BAZI PİPERAZİN TÜREVLERİ VE METAL KOMPLEKSLERİNİN SPEKTROSKOPİK ÖZELLİKLERİNİN DENEYSEL VE TEORİK OLARAK İNCELENMESİ Doktora Tezi

Özge BAĞLAYAN

Eskişehir, 2017

BAZI PİPERAZİN TÜREVLERİ VE METAL KOMPLEKSLERİNİN SPEKTROSKOPİK ÖZELLİKLERİNİN DENEYSEL VE TEORİK OLARAK İNCELENMESİ

Özge BAĞLAYAN

DOKTORA TEZİ

Fizik Anabilim Dalı Danışman: Prof. Dr. Mustafa ŞENYEL

> Eskişehir, Anadolu Üniversitesi Fen Bilimleri Enstitüsü Mayıs, 2017

JÜRİ VE ENSTİTÜ ONAYI

Özge BAĞLAYAN'ın "Bazı Piperazin Türevleri ve Metal Komplekslerinin Spektroskopik Özelliklerinin Deneysel ve Teorik Olarak İncelenmesi" başlıklı tezi 05/05/2017 tarihinde, aşağıdaki jüri tarafından değerlendirilerek Anadolu Üniversitesi Lisansüstü Eğitim-Öğretim ve Sınav Yönetmeliği'nin ilgili maddeleri uyarınca, Fizik Anabilim dalında Doktora tezi olarak kabul edilmiştir.

<u>Unvanı - Adı Soyadı</u>

<u>İmza</u>

Üye (Tez Danışmanı)	: Prof. Dr. Mustafa ŞENYEL	•••••
Üye	: Prof. Dr. Güneş S. KÜRKÇÜOĞLU	•••••
Üye	: Doç. Dr. Cemal PARLAK	•••••
Üye	: Yard. Doç. Dr. Halil BERBER	•••••
Üye	: Yard. Doç. Dr. M. Türkay AYTEKİN AYDIN	•••••

.....

Enstitü Müdürü

BAZI PİPERAZİN TÜREVLERİ VE METAL KOMPLEKSLERİNİN SPEKTROSKOPİK ÖZELLİKLERİNİN DENEYSEL VE TEORİK OLARAK İNCELENMESİ

ÖZET

Özge BAĞLAYAN

Fizik Anabilim Dalı

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Mayıs, 2017

Danışman: Prof. Dr. Mustafa ŞENYEL

Bu çalışmada piperazin türevleri olan 1-siklobütilpiperazin, 1-bütilpiperazin, 1-siklopentilpiperazin ve 2-metilpiperazin moleküllerinin FT-IR ile Raman spektrumları sırasıyla 4000-30 cm⁻¹ ve 4000-50 cm⁻¹ bölgelerinde alınmıştır. Ele alınan moleküllerin optimize geometrik parametreleri, konformasyonel dengesi, normal mod frekansları ve titreşim işaretlemeleri teorik olarak yoğunluk fonksiyonel teori (YFT) metodu B3LYP ve 6-31++G(d,p) baz seti kullanılarak gerçekleştirilmiştir. Titreşim işaretlemeleri potansiyel enerji dağılımları (PED) temel alınarak yapılmıştır. Ayrıca termodinamik fonksiyonlar, işgal edilmiş en yüksek ve işgal edilmemiş en düşük moleküler orbitaller (HOMO ve LUMO) de incelenmiştir. Hesaplamalar moleküllerin dört farklı konformasyonu için gaz fazında ve çözücü ortamında gerçekleştirilmiştir. Çözücü etkisi kloroform ve dimetilsülfoksit kullanılarak incelenmiştir. Elde edilen sonuçlar B3LYP metodunun titreşim frekansları ve yapısal parametreler için iyi sonuçlar verdiğini göstermektedir. Titreşim frekansları, işaretlemeleri ve şiddetlerinin çözücü ortamında değiştiği görülmektedir. Ayrıca 2-metilpiperazin ligand molekülü kullanılarak Hofmann tipi konak ve konak-konuk bileşikleri elde edilmiştir. Bu yapıların titreşim spektrumlarının analizinden ligand molekülünün azot ucundan M metal atomuna bağlı olduğu ve benzen konuk molekülünün tabakalar arasında oluşan yapısal boşluklara hapsedildiği sonucuna varılmıştır.

Anahtar Sözcükler: Piperazin türevleri, YFT, Hofmann tipi konak-konuk bileşikleri, Titreşim spektroskopisi.

