	-1	-0.9957	0.0090	-0.9997	0.0077	85	-0.9999	0.0077	85
$\hat{\sigma}$	1	0.9630	0.0319	0.9217	0.0267	84			
				<i>n</i> = 50)				
ŕ	25	25.4020	1.4720	25.3900	1.4660	100	25.3900	1.4660	100
$\hat{eta}_{0}^{(1)}$	0	0.0393	0.3343	0.0886	0.2918	87	0.0775	0.2904	87
$\hat{eta}_1^{(1)}$	1	0.9993	0.0014	1.0002	0.0013	87	1.0001	0.0013	87
$\hat{eta}_0^{(2)}$	55	55.0942	2.5082	55.1928	2.0742	83	55.1811	2.0717	83
$\hat{eta}_1^{(2)}$	-1	-1.0017	0.0016	-1.0025	0.0013	82	-1.0026	0.0013	82
$\hat{\sigma}$	1	0.9827	0.0194	0.9551	0.0152	78			
				<i>n</i> = 10	0				
\hat{r}	50	50.3440	1.3020	50.3280	1.2660	97	50.3280	1.2660	97
$\hat{\beta}_{0}^{(1)}$	0	0.0154	0.1676	0.0318	0.1330	79	0.0267	0.1328	79
$\hat{eta}_{1}^{(1)}$	1	0.9998	0.0002	1.0003	0.0001	79	1.0003	0.0001	79
$\hat{eta}_{0}^{(2)}$	105	104.9650	1.0990	105.0368	0.8573	78	105.0314	0.8566	78
$\hat{m eta}_1^{(2)}$	-1	-0.9994	0.0002	-0.9999	0.0001	78	-0.9999	0.0001	78
$\hat{\sigma}$	1	0.9944	0.0092	0.9813	0.0068	74			
				<i>b</i> = 6					
				<i>n</i> = 30)				
\hat{r}	15	15.4290	1.6610	15.4210	1.6790	101	15.4280	1.7060	103
$\hat{\beta}_{0}^{(1)}$	0	0.0539	0.6087	0.1601	0.5024	83	0.1355	0.4966	82
$\hat{m{eta}}_{1}^{(1)}$	1	0.9995	0.0067	1.0018	0.0055	82	1.0019	0.0055	82
$\hat{eta}_{0}^{(2)}$	35	34.9806	5.6482	35.2294	4.9280	87	35.1998	4.9250	87
$\hat{m eta}_1^{(2)}$	-1	-0.9962	0.0096	-1.0009	0.0082	85	-1.0008	0.0082	85
$\hat{\sigma}$	1	0.9721	0.0315	0.9269	0.0254	81			
				n = 50)				
\hat{r}	25	25.3660	1.3660	25.3590	1.3770	101	25.3590	1.3770	101
$\beta_0^{(1)}$	0	0.0300	0.3441	0.1059	0.2585	75	0.0918	0.2557	74
$\beta_{1}^{(1)}$	1	1.0001	0.0014	1.0005	0.0011	78	1.0005	0.0011	78
$\beta_0^{(2)}$	55	55.0110	2.5105	55.1413	2.0850	83	55.1279	2.0843	83
$\beta_1^{(2)}$	-1	-0.9994	0.0016	-1.0005	0.0013	83	-1.0005	0.0013	83
Ô	1	0.9821	0.0194	0.9524	0.0149	77			
-	50	50.2270	1 0070	n = 10	0	101	50 2200	1 0 400	100
r â(1)	50	50.3370	1.3370	50.3420	1.3560	101	50.3380	1.3400	100
$p_0^{(1)}$	0	0.0291	0.1716	0.0645	0.1238	72	0.0571	0.1230	72
$p_1^{(1)}$	1	0.9999	0.0002	0.9999	0.0001	76	0.9999	0.0001	76
$\beta_{0}^{(2)}$	105	104.9957	1.0560	105.0505	0.7994	76	105.0435	0.7988	76
$\beta_{1}^{(2)}$	-1	-0.9998	0.0002	-1.0000	0.0001	77	-1.0000	0.0001	77
σ	1	0.9910	0.0099	0.9784	0.0069	69			

Çizelge 5.6. Süreksiz model & İkinci durum: Hata terimlerinin dağılımının **JFST** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	k değer	LS		I	MML			OSM	
,	0	MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				a = 3; b =	= 3				
-				<i>n</i> = 30)				
ŕ	15	15.3390	1.0630	15.3420	1.0700	101	15.3410	1.0690	101
$\hat{\beta}_{0}^{(1)}$	0	0.0318	0.4305	0.0246	0.3965	92	0.0219	0.3969	92
$\hat{\beta}_{1}^{(1)}$	1	0.9957	0.0053	0.9963	0.0049	93	0.9966	0.0049	93
$\hat{\beta}_{0}^{(2)}$	35	35.1253	3.5437	35.1313	3.3355	94	35.1327	3.3358	94
$\hat{\beta}_{1}^{(2)}$	-1	-1.0049	0.0063	-1.0050	0.0059	93	-1.0051	0.0058	93
$\hat{\sigma}$	1	0.9708	0.0310	1.0477	0.0331	107			
				n = 50)				
ŕ	25	25.2640	0.8400	25.2500	0.7880	94	25.2500	0.7880	94
$\hat{eta}_0^{(1)}$	0	-0.0271	0.2689	-0.0297	0.2311	86	-0.0296	0.2281	85
$\hat{eta}_1^{(1)}$	1	1.0012	0.0012	1.0014	0.0011	86	1.0014	0.0010	85
$\hat{eta}_0^{(2)}$	55	54.9870	1.8378	54.9993	1.6292	89	55.0012	1.6154	88
$\hat{\beta}_{1}^{(2)}$	-1	-0.9996	0.0012	-0.9998	0.0011	88	-0.9999	0.0011	88
$\hat{\hat{\sigma}}$	1	0.9803	0.0220	1.0253	0.0182	83			
				<i>n</i> = 10	0				
\hat{r}	50	50.2480	0.7660	50.2480	0.7700	101	50.2480	0.7700	101
$\hat{\beta}_{0}^{(1)}$	0	-0.0163	0.1350	-0.0189	0.1194	88	-0.0188	0.1187	88
$\hat{m{eta}}_{1}^{(1)}$	1	1.0007	0.0002	1.0008	0.0001	89	1.0008	0.0001	88
$\hat{eta}_{0}^{(2)}$	105	105.0258	0.8844	105.0253	0.7550	85	105.0244	0.7542	85
$\hat{oldsymbol{eta}}_1^{(2)}$	-1	-1.0001	0.0001	-1.0002	0.0001	85	-1.0002	0.0001	85
$\hat{\sigma}$	1	0.9930	0.0118	1.0156	0.0086	73			
				a = 3; b =	= 9				
				<i>n</i> = 30)				
\hat{r}	15	15.5890	1.6510	15.6010	1.7010	103	15.6040	1.7100	104
$\hat{\beta}_{0}^{(1)}$	0	-0.1370	0.9300	-0.1093	0.6757	73	-0.0839	0.6743	73
$\hat{eta}_{1}^{(1)}$	1	1.0085	0.0103	1.0064	0.0079	77	1.0064	0.0079	76
$\hat{eta}_{0}^{(2)}$	35	34.8377	8.7906	34.7139	6.5065	74	34.7394	6.4930	74
$\hat{eta}_1^{(2)}$	-1	-0.9974	0.0143	-0.9925	0.0107	75	-0.9924	0.0107	75
$\hat{\sigma}$	1	0.9605	0.0472	1.0047	0.0295	63			
				<i>n</i> = 50)				
r â(1)	25	25.4490	1.2310	25.4550	1.2530	102	25.4550	1.2530	102
$\beta_0^{(1)}$	0	-0.0784	0.5620	-0.0714	0.3622	64	-0.0567	0.3606	64
$\beta_{1}^{(1)}$	1	1.0001	0.0022	0.9999	0.0015	68	0.9999	0.0015	68
$\beta_0^{(2)}$	55	55.0678	3.6050	54.9532	2.6464	73	54.9676	2.6417	73
$\beta_1^{(2)}$	-1	-1.0031	0.0023	-1.0002	0.0017	74	-1.0002	0.0017	74
Ô	1	0.9722	0.0322	0.9980	0.0153	48			
÷	50	E0 4210	1 1710	n = 10	U 1 1 4 2 0	00	50 4070	1 1500	00
r ô(1)	50	50.4310	1.1/10	50.4230	1.1430	98	50.4270	1.1590	99
\hat{p}_{0}	0	-0.0383	0.2674	-0.0157	0.1719	04 66	-0.0094	0.1719	64 66
\hat{p}_1	1	1.0004	0.0003	0.9998	0.0002	66	0.9998	0.0002	66
$\beta_0^{(2)}$	105	105.0217	1.5899	104.9650	1.0708	67	104.9725	1.0697	67
$\beta_{1}^{(2)}$	-1	-1.0005	0.0003	-0.9998	0.0002	69 20	-0.9998	0.0002	69
σ	1	0.9879	0.0186	1.0023	0.0072	39			

Çizelge 5.6. (Devam) Süreksiz model & İkinci durum: Hata terimlerinin dağılımının **JFST** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	k değer	er LS MML OSM		OSM					
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				<i>a</i> = 3; <i>b</i> =	= 15				
				<i>n</i> = 3	0				
ŕ	15	15.9080	2.9440	15.8400	2.5340	86	15.8390	2.5350	86
$\hat{eta}_0^{(1)}$	0	-0.2742	2.2563	-0.2294	1.3136	58	-0.1817	1.3011	58
$\hat{\beta}_{1}^{(1)}$	1	1.0093	0.0207	1.0039	0.0135	65	1.0035	0.0134	65
$\hat{\beta}_{0}^{(2)}$	35	35.0379	16.8173	34.7625	11.4493	68	34.7945	11.4725	68
$\hat{\beta}_{1}^{(2)}$	-1	-1.0089	0.0277	-0.9985	0.0185	67	-0.9978	0.0186	67
$\hat{\sigma}$	1	0.9566	0.0532	0.9900	0.0287	54			
				<i>n</i> = 5	0				
ŕ	25	25.7880	2.4800	25.7460	2.3120	93	25.7410	2.2690	91
$\hat{eta}_0^{(1)}$	0	-0.1110	1.3490	-0.1115	0.6816	51	-0.0863	0.6772	50
$\hat{\beta}_{1}^{(1)}$	1	0.9975	0.0044	0.9969	0.0028	64	0.9969	0.0028	64
$\hat{\beta}_{0}^{(2)}$	55	55.1782	8.0067	54.9666	5.2949	66	54.9887	5.2683	66
$\hat{\beta}_{1}^{(2)}$	-1	-1.0082	0.0049	-1.0033	0.0033	67	-1.0032	0.0033	66
$\hat{\sigma}$	1	0.9684	0.0379	0.9862	0.0158	42			
				<i>n</i> = 10	00				
ŕ	50	50.6740	2.0340	50.6540	1.9180	94	50.6540	1.9180	94
$\hat{eta}_0^{(1)}$	0	-0.0712	0.6747	-0.0410	0.3137	46	-0.0268	0.3133	46
$\hat{eta}_1^{(1)}$	1	1.0003	0.0005	0.9992	0.0003	56	0.9992	0.0003	56
$\hat{\beta}_{0}^{(2)}$	105	105.0104	3.3392	104.9083	1.8775	56	104.9222	1.8757	56
$\hat{\beta}_{1}^{(2)}$	-1	-1.0008	0.0005	-0.9995	0.0003	58	-0.9995	0.0003	58
$\hat{\sigma}$	1	0.9862	0.0224	0.9957	0.0071	32			
				<i>a</i> = 15; <i>b</i>	= 15				
				<i>n</i> = 3	0				
ŕ	15	15.2710	0.6630	15.2720	0.6700	101	15.2720	0.6700	101
$\hat{eta}_0^{(1)}$	0	-0.0542	0.3234	-0.0560	0.3220	100	-0.0565	0.3218	99
$\hat{\beta}_{1}^{(1)}$	1	1.0073	0.0043	1.0075	0.0043	100	1.0076	0.0043	100
$\hat{\beta}_{0}^{(2)}$	35	35.1209	2.5432	35.1223	2.5214	99	35.1233	2.5182	99
$\hat{\beta}_{1}^{(2)}$	-1	-1.0044	0.0044	-1.0045	0.0044	99	-1.0046	0.0044	99
$\hat{\sigma}$	1	0.9853	0.0193	0.9995	0.0196	102			
				<i>n</i> = 5	0				
ŕ	25	25.2050	0.5630	25.2070	0.5670	101	25.2070	0.5670	101
$\hat{\beta}_{0}^{(1)}$	0	-0.0060	0.1819	-0.0073	0.1810	99	-0.0077	0.1809	99
$\hat{\beta}_{1}^{(1)}$	1	1.0009	0.0008	1.0011	0.0008	99	1.0011	0.0008	99
$\hat{\beta}_{0}^{(2)}$	55	55.0600	1.2682	55.0603	1.2568	99	55.0609	1.2548	99
$\hat{\beta}_{1}^{(2)}$	-1	-1.0016	0.0008	-1.0017	0.0008	99	-1.0017	0.0008	99
$\hat{\sigma}$	1	0.9945	0.0109	1.0042	0.0110	101	1.0042		
				<i>n</i> = 10	00				
ŕ	50	50.2010	0.5530	50.2010	0.5530	100	50.2010	0.5530	100
$\hat{eta}_0^{(1)}$	0	-0.0041	0.0892	-0.0051	0.0885	99	-0.0051	0.0885	99
$\hat{\beta}_{1}^{(1)}$	1	1.0002	0.0001	1.0002	0.0001	99	1.0002	0.0001	99
$\hat{\beta}_{0}^{(2)}$	105	104.9942	0.5871	104.9949	0.5811	99	104.9953	0.5807	99
$\hat{\beta}_{1}^{(2)}$	-1	-0.9999	0.0001	-0.9999	0.0001	99	-0.9999	0.0001	99
$\hat{\sigma}$	1	0.9968	0.0058	1.0026	0.0058	100	1.0026		

Çizelge 5.4 den açıktır ki, Model I in her bir fazındaki hata terimlerinin dağılımının iid LTS olması durumunda, değişim noktasının ve model parametrelerinin MML ve OSM tahmin edicilerinin LS tahmin edicisinden genel olarak daha etkin olduğu ikinci durum için de görülmektedir. Şekil parametresi *p* 5'e yaklaştıkça LS tahmin edicisinin etkinliği, MML ve OSM tahmin edicilerinin etkinliğine yaklaşmaktadır. Bu da beklenen bir durumdur. Ayrıca, bazı durumlar için \hat{r}_{LS} in \hat{r}_{MML} ve \hat{r}_{OSM} den daha etkin olduğu görülmektedir, örneğin bkz. Çizelge 5.4: *p* = 3.5 ve *n* = 30; *p* = 5 ve *n* = 30.

Çizelge 5.5 den görülmektedir ki, Model I in her bir fazındaki hata terimlerinin dağılımının iid GL olması durumunda, değişim noktasının ve model parametrelerinin MML ve OSM tahmin edicilerinin LS tahmin edicisinden genel olarak daha etkin olduğu ikinci durum için de görülmektedir. Şekil parametresi b = 1durumu için LS tahmin edicisinin etkinliği, MML ve OSM tahmin edicilerinin etkinliğine yaklaşmakta, dağılımın çarpık olduğu durumda MML ve OSM tahmin edicileri daha etkin olmaktadır. Ancak, değişim noktasının LS tahmin edicisinin az bir farkla MML ve OSM tahmin edicisinden etkin olduğu durumlar da vardır, örneğin bkz. Çizelge 5.5: b = 2, n = 50.

Model I in her bir fazındaki hata terimlerinin dağılımının iid JFST olması durumunda, değişim noktasının ve model parametrelerinin MML ve OSM tahmin edicilerinin LS tahmin edicisinden genel olarak daha etkin olduğu Çizelge 5.6 dan açık olarak görülmektedir. Şekil parametreleri *a* ve *b* 15'e yaklaştıkça LS tahmin edicisinin etkinliği, MML ve OSM tahmin edicilerinin etkinliğine yaklaşmakta, dağılımın çarpık olduğu durumda MML ve OSM tahmin edicileri daha etkin olmaktadır.

Burada belirtmek gerekir ki, Birinci ve İkinci durumlar için MML ve OSM tahmin edicileri genel olarak LS tahmin edicisinden daha etkin olmaktadır. Fakat, ikinci durumda LS tahmin edicisinin etkinliği, birinci duruma göre nispeten artmaktadır.

Süreksiz model için simulasyon çalışmasının sonuçlarını genel olarak değerlendirmek gerekirse, değişim noktasının LS tahmin edicisinin etkinliğinin MML ve OSM tahmin edicilerinin etkinliğine genellikle yakın olduğu görülmektedir. Bir başka anlatımla, değişim noktasının LS tahmin edicisi, MML ve OSM tahmin edicileri kadar etkin olmaktadır. Bunun sebebi, süreksiz model üzerinde çalışılıyor olmasıdır. Süreksiz modellerde, değişim noktasında bir sıçrama söz konusudur, bkz. Şekil 1.2. Bu da değişim noktası tahmininde LS yöntemini MML ve OSM yöntemleri kadar etkin yapmaktadır. Fakat, model parametreleri için özellikle çarpık dağılımlarda MML ve OSM tahmin edicileri, LS tahmin edicilerinden daha etkindir.