ABSTRACT

THEORETICAL AND EXPERIMENTAL SPECTROSCOPIC INVESTIGATION OF SOME PIPERAZINE DERIVATIVES AND METAL COMPLEXES

Özge BAĞLAYAN

Department of Physics

Anadolu University, Graduate School of Sciences, May, 2017

Supervisor: Prof. Dr. Mustafa ŞENYEL

In this research, FT-IR and Raman spectra of some piperazine derivatives such as 1-cyclobutylpiperazine, 1-butylpiperazine, 1-cyclobutylpiperazine and 2-methylpiperazine have been reported in the region of 4000-30 cm⁻¹ and 4000-50 cm⁻¹. respectively. The optimized geometric parameters, conformational equilibria, normal mode frequencies and corresponding vibrational assignments are theoretically examined by means of B3LYP density functional theory (DFT) method together with 6-31++G(d,p)basis set. Furthermore, reliable vibratioanl assignments have been made on the basis of potential energy distribution (PED) and the thermodynamics functions, highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of these molecules have been predicted. Calculations are employed for four different conformations of molecules, both in gas phase and in solution. Solvent effects are investigated using chloroform and dimethylsulfoxide. All results indicate that B3LYP method is able to provide satisfactory results for predicting vibrational frequencies and the structural parameters. Vibrational frequencies, assignments and intensities are solvent dependent. Also Hofmann type host and host-guest compounds have been obtained by using 2-methylpiperazine ligand molecule. By analysing these structures with vibrational spectroscopy, it is shown that the ligand molecule was coordinated to M metal atom from nitrogen atom of 2methylpiperazine and the guest benzen molecules were imprisoned in the structural cavities between the sheets.

Keywords: Piperazine derivatives, DFT, Hofmann type host-guest compounds, Vibrational spectroscopy.

TEŞEKKÜR

Tez çalışmam sırasında kıymetli bilgi, birikim ve tecrübeleri ile bana yol gösteren ve destek olan değerli danışman hocam Sayın Prof. Dr. Mustafa ŞENYEL'e en içten teşekkürlerimi sunarım.

Bu çalışmanın gerçekleşmesini sağlayan, yönlendiren ve yardımlarını hiçbir zaman esirgemeyen Ege Üniversitesi Fizik Bölümü Öğretim Üyesi Sayın Doç. Dr. Cemal PARLAK'a teşekkür ederim.

Araştırmalarım süresince yardımlarını gördüğüm ve fikirleri ile destek olan Osmangazi Üniversitesi Fizik Bölümü Öğretim Üyesi Sayın Prof. Dr. Güneş KÜRKÇÜOĞLU ve Kimya Bölümü Öğretim Üyesi Sayın Prof. Dr. Okan Zafer YEŞİLEL'e teşekkür ederim.

Tez izleme jürimde bulunan Sayın Yard. Doç. Dr. Halil BERBER ve Sayın Yard. Doç. Dr. M. Türkay AYTEKİN AYDIN'a desteklerinden dolayı teşekkür ederim.

En zor zamanlarımda yanımda olup bana varlıklarıyla güç veren çalışma arkadaşlarım Esma GÜNEŞ, Mehmet Fatih KAYA, Mahir TURSUN, Gürkan KEŞAN'a ve arkadaşlarım Beril BAYRAKTAR, Emine ALTIN, Neslihan ŞAHİN, Seçil ŞENTORUN, Seval AKSOY'a sonsuz teşekkürler.

Hayatım boyunca bir an olsun beni yalnız bırakmayıp her konuda destek olan aileme çok teşekkür ederim.

Özge BAĞLAYAN

ETİK İLKE VE KURALLARA UYGUNLUK BEYANNAMESİ

Bu tezin bana ait, özgün bir çalışma olduğunu; çalışmamın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarında bilimsel etik ilke ve kurallara uygun davrandığımı; bu çalışma kapsamında elde edilemeyen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; bu çalışmanın Anadolu Üniversitesi tarafından kullanılan "bilimsel intihal tespit programı"yla tarandığını ve hiçbir şekilde "intihal içermediğini" beyan ederim. Herhangi bir zamanda, çalışmamla ilgili yaptığım bu beyana aykırı bir durumun saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçlara razı olduğumu bildiririm.

Özge BAĞLAYAN

İÇİNDEKİLER

Sa	vfa
Du	J 10

BAŞLIK SAYFASI	i
JÜRİ VE ENSTİTÜ ONAYI	ii
ÖZET	iii
ABSTRACT	iv
TEŞEKKÜR	v
ETİK İLKE VE KURALLARA UYGUNLUK BEYANNAMESİ	vi
İÇİNDEKİLER	vii
ÇİZELGELER DİZİNİ	xi
ŞEKİLLER DİZİNİ	xii
GÖRSELLER DİZİNİ	xv
SİMGELER VE KISALTMALAR DİZİNİ	xvi
1. GİRİŞ	1
1.1. 1-Siklobütilpiperazin Molekülü	2
1.2. 1-Bütilpiperazin Molekülü	2
1.3. 1-Siklopentilpiperazin Molekülü	3
1.4. 2-Metilpiperazin Molekülü	4
2. SPEKTROSKOPİ	6
3. MOLEKÜLER TİTREŞİM SPEKTROSKOPİSİ	9
3.1. İnfrared Spektroskopisi	11
3.1.1. Klasik kuram	12
3.1.2. Kuantum kuram	13
3.2. Raman Spektroskopisi	14
3.2.1. Klasik kuram	15

	3.2.2. Kuantum kuramı	17
	3.3. Çok Atomlu Moleküllerin Titreşimleri	18
	3.4. Moleküler Simetri ve Grup Teori	19
	3.5. Grup Frekansları	21
	3.6. Grup Frekanslarını Etkileyen Faktörler	22
	3.6.1. Çiftlenim	22
	3.6.2. Komşu bağın kuvvet sabiti etkisi	23
	3.6.3. Elektronik etki	24
	3.6.4. Dipolar etkilenme	26
	3.6.5. Hidrojen bağı ile etkilenme	26
	3.7. Katıların Titreşim Spektrumları	27
	3.8. Moleküler Titreşim Türleri	27
4	. KONAK-KONUK BİLEŞİKLERİ	33
	4.1. Hofmann Tipi Konak-Konuk Bileşikleri	34
5	5. KUANTUM KİMYASAL HESAPLAMALAR	39
	5.1. Moleküler Mekanik Yöntemler	39
	5.2. Elektronik Yapı Yöntemleri	39
	5.2.1. Yarı deneysel yöntemler	40
	5.2.2. Ab-initio yöntemler	40
	5.2.3. DFT yöntemleri	40
	5.3. Baz Setleri	41
	5.3.1. Minimum baz setleri	41
	5.3.2. Yarılmış valans baz setleri	41
	5.3.3. Polarize Baz Setleri	42

5.3.4. Difüze baz setleri	42
5.3.5. Yüksek açısal momentum baz setleri	42
5.4. HOMO LUMO Sınır Orbitalleri	43
6. TEORİK-DENEYSEL ÇALIŞMA	44
6.1. Teorik Çalışma	44
6.1.1. 1-Siklobütilpiperazin molekülü	44
6.1.2. 1-Bütilpiperazin molekülü	46
6.1.3. 1-Siklopentilpiperazin molekülü	47
6.1.4. 2-Metilpiperazin molekülü	47
6.2. Hofmann Tipi Konak ve Konak-Konuk Bileşiklerinin Elde Edilmesi	48
6.3. Kullanılan Teknik ve Düzenekler	49
6.3.1. FT-IR spektrometresi	50
6.3.2. ATR (Azaltılmış toplam yansıma)	53
6.3.2. Raman spektrometresi	54
6.4. Katı ve Sıvıların İnfrared ve Raman Spektrumlarının Alınması	57
7. TEORİK-DENEYSEL SONUÇLAR VE TARTIŞMA	60
7.1. 1-Siklobütilpiperazin Molekülü	60
7.1.1. Geometrik yapının incelenmesi	60
7.1.2. Titreşim frekanslarının incelenmesi	65
7.2. 1-Bütilpiperazin Molekülü	71
7.2.1. Geometrik yapının incelenmesi	71
7.2.2. Titreşim frekanslarının incelenmesi	76
7.3. 1-Siklopentilpiperazin Molekülü	83

7.3.1. Geometrik yapının incelenmesi	83
7.3.2. Titreşim frekanslarının incelenmesi	92
7.4. 2-Metilpiperazin Molekülü	99
7.4.1. Geometrik yapının incelenmesi	99
7.4.2. Titreşim frekanslarının incelenmesi	106
7.5. Hofmann Tipi Konak ve Konak-Konuk Bileşiklerindeki Frekans Kaymalarının İncelenmesi	112
7.5.1. 2-Metilpiperazin Molekülünün Frekans Kaymalarının İncelenmesi	112
7.5.2. [M-Ni(CN)4]∞ Polimerik Yapı Titreşimleri	112
7.5.3. Konuk Molekülün Titreşimleri	113
8. SONUÇLAR	115
KAYNAKÇA	117

EKLER

EK-1	. Moleküllerin Gaz Fazinda, Kloroform Ve Dimetilsülfoksit
	Çözücüleri İçerisindeki Titreşim Frekanslari
	Elde Edilen Konak Ve Konak-Konuk Bileşiklerinin İnfrared ve
	Raman Titreşim Frekanslari