5.2. Sürekli İki-Fazlı Doğrusal Regresyon Modelinde Değişim Noktasının Tahmini

Bu bölümde, sürekli iki-fazlı doğrusal regresyon modeli için önerilen MML ve OSM tahmin edicileri (bkz. Bölüm 4.1 ve 4.2) ile LS tahmin edicisinin performansları karşılaştırılmıştır. Tahmin edicilerin performansları, Bölüm 5.1 de açıklanan MEAN, MSE ve RE kriterleri kullanılarak karşılaştırılmıştır.

Burada,

$$y_{i} = \begin{cases} 3.5 + 0.5x_{i} + \varepsilon_{i1}, & x_{i} \le 10 \\ -6.5 + 1.5x_{i} + \varepsilon_{i2}, & x_{i} > 10 \end{cases}$$
(5.3)

(i = 1, 2, ..., 80) modeli kullanılmıştır, (Chen ve ark., 2011). Açıktır ki, bu modelde değişim noktası $x_r = 10$ dur. Bu modelde x açıklayıcı değişkenleri, aşağıdaki otoregresif yöntem izlenerek oluşturulur:

$$x_0 \sim N(0, 81)$$

 $x_i = 2.0 + 0.8x_{i-1} + v_i$
 $v_i \sim N(0, 100).$

 x_0 ın etkisini açıklayıcı değişkenden arındırmak için 120 iterasyonla x_i ler oluşturulur; ilk 40 iterasyon atılır, geriye kalan 80 tanesi alınır. Ayrıntılı bilgi için bkz. Chen ve ark. (2011). Bu tez çalışmasında, Model (5.3) de hata terimlerinin dağılımının LTS, GL ve JFST olması durumu ele alınmıştır. Bu durumda için de değişim noktasının ve model parametrelerinin LS, MML ve OSM tahmin değerleri, Muggeo'nun parçalara ayırma ve Hudson yöntemleri kullanılarak elde edilmiştir.

5.2.1. Muggeo'nun Parçalara Ayırma Yöntemi

Bu bölümde, Monte-Carlo simulasyon çalışması yardımıyla, Bölüm 4.1 de anlatılan LS, MML ve OSM tahmin edicilerinin performansları karşılaştırılmıştır. Bir başka anlatımla, değişim noktasının ve model parametrelerinin Muggeo'nun parçalara ayırma yöntemine dayalı LS, MML ve OSM tahmin değerleri elde edilmiş; bu tahmin değerlerine bağlı olarak etkinlikler incelenmiştir. Bu ve bundan sonraki bölümlerde, Muggeo'nun parçalara ayırma yönteminde r_0 başlangıç değeri, açıklayıcı değişken değerlerinin medyanı olarak alınmıştır (Chen ve ark., 2011). Başlangıç değer r_0 değerinin seçiminin Muggeo'nun parçalara ayırma yöntemi üzerindeki etkileri ve detaylı bilgi için Muggeo (2003) çalışmasının tartışma bölümüne bakılması önerilmektedir.

Simulasyon çalışmasının sonuçları, Çizelge 5.7-5.9 da verilmiştir.

Çizelge 5.7. Sürekli model & Muggeo'nun parçalara ayırma yöntemi: Hata terimlerinin dağılımının **LTS** olması durumunda, LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	k değer	L	S		MML			OSM			
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE		
				p = 2	2						
ŕ	10	10.0051	0.1716	10.0089	0.0888	52	10.0110	0.0878	51		
$\hat{eta}_0^{(1)}$	3.5	3.4964	0.0324	3.4973	0.0179	55	3.4975	0.0175	54		
$\hat{eta}_1^{(1)}$	0.5	0.4993	0.0005	0.4998	0.0002	52	0.4999	0.0002	51		
$\hat{eta}_{0}^{(2)}$	-6.5	-6.5217	0.2066	-6.5218	0.1198	58	-6.5240	0.1195	58		
$\hat{eta}_1^{(2)}$	1.5	1.5007	0.0004	1.5008	0.0002	62	1.5009	0.0002	61		
$\hat{\sigma}$	1	0.9494	0.0548	1.0634	0.0223	41					
				<i>p</i> = 2.	.5						
ŕ	10	10.0044	0.1984	10.0095	0.1369	69	10.0101	0.1365	69		
$\hat{eta}_0^{(1)}$	3.5	3.4923	0.0323	3.4971	0.0230	71	3.4969	0.0230	71		
$\hat{eta}_1^{(1)}$	0.5	0.4998	0.0005	0.4996	0.0004	68	0.4996	0.0004	68		
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5294	0.2484	-6.5286	0.1753	71	-6.5307	0.1742	70		
$\hat{\beta}_{1}^{(2)}$	1.5	1.5016	0.0005	1.5013	0.0003	71	1.5013	0.0003	71		
$\dot{\hat{\sigma}}$	1	0.9926	0.0279	1.0195	0.0144	52					
				<i>p</i> = 3.	.5						
ŕ	10	10.0086	0.1964	10.0137	0.1717	87	10.0144	0.1712	87		
$\hat{eta}_0^{(1)}$	3.5	3.5002	0.0310	3.5004	0.0282	91	3.5004	0.0281	91		
$\hat{eta}_1^{(1)}$	0.5	0.5001	0.0005	0.5004	0.0004	89	0.5005	0.0004	89		
$\hat{eta}_0^{(2)}$	-6.5	-6.5180	0.2701	-6.5208	0.2427	90	-6.5217	0.2424	90		
$\hat{eta}_1^{(2)}$	1.5	1.5009	0.0006	1.5011	0.0006	92	1.5011	0.0006	92		
$\hat{\hat{\sigma}}$	1	0.9895	0.0133	1.0056	0.0105	79					
				<i>p</i> = 5	5						
ŕ	10	9.9769	0.1768	9.9727	0.1684	95	9.9729	0.1684	95		
$\hat{eta}_0^{(1)}$	3.5	3.4909	0.0332	3.4914	0.0307	92	3.4916	0.0307	92		
$\hat{eta}_1^{(1)}$	0.5	0.4985	0.0005	0.4984	0.0005	97	0.4984	0.0005	97		
$\hat{eta}_0^{(2)}$	-6.5	-6.4912	0.2110	-6.4859	0.2055	97	-6.4856	0.2055	97		
$\hat{eta}_1^{(2)}$	1.5	1.4991	0.0004	1.4989	0.0004	101	1.4989	0.0004	102		
ô	1	0.9889	0.0097	1.0008	0.0086	89					

Çizelge 5.8. Sürekli model & Muggeo'nun parçalara ayırma yöntemi: Hata terimlerinin dağılımının **GL** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	ek değer LS]	MML			OSM		
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				b=0.5	5				
ŕ	10	10.0320	1.6440	10.0317	1.3114	80	10.0205	1.4742	90
$\hat{eta}_0^{(1)}$	3.5	3.4879	0.2543	3.4800	0.2135	84	3.4792	0.2134	84
$\hat{eta}_1^{(1)}$	0.5	0.4971	0.0040	0.4986	0.0033	84	0.4986	0.0033	84
$\hat{eta}_0^{(2)}$	-6.5	-6.5876	1.7571	-6.5628	1.4260	81	-6.5559	1.5224	87
$\hat{eta}_1^{(2)}$	1.5	1.5022	0.0032	1.5006	0.0028	85	1.5000	0.0033	101
$\hat{\sigma}$	1	0.9935	0.0134	1.0047	0.0099	74			
				<i>b</i> = 1					
\hat{r}	10	10.0053	0.6749	10.0266	0.6323	94	10.0266	0.6326	94
$\hat{\beta}_{0}^{(1)}$	3.5	3.4858	0.1194	3.4883	0.1096	92	3.4881	0.1098	92
$\hat{\beta}_{1}^{(1)}$	0.5	0.5011	0.0016	0.5015	0.0015	91	0.5015	0.0015	91
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5130	0.8044	-6.5364	0.7525	94	-6.5369	0.7509	93
$\hat{eta}_1^{(2)}$	1.5	1.5006	0.0016	1.5014	0.0015	94	1.5015	0.0015	94
$\hat{\sigma}$	1	0.9984	0.0096	1.0073	0.0093	97			
				<i>b</i> = 2					
\hat{r}	10	10.0021	0.4508	9.9970	0.3974	88	9.9974	0.3971	88
$\hat{\beta}_{0}^{(1)}$	3.5	3.4899	0.0709	3.4964	0.0674	95	3.4959	0.0671	95
$\beta_1^{(1)}$	0.5	0.4987	0.0011	0.4978	0.0010	88	0.4978	0.0010	88
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5480	0.5617	-6.5506	0.5196	93	-6.5514	0.5200	93
$\hat{m{eta}}_1^{(2)}$	1.5	1.5023	0.0011	1.5027	0.0010	95	1.5027	0.0010	95
$\hat{\sigma}$	1	0.9959	0.0102	1.0050	0.0088	87			
				<i>b</i> = 3					
r â(1)	10	9.9944	0.3686	10.0009	0.3132	85	10.0013	0.3123	85
$\beta_0^{(1)}$	3.5	3.5089	0.0673	3.5164	0.0592	88	3.5150	0.0591	88
$\beta_{1}^{(1)}$	0.5	0.5002	0.0009	0.4991	0.0007	85	0.4991	0.0007	85
$\beta_0^{(2)}$	-6.5	-6.4899	0.4515	-6.5092	0.3803	84	-6.5111	0.3797	84
$\beta_1^{(2)}$	1.5	1.5006	0.0008	1.5016	0.0007	81	1.5016	0.0007	81
$\hat{\sigma}$	1	0.9859	0.0102	0.9969	0.0080	78			
	10	0.0007	0 4110	b=4	0.0105	70	0.0040	0.0104	
\hat{r}	10	9.9937	0.4110	9.9845	0.3195	78	9.9842	0.3194	78
$\hat{p}_{0}^{(1)}$	3.5	3.5029	0.0747	3.5180	0.0629	84	3.5154	0.0629	84
$\hat{\rho}_{1}^{(2)}$	0.5	0.4999	0.0009	0.4983	0.0007	80	0.4983	0.0007	80
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.4988	0.5184	-6.4939	0.4186	81	-6.4964	0.4184	81
β_1	1.5	1.5005	0.0010	1.5010	0.0009	86	1.5010	0.0009	86
σ	1	0.9960	0.0124	$\frac{1.0002}{h-c}$	0.0086	70			
ŕ	10	0 0070	0 3000	v = 6	0 2712	71	10 0055	0.2714	71
$\hat{\beta}^{(1)}$	25	J.J0/0 2 5100	0.3009	2 5200	0.2713	(1 70	3 5354	0.2714	(1 70
$ \hat{\mu}_{0} $ $ \hat{g}^{(1)} $	5.5 0 5	0.4000	0.1147	0.400C	0.0020	(Z 72	0.0204	0.0027	12 72
$\hat{\rho}_1^{(2)}$	0.5	0.4990	0.0014	0.4900	0.0010	13	0.4900	0.0010	13
$p_0^{(2)}$	-0.5	-0.4/30	0.5395	-0.4999	0.3982	74 70	-0.5030	0.3986	74 70
p_1	1.5	1.4995	0.0011	1.5010	0.0008	72 69	1.5010	0.0008	72
σ	1	0.9894	0.0128	0.9967	0.0087	68			

Çizelge 5.9. Sürekli model & Muggeo'nun parçalara ayırma yöntemi: Hata terimlerinin dağılımının **JFST** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	ek değer	L	5		MML			OSM			
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE		
				a = 3; b	= 3						
ŕ	10	9.9954	0.3111	10.0069	0.2779	89	10.0095	0.2859	92		
$\hat{eta}_0^{(1)}$	3.5	3.4990	0.0653	3.4993	0.0621	95	3.4997	0.0624	96		
$\hat{eta}_1^{(1)}$	0.5	0.4986	0.0010	0.4991	0.0010	99	0.4992	0.0010	99		
$\hat{eta}_0^{(2)}$	-6.5	-6.5086	0.3497	-6.5142	0.3094	88	-6.5173	0.3160	90		
$\hat{eta}_1^{(2)}$	1.5	1.5001	0.0007	1.5002	0.0006	92	1.5003	0.0006	90		
$\hat{\hat{\sigma}}$	1	0.9955	0.0134	1.0098	0.0100	75					
				a = 3; b	= 9						
ŕ	10	9.9984	0.6018	10.0051	0.4003	67	10.0053	0.4002	67		
$\hat{eta}_0^{(1)}$	3.5	3.4549	0.1472	3.4699	0.0873	59	3.4729	0.0873	59		
$\hat{eta}_1^{(1)}$	0.5	0.5009	0.0013	0.5027	0.0011	79	0.5027	0.0011	79		
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5400	0.7634	-6.4961	0.4977	65	-6.4933	0.4968	65		
$\hat{\beta}_{1}^{(2)}$	1.5	1.5005	0.0015	1.4989	0.0010	66	1.4989	0.0010	66		
$\dot{\hat{\sigma}}$	1	0.9880	0.0186	1.0040	0.0090	48					
				<i>a</i> = 3; <i>b</i> =	= 15						
ŕ	10	10.0291	1.5682	10.0353	0.9528	61	10.0389	0.9538	61		
$\hat{eta}_0^{(1)}$	3.5	3.4033	0.5364	3.4226	0.2246	42	3.4302	0.2237	42		
$\hat{eta}_1^{(1)}$	0.5	0.4983	0.0039	0.5022	0.0027	70	0.5022	0.0027	70		
$\hat{eta}_0^{(2)}$	-6.5	-6.6395	1.8265	-6.5589	0.9915	54	-6.5567	0.9942	54		
$\hat{eta}_1^{(2)}$	1.5	1.5015	0.0029	1.4980	0.0018	61	1.4982	0.0018	61		
$\hat{\sigma}$	1	0.9792	0.0261	0.9903	0.0094	36					
				a = 15; b	= 15						
ŕ	10	9.9995	0.1833	10.0024	0.1805	98	10.0031	0.1799	98		
$\hat{eta}_0^{(1)}$	3.5	3.4953	0.0324	3.4964	0.0324	100	3.4967	0.0324	100		
$\hat{eta}_1^{(1)}$	0.5	0.5002	0.0004	0.5003	0.0004	99	0.5004	0.0004	99		
$\hat{eta}_0^{(2)}$	-6.5	-6.5063	0.2195	-6.5075	0.2153	98	-6.5079	0.2150	98		
$\hat{eta}_1^{(2)}$	1.5	1.5004	0.0004	1.5005	0.0004	98	1.5005	0.0004	98		
σ	1	0.9915	0.0069	0.9961	0.0068	99					

Çizelge 5.7 den açıktır ki, Model (5.3) ün her bir fazındaki hata terimlerinin dağılımının iid LTS olması durumunda, değişim noktasının ve model parametrelerinin MML ve OSM tahmin edicilerinin LS tahmin edicisinden daha etkin olduğu görülmektedir.

Çizelge 5.8 den görülmektedir ki, Model (5.3) ün her bir fazındaki hata terimlerinin dağılımının iid GL olması durumunda, değişim noktasının ve model parametrelerinin MML ve OSM tahmin edicilerinin LS tahmin edicisinden daha etkin olduğu görülmektedir. Şekil parametresi *b* 1 iken LS tahmin edicisinin etkinliği, MML ve OSM tahmin edicilerinin etkinliğine yaklaşmakta, dağılımın çarpık olduğu durumda MML ve OSM tahmin edicileri daha etkin olmaktadır.

Model (5.3) ün her bir fazındaki hata terimlerinin dağılımının iid JFST olması durumunda, değişim noktasının ve model parametrelerinin MML ve OSM tahmin edicilerinin LS tahmin edicisinden daha etkin olduğu Çizelge 5.9 dan açık olarak görülmektedir. Şekil parametreleri *a* ve *b* 15'e yaklaştıkça LS tahmin edicisinin etkinliği, MML ve OSM tahmin edicilerinin etkinliğine yaklaşmakta, dağılımın çarpık olduğu durumda MML ve OSM tahmin edicileri daha etkin olmaktadır.

5.2.2. Hudson Yöntemi

Bu bölümde, Monte-Carlo simulasyon çalışması yardımıyla, Bölüm 4.2 de anlatılan LS, MML ve OSM tahmin edicilerinin performansları karşılaştırılmıştır. Simulasyon çalışmasında kullanılan model yapısı ve tahmin edicilerin performanslarını değerlendirme kriterleri, Bölüm 5.2 de verildiği gibidir.

Değişim noktası r yi tahmin ederken Hudson yöntemine dayalı LS tahmini bağlamında iki farklı durum incelenmiştir.

Birinci durum: Hata terimlerinin dağılımının ne olduğuna bakmaksızın Hudson (1966) tarafından önerilen yöntem kullanılmıştır.

İkinci durum: Model parametrelerinin tahmin değerlerini elde etmek için Hudson (1966) da olduğu gibi LS yöntemi kullanılmış, bununla beraber log olabilirlik fonksiyonu elde edilirken Hudson (1966) dan farklı olarak ilgilenilen hata dağılımı kullanılmıştır.