EK.2. Deneysel ve Teorik Titreşim Spektrumları

ÖZGEÇMİŞ

ÇİZELGELER DİZİNİ

		<u>Sayfa</u>
Çizelge 2.1.	Elektromanyetik spektruma dayalı spektroskopik yöntemler	8
Çizelge 3.1.	İnfrared spektral bölgeleri	11
Çizelge 3.2.	Simetri elemanları ve işlemleri	20
Çizelge 3.3.	Grup frekansları tablosu	22
Çizelge 7.1.	1cbpp molekülünün konformasyon enerjileri	61
Çizelge 7.2.	1cbpp molekülünün optimize edilmiş bağ uzunlukları, bağ ve dihedral açıları	63
Çizelge 7.3.	1cbpp molekülünün bazı termodinamik parametreleri	65
Çizelge 7.4.	1bpp molekülünün konformasyon enerjileri	72
Çizelge 7.5.	1bpp molekülünün optimize edilmiş bağ uzunlukları, bağ ve dihedral açıları	74
Çizelge 7.6.	1bpp molekülünün bazı termodinamik parametreleri	76
Çizelge 7.7.	1cppp molekülünün konformasyon enerjileri	85
Çizelge 7.8.	1cppp molekülünün optimize edilmiş bağ uzunlukları, bağ ve dihedral açıları	87
Çizelge 7.9.	1cppp molekülünün bazı termodinamik parametreleri	91
Çizelge 7.10	. 2mpp molekülünün konformasyon enerjileri	99
Çizelge 7.11	I. 2mpp molekülünün optimize edilmiş bağ uzunlukları, bağ ve dihedral açıları.	101
Çizelge 7.12	2. 2mpp molekülünün bazı termodinamik parametreleri	105
Çizelge 7.13	3. Elde edilen konak ve konak-konuk bileşiklerindeki Ni(CN)4 ⁻² iyonunun titreşim dalga sayıları (cm ⁻¹)	113
Çizelge 7.14	 Elde edilen konak-konuk bileşiğindeki benzenin titreşim dalga sayıları 	114

ŞEKİLLER DİZİNİ

Şekil 1.1. Koordinasyon yapan piperazin ligand molekülü	1
Şekil 1.2. 1-siklobütilpiperazin molekülü	2
Şekil 1.3. 1-bütilpiperazin molekülü	3
Şekil 1.4. 1-siklopentilpiperazin molekülü	4
Şekil 1.5. 2-metilpiperazin molekülü.	5
Şekil 2.1. Elektromanyetik dalganın gösterimi	6
Şekil 3.1. İki atomlu bir molekülün enerji seviyeleri	9
Şekil 3.2. Rayleigh, Stokes ve Anti-Stokes saçılmaları	18
Şekil 3.3. Asetaldehit ve asetilklorür moleküllerinde pozitif indüktif etki	24
Şekil 3.4. Aseton molekülünde negatif indüktif etki	25
Şekil 3.5. 3-buten-2-on molekülünün rezonans durumları	26
Şekil 3.6. Gerilme titreşimleri	28
Şekil 3.7. Açı bükülmesi	29
Şekil 3.8. Makaslama	29
Şekil 3.9. Sallanma	30
Şekil 3.10. Dalgalanma	30
Şekil 3.11. Kıvırma	31
Şekil 3.12. Burulma	31
Şekil 3.13. Düzlem dışı açı bükülmesi	32
Şekil 4.1. Hidrokinon bileşiğinin yapısal şekli	34
Şekil 4.2. Hofmann tipi benzen konak-konuk bileşiğinin yapısal şekli	36
Şekil 4.3. Hofmann tipine benzer konak-konuk bileşiklerinin türetilmesi	37