Değişim noktasının MML ve OSM tahmin değerlerini elde etmek için ise hem parametre tahmin değerleri hem de log olabilirlik fonksiyonu ilginilen hata dağılımı baz alınarak hesaplanmıştır.

Simulasyon çalışmasının sonuçları, Birinci durum için Çizelge 5.10-5.12 de, İkinci durum için ise Çizelge 5.13-5.15 de verilmiştir.

Çizelge 5.10. Sürekli model & Hudson yöntemi & Birinci durum: Hata terimlerinin dağılımının **LTS** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	ek değer	L	S		MML			OSM			
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE		
				p = 2	2						
ŕ	10	10.0140	0.1773	10.0170	0.1065	60	10.0146	0.1039	59		
$\hat{eta}_0^{(1)}$	3.5	3.4989	0.0325	3.4983	0.0219	67	3.4982	0.0194	60		
$\hat{eta}_1^{(1)}$	0.5	0.5009	0.0005	0.5011	0.0003	61	0.5008	0.0002	52		
$\hat{eta}_0^{(2)}$	-6.5	-6.5074	0.2329	-6.5113	0.1417	61	-6.5124	0.1416	61		
$\hat{eta}_1^{(2)}$	1.5	1.5001	0.0005	1.5003	0.0003	63	1.5003	0.0003	64		
$\hat{\hat{\sigma}}$	1	0.9484	0.0660	1.0988	0.0400	61					
				<i>p</i> = 2.	.5						
ŕ	10	10.0026	0.1879	10.0079	0.1404	75	10.0086	0.1395	74		
$\hat{eta}_0^{(1)}$	3.5	3.5009	0.0400	3.4997	0.0271	68	3.4992	0.0255	64		
$\hat{eta}_1^{(1)}$	0.5	0.4992	0.0006	0.4994	0.0004	72	0.4995	0.0004	67		
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5131	0.2343	-6.5227	0.1780	76	-6.5234	0.1775	76		
$\hat{\beta}_{1}^{(2)}$	1.5	1.5003	0.0005	1.5009	0.0003	75	1.5009	0.0003	75		
$\dot{\hat{\sigma}}$	1	0.9866	0.0267	1.0276	0.0153	57					
				p = 3	.5						
ŕ	10	10.0240	0.1811	10.0187	0.1551	86	10.0183	0.1548	85		
$\hat{eta}_0^{(1)}$	3.5	3.4959	0.0327	3.4937	0.0296	91	3.4931	0.0302	92		
$\hat{eta}_1^{(1)}$	0.5	0.5005	0.0005	0.5003	0.0004	93	0.5003	0.0004	94		
$\hat{eta}_0^{(2)}$	-6.5	-6.5393	0.2270	-6.5393	0.1965	87	-6.5395	0.1958	86		
$\hat{eta}_1^{(2)}$	1.5	1.5017	0.0004	1.5017	0.0004	88	1.5017	0.0004	87		
$\hat{\hat{\sigma}}$	1	0.9894	0.0136	1.0202	0.0109	80					
				p = 5	5						
ŕ	10	9.9898	0.1956	9.9920	0.1879	96	9.9909	0.1870	96		
$\hat{eta}_0^{(1)}$	3.5	3.4973	0.0363	3.4971	0.0343	94	3.4965	0.0340	94		
$\hat{eta}_1^{(1)}$	0.5	0.4990	0.0005	0.4991	0.0005	93	0.4990	0.0005	92		
$\hat{eta}_0^{(2)}$	-6.5	-6.5139	0.2365	-6.5190	0.2409	102	-6.5189	0.2399	101		
$\hat{eta}_1^{(2)}$	1.5	1.5012	0.0005	1.5014	0.0005	103	1.5014	0.0005	102		
σ	1	0.9949	0.0105	1.0159	0.0096	91					

Çizelge 5.11. Sürekli model & Hudson yöntemi & Birinci durum: Hata terimlerinin dağılımının **GL** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	Gerçek değer LS			MML			OSM			
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE	
				b=0.	5					
ŕ	10	10.0590	1.4871	10.0287	1.0599	71	10.0279	1.0571	71	
$\hat{eta}_0^{(1)}$	3.5	3.5023	0.2335	3.4950	0.1836	79	3.4956	0.1822	78	
$\hat{eta}_1^{(1)}$	0.5	0.4983	0.0033	0.4998	0.0022	66	0.4999	0.0022	66	
$\hat{eta}_0^{(2)}$	-6.5	-6.6304	2.1251	-6.5631	1.5874	75	-6.5607	1.5923	75	
$\hat{eta}_1^{(2)}$	1.5	1.5048	0.0040	1.5017	0.0032	80	1.5017	0.0032	81	
$\hat{\sigma}$	1	0.9924	0.0148	1.0082	0.0110	74				
				b = 1	<u> </u>					
\hat{r}	10	9.9709	0.7182	9.9799	0.6585	92	9.9799	0.6573	92	
$\hat{\beta}_{0}^{(1)}$	3.5	3.4793	0.1234	3.4824	0.1100	89	3.4822	0.1098	89	
$\hat{\beta}_{1}^{(1)}$	0.5	0.4993	0.0017	0.4996	0.0015	89	0.4996	0.0015	89	
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.4988	0.9609	-6.5054	0.9051	94	-6.5061	0.9125	95	
$\hat{eta}_1^{(2)}$	1.5	1.4999	0.0021	1.5001	0.0020	95	1.5002	0.0020	97	
$\hat{\sigma}$	1	0.9963	0.0109	1.0131	0.0102	94				
				b=2	2					
\hat{r}	10	9.9930	0.4435	9.9997	0.3975	90	9.9998	0.3988	90	
$\hat{\beta}_{0}^{(1)}$	3.5	3.5016	0.0812	3.5091	0.0742	91	3.5060	0.0744	92	
$\beta_1^{(1)}$	0.5	0.4972	0.0012	0.4974	0.0010	87	0.4974	0.0010	88	
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5268	0.5463	-6.5302	0.4937	90	-6.5333	0.4949	91	
$\beta_1^{(2)}$	1.5	1.5008	0.0010	1.5014	0.0009	90	1.5014	0.0009	90	
$\hat{\sigma}$	1	0.9989	0.0104	1.0106	0.0089	86				
				<i>b</i> = 3	}					
r â(1)	10	10.0151	0.3917	10.0128	0.3461	88	10.0130	0.3469	89	
$\beta_0^{(1)}$	3.5	3.4931	0.0758	3.5049	0.0667	88	3.4990	0.0663	87	
$\beta_{1}^{(1)}$	0.5	0.5011	0.0010	0.5000	0.0008	81	0.5000	0.0008	81	
$\beta_0^{(2)}$	-6.5	-6.5206	0.4810	-6.5244	0.4301	89	-6.5306	0.4325	90	
$\beta_1^{(2)}$	1.5	1.5011	0.0009	1.5017	0.0009	90	1.5017	0.0009	91	
Ô	1	0.9992	0.0108	1.0090	0.0088	81				
^	10	10.0100	0.0000	b=4	0.0050	74	0.0071	0.0005	74	
r $\hat{a}(1)$	10	10.0130	0.3992	9.9976	0.2959	74	9.9971	0.2965	74 02	
$\hat{p}_{0}^{(1)}$	3.5	3.5169	0.0808	3.5329	0.0686	85	3.5247	0.0672	83	
$\hat{\rho}_{1}^{(2)}$	0.5	0.4985	0.0010	0.4964	0.0011	109	0.4964	0.0011	106	
$\hat{\beta}_{0}^{(-)}$	-6.5	-6.5203	0.4928	-6.5170	0.3664	74	-6.5244	0.3674	75	
$\beta_1^{(2)}$	1.5	1.5010	0.0009	1.5018	0.0007	79	1.5018	0.0007	79	
σ	1	0.9945	0.0116	1.0034	0.0085	73				
ŕ	10	0 0021	0 3/02	v = 0	0.2550	72	0 0010	0.2572	74	
$\hat{\beta}^{(1)}$	10 10	J.JJ∠1 2 5021	0.0430	3.334U 2.5204	0.2000	() 60	3.3340 2.5102	0.2373	74 60	
$ \hat{\mu}_{0} $ $ \hat{g}^{(1)} $	5.5 0 5	5.5051 0.4075	0.0943	5.5284 0.4075	0.0047	09 70	0.4075	0.0047	09 70	
$\hat{\rho}_{1}^{(2)}$	0.5	0.4973	0.0009	0.4973	0.0007	1Z	0.4973	0.0007	12	
$p_0^{(2)}$	-0.5	-0.5197	0.4600	-0.5020	0.3359	13	-0.5122	0.3379	13	
p_1	1.5	1.5007	0.0008	1.5012	0.0006	75 60	1.5012	0.0006	76	
σ	1	0.9991	0.0122	1.0020	0.0084	69				

Çizelge 5.12. Sürekli model & Hudson yöntemi & Birinci durum: Hata terimlerinin dağılımının **JFST** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	ek değer	L	S		MML		OSM			
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE	
				<i>a</i> = 3; <i>b</i>	= 3					
ŕ	10	10.0123	0.2702	10.0149	0.2329	86	10.0159	0.2341	87	
$\hat{eta}_0^{(1)}$	3.5	3.5023	0.0506	3.5038	0.0461	91	3.5045	0.0465	92	
$\hat{eta}_1^{(1)}$	0.5	0.5002	0.0007	0.5003	0.0007	92	0.5002	0.0007	98	
$\hat{eta}_0^{(2)}$	-6.5	-6.4996	0.3208	-6.5001	0.2693	84	-6.5011	0.2680	84	
$\hat{eta}_1^{(2)}$	1.5	1.4993	0.0006	1.4993	0.0005	81	1.4993	0.0005	81	
$\hat{\hat{\sigma}}$	1	0.9874	0.0136	1.0191	0.0106	78				
				a = 3; b	= 9					
ŕ	10	10.0274	0.5764	10.0289	0.3343	58	10.0287	0.3341	58	
$\hat{eta}_0^{(1)}$	3.5	3.4745	0.1511	3.4832	0.0796	53	3.4939	0.0797	53	
$\hat{eta}_1^{(1)}$	0.5	0.4996	0.0015	0.5008	0.0010	66	0.5008	0.0010	66	
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5753	0.7611	-6.5394	0.4537	60	-6.5285	0.4514	59	
$\hat{\beta}_{1}^{(2)}$	1.5	1.5020	0.0013	1.5003	0.0009	67	1.5003	0.0009	67	
$\hat{\sigma}$	1	0.9890	0.0206	1.0066	0.0091	44				
				a = 3; b =	= 15					
ŕ	10	10.0069	1.6955	9.9984	0.6439	38	9.9980	0.6457	38	
$\hat{eta}_0^{(1)}$	3.5	3.4178	0.5205	3.4429	0.1780	34	3.4643	0.1760	34	
$\hat{eta}_1^{(1)}$	0.5	0.4949	0.0036	0.4983	0.0017	47	0.4983	0.0017	47	
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.6881	3.9883	-6.5677	0.8918	22	-6.5461	0.8888	22	
$\hat{\beta}_{1}^{(2)}$	1.5	1.5036	0.0045	1.4996	0.0016	36	1.4995	0.0016	36	
$\hat{\sigma}$	1	0.9850	0.0253	1.0022	0.0094	37				
				<i>a</i> = 15; <i>b</i>	= 15					
ŕ	10	9.9913	0.2002	9.9934	0.1983	99	9.9935	0.1985	99	
$\hat{eta}_0^{(1)}$	3.5	3.5006	0.0371	3.5006	0.0370	100	3.5007	0.0370	100	
$\hat{eta}_1^{(1)}$	0.5	0.4983	0.0005	0.4984	0.0005	100	0.4983	0.0005	100	
$\hat{eta}_0^{(2)}$	-6.5	-6.5094	0.2504	-6.5115	0.2477	99	-6.5117	0.2478	99	
$\hat{eta}_1^{(2)}$	1.5	1.5002	0.0005	1.5003	0.0005	99	1.5003	0.0005	99	
$\hat{\sigma}$	1	0.9986	0.0072	1.0053	0.0073	101				

Çizelge 5.13.	Sürekli model & Hudson yöntemi & İkinci durum: Hata terimlerinin dağılı-
	mının LTS olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN,
	MSE ve RE değerleri

	Gerçek değer	LS		MML			OSM		
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				<i>p</i> = 2					
ŕ	10	9.9971	0.1911	10.0003	0.1466	77	10.0008	0.1443	76
$\hat{eta}_{0}^{(1)}$	3.5	3.4958	0.0318	3.4978	0.0238	75	3.4987	0.0234	74
$\hat{eta}_1^{(1)}$	0.5	0.4992	0.0005	0.4992	0.0004	78	0.4991	0.0004	75
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5123	0.2286	-6.5168	0.1800	79	-6.5166	0.1800	79
$\hat{\beta}_{1}^{(2)}$	1.5	1.5004	0.0005	1.5006	0.0004	79	1.5006	0.0004	79
$\hat{\sigma}$	1	0.9787	0.0297	1.0247	0.0168	57			
				<i>p</i> = 2.5					
ŕ	10	10.0140	0.1773	10.0170	0.1065	60	10.0146	0.1039	59
$\hat{eta}_0^{(1)}$	3.5	3.4989	0.0325	3.4983	0.0219	67	3.4982	0.0194	60
$\hat{eta}_1^{(1)}$	0.5	0.5009	0.0005	0.5011	0.0003	61	0.5008	0.0002	52
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5074	0.2329	-6.5113	0.1417	61	-6.5124	0.1416	61
$\hat{\beta}_{1}^{(2)}$	1.5	1.5001	0.0005	1.5003	0.0003	63	1.5003	0.0003	64
$\hat{\sigma}$	1	0.9484	0.0660	1.0988	0.0400	61			
				<i>p</i> = 3.5					
ŕ	10	9.9909	0.1706	9.9887	0.1477	87	9.9899	0.1473	86
$\hat{eta}_{0}^{(1)}$	3.5	3.4898	0.0300	3.4910	0.0257	86	3.4915	0.0256	86
$\hat{eta}_1^{(1)}$	0.5	0.5003	0.0005	0.4999	0.0004	90	0.4999	0.0004	90
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5027	0.2272	-6.5027	0.2077	91	-6.5036	0.2074	91
$\hat{\beta}_{1}^{(2)}$	1.5	1.5005	0.0005	1.5004	0.0004	94	1.5005	0.0004	94
$\hat{\sigma}$	1	0.9889	0.0150	1.0182	0.0120	80			
				<i>p</i> = 5					
ŕ	10	9.9898	0.1956	9.9920	0.1879	96	9.9909	0.1870	96
$\hat{eta}_{0}^{(1)}$	3.5	3.4973	0.0363	3.4971	0.0343	94	3.4965	0.0340	94
$\hat{eta}_1^{(1)}$	0.5	0.4990	0.0005	0.4991	0.0005	93	0.4990	0.0005	92
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5139	0.2365	-6.5190	0.2409	102	-6.5189	0.2399	101
$\hat{eta}_1^{(2)}$	1.5	1.5012	0.0005	1.5014	0.0005	103	1.5014	0.0005	102
σ	1	0.9949	0.0105	1.0159	0.0096	91			
Çizelge 5.14. Sürekli model & Hudson yöntemi & İkinci durum: Hata terimlerinin dağılımının **GL** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	k değer	L	5		MML			OSM	
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				b=0.	5				
r	10	10.0133	1.1315	10.0126	1.0577	93	10.0092	1.0597	94
$\hat{eta}_0^{(1)}$	3.5	3.4958	0.2116	3.4805	0.1919	91	3.4821	0.1886	89
$\hat{eta}_1^{(1)}$	0.5	0.4960	0.0029	0.4967	0.0027	92	0.4965	0.0026	89
$\hat{eta}_0^{(2)}$	-6.5	-6.5802	1.4957	-6.5823	1.3673	91	-6.5783	1.3630	91
$\hat{eta}_1^{(2)}$	1.5	1.5023	0.0029	1.5016	0.0026	90	1.5015	0.0027	91
$\hat{\sigma}$	1	0.9953	0.0134	1.0126	0.0103	76			
				<i>b</i> = 1	L				
r	10	10.0115	0.6362	10.0018	0.6067	95	10.0020	0.6069	95
$\hat{\beta}_{0}^{(1)}$	3.5	3.5028	0.1174	3.4979	0.1125	96	3.4983	0.1118	95
$\hat{eta}_1^{(1)}$	0.5	0.4973	0.0016	0.4970	0.0016	97	0.4970	0.0016	96
$\hat{eta}_{0}^{(2)}$	-6.5	-6.5510	0.7898	-6.5464	0.7490	95	-6.5469	0.7498	95
$\hat{eta}_1^{(2)}$	1.5	1.5016	0.0015	1.5013	0.0014	95	1.5013	0.0014	95
$\hat{\sigma}$	1	0.9979	0.0101	1.0139	0.0096	95			
				b=2	2				
\hat{r}	10	10.0313	0.4215	10.0060	0.3969	94	10.0056	0.3972	94
$\beta_0^{(1)}$	3.5	3.5215	0.0743	3.5228	0.0744	100	3.5190	0.0740	100
$\beta_1^{(1)}$	0.5	0.4986	0.0011	0.4967	0.0013	124	0.4967	0.0014	126
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5416	0.5419	-6.5362	0.4910	91	-6.5395	0.4893	90
$\beta_1^{(2)}$	1.5	1.5018	0.0011	1.5022	0.0010	92	1.5022	0.0010	92
$\hat{\sigma}$	1	0.9961	0.0107	1.0105	0.0093	87			
				<i>b</i> = 3	}				
<i>r</i> ≎(1)	10	10.0305	0.3659	10.0128	0.3461	95	10.0130	0.3469	95
$\beta_0^{(1)}$	3.5	3.4966	0.0740	3.5049	0.0667	90	3.4990	0.0663	90
$\beta_{1}^{(1)}$	0.5	0.5016	0.0009	0.5000	0.0008	85	0.5000	0.0008	86
$\beta_0^{(2)}$	-6.5	-6.5325	0.4812	-6.5244	0.4301	89	-6.5306	0.4325	90
$\beta_1^{(2)}$	1.5	1.5015	0.0010	1.5017	0.0009	90	1.5017	0.0009	90
Ô	1	0.9999	0.0108	1.0090	0.0088	81			
^	10	10 0000	0.0070	b=4	0.0740	00	0.0070	0.0700	00
\hat{r}	10	10.0203	0.2979	9.9978	0.2740	92	9.9979	0.2739	92
$p_0^{(1)}$	3.5	3.5175	0.0709	3.5208	0.0589	83	3.5133	0.0587	83
$\hat{\beta}_{1}^{(2)}$	0.5	0.5003	0.0008	0.4984	0.0007	89	0.4984	0.0007	89
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5121	0.3817	-6.5095	0.3351	88	-6.5170	0.3368	88
$\beta_1^{(2)}$	1.5	1.5013	0.0007	1.5017	0.0006	87	1.5017	0.0006	87
σ	1	0.9875	0.0108	1.0002	0.0080	74			
ŕ	10	10.0220	0 3112	v = 0	0.2502	03	0 0000	0.2612	Q <i>1</i>
$\hat{\boldsymbol{\beta}}^{(1)}$	10 2 F	2 5007	0.0112	2 5200	0.2382	03 72	J.JJ00 2 5204	0.2013	04 76
$ \hat{\mu}_{0} $ $ \hat{g}^{(1)} $	5.5 0 5	5.5227 0.4005	0.0911	0.4071	0.0003	13	0.4065	0.0090	70 117
$p_1^{(2)}$	0.5	0.4995	0.0008	0.4971	0.0007	04 74	0.4900	0.0010	11/
p_0 $\hat{g}^{(2)}$	-0.5	-0.5266	0.4417	-0.5104	0.3268	(4 70	-0.5201	0.3279	74 70
p_1	1.5	1.5011	0.0008	1.5019	0.0007	78 60	1.5019	0.0007	78
U	1	0.9959	0.0122	1.0009	0.0084	69			

ANADOLU ÜNİVERSİTESİ

Çizelge 5.15. Sürekli model & Hudson yöntemi & İkinci durum: Hata terimlerinin dağılımının **JFST** olması durumunda LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	k değer	L	5		MML			OSM	
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				<i>a</i> = 3; <i>b</i>	= 3				
ŕ	10	10.0252	0.2906	10.0048	0.2691	93	10.0047	0.2699	93
$\hat{eta}_0^{(1)}$	3.5	3.5067	0.0686	3.5001	0.0609	89	3.5001	0.0594	87
$\hat{eta}_1^{(1)}$	0.5	0.4996	0.0015	0.4992	0.0014	91	0.4992	0.0013	85
$\hat{eta}_{0}^{(2)}$	-6.5	-6.5323	0.3474	-6.5151	0.3218	93	-6.5156	0.3296	95
$\hat{eta}_1^{(2)}$	1.5	1.5013	0.0007	1.5006	0.0006	92	1.5006	0.0007	96
$\hat{\sigma}$	1	0.9942	0.0126	1.0242	0.0101	80			
				a = 3; b	= 9				
r	10	10.0200	0.4507	9.9861	0.4018	89	9.9864	0.4006	89
$\hat{eta}_0^{(1)}$	3.5	3.4814	0.1572	3.4602	0.0914	58	3.4707	0.0906	58
$\hat{eta}_1^{(1)}$	0.5	0.4991	0.0014	0.4996	0.0011	82	0.4996	0.0011	83
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5543	0.6210	-6.5184	0.4828	78	-6.5084	0.4817	78
$\hat{\beta}_{1}^{(2)}$	1.5	1.5010	0.0011	1.4991	0.0009	80	1.4991	0.0009	80
$\dot{\hat{\sigma}}$	1	0.9882	0.0243	1.0017	0.0090	37			
				a = 3; b =	= 15				
ŕ	10	10.0125	0.7370	9.9984	0.6439	87	9.9980	0.6457	88
$\hat{eta}_0^{(1)}$	3.5	3.4573	0.4584	3.4429	0.1780	39	3.4643	0.1760	38
$\hat{eta}_1^{(1)}$	0.5	0.4974	0.0022	0.4983	0.0017	78	0.4983	0.0017	77
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5905	1.4166	-6.5677	0.8918	63	-6.5461	0.8888	63
$\hat{\beta}_{1}^{(2)}$	1.5	1.5009	0.0024	1.4996	0.0016	68	1.4995	0.0016	68
$\hat{\sigma}$	1	0.9889	0.0256	1.0022	0.0094	37			
				<i>a</i> = 15; <i>b</i>	= 15				
ŕ	10	9.9930	0.1993	9.9934	0.1983	100	9.9935	0.1985	100
$\hat{eta}_0^{(1)}$	3.5	3.5009	0.0370	3.5006	0.0370	100	3.5007	0.0370	100
$\hat{eta}_1^{(1)}$	0.5	0.4984	0.0005	0.4984	0.0005	100	0.4983	0.0005	101
$\hat{eta}_0^{(2)}$	-6.5	-6.5107	0.2492	-6.5115	0.2477	99	-6.5117	0.2478	99
$\hat{eta}_1^{(2)}$	1.5	1.5003	0.0005	1.5003	0.0005	99	1.5003	0.0005	99
σ	1	0.9986	0.0072	1.0053	0.0073	101			

Çizelge 5.10 ve 5.13 den açıktır ki, Model (5.3) ün her bir fazındaki hata terimlerinin dağılımının iid LTS olması durumunda, değişim noktasının ve model parametrelerinin MML ve OSM tahmin edicilerinin LS tahmin edicisinden daha etkin olduğu görülmektedir. Şekil parametresi p 5'e yaklaştıkça LS tahmin edicisinin etkinliği, MML ve OSM tahmin edicilerinin etkinliğine yaklaşmaktadır. Bu da beklenen bir durumdur.

Çizelge 5.11 ve 5.14 den görülmektedir ki, Model (5.3) ün her bir fazındaki hata terimlerinin dağılımının iid GL olması durumunda, değişim noktasının ve model parametrelerinin MML ve OSM tahmin edicilerinin LS tahmin edicisinden daha etkin olduğu görülmektedir. Şekil parametresi *b* 1 iken LS tahmin edicisinin etkinliği, MML ve OSM tahmin edicilerinin etkinliğine yaklaşmakta, dağılımın çarpık olduğu durumda MML ve OSM tahmin edicileri daha etkin olmaktadır.

Model (5.3) ün her bir fazındaki hata terimlerinin dağılımının iid JFST olması durumunda, değişim noktasının ve model parametrelerinin MML ve OSM tahmin edicilerinin LS tahmin edicisinden daha etkin olduğu Çizelge 5.12 ve 5.15 den açık olarak görülmektedir. Şekil parametreleri *a* ve *b* 15'e yaklaştıkça LS tahmin edicisinin etkinliği, MML ve OSM tahmin edicilerinin etkinliğine yaklaşmakta, dağılımın çarpık olduğu durumda MML ve OSM tahmin edicileri daha etkin olmaktadır.

5.3. Dayanıklılık

Bu bölümde, Bölüm 3 ve 4 de anlatılan değişim noktası tahmin yöntemlerinin istatistiksel dayanıklılığı (robustness) incelenmiştir. Bir başka anlatımla, varsayılan bir hata dağılımından makul sapmaların LS, MML ve OSM tahmin edicilerinin etkinliklerini nasıl etkilediği bu bölümde ele alınmıştır.

Bir tahmin edicinin dayanıklı olması; onun varsayılan bir model altında tam etkin (fully efficient), varsayılan modelin makul alternatiflerinde ise yüksek bir etkinliğe sahip olmasıdır. Burada tam etkinlik, tahmin edicinin varyansının Rao-Cramer alt sınırına eşit olmasıdır, bkz. Tiku ve ark. (2001), Şenoğlu (2005), Şenoğlu ve Avcıoğlu (2009). İlerleyen alt bölümlerde, hata terimlerinin gerçek dağılımı LTS, GL ve JFST olduğunda tahmin edicilerin dayanıklılıkları, aşağıda belirtilen makul alternatifler altında

- (i) Şekil parametresinin yanlış belirlenmiş olması,
- (ii) Verinin kirletilmiş olması,
- (iii) Verinin aykırı değer(ler) içeriyor olması

ele alınarak ayrı ayrı incelenmiştir. Alternatif modeller altında, tahmin edicilerin performansları Bölüm 5.1 ve 5.2 de anlatılan Monte-Carlo simulasyon yapıları ve değerlendirme kriterleri kullanılarak karşılaştırılmıştır. Acıtaş ve ark. (2013a, 2013b) çalışmalarında konum parametresi, Şenoğlu ve Avcıoğlu (2009) çalışmasında ise tek-yönlü kovaryans analizi modeli için benzer karşılaştırmalar mevcuttur.

Burada belirtmek gerekir ki, bu bölümde süreksiz model ve Hudson yöntemi için verilen LS sonuçları, Bölüm 5.1 ve 5.2.2 de anlatılan birinci durum için verilmiştir. İkinci durum için benzer sonuçlar elde edildiğinden kısalık adına burada tekrar verilmemiştir.

5.3.1. LTS dağılımı

Model (1.2) de hata terimlerinin gerçek dağılımı $LTS(p = 3.5, \sigma = 1)$ olsun. LS, MML ve OSM tahmin edicilerinin dayanıklılığını araştırmak için aşağıdaki dört makul alternatif dikkate alınmıştır:

Model I (*Yanlış belirlenmiş model*) $LTS(p = 2.5, \sigma = 1)$;

Model II (Dixon'un aykırı değer modeli)

$$(n-\ell)LTS(p=3.5, \sigma=1) + \ell LTS(p=3.5, \sigma=2), \quad \ell = [[0.5+0.1n]];$$

Model III (*Karma model*) $0.90LTS(p = 3.5, \sigma = 1) + 0.10LTS(p = 3.5, \sigma = 2)$;

Model IV (*Kirletilmiş model*) $0.90LTS(p = 3.5, \sigma = 1) + 0.10N(\mu = 0, \sigma = 2)$.

Süreksiz iki-fazlı doğrusal regresyon modelinde LS, MML ve OSM tahmin edicilerinin alternatif modeller altındaki simule edilmiş MEAN, MSE ve RE değerleri Çizelge 5.16 da; sürekli iki-fazlı doğrusal regresyon modeli için ise Çizelge 5.17 ve 5.18 de verilmiştir.

Çizelge 5.16–5.18 den açıktır ki, MML ve OSM tahmin edicilerinin MSE değerleri, varsayılan gerçek hata dağılımındaki MSE değerine yakındır. Ayrıca, RE değerlerine bakıldığında MML ve OSM tahmin edicilerinin LS tahmin edicilerine göre daha etkin olduğu görülmektedir. Bu ise, MML ve OSM tahmin edicilerinin verideki "bozukluklara" LS tahmin edicilerinden daha dayanıklı olduğunu gösterir.

Gerçe	ek değer	L	S	MML			OSM		
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				Gerçek M	Iodel				
ŕ	25	25.1690	0.4850	25.1800	0.5040	104	25.1800	0.5040	104
$\hat{eta}_0^{(1)}$	0	0.0015	0.1725	-0.0005	0.1517	88	0.0004	0.1509	87
$\hat{eta}_1^{(1)}$	1	1.0002	0.0008	1.0005	0.0007	89	1.0005	0.0007	89
$\hat{eta}_0^{(2)}$	55	55.0719	1.0994	55.0830	0.9854	90	55.0851	0.9814	89
$\hat{eta}_1^{(2)}$	-1	-1.0019	0.0007	-1.0021	0.0006	89	-1.0022	0.0006	89
$\hat{\hat{\sigma}}$	1	0.9831	0.0190	1.0308	0.0171	90			
				Mode	11				
ŕ	25	25.1980	0.5980	25.1620	0.5060	85	25.1620	0.5060	85
$\hat{eta}_0^{(1)}$	0	0.0048	0.1683	0.0072	0.1249	74	0.0071	0.1217	72
$\hat{eta}_1^{(1)}$	1	0.9998	0.0008	0.9995	0.0006	75	0.9995	0.0006	73
$\hat{eta}_0^{(2)}$	55	55.0670	1.2199	55.0620	0.9012	74	55.0584	0.8814	72
$\hat{eta}_1^{(2)}$	-1	-1.0017	0.0008	-1.0016	0.0006	75	-1.0015	0.0006	73
$\dot{\hat{\sigma}}$	1	0.9774	0.0462	0.9891	0.0256	55			
				Model	II				
ŕ	25	25.1620	0.5000	25.1520	0.4300	86	25.1520	0.4300	86
$\hat{eta}_0^{(1)}$	0	0.0084	0.3979	0.0034	0.2809	71	0.0039	0.2719	68
$\hat{eta}_1^{(1)}$	1	1.0002	0.0015	1.0005	0.0011	73	1.0006	0.0011	71
$\hat{eta}_0^{(2)}$	55	54.9994	2.0434	55.0106	1.5238	75	55.0134	1.4845	73
$\hat{eta}_1^{(2)}$	-1	-0.9999	0.0015	-1.0002	0.0011	73	-1.0003	0.0011	71
$\hat{\sigma}$	1.1	1.1329	0.0583	1.1590	0.0530	91			
				Model	III				
ŕ	25	25.2260	0.7780	25.2090	0.6870	88	25.2090	0.6870	88
$\hat{eta}_{0}^{(1)}$	0	0.0154	0.2343	0.0118	0.1854	79	0.0115	0.1816	77
$\hat{eta}_1^{(1)}$	1	0.9990	0.0011	0.9993	0.0009	80	0.9994	0.0009	79
$\hat{eta}_0^{(2)}$	55	54.9897	1.9878	55.0165	1.3777	69	55.0154	1.3578	68
$\hat{eta}_1^{(2)}$	-1	-0.9997	0.0013	-1.0004	0.0009	71	-1.0004	0.0009	71
$\hat{\sigma}$	1.1	1.1084	0.0538	1.1378	0.0471	88			
				Model	IV				
<i>r</i>	25	25.2090	0.6470	25.1960	0.5940	92	25.1960	0.5940	92
$\hat{eta}_0^{(1)}$	0	-0.0131	0.2123	-0.0119	0.1803	85	-0.0121	0.1782	84
$\hat{eta}_{1}^{(1)}$	1	1.0013	0.0010	1.0013	0.0009	84	1.0013	0.0009	82
$\hat{eta}_{0}^{(2)}$	55	55.0466	1.5694	55.0341	1.3158	84	55.0321	1.3071	83
$\hat{eta}_1^{(2)}$	-1	-1.0008	0.0010	-1.0005	0.0009	83	-1.0004	0.0009	83
$\hat{\sigma}$	1.1	1.1170	0.0464	1.1536	0.0507	109			

Çizelge 5.16. Süreksiz model & LTS dağılımı: Alternatif modeller altında LS, MML ve OSM tahmin edicilerinin MEAN, MSE ve RE değerleri

Gerçe	k değer	L	S]	MML		OSM		
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
			Ge	erçek Mode	el				
r	10	9.9859	0.1999	9.9888	0.1641	82	9.9896	0.1642	82
$\hat{eta}_0^{(1)}$	3.5	3.5001	0.0305	3.4994	0.0265	87	3.4995	0.0265	87
$\hat{eta}_1^{(1)}$	0.5	0.4999	0.0005	0.4998	0.0004	88	0.4998	0.0004	88
$\hat{eta}_0^{(2)}$	-6.5	-6.4728	0.2495	-6.4806	0.2014	81	-6.4812	0.2021	81
$\hat{eta}_1^{(2)}$	1.5	1.4986	0.0005	1.4989	0.0004	82	1.4990	0.0004	83
$\hat{\hat{\sigma}}$	1	0.9898	0.0137	1.0066	0.0102	74			
				Model	Ι				
r	10	10.0017	0.1864	9.9974	0.1359	73	9.9978	0.1361	73
$\hat{eta}_0^{(1)}$	3.5	3.5037	0.0314	3.5019	0.0236	75	3.5021	0.0236	75
$\hat{eta}_1^{(1)}$	0.5	0.4986	0.0004	0.4988	0.0003	77	0.4989	0.0003	77
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5168	0.2495	-6.5123	0.1814	73	-6.5123	0.1807	72
$\hat{\beta}_{1}^{(2)}$	1.5	1.5005	0.0005	1.5005	0.0004	74	1.5005	0.0004	74
$\hat{\sigma}$	1	0.9756	0.0245	0.9441	0.0141	58			
				Model	II				
ŕ	10	10.0115	0.2698	10.0054	0.1988	74	10.0069	0.1975	73
$\hat{eta}_0^{(1)}$	3.5	3.5120	0.0434	3.5133	0.0333	77	3.5132	0.0332	76
$\hat{eta}_1^{(1)}$	0.5	0.4995	0.0007	0.4999	0.0006	80	0.5000	0.0005	76
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5020	0.3253	-6.4835	0.2410	74	-6.4838	0.2408	74
$\hat{\beta}_{1}^{(2)}$	1.5	1.4999	0.0006	1.4991	0.0005	78	1.4991	0.0005	78
$\hat{\sigma}$	1.1	1.1309	0.0310	1.1070	0.0168	54			
				Model I	II				
ŕ	10	10.0127	0.2306	10.0016	0.1884	82	10.0011	0.1893	82
$\hat{eta}_0^{(1)}$	3.5	3.4982	0.0410	3.4936	0.0325	79	3.4938	0.0324	79
$\hat{eta}_1^{(1)}$	0.5	0.4993	0.0006	0.4991	0.0005	83	0.4990	0.0005	82
$\hat{eta}_0^{(2)}$	-6.5	-6.5235	0.3147	-6.5190	0.2557	81	-6.5191	0.2559	81
$\hat{\beta}_{1}^{(2)}$	1.5	1.5002	0.0006	1.5002	0.0005	81	1.5002	0.0005	81
$\hat{\sigma}$	1.1	1.1280	0.0279	1.1069	0.0148	53			
				Model I	V				
ŕ	10	10.0344	0.2630	10.0241	0.2054	78	10.0234	0.2044	78
$\hat{eta}_{0}^{(1)}$	3.5	3.4960	0.0405	3.4955	0.0315	78	3.4955	0.0313	77
$\hat{eta}_1^{(1)}$	0.5	0.5010	0.0006	0.5002	0.0005	85	0.5001	0.0005	84
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5522	0.3211	-6.5513	0.2711	84	-6.5509	0.2708	84
$\hat{\beta}_{1}^{(2)}$	1.5	1.5024	0.0006	1.5024	0.0005	88	1.5024	0.0005	88
ô	1	1.1391	0.0222	1.1289	0.0155	70			

Çizelge 5.17. Sürekli model & LTS dağılımı & Muggeo'nun parçalara ayırma yöntemi: Alternatif modeller altında MEAN, MSE ve RE değerleri

Gerçe	ek değer	L	S	MML			OSM		
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				Gerçek M	odel				
ŕ	10	9.9900	0.1692	9.9871	0.1456	86	9.9882	0.1452	86
$\hat{eta}_{0}^{(1)}$	3.5	3.4897	0.0298	3.4906	0.0255	86	3.4912	0.0254	85
$\hat{eta}_1^{(1)}$	0.5	0.5003	0.0005	0.4999	0.0004	90	0.4999	0.0004	89
$\hat{eta}_0^{(2)}$	-6.5	-6.5019	0.2270	-6.5016	0.2076	91	-6.5025	0.2072	91
$\hat{eta}_1^{(2)}$	1.5	1.5005	0.0005	1.5004	0.0004	94	1.5004	0.0004	94
$\hat{\sigma}$	1	0.9889	0.0149	1.0183	0.0120	81			
				Model	Ι				
ŕ	10	9.9914	0.1911	9.9883	0.1439	75	9.9866	0.1416	74
$\hat{eta}_0^{(1)}$	3.5	3.4951	0.0316	3.4967	0.0238	75	3.4970	0.0234	74
$\hat{eta}_1^{(1)}$	0.5	0.4992	0.0005	0.4989	0.0004	79	0.4988	0.0004	77
$\hat{eta}_0^{(2)}$	-6.5	-6.5070	0.2387	-6.5048	0.1854	78	-6.5033	0.1819	76
$\hat{eta}_1^{(2)}$	1.5	1.5003	0.0005	1.5002	0.0004	78	1.5002	0.0004	76
$\hat{\hat{\sigma}}$	1	0.9791	0.0293	0.9658	0.0148	50			
				Model	II				
<i>r</i>	10	9.9783	0.2377	9.9719	0.1842	78	9.9716	0.1844	78
$\hat{eta}_{0}^{(1)}$	3.5	3.4872	0.0415	3.4881	0.0311	75	3.4891	0.0304	73
$\hat{eta}_1^{(1)}$	0.5	0.4995	0.0006	0.4993	0.0005	76	0.4992	0.0005	75
$\hat{eta}_0^{(2)}$	-6.5	-6.4936	0.3246	-6.4843	0.2595	80	-6.4872	0.2572	79
$\hat{eta}_1^{(2)}$	1.5	1.4997	0.0007	1.4993	0.0005	81	1.4996	0.0005	78
$\hat{\sigma}$	1.1	1.1243	0.0303	1.1224	0.0191	63			
				Model	III				
ŕ	10	10.0185	0.2495	10.0110	0.2076	83	10.0094	0.2058	83
$\hat{eta}_{0}^{(1)}$	3.5	3.4956	0.0429	3.4975	0.0354	82	3.4979	0.0351	82
$\hat{eta}_{1}^{(1)}$	0.5	0.4997	0.0007	0.4998	0.0006	86	0.4997	0.0006	87
$\hat{eta}_0^{(2)}$	-6.5	-6.5495	0.3179	-6.5328	0.2539	80	-6.5301	0.2506	79
$\hat{eta}_1^{(2)}$	1.5	1.5024	0.0006	1.5018	0.0005	82	1.5017	0.0005	81
$\hat{\sigma}$	1.1	1.1235	0.0262	1.1228	0.0159	61			
				Model	IV				
\hat{r}	10	9.9994	0.2336	9.9937	0.1888	81	9.9939	0.1874	80
$\beta_0^{(1)}$	3.5	3.5015	0.0413	3.5006	0.0338	82	3.5005	0.0336	81
$\hat{\beta}_{1}^{(1)}$	0.5	0.5005	0.0006	0.5003	0.0005	83	0.5003	0.0005	82
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.4862	0.2930	-6.4807	0.2282	78	-6.4816	0.2271	77
$\hat{eta}_1^{\scriptscriptstyle (2)}$	1.5	1.4993	0.0006	1.4992	0.0004	79	1.4992	0.0004	78
$\hat{\sigma}$	1.1	1.1352	0.0209	1.1426	0.0165	79			

Çizelge 5.18. Sürekli model & LTS dağılımı & Hudson yöntemi: Alternatif modeller altında MEAN, MSE ve RE değerleri

5.3.2. GL dağılımı

Model (1.2) de hata terimlerinin gerçek dağılımı $GL(b = 2, \sigma = 1)$ olsun. LS, MML ve OSM tahmin edicilerinin dayanıklılığını araştırmak için aşağıdaki dört makul alternatif dikkate alınmıştır:

Model I (*Yanlış belirlenmiş model*) $GL(b = 4, \sigma = 1)$;

Model II (Dixon'un aykırı değer modeli)

$$(n-\ell)GL(b=2,\sigma=1) + \ell GL(b=2,\sigma=2), \quad \ell = [[0.5+0.1n]];$$

Model III (*Karma model*) $0.90GL(b = 2, \sigma = 1) + 0.10GL(b = 2, \sigma = 2)$;

Model IV (*Kirletilmiş model*) $0.90GL(b = 2, \sigma = 1) + 0.10Exp(\mu = 1, \sigma = 1)$.

Süreksiz iki-fazlı doğrusal regresyon modelinde LS, MML ve OSM tahmin edicilerinin alternatif modeller altındaki simule edilmiş MEAN, MSE ve RE değerleri Çizelge 5.19 da; sürekli iki-fazlı doğrusal regresyon modeli için ise Çizelge 5.20 ve 5.21 de verilmiştir.

Çizelge 5.19–5.21 den açıktır ki, LTS durumunda da olduğu gibi, MML ve OSM tahmin edicilerinin MSE değerleri, varsayılan gerçek hata dağılımındaki MSE değerine yakındır. Ayrıca, RE değerlerine bakıldığında MML ve OSM tahmin edicilerinin LS tahmin edicilerine göre daha etkin olduğu görülmektedir. Bu ise, MML ve OSM tahmin edicilerinin verideki "bozukluklara" LS tahmin edicilerinden daha dayanıklı olduğunu gösterir.

Gerçe	k değer	LS	5		MML			OSM	
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				Gerçek M	odel				
ŕ	25	25.5570	2.1670	25.4870	1.9450	90	25.4870	1.9450	90
$\hat{eta}_{0}^{(1)}$	0	0.0175	0.3805	0.0319	0.3505	92	0.0274	0.3502	92
$\hat{eta}_1^{(1)}$	1	1.0008	0.0018	1.0012	0.0016	91	1.0012	0.0016	91
$\hat{\beta}_{0}^{(2)}$	55	54.9546	3.3227	55.0103	2.9408	89	55.0025	2.9273	88
$\hat{\beta}_{1}^{(2)}$	-1	-0.9987	0.0022	-0.9994	0.0019	88	-0.9994	0.0019	88
$\hat{\sigma}$	1	0.9797	0.0145	0.9638	0.0130	89			
				Model	Ι				
ŕ	25	25.4330	1.7290	25.3500	1.3480	78	25.3490	1.3450	78
$\hat{eta}_{0}^{(1)}$	0	0.9356	1.1901	0.9429	1.1567	97	0.9330	1.1394	96
$\hat{eta}_1^{(1)}$	1	0.9998	0.0015	1.0007	0.0013	83	1.0007	0.0013	84
$\hat{\beta}_{0}^{(2)}$	55	55.8908	3.3389	55.9802	3.0963	93	55.9729	3.0896	93
$\hat{\beta}_{1}^{(2)}$	-1	-0.9989	0.0017	-1.0005	0.0014	83	-1.0005	0.0014	84
$\hat{\sigma}$	1	0.8957	0.0251	0.8616	0.0292	116			
				Model	II				
ŕ	25	25.5360	2.3640	25.5110	2.0430	86	25.5120	2.0520	87
$\hat{eta}_0^{(1)}$	0	0.3147	0.9549	0.1380	0.6875	72	0.1318	0.6679	70
$\hat{eta}_1^{(1)}$	1	0.9725	0.0045	0.9901	0.0029	63	0.9901	0.0028	62
$\hat{\beta}_{0}^{(2)}$	55	53.7824	7.4507	54.5962	4.6629	63	54.5829	4.5853	62
$\hat{\beta}_{1}^{(2)}$	-1	-0.9694	0.0051	-0.9890	0.0033	64	-0.9888	0.0032	63
$\hat{\sigma}$	1.1	1.1542	0.0370	1.0985	0.0204	55			
				Model	III				
ŕ	25	25.6630	2.9590	25.6030	2.4350	82	25.6030	2.4350	82
$\hat{eta}_0^{(1)}$	0	0.0158	0.5236	0.0402	0.4217	81	0.0336	0.4162	79
$\hat{\beta}_{1}^{(1)}$	1	0.9978	0.0026	0.9996	0.0020	78	0.9997	0.0020	78
$\hat{\beta}_{0}^{(2)}$	55	54.8779	5.2101	55.0346	3.8951	75	55.0335	3.8365	74
$\hat{\beta}_{1}^{(2)}$	-1	-0.9976	0.0033	-1.0001	0.0025	75	-1.0002	0.0024	74
$\hat{\sigma}$	1.1	1.1187	0.0331	1.0719	0.0219	66			
				Model	IV				
ŕ	25	25.4570	1.7130	25.4050	1.5590	91	25.4050	1.5590	91
$\hat{eta}_0^{(1)}$	0	0.0473	0.3627	0.0724	0.3195	88	0.0679	0.3169	87
$\hat{eta}_1^{(1)}$	1	0.9999	0.0017	0.9999	0.0015	85	1.0000	0.0015	85
$\hat{\beta}_{0}^{(2)}$	55	55.0026	2.9411	55.0902	2.5825	88	55.0849	2.5774	88
$\hat{\beta}_{1}^{(2)}$	-1	-0.9990	0.0019	-1.0005	0.0017	88	-1.0005	0.0017	88
$\hat{\sigma}$	1	0.9568	0.0169	0.9354	0.0165	97			

Çizelge 5.19. Süreksiz model & GL dağılımı: Alternatif modeller altında MEAN, MSE ve RE değerleri

Gerçe	ek değer	L	S	MML			OSM		
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
			G	erçek Mod	el				
r	10	10.0101	0.4633	10.0108	0.4005	86	10.0098	0.4021	87
$\hat{eta}_0^{(1)}$	3.5	3.5037	0.0733	3.5116	0.0677	92	3.5107	0.0677	92
$\hat{eta}_1^{(1)}$	0.5	0.5008	0.0011	0.5009	0.0010	90	0.5009	0.0010	90
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.4981	0.5579	-6.4901	0.4846	87	-6.4893	0.4834	87
$\hat{eta}_1^{(2)}$	1.5	1.5000	0.0011	1.5001	0.0010	90	1.5000	0.0009	90
$\hat{\hat{\sigma}}$	1	0.9935	0.0105	1.0025	0.0084	80			
				Model	Ι				
r	10	10.0011	0.3907	9.9997	0.3231	83	9.9992	0.3231	83
$\hat{eta}_0^{(1)}$	3.5	4.4103	0.8932	4.4085	0.8874	99	4.4068	0.8844	99
$\hat{m{eta}}_1^{(1)}$	0.5	0.4995	0.0011	0.4993	0.0011	96	0.4993	0.0011	96
$\hat{eta}_0^{(2)}$	-6.5	-5.6056	1.2729	-5.6120	1.1765	92	-5.6132	1.1747	92
$\hat{\beta}_{1}^{(2)}$	1.5	1.5011	0.0009	1.5017	0.0008	86	1.5016	0.0008	86
$\hat{\hat{\sigma}}$	1	0.9130	0.0171	0.8991	0.0172	100			
				Model	II				
ŕ	10	9.9692	0.8122	9.9557	0.4890	60	9.9531	0.4855	60
$\hat{m{eta}}_0^{(1)}$	3.5	3.4267	0.1337	3.4611	0.0840	63	3.4598	0.0838	63
$\hat{eta}_1^{(1)}$	0.5	0.4990	0.0021	0.4975	0.0014	65	0.4974	0.0014	64
$\hat{eta}_0^{(2)}$	-6.5	-6.5497	0.8342	-6.5272	0.6321	76	-6.5267	0.6351	76
$\hat{eta}_1^{(2)}$	1.5	1.5005	0.0017	1.5007	0.0015	85	1.5007	0.0015	88
$\hat{\sigma}$	1.1	1.1361	0.0266	1.1108	0.0150	56			
				Model	III				
<i>î</i>	10	9.9915	0.6276	9.9744	0.4707	75	9.9752	0.4680	75
$\hat{eta}_{0}^{(1)}$	3.5	3.4476	0.1036	3.4742	0.0856	83	3.4737	0.0854	82
$\hat{oldsymbol{eta}}_{1}^{(1)}$	0.5	0.4984	0.0016	0.4978	0.0012	77	0.4978	0.0012	76
$\hat{eta}_0^{(2)}$	-6.5	-6.5752	0.8018	-6.5347	0.6249	78	-6.5364	0.6192	77
$\hat{eta}_1^{(2)}$	1.5	1.5016	0.0016	1.5013	0.0013	80	1.5013	0.0012	79
$\hat{\sigma}$	1.1	1.1395	0.0243	1.1124	0.0134	55			
				Model	IV				
ŕ	10	10.0243	0.4585	10.0296	0.3539	77	10.0272	0.3543	77
$\hat{eta}_{0}^{(1)}$	3.5	3.5345	0.0743	3.5448	0.0673	91	3.5436	0.0671	90
$\hat{eta}_{1}^{(1)}$	0.5	0.4998	0.0011	0.4993	0.0009	87	0.4992	0.0009	87
$\hat{eta}_{0}^{(2)}$	-6.5	-6.4962	0.5056	-6.5066	0.4072	81	-6.5054	0.4074	81
$\hat{eta}_1^{(2)}$	1.5	1.5004	0.0010	1.5016	0.0008	77	1.5016	0.0008	77
$\hat{\sigma}$	1	0.9682	0.0119	0.9641	0.0099	83			

Çizelge 5.20. Sürekli model & GL dağılımı & Muggeo'nun parçalara ayırma yöntemi: Alternatif modeller altında MEAN, MSE ve RE değerleri

Gerçe	ek değer	LS			MML		OSM		
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				Gerçek M	lodel				
r	10	9.9985	0.4499	9.9853	0.3835	85	9.9853	0.3835	85
$\hat{eta}_0^{(1)}$	3.5	3.5120	0.0691	3.5129	0.0641	93	3.5098	0.0643	93
$\hat{eta}_1^{(1)}$	0.5	0.4981	0.0012	0.4971	0.0011	88	0.4971	0.0011	88
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.5155	0.5670	-6.5133	0.4954	87	-6.5169	0.4972	88
$\hat{eta}_1^{(2)}$	1.5	1.5009	0.0012	1.5012	0.0010	84	1.5013	0.0011	85
$\hat{\sigma}$	1	0.9952	0.0099	1.0071	0.0080	81			
				Model	I				
ŕ	10	9.9898	0.3708	9.9970	0.2950	80	9.9966	0.2959	80
$\hat{eta}_{0}^{(1)}$	3.5	4.4168	0.9049	4.4211	0.9030	100	4.4155	0.8928	99
$\hat{m{eta}}_1^{(1)}$	0.5	0.4974	0.0010	0.4976	0.0008	81	0.4976	0.0008	80
$\hat{eta}_0^{(2)}$	-6.5	-5.6046	1.2556	-5.6107	1.1584	92	-5.6156	1.1504	92
$\hat{eta}_1^{(2)}$	1.5	1.5006	0.0009	1.5011	0.0007	81	1.5011	0.0007	81
$\hat{\sigma}$	1	0.9170	0.0167	0.9065	0.0158	95			
				Model	II				
r	10	9.9844	0.6572	9.9987	0.5064	77	9.9996	0.5036	77
$\hat{m{eta}}_{0}^{(1)}$	3.5	3.4514	0.1212	3.4839	0.0937	77	3.4793	0.0935	77
$\hat{eta}_{1}^{(1)}$	0.5	0.4958	0.0019	0.4965	0.0015	75	0.4966	0.0014	74
$\hat{eta}_{0}^{(2)}$	-6.5	-6.5888	0.8118	-6.5670	0.6275	77	-6.5721	0.6216	77
$\hat{eta}_1^{(2)}$	1.5	1.5015	0.0016	1.5019	0.0012	77	1.5019	0.0012	76
$\hat{\sigma}$	1.1	1.1473	0.0274	1.1275	0.0168	61			
				Model	III				
\hat{r}	10	10.0149	0.6479	10.0301	0.5031	78	10.0301	0.4992	77
$\hat{\beta}_{0}^{(1)}$	3.5	3.4622	0.1059	3.5018	0.0861	81	3.4977	0.0846	80
$\hat{\beta}_{1}^{(1)}$	0.5	0.5007	0.0015	0.5005	0.0013	87	0.5005	0.0013	87
$\hat{eta}_{0}^{(2)}$	-6.5	-6.5405	0.8649	-6.5225	0.6700	77	-6.5264	0.6669	77
$\hat{eta}_1^{(2)}$	1.5	1.4990	0.0017	1.4997	0.0013	77	1.4997	0.0013	77
$\hat{\sigma}$	1.1	1.1497	0.0296	1.1251	0.0154	52			
				Model	IV				
\hat{r}	10	10.0059	0.4145	9.9980	0.3606	87	9.9972	0.3599	87
$\beta_0^{(1)}$	3.5	3.5326	0.0709	3.5425	0.0617	87	3.5394	0.0610	86
$\hat{\beta}_{1}^{(1)}$	0.5	0.5007	0.0011	0.4996	0.0009	85	0.4996	0.0009	85
$\hat{\beta}_{0}^{(2)}$	-6.5	-6.4614	0.5471	-6.4592	0.4850	89	-6.4614	0.4836	88
$\hat{eta}_1^{(2)}$	1.5	1.4995	0.0011	1.5000	0.0010	90	1.5000	0.0010	90
σ	1.1	0.9655	0.0115	0.9732	0.0093	81			

Çizelge 5.21. Sürekli model & GL dağılımı & Hudson yöntemi: Alternatif modeller altında MEAN, MSE ve RE değerleri

5.3.3. JFST dağılımı

Model (1.2) de hata terimlerinin gerçek dağılımı JFST($a = 3, b = 6, \sigma = 1$) olsun. LS, MML ve OSM tahmin edicilerinin dayanıklılığını araştırmak için aşağıdaki dört makul alternatif dikkate alınmıştır:

Model I (*Yanlış belirlenmiş model*) JFST($a = 4, b = 7, \sigma = 1$);

Model II (Dixon'un aykırı değer modeli)

$$(n-\ell)JFST(a=3, b=6, \sigma=1)+\ell JFST(a=3, b=6, \sigma=2), \ell = [[0.5+0.1n]];$$

Model III (Karma model)

$$0.90JFST(a = 3, b = 6, \sigma = 1) + 0.10JFST(a = 3, b = 6, \sigma = 2);$$

Model IV (Kirletilmiş model)

$$0.90JFST(a = 3, b = 6, \sigma = 1) + 0.10N(\mu = -1.305, \sigma = 2).$$

Süreksiz iki-fazlı doğrusal regresyon modelinde LS, MML ve OSM tahmin edicilerinin alternatif modeller altındaki simule edilmiş MEAN, MSE ve RE değerleri Çizelge 5.22 de; sürekli iki-fazlı doğrusal regresyon modeli için ise Çizelge 5.23 ve 5.24 de verilmiştir.

Çizelge 5.22–5.24 den açıktır ki, LTS ve GL durumlarında da olduğu gibi, MML ve OSM tahmin edicilerinin MSE değerleri, varsayılan gerçek hata dağılımındaki MSE değerine yakındır. Ayrıca, RE değerlerine bakıldığında MML ve OSM tahmin edicilerinin LS tahmin edicilerine daha göre etkin olduğu görülmektedir. Bu ise, MML ve OSM tahmin edicilerinin verideki "bozukluklara" LS tahmin edicilerinden daha dayanıklı olduğunu gösterir.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gerçe	k değer	L	S	MML			OSM		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Gerçek M	odel				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŕ	25	25.3480	0.9760	25.3290	0.8470	87	25.3290	0.8470	87
	$\hat{eta}_0^{(1)}$	0	-0.0343	0.3362	-0.0229	0.2611	78	-0.0164	0.2610	78
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{eta}_1^{(1)}$	1	1.0004	0.0015	1.0004	0.0012	77	1.0005	0.0012	77
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{eta}_0^{(2)}$	55	55.0187	2.3206	55.0140	1.7936	77	55.0221	1.7863	77
$\hat{\sigma}$ 1 0.9792 0.0261 1.0156 0.0152 58	$\hat{eta}_1^{(2)}$	-1	-1.0006	0.0015	-1.0004	0.0012	78	-1.0004	0.0012	78
Madal I	$\hat{\sigma}$	1	0.9792	0.0261	1.0156	0.0152	58			
Model I					Model	Ι				
\hat{r} 25 25.3440 0.9780 25.3470 0.9230 94 25.3470 0.9230 94	ŕ	25	25.3440	0.9780	25.3470	0.9230	94	25.3470	0.9230	94
$\hat{eta}_0^{(1)}$ 0 0.0576 0.2854 0.0836 0.2587 91 0.0877 0.2578 90	$\hat{eta}_0^{(1)}$	0	0.0576	0.2854	0.0836	0.2587	91	0.0877	0.2578	90
$\hat{eta}_1^{(1)}$ 1 1.0009 0.0012 1.0013 0.0010 88 1.0014 0.0010 87	$\hat{eta}_1^{(1)}$	1	1.0009	0.0012	1.0013	0.0010	88	1.0014	0.0010	87
$\hat{eta}_0^{(2)}$ 55 55.0879 2.0025 55.0984 1.7892 89 55.1036 1.7923 90	$\hat{eta}_0^{(2)}$	55	55.0879	2.0025	55.0984	1.7892	89	55.1036	1.7923	90
$\hat{eta}_1^{(2)}$ -1 -1.0010 0.0013 -1.0005 0.0012 89 -1.0005 0.0012 89	$\hat{\beta}_1^{(2)}$	-1	-1.0010	0.0013	-1.0005	0.0012	89	-1.0005	0.0012	89
$\hat{\hat{\sigma}}$ 1 0.8832 0.0275 0.9488 0.0154 56	$\hat{\hat{\sigma}}$	1	0.8832	0.0275	0.9488	0.0154	56			
Model II					Model	II				
\hat{r} 25 25.4080 1.0160 25.3710 0.9370 92 25.3710 0.9370 92	ŕ	25	25.4080	1.0160	25.3710	0.9370	92	25.3710	0.9370	92
$\hat{eta}_0^{(1)}$ 0 -0.3735 0.7336 -0.1535 0.4802 65 -0.1399 0.4670 64	$\hat{eta}_0^{(1)}$	0	-0.3735	0.7336	-0.1535	0.4802	65	-0.1399	0.4670	64
$\hat{eta}_1^{(1)}$ 1 1.0326 0.0037 1.0128 0.0020 54 1.0126 0.0020 53	$\hat{eta}_1^{(1)}$	1	1.0326	0.0037	1.0128	0.0020	54	1.0126	0.0020	53
$\hat{eta}_0^{(2)}$ 55 56.5042 6.6983 55.6546 3.3705 50 55.6541 3.3240 50	$\hat{eta}_0^{(2)}$	55	56.5042	6.6983	55.6546	3.3705	50	55.6541	3.3240	50
$\hat{eta}_1^{(2)}$ -1 -1.0379 0.0045 -1.0168 0.0024 53 -1.0165 0.0023 52	$\hat{eta}_1^{(2)}$	-1	-1.0379	0.0045	-1.0168	0.0024	53	-1.0165	0.0023	52
$\hat{\sigma}$ 1.1 1.1592 0.0778 1.1442 0.0430 55	$\hat{\sigma}$	1.1	1.1592	0.0778	1.1442	0.0430	55			
Model III					Model I	II				
\hat{r} 25 25.4170 1.2690 25.4070 1.0930 86 25.4070 1.0970 86	ŕ	25	25.4170	1.2690	25.4070	1.0930	86	25.4070	1.0970	86
$\hat{eta}_{0.}^{(1)}$ 0 0.0221 0.4872 -0.0125 0.2873 59 -0.0003 0.2865 59	$\hat{eta}_{0}^{(1)}$	0	0.0221	0.4872	-0.0125	0.2873	59	-0.0003	0.2865	59
$\hat{eta}_1^{(1)}$ 1 1.0023 0.0021 1.0016 0.0012 60 1.0016 0.0012 59	$\hat{eta}_1^{(1)}$	1	1.0023	0.0021	1.0016	0.0012	60	1.0016	0.0012	59
$\hat{eta}_0^{(2)}$ 55 55.1188 3.7591 55.0748 2.2194 59 55.0876 2.2069 59	$\hat{eta}_0^{(2)}$	55	55.1188	3.7591	55.0748	2.2194	59	55.0876	2.2069	59
$\hat{eta}_1^{(2)}$ -1 -1.0015 0.0024 -1.0014 0.0014 60 -1.0014 0.0014 59	$\hat{eta}_1^{(2)}$	-1	-1.0015	0.0024	-1.0014	0.0014	60	-1.0014	0.0014	59
$\hat{\sigma}$ 1.1 1.1472 0.0863 1.1281 0.0392 45	$\hat{\hat{\sigma}}$	1.1	1.1472	0.0863	1.1281	0.0392	45			
Model IV					Model	IV				
\hat{r} 25 25.4080 1.2180 25.3930 1.1610 95 25.3930 1.1610 95	ŕ	25	25.4080	1.2180	25.3930	1.1610	95	25.3930	1.1610	95
$\hat{m{eta}}_{0.}^{(1)}$ 0 0.0546 0.3905 0.0702 0.3219 82 0.0749 0.3174 81	$\hat{eta}_{0}^{(1)}$	0	0.0546	0.3905	0.0702	0.3219	82	0.0749	0.3174	81
$\hat{m{eta}}_{1.}^{(1)}$ 1 0.9993 0.0017 0.9996 0.0014 81 0.9996 0.0014 80	$\hat{eta}_{1}^{(1)}$	1	0.9993	0.0017	0.9996	0.0014	81	0.9996	0.0014	80
$\hat{eta}_0^{(2)}$ 55 55.1096 3.1065 55.0979 2.4650 79 55.1009 2.4251 78	$\hat{eta}_0^{(2)}$	55	55.1096	3.1065	55.0979	2.4650	79	55.1009	2.4251	78
$\hat{eta}_1^{(2)}$ -1 -1.0016 0.0020 -1.0010 0.0016 79 -1.0009 0.0016 78	$\hat{eta}_1^{(2)}$	-1	-1.0016	0.0020	-1.0010	0.0016	79	-1.0009	0.0016	78
$\hat{\sigma}$ 1 1.0303 0.0300 1.0872 0.0285 95	$\hat{\sigma}$	1	1.0303	0.0300	1.0872	0.0285	95			

Çizelge 5.22. Süreksiz model & JFST dağılımı: Alternatif modeller altında MEAN, MSE ve RE değerleri

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gerçe	ek değer	L	S	MML			OSM		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					Gerçek M	odel				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ŕ	10	9.9995	0.4202	10.0057	0.2773	66	10.0058	0.2769	66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\hat{eta}_0^{(1)}$	3.5	3.4867	0.0877	3.4928	0.0543	62	3.4940	0.0542	62
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\hat{eta}_1^{(1)}$	0.5	0.4988	0.0013	0.4992	0.0007	57	0.4992	0.0007	57
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{eta}_0^{(2)}$	-6.5	-6.5203	0.4602	-6.5200	0.3647	79	-6.5186	0.3656	79
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{\beta}_1^{(2)}$	1.5	1.5000	0.0009	1.4999	0.0007	81	1.4999	0.0007	82
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\hat{\hat{\sigma}}$	1	0.9899	0.0174	1.0052	0.0092	53			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Model	Ι				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŕ	10	10.0054	0.3150	10.0086	0.2740	87	10.0122	0.2713	86
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\hat{eta}_0^{(1)}$	3.5	3.5556	0.0634	3.5875	0.0611	96	3.5884	0.0613	97
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\hat{eta}_1^{(1)}$	0.5	0.5011	0.0008	0.5019	0.0007	93	0.5020	0.0007	93
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{eta}_0^{(2)}$	-6.5	-6.4449	0.3818	-6.4003	0.3542	93	-6.4039	0.3487	91
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{\beta}_{1}^{(2)}$	1.5	1.5007	0.0008	1.4999	0.0007	91	1.5001	0.0007	90
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\dot{\hat{\sigma}}$	1	0.8966	0.1713	0.9500	0.1302	76			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Model	II				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ŕ	10	9.9914	0.5387	10.0001	0.3442	64	10.0084	0.3440	64
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\hat{eta}_0^{(1)}$	3.5	3.5799	0.1287	3.5294	0.0704	55	3.5332	0.0832	65
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{eta}_1^{(1)}$	0.5	0.4982	0.0014	0.4990	0.0008	61	0.4990	0.0008	60
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{eta}_0^{(2)}$	-6.5	-6.4387	0.7081	-6.4798	0.4664	66	-6.4848	0.4299	61
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{\beta}_{1}^{(2)}$	1.5	1.5009	0.0013	1.4998	0.0009	65	1.5001	0.0008	61
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{\hat{\sigma}}$	1.1	1.1634	0.0490	1.1113	0.0152	31			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Model I	II				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŕ	10	10.0115	0.5402	10.0022	0.3400	63	9.9959	0.3505	65
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\hat{eta}_0^{(1)}$	3.5	3.5651	0.1048	3.5088	0.0647	62	3.5101	0.0647	62
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\hat{eta}_1^{(1)}$	0.5	0.4985	0.0013	0.5004	0.0008	61	0.5000	0.0008	59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\hat{eta}_0^{(2)}$	-6.5	-6.4854	0.7437	-6.4927	0.4949	67	-6.4892	0.5047	68
$\hat{\sigma}$ 1.1 1.1499 0.0385 1.1007 0.0132 34 Model IV	$\hat{\beta}_1^{(2)}$	1.5	1.5022	0.0015	1.5002	0.0010	68	1.5002	0.0010	67
Model IV	$\hat{\hat{\sigma}}$	1.1	1.1499	0.0385	1.1007	0.0132	34			
					Model	IV				
r 10 9.9829 0.4478 9.9722 0.3436 77 9.9705 0.3416 76	ŕ	10	9.9829	0.4478	9.9722	0.3436	77	9.9705	0.3416	76
$\hat{eta}_0^{(1)}$ 3.5 3.5420 0.0878 3.5553 0.0734 84 3.5535 0.0725 83	$\hat{eta}_{0}^{(1)}$	3.5	3.5420	0.0878	3.5553	0.0734	84	3.5535	0.0725	83
$\hat{eta}_1^{(1)}$ 0.5 0.4971 0.0011 0.4985 0.0009 78 0.4984 0.0009 78	$\hat{eta}_1^{(1)}$	0.5	0.4971	0.0011	0.4985	0.0009	78	0.4984	0.0009	78
$\hat{eta}_0^{(2)}$ -6.5 -6.4866 0.5853 -6.4270 0.4892 84 -6.4278 0.4862 83	$\hat{eta}_{0}^{(2)}$	-6.5	-6.4866	0.5853	-6.4270	0.4892	84	-6.4278	0.4862	83
$\hat{eta}_1^{(2)}$ 1.5 1.5017 0.0012 1.4994 0.0010 83 1.4994 0.0010 83	$\hat{eta}_1^{(2)}$	1.5	1.5017	0.0012	1.4994	0.0010	83	1.4994	0.0010	83
$\hat{\sigma}$ 1 1.0446 0.0183 1.0812 0.0124 67	$\hat{\hat{\sigma}}$	1	1.0446	0.0183	1.0812	0.0124	67			

Çizelge 5.23. Sürekli model & JFST dağılımı & Muggeo'nun parçalara ayırma yöntemi: Alternatif modeller altında MEAN, MSE ve RE değerleri

Gerçe	ek değer	L	S	MML			OSM		
		MEAN	MSE	MEAN	MSE	RE	MEAN	MSE	RE
				Gerçek Mo	odel I				
ŕ	10	9.9891	0.3794	9.9977	0.2905	77	9.9970	0.2889	76
$\hat{eta}_0^{(1)}$	3.5	3.4875	0.0736	3.4933	0.0561	76	3.4986	0.0556	76
$\hat{eta}_1^{(1)}$	0.5	0.4977	0.0009	0.4986	0.0008	81	0.4986	0.0007	80
$\hat{eta}_0^{(2)}$	-6.5	-6.5288	0.4598	-6.5181	0.3682	80	-6.5121	0.3675	80
$\hat{eta}_1^{(2)}$	1.5	1.5005	0.0009	1.5000	0.0007	81	1.5000	0.0007	81
$\hat{\hat{\sigma}}$	1	0.9913	0.0172	1.0155	0.0098	57			
				Model	Ι				
r	10	9.9866	0.2972	9.9991	0.2642	89	9.9983	0.2627	88
$eta_0^{(1)}$	3.5	3.5651	0.0622	3.5984	0.0614	99	3.6015	0.0618	99
$eta_1^{(1)}$	0.5	0.4979	0.0008	0.4987	0.0007	92	0.4986	0.0007	91
$\beta_0^{(2)}$	-6.5	-6.4449	0.3696	-6.4142	0.3435	93	-6.4102	0.3436	93
$\beta_1^{(2)}$	1.5	1.5002	0.0007	1.5001	0.0006	92	1.5000	0.0006	93
σ	1	0.8951	0.0205	0.9551	0.0100	49			
				Model	II				
ŕ	10	9.9842	0.6097	9.9970	0.3595	59	9.9970	0.3522	58
$\hat{eta}_0^{(1)}$	3.5	3.5657	0.1180	3.5267	0.0683	58	3.5346	0.0677	57
$\hat{eta}_1^{(1)}$	0.5	0.4970	0.0014	0.4986	0.0010	70	0.4986	0.0010	69
$\hat{eta}_0^{(2)}$	-6.5	-6.4496	0.7728	-6.4796	0.4693	61	-6.4713	0.4602	60
$\hat{eta}_1^{(2)}$	1.5	1.5002	0.0014	1.4995	0.0009	63	1.4995	0.0009	62
$\hat{\hat{\sigma}}$	1.1	1.1561	0.0440	1.1261	0.0166	38			
				Model	III				
ŕ	10	10.0048	0.5637	10.0071	0.3551	63	10.0041	0.3495	62
$\hat{eta}_0^{(1)}$	3.5	3.5763	0.1391	3.5266	0.0899	65	3.5326	0.0851	61
$\hat{eta}_1^{(1)}$	0.5	0.4977	0.0019	0.4990	0.0014	75	0.4990	0.0013	69
$\hat{eta}_0^{(2)}$	-6.5	-6.4549	0.7493	-6.4882	0.4757	63	-6.4783	0.4710	63
$\hat{eta}_1^{(2)}$	1.5	1.5002	0.0014	1.4997	0.0010	67	1.4996	0.0009	67
$\hat{\sigma}$	1.1	1.1581	0.0414	1.1206	0.0139	34			
				Model	IV				
r	10	9.9887	0.4323	9.9835	0.3376	78	9.9845	0.3345	77
$\hat{eta}_{0}^{(1)}$	3.5	3.5385	0.0920	3.5529	0.0782	85	3.5557	0.0759	83
$\hat{eta}_1^{(1)}$	0.5	0.4983	0.0010	0.4990	0.0008	84	0.4990	0.0008	80
$\hat{eta}_{0}^{(2)}$	-6.5	-6.4728	0.5359	-6.4360	0.4584	86	-6.4339	0.4559	85
$\hat{eta}_1^{(2)}$	1.5	1.5005	0.0011	1.4994	0.0009	86	1.4994	0.0009	86
$\hat{\hat{\sigma}}$	1.1	1.0410	0.0215	1.0831	0.0135	63			

Çizelge 5.24. Sürekli model & JFST dağılımı & Hudson yöntemi: Alternatif modeller altında MEAN, MSE ve RE değerleri

6. UYGULAMALAR

Bu bölümde, üçüncü ve dördüncü bölümlerde anlatılan dayanıklı değişim noktası tahmin yöntemleri kullanılarak gerçek veri setleri üzerinde uygulamalar yapılmıştır. Bu bölümde kullanılan iki veri setinden birincisi galon başına yakıt, ikincisi ise metabolik yol verisidir. Galon başına yakıt veri seti süreksiz, metabolik yol verisi ise sürekli modellere uygundur.

6.1. Galon başına yakıt verisi

Galon başına yakıt verisi (gasoline mileage data), Henderson ve Velleman (1981) çalışmasında yer almakta olup, farklı markalardaki arabaların çeşitli değişkenlere göre özelliklerini içermektedir. Henderson and Velleman (1981) bu veri setini arabaların tasarım ve performanslarını incelemek için kullanmıştır. Koul ve ark. (2003) bu veri setinde yer alan ağırlık ile galon başına yakıt (miles per galon– MPG) değişkenleri arasındaki ilişkiyi süreksiz Model (1.2) yi kullanarak incelemiştir. Ayrıca, Gilla ve ark. (2007) aynı veri seti üzerinde çalışmıştır. Veri seti hakkında detaylı bilgi için Koul ve ark. (2003) ile bu çalışmada verilen referanslara bakılması önerilmektedir. Veri seti ile serpilme grafiği sırasıyla Çizelge 6.1 ve Şekil 6.1 de verilmiştir. Burada, *x* ağırlık (weight), *y* ise MPG değişkenini göstermektedir.

Çizelge 6.1. Galon başına yakıt veri seti

x	У	x	У	x	У	x	У	x	у
4.36	16.9	2.83	20.3	3.84	17	2.67	27.4	2.02	31.8
4.054	15.5	3.14	17	3.725	17.6	1.99	31.5	2.13	37.3
3.605	19.2	2.795	21.6	3.955	16.5	2.135	29.5	2.19	30.5
3.94	18.5	3.41	16.2	3.83	18.2	2.67	28.4	2.815	22
2.155	30	3.38	20.6	2.585	26.5	2.595	28.8	2.6	21.5
2.56	27.5	3.07	20.8	2.91	21.9	2.7	26.8	1.925	31.9
2.3	27.2	3.62	18.6	1.975	34.1	2.556	33.5		
2.23	30.9	3.41	18.1	1.915	35.1	2.2	34.2		

Şekil 6.1. Galon başına yakıt verisi: Serpilme Grafiği

Şekil 6.1 den de görüldüğü gibi galon başına yakıt verisi için basit doğrusal regresyon modelini kullanmak doğru değildir, ayrıca bkz. Henderson ve Velleman (1981), Hogg and Ledolter (1992), Koul ve ark. (2003). Bu nedenle, Koul ve ark. (2003) süreksiz iki-fazlı doğrusal regresyon modelini (Model (1.2)) kullanmayı önermiş, LS ve LAD yöntemiyle değişim noktasını tahmin etmiştir.

Şekil 6.2. Galon başına yakıt verisi: LS kalıntılarının normallik grafiği

Koul ve ark. (2003) ün süreksiz iki-fazlı doğrusal regreyon modelini kullanarak elde ettiği LS sonuçlarına dayalı olarak hesaplanan LS kalınıtlarının normallik grafiği (normal probability plot) Çizelge 6.2 de verilmiştir. Bu çizelgeden açıktır ki, veri setinin birinci ve ikinci kısmında aykırı değerler vardır. Bu nedenle, bu tez çalışmasında galon başına yakıt verisindeki değişim noktasını belirlemek için Bölüm 3 de anlatılan dayanıklı yöntemler kullanılmıştır.

Bölüm 2.3 de anlatılan yöntem kullanılarak şekil parametresi a = 1.5 ve b = 1.4 olan JFST dağılımının makul hata dağılımı olduğu sonucuna ulaşılmıştır. Bu durumda, elde edilen sonuçlar Çizelge 6.2 de verilmiştir. Çizelge 6.2 nin son satırında yer alan göreli hatanın büyüklüğü (magnitude of relative error–MRE) değerleri verilmiştir. MRE,

$$MRE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

formülü ile hesaplanmakatadır. Koul ve ark. (2003) çalışmasında model uyumunun performasını değerlendirmek için MRE kriteri kullanılmıştır, bu nedenle detaylı bilgi için Koul ve ark. (2003) çalışmasına bakılması önerilmektedir.

	LS	MML	OSM
ŕ	2.70	2.70	2.70
$\hat{eta}_0^{(1)}$	50.5122	47.1958	47.0910
$\hat{eta}_1^{(1)}$	-8.8034	-7.5160	-7.4942
$\hat{eta}_0^{(2)}$	30.3315	30.8960	31.0890
$\hat{eta}_1^{(2)}$	-3.3414	-3.4608	-3.5366
$\hat{\sigma}$	2.2265	1.4809	-
MRE	0.0628	0.0610	0.0609

Çizelge 6.2 den değişim noktasının LS, MML ve OSM tahminlerinin 2.7 olarak bulunduğu görülmektedir. $\hat{\sigma}_{MML}$, $\hat{\sigma}_{LS}$ den daha küçük olduğundan MML ve OSM yöntemleri ile elde edilen regresyon doğrularının LS yöntemiyle elde edilen regresyon doğrusuna göre veri setini daha iyi modellediği görülmektedir (bkz. Şekil 6.3). Bu sonuç, *MRE* değerleri tarafından da desteklenmektedir. MML ve OSM yöntemleri ile elde edilen sonuçların LS yöntemine göre elde edilen sonuçtan daha iyi olmasının temel nedeni, hata dağılımının normal olmaması ve veri setinde aykırı değerlerin bulunmasıdır.

Burada belirtmek gerekir ki, Çizelge 6.2 de verilen LS sonuçları, Bölüm 5.1 de anlatılan birinci durum için verilmiştir. İkinci durum için benzer sonuçlar elde edildiğinden kısalık adına burada tekrar verilmemiştir.

Şekil 6.3. Galon başına yakıt verisi: Fit edilmiş regresyon doğruları

6.2. Metabolik yol verisi

Bu uygulama ilk kez Julious (2001) tarafından kullanılmıştır. Fiziksel bir egzersiz yapılırken ihtiyaç duyulan enerji, aerobik veya anerobik olmak üzere iki metabolik yoldan elde edilir. Julious (2001) in bu veri setini analiz etmesindeki amaç, egzersiz yapılırken bu iki metabolik yol arasındaki geçişin olup olmadığını; oluyorsa bu geçişin ne zaman gerçekleştiğini belirlemektir. Julious (2001) e göre egzersiz sırasında metabolik iki değişkenin arasındaki ilişki incelenerek değişim noktası belirlenebilir. Bu amaçla elde edilen veri seti Çizelge 6.3 de verilmiştir. Burada, *x* değişkeni dakikada alınan oksijen miktarı (volume of oxygen) iken *y* değişkeni dakikada verilen karbondioksit miktarıdır (volume of carbon dioxide). Her iki değişken de litre cinsinden ölçülmüştür. Veri setinin elde edilişi ile ilgili detaylı bilgi için bkz. Julious (2001).

Yukarıda da değinildiği gibi burada amaç, fiziksel egzersiz yaparken aerobikten anerobiğe oksijenin hangi seviyesinden sonra geçildiğinin belirlenmesidir. Dolayısıyla, değişim noktasının tahmin edilmesi gerekmektedir.

Julious (2001), sürekli Model (1.2) yi ve Bölüm 4.2 de anlatılan Hudson yöntemini kullanarak değişim noktasını tahmin etmiştir. Julious (2001) çalışmasında elde edilen sonuçlara göre LS kalıntıları hesaplanmış, bu kalıntılara ilişkin normallik grafiği, Şekil 6.4 de verilmiştir. Bu şekilden açıktır ki, veri setinin ikinci kıs-

Çizelge 6.3. Metabolik yol veri seti

x	У	x	у	x	У	x	У	x	у
12.5	0.75	27.9	1.34	36.3	1.68	48.1	2.48	57.9	3.3
26.2	1.12	29.2	1.36	40.1	1.88	48.4	2.49	58.3	3.37
24.8	0.98	35.2	1.6	42.7	2.01	51.7	2.71	58.2	3.42
27.4	1.13	32.6	1.47	43.4	2.07	51.8	2.74	59.5	3.53
31.1	1.31	34.9	1.57	44.2	2.12	55.5	3	59.7	3.55
34.6	1.47	34.9	1.59	47.9	2.35	54.9	3.02	61.8	3.76
21.5	0.93	37.6	1.73	49.9	2.5	57	3.21	48.4	2.96

Şekil 6.4. Metabolik yol verisi: LS kalıntılarının normallik grafiği

mında bir aykırı değer vardır. Bu nedenle, bu tez çalışmasında Bölüm 4.1 ve 4.2 de anlatılan dayanıklı yöntemler kullanılarak değişim noktası tahmin edilmiştir.

Bölüm 2.3 de anlatılan yöntem kullanılarak şekil parametresi p = 2.3 olan LTS dağılımının makul hata dağılımı olduğu sonucuna ulaşılmıştır. Bu durumda, elde edilen sonuçlar Çizelge 6.4 de verilmiştir.

Çizelge 6.4 den açıktır ki, LTS hata dağılımı Metabolik veri seti için daha uygundur. Bu durum, Şekil 6.5 tarafından da desteklenmektedir; çünkü ikinci LS doğrusu aykırı değere doğru yönelirken, MML ve OSM doğruları aykırı değerden çok fazla etkilenmemişlerdir. Bu, MML ve OSM tahmin yöntemlerinin dayanıklı olmasının bir sonucudur, bkz. Bölüm 5.3. Değişim noktasının LS tahmininin MML ve OSM tahmininden farklı çıkmasının sebebi de budur. Öte yandan, Hudson yönteminde $\hat{\sigma}_{MML}$ in $\hat{\sigma}_{LS}$ den daha küçük olduğu görülmektedir. MML ve

		Muggeo		Hudson		
	LS	MML	OSM	LS	MML	OSM
ŕ	40.47	43.63	45.49	39.46	45.46	45.76
$\hat{eta}_0^{(1)}$	0.0397	-0.1216	-0.2139	0.0765	-0.2131	-0.2339
$\hat{m{eta}}_1^{(1)}$	0.0437	0.0491	0.0518	0.0423	0.0518	0.0524
$\hat{eta}_0^{(2)}$	-1.7454	-2.0176	-2.2495	-1.6595	-2.2452	-2.2824
$\hat{eta}_1^{(2)}$	0.0878	0.0925	0.0965	0.0863	0.0965	0.0971
$\hat{\sigma}$	0.1123	0.1186	0.1186	0.1121	0.0982	0.0982
MRE	0.0404	0.0400	0.0402	0.0420	0.0403	0.0403

OSM yöntemleri ile elde edilen sonuçların bu veri seti için daha uygun olduğunu *MRE* değerleri de desteklemektedir. Muggeo'nun parçalara ayırma yöntemine göre ise LS, MML ve OSM yöntemleri benzer sonuçlar vermiştir.

Burada belirtmek gerekir ki, Chen ve ark. (2011) da bu veri setini incelenmiştir. Chen ve ark. (2011), Julious (2001)çalışmasını referans alarak değişim noktasını tahmin etmişlerdir. Fakat, Chen ve ark. (2011) nın elde ettiği sonuçlar, Julious (2001) in elde ettiği sonuçlarla örtüşmemektedir. Bu tez çalışmasında LS yöntemiyle elde edilen sonuçlar, Julious (2001) tarafından da desteklenmektedir.

Çizelge 6.2 de verilen LS sonuçları, Bölüm 5.2.2 de anlatılan birinci durum için verilmiştir. İkinci durum için benzer sonuçlar elde edildiğinden kısalık adına burada tekrar verilmemiştir.

(b) Hudson yontenn

Şekil 6.5. Metabolik yol verisi: Fit edilmiş regresyon doğruları

7. SONUÇ ve ÖNERİLER

Quandt (1958) tarafından regresyon analizine dahil edilen değişim noktası, güncelliğini halen koruyan bir konudur. Değişim noktasına ilişkin istatistiksel çıkarımlara (tahmin ve hipotez testi) yönelik çalışmalar hızla devam etmektedir.

Değişim noktası olması durumunda, açıklayıcı değişkenin belli bir değerinden önce ve sonra yer alan gözlemler, ayrı regresyon modelleri ile ifade edilir. Modelin birinden diğerine geçtiği nokta, değişim noktası olarak tanımlanmaktadır, bkz. Model (1.2). Model (1.2), literatürde iki-fazlı doğrusal regresyon olarak adlanırılır ve süreksiz/sürekli olmak üzere ikiye ayrılır. Değişim noktası, veri setinin doğasından ya da çalışmanın amacından kaynaklanan sebeplerle ortaya çıkmaktadır.

Model (1.2) de değişim noktası *r* ye ilişkin istatistiksel çıkarımlar, genellikle hata terimlerinin normal dağılıma sahip olmaları durumunda yapılmıştır. Açıktır ki, normallik varsayımının sağlanması her zaman mümkün değildir.

Bu tez çalışmasında ise iki-fazlı regresyon modelinin (Model (1.2) nin) süreksiz ve sürekli olması durumları için değişim noktasının tahmini dayanıklı yöntemlerle yapılmıştır. Model (1.2) de hata terimlerinin dağılımının LTS, GL ve JFST olduğu varsayılmıştır. Bu hata dağılımlarının seçilmesindeki neden, LTS nin simetrik, GL nin çarpık, JFST nin ise hem simetrik hem de çarpık bir dağılım olmasıdır. Böylelikle, hata terimlerinin geniş bir aileden seçilmesi sağlanmıştır.

LTS, GL ve JFST hata dağılımı varsayımı altında değişim noktasının ve model parametrelerinin tahmini, MML (Tiku; 1967, 1968) ve OSM tahmin edicileri kullanılarak yapılmıştır. Süreksiz modeller için Quandt (1958, 1960) çalışmalarında kullanılan yöntemin MML ve OSM versiyonları geliştirilmiştir. Sürekli modellerde ise parçalara ayırma (Muggeo, 2003) ve Hudson (1966) yöntemlerinin MML ve OSM versiyonları önerilmiştir. Bölüm 5 de yapılan Monte-Carlo simulasyon çalışmalasının sonuçları, süreksiz ve sürekli modellerde MML ve OSM tahmin edicilerinin geleneksel LS yönteminden daha etkin ve dayanıklı olduğunu göstermiştir.

Burada belirtmek gerekir ki, sürekli modellerde değişim noktasını tahmin etmek için kullanılan parçalara ayırma yöntemi ve Hudson yöntemleri genel olarak benzer sonuçlar vermesine karşın, parçalara ayırma yöntemi, Hudson yönteminden daha kısa sürede sonuca ulaşmaktadır.

Tezin uygulama bölümünde literatürde yer alan iki veri seti incelenmiştir. Veri setlerindeki değişim noktası, LS, MML ve OSM yöntemleri kullanılarak tahmin edilmiştir. Elde edilen sonuçlar, değişim noktasının LS tahmin edicisinin veri setindeki aykırı değerlerden etkilendiğini göstermiştir. Ayrıca, MML ve OSM yöntemleri ile elde edilen regresyon doğrularının LS yöntemiyle elde edilen regresyon doğrusuna göre veri setini daha iyi modellediği sonucuna ulaşılmıştır.

Tez çalışmasının devamı olarak, aşağıda belirtilen durumların gelecek çalışmalarda ele alınması planmaktadır.

Model (1.2) de hata terimlerinin varyanslarının homojen olduğu varsayılmıştır. İlerleyen çalışmalarda bu varsayım genişletilerek hata terimlerinin farklı varyanslara sahip olduğu durum ele alınacaktır.

Model (1.2) de hata terimlerinin her ikisinin de aynı dağılıma sahip olduğu varsayılmıştır. İlerleyen çalışmalarda, hata terimlerinin dağılımının farklı kombinasyonları dikkate alınacaktır. Örneğin, $\varepsilon^{(1)}$ LTS dağılımına sahip iken, $\varepsilon^{(2)}$ GL dağılımına sahip olduğu gibi durumlar incelenecektir.

Model (1.2) de tek bir değişim noktasının olması durumu incelenmiştir. Birden fazla değişim noktası olduğunda bu değişim noktalarının belirlenmesine üzerine çalışmalar yapılacaktır.

Bu tez çalışmasında basit doğrusal regresyon modeli ele alınmıştır. Gelecekteki çalışmalarda çoklu regresyon modelinde değişim noktasının belirlenmesine yönelik çalışmalar düşünülmektedir. Bu tez çalışmasında değişim noktasının sadece belirlenmesi ele alınmıştır. Değişim noktasının sınanmasına yönelik ileri bir çalışma yapılması planlanmaktadır.

KAYNAKLAR

- Acıtaş, Ş., Kasap, P., Şenoğlu, B. & Arslan, O. (2011), "One-step M-estimator for the location parameter of the Jones and Faddy's Skewed t (JFST) distribution based on MML estimators", *International Conference on Robust Statistics* (ICORS11), Valladolid, İspanya.
- Acıtaş, Ş., Şenoğlu, B. & Arslan, O. (2012a), "Robust estimation of the change point in the simple linear regression model: JFST error distribution", *International Conference on Robust Statistics (ICORS12)*, Burlington, Vermont, USA.
- Acıtaş, Ş., Şenoğlu, B. & Arslan, O. (2012b), "One-step M-estimators based on robust initial estimates for the simple linear regression model", 8th International Symposium of Statistics (IGS2012), Eskişehir, Türkiye.
- Acıtaş, Ş., Kasap, P., Şenoğlu, B. & Arslan, O. (2013a) , "One-step M-estimators: Jones and Faddy's Skewed-t (JFST) distribution based on MML estimators", *Journal of Applied Statistics*, **40**, 1545-1560.
- Acıtaş, Ş., Kasap, P., Şenoğlu, B. & Arslan, O. (2013b), "Robust estimation with the skew *t*₂ distribution", *Pakistan Journal of Statistics*, **29**, 409-430.
- Bai, J. (1995) , "Least absolute deviation estimation of a shift", *Econometric The*ory, 11, 403-436.
- Bai, J. (1998), "Estimation of multiple-regime regressions with least absolute deviation", *Journal of Statistical Planing and Inference*, 74, 103-134.
 1981.
- Bhattacharrya, G. K. (1985). "The asymptotics of maximum likelihood and related estimators based on Type II censored data", *Journal of the American Statistical Association*, **80**, 398-404.
- Bhattacharya, P. K. (1990), "Weak convergence of the log-likelihood process in the two-phase linear regression problem", *Probability, Statistics and Design of Experiments* (Ed: Bahadur, R. R.), Wiley Eastern, New Delhi, 145-156.

- Bhattacharya, P. K. (1994), "Some aspects of change-point analysis", *Change-Point Problems*, IMS Lecture Notes-Monograph Series, **23**, 28-56.
- Bickel, P. J. (1975), "One-step Huber estimates in the linear model", *J. Amer. Statist. Assoc.*, **70**, 428-434.
- Bowman, K.O. & Shenton, L.R. (2001). "Weibull distributions when the shape parameter is defined", *Computational Statistics & Data Analysis* **36**, 299-310.
- Brown, R. L., Durbin, J. & Evans, J. M. (1975), "Techniques for testing the constancy of regression relationships over time (with discussion)", *J. Royal Statistical Society B*, 149-192.
- Chen, J. (1998), "Testing for a change point in linear regression models", *Commun. Statist.-Theory Meth.*, **27(10)**, 2481-2493.
- Chen, J. & Gupta, A. K. (2001), "On change point detection and estimation", *Commun. Statist.- Simulation and Computation*, **30**, 665-697.
- Chen, C. W. S., Chan, J. S. K. & Gerlach, R., Hsieh, W. Y. L. (2011), "A comparison of estimators for regression models with change points.", *Stat Comput*, **21**, 395-414.
- Chow, G. (1960), "Tests of equality between two sets of coefficients in two linear regressions", *Econometrica*, **28**, 591-605.
- Csörgö, M. & Horvath, L. (1997), *Limit Teorems of Change-Point Analysis*, John Wiley & Sons, Sussex, İngiltere.
- Diniz, C. A. R. & Brochi, L. C. (2005), "Robustness of two-phase regression tests", *REVSTAT - Statistical Journal*, **3**, 1-18.

Dodge, Y. & Jureckoca, J. (2002), Adaptive Regression, Springer, New York, A.B.D.

Feder, P. I. (1975a), "Asymptotic distribution theory in segmented regression problems identified case", *The Annals of Statistics*, **3**, 49-83.

- Feder, P. I. (1975b), "The log likelihood ratio in segmented regimes", *The Annals of Statistics*, **3**, 84-97.
- Geary, R. C. (1947), "Testing for normality", *Biometrika*, **34**, 209-242.
- Gilla, R, Leea, K. & Songb, S. (2007), "Computation of estimates in segmented regression and a liquidity effect model", *Computational Statistics & Data Analysis*, **51**, 6459-6475.
- Hawkins, D. M. (1980), "A note on continuous & discontinuous segmented regression", *Tecnometrics*, **22**, 443-444.
- Hawkins, D. L. (1989), "A U-I test approach to retrospective for shift parameter in linear model", *Commun. Statist.-Theory and Method*, **18**, 3117-3134.
- Henderson H. V. & Velleman P. F. (1981), "Building multiple regression models interactively", *Biometrics*, **37**, 391-411.
- Hinkley, D. V. (1969), "Inference about the intersection in two-phase regression", *Biometrika*, **56**, 495-504.
- Hinkley, D. V. (1971), "Inference in two-phase regression", *Journal of the American Statistical Association*, **66**, 736-743.
- Hogg, R.V. & Ledolter, J. (1992), *Applied Statistics for Engineers and Physical Scientists*, İkinci Baskı, Macmillan Publishing Company, New York, A.B.D.
- Huber, P. J. (1964), "Robust Estimation of a Location Parameter", *Ann. Math. Statist.*, **35**, 73-101.

Huber, P. J. (1981), Robust Statistics, Wiley, A.B.D.

- Hudson, D. J. (1966), "Fitting segmented curves whose join points have to be estimated", *Journal of the American Statistical Association*, **61**, 1097-1129.
- Islam, M. Q., Tiku, M. L. & Yıldırım, F. (2001), "Nonnormal rRegression. I. Skew distributions.", *Communications in Statistics - Theory and Methods*, **30(6)**, 993-1020.

- Islam, M. Q. & Tiku, M. L. (2004), "Multiple linear regression model under nonnormality", *Communications in Statistics - Theory and Methods*, 33(10), 2443-2467.
- Jones, M. C. & Faddy, M. J. (2003), "A skew extension of the *t*-distribution, with applications", *Journal of the Royal Statistical Society, Series B*, **65**, 159-175.
- Jones, M. C. (2008), The *t* family and their close and distant relations, *Journal of the Korean Statistical Society*, **37**, 293-302.
- Julious, S. A. (2001), "Inference and estimation in a change point regression problem", *J. R. Stat. Soc. Ser. D, Stat.*, **50**, 51-61.
- Jureckova, J. & Picek, J. (2006), *Robust Statistical Methods with R*, Chapman and Hall, A.B.D.
- Kantar, Y. M. & Senoğlu, B. (2008), "A comparative study for the location and scale parameters of the Weibull distribution with given shape parameter", *Computers & Geosciences*, **34**, 1900-1909.
- Kantar, Y. M., Usta, İ. & Acıtaş, Ş. (2011), "A Monte Carlo simulation study on partially adaptive estimators of linear regression models", *Journal of Applied Statistis*, **38**, 1681-1699.
- Kim, H.J., Siegmund & D. (1989), "The likelihood ratio test for a change point in simple linear regression", *Biometrika*, **76**, 409-423.
- Kim, H.J. (1993), "Two-phase regression with non-homogeneous errors", Communications in Statistics - Theory and Methods, 22, 647-657.
- Kim, H.J., Fay, M., Feuer, E.J. & Midthune, D.N. (2000). "Permutation tests for joinpoint regression with applications to cancer rates", *Statist. Medicine*, **19**, 335-351.
- Kim, H.J., Yu, B. & Feuer, E.J. (2008), "Inference in segmented line regression: a simulation study, Journal of Statistical Computation and Simulation", *Journal of Statistical Computation and Simulation*, **78**, 1087-1103.

- Kim, H.J., Yu, B. & Feuer, E.J. (2009), "Selecting the number of change-points in segmented line regression", *Statistica Sinica*, **19**, 597-609.
- Koul, L.H. & Qian, L.F. (2002), "Asymptotics of maximum likelihood estimator in a two-phase linear regression model", *Journal of Statistical Planning and Inference*, **108**, 99-119.
- Koul, L.H., Qian, L.F. & Surgailis, D. (2003), "Asymptotics of M-estimators in two-phase linear regression models", *Stochastic Processes and their Applications*, 103, 123-154.
- Lerman, P. M. (1980), "Fitting segmented regression models by grid search", *Applied Statistics*, **29**, 77-84.
- Liu, Z. & Qian, L. F. (2010), "Change point estimation in a segmented linear regression via empirical likelihood", *Communications in Statistics - Simulation and Computation*, **39**, 85-100.
- Maronna, R. A., Martin, D. R. & Yohai, V. J. (2006), *Robust Statistics Theory and Methods*, Wiley, İngiltere.
- McDonald, J. B. & Newey, W. K. (1988), "Partially adaptive estimation of regression models via the generalized *t* distribution", *Econometric Theory*, 4, 428-457.
- Muggeo, V. M. R. (2003), "Estimating regression models with unknown breakpoints", *Statistics in Medicine*, **22**, 3055-3071.
- Nosek, K. (2010), "Schwarz information based tests for a change-point in regression models", *Statistical Papers*, **51**, 915-929.
- Osorio, F. & Galea, M. (2005), "Detection of a change point in student-t linear regression models", *Statistical Papers*, **45**, 31-48.
- Pastor, R. & Guallar, E. (1998), "Use of two-segmented logistic Regression to estimate change-points in epidemiologic studies", *American Journal of Epidemiology*, **148**, 631-642.

- Piegorsch, W. W. & Bailer, A. J. (1997), *Statistics for environmental biology and toxicology*, Chapman and Hall, Büyük Britanya.
- Puthenpura, S. & Sinha, N. K. (1986), "Modified maximum likelihood method for the robust estimation of system parameters from very noisy data", *Automatica*, **22**, 231-235.
- Qian, L. F. (2007), "Piecewise regression models: Estimation theory and applications", *Asymptotic Theory in Probability and Statistics with Applications*, 2, 309-341.
- Quandt, R. E. (1958), "The estimation of the parameters of a linear regression system obeying two separate regimes", *J. Am. Stat. Assoc.*, **53**, 873-880.
- Quandt, R. E. (1960), "Tests of the hypotheses that a linear regression system obeys two separate regimes", *J. Am. Stat. Assoc.*, **55**, 324-330.
- Riffenburgh, R. H. & Cummins, K. M. (2006), "A simple and general change point identifier", *Statistics in Medicine*, **25**, 1067-1077.
- Smith, A. M. F. & Cook, D. G. (1980), "Straight lines with a change point: A Bayesian analysis of some renal transplant data", *Applied Statistics*, **29**, 180-189.
- Şenoğlu, B. & Tiku, M. L. (2002), "Linear contrasts in experimental design with non-identical error distributions", *Biometrical Journal*, 44, 359-374.
- Şenoğlu, B. (2005), "Robust 2^k factorial design with Weibull error distributions", Journal of Applied Statistics, **44**, 359-374.
- Şenoğlu, B. & Avcıoğlu, D. M. (2009), "Analysis of covariance with non-normal errors", *International Statistical Review*, **32**, 1051-1066.
- Tiku, M. L. (1967), "Estimating the mean and standard deviation from a censored normal sample", *Biometrika*, **54**, 155-165.
- Tiku, M. L. (1968), "Estimating the parameters of normal and logistic distributions from a censored normal sample", *Austral. J. Stat.*, **10**, 64-74.

- Tiku, M. L. & Kumra, S. (1981), "Expected values and variances and covariances of order statistics for a family of symmetric distributions (Student's t)", Selected Tables in Mathematical Statistics, 8, 141-270, American Mathematical Society, Providence RI, USA.
- Tiku, M. L. & Suresh, R. P. (1992), "A new method of estimation for location and scale parameters". *J. Stat. Plann. Inf.*, **30**, 281-292.
- Tiku, M. L., Islam, M. Q. & Selcuk, S. A. (2001), "Nonnormal regression. II. Symmetric distributions", *Communications in Statistics Theory and Methods*, 30(6), 1021-1045.
- Tiku, M. L. & Akkaya, A. D. (2004), *Robust Estimation and Hypothesis Testing*, New Age International (P) Limited, Publishers, New Delhi.
- Vaughan, D.C. (1992), "On the Tiku-Suresh method of estimation", Communications in Statistics - Theory and Methods, 21, 329-340.
- Vaughan, D. C. (1994), "The exact values of the expected values, variances and covariances of order statistics from the Cauchy distribution", *J. Stat. Comput. Simul.*, **49**, 21-32.
- Vaughan, D.C. (2002), "The generalized secant hyperbolic distribution and its properties", *Communications in Statistics - Theory and Methods*, **31(2)**, 219-238.
- Vaughan, D.C.& Tiku, M.L. (2000), "Estimation and hypothesis testing for a nonnormal bivariate distribution with applications", J. Mathematical and Computer Modelling, 32, 53-67.
- Vieth, E. (1989), "Fitting piecewise linear regression functions to biological responses", *Journal of Applied Physiology*, 67, 390-396.
- Welsh, A. H. & Ronchetti, E. (2002), "A journey in single steps: robust one-step M-estimation in linear regression", *Journal of Statistical Planning and Inference*, **103**, 287-310.

Worsley K. J. (1983), "Testing for a two-phase multiple regression", *Technometrics*, **25**, 35-42.