Şekil	4.4.	Hofmann tipine benzer konak-konuk bileşiklerinin yapısı	38
Şekil	6.1.	1cbpp molekülünün dört farklı konformasyonu	45
Şekil	6.2.	1bpp molekülünün dört farklı konformasyonu	46
Şekil	6.3.	1cppp molekülünün dört farklı konformasyonu	47
Şekil	6.4.	2mpp molekülünün dört farklı konformasyonu	48
Şekil	6.5.	FT-IR spektrometresinin şematik gösterimi	51
Şekil	6.6.	Azaltılmış toplam yansımanın şematik gösterimi	53
Şekil	6.7.	Raman mikroskop	56
Şekil	7.1.	Atom numaraları ile 1cbpp molekülünün moleküler yapısı	62
Şekil	7.2.	1 cbpp molekülünün infrared titreşim frekansları için korelasyon grafikleri.	67
Şekil	7.3.	1cbpp molekülünün Raman titreşim frekansları için korelasyon grafikleri	68
Şekil	7.4.	1cbpp molekülünün gaz fazında HOMO ve LUMO geçiş enerji şeması	70
Şekil	7.5.	1cbpp molekülünün kloroform içerisindeki HOMO ve LUMO geçiş enerji şeması	70
Şekil	7.6.	1 cbpp molekülünün dimetilsülfoksit içerisindeki HOMO ve LUMO geçiş enerji şeması	71
Şekil	7.7.	Atom numaraları ile birlikte 1bpp molekülünün moleküler yapısı	73
Şekil	7.8.	1bpp molekülünün infrared titreşim frekansları için korelasyon grafikleri	78
Şekil	7.9.	1bpp molekülünün Raman titreşim frekansları için korelasyon grafikleri.	79
Şekil	7.10	. 1bpp molekülünün gaz fazında HOMO ve LUMO geçiş enerji şeması	81
Şekil	7.1	. 1bpp molekülünün kloroform içerisindeki HOMO ve LUMO geçiş enerji şeması.	82

Şekil	7.12.	1bpp molekülünün dimetilsülfoksit içerisindeki HOMO ve LUMO geçiş enerji şeması	82
Şekil	7.13.	Atom numaraları ile birlikte 1cppp molekülünün moleküler yapısı	86
Şekil	7.14.	1cppp molekülünün infrared titreşim frekansları için korelasyon grafikleri	94
Şekil	7.15.	1cppp molekülünün Raman titreşim frekansları için korelasyon grafikleri	95
Şekil	7.16.	1cppp molekülünün gaz fazında HOMO ve LUMO geçiş enerji şeması	97
Şekil	7.17.	1cppp molekülünün kloroform içerisindeki HOMO ve LUMO geçiş enerji şeması.	98
Şekil	7.18.	1cppp molekülünün dimetilsülfoksit içerisindeki HOMO ve LUMO geçiş enerji şeması	98
Şekil	7.19.	Atom numaraları ile birlikte 2mpp molekülünün moleküler yapısı	100
Şekil	7.20.	2mpp molekülünün infrared titreşim frekansları için korelasyon grafikleri	108
Şekil	7.21.	2mpp molekülünün Raman titreşim frekansları için korelasyon grafikleri	109
Şekil	7.22.	2mpp molekülünün gaz fazında HOMO ve LUMO geçiş enerji şeması	110
Şekil	7.23.	2mpp molekülünün kloroform içerisindeki HOMO ve LUMO geçiş enerji şeması	111
Şekil	7.24.	2mpp molekülünün dimetilsülfoksit içerisindeki HOMO ve LUMO geçiş enerji şeması	111

GÖRSELLER DİZİNİ

Görsel 6.1. FT-IR IFS 66v/S Spektrometresi52Görsel 6.2. Hyperion 2000 İnfrared Mikroskop54Görsel 6.3. Senterra Dispersif Raman Mikroskop57

SİMGELER VE KISALTMALAR DİZİNİ

Simgeler

$\bar{\nu}$: Dalga sayısı
ν	: Titreşim frekansı
λ	: Dalga boyu
μ	: Elektrik dipol moment
α	: Kutuplanma yatkınlığı
h	: Planck sabiti
G	: Konuk molekül
L	: Ligand
k	: Kuvvet sabiti
М	: Metal
n	: Konuk molekül sayısı
Ν	: Atom sayısı
Kısaltmalar	
1bpp	: 1-bütilpiperazin
1cbpp	: 1-siklobütilpiperazin
1cppp	: 1-siklopentilpiperazin
2mpp	: 2-metilpiperazin
IR	: İnfrared
R	: Raman
FT-IR	: Fourier Transform Infrared
DFT	: Density functional theory

HF : Hartree-Fock

- Klrfrm : Kloroform
- Dmso : Dimetilsülfoksit

1. GİRİŞ

Bu çalışmada piperazin türevi olan 1-siklobütilpiperazin (1cbpp), 1-bütilpiperazin (1bpp), 1-siklopentilpiperazin (1cpp) ve 2-metilpiperazin (2mpp) molekülleri ele alınmıştır. Bu moleküllerin yapıları titreşim spektroskopisi ile deneysel ve teorik olarak incelenmiş, 2mpp ligand molekülü ile benzen konuk molekülü kullanılarak Hofmann-tipi konak-konuk bileşikleri elde edilmiştir. Elde edilen bileşiklerin yapıları infrared ve Raman spektroskopileri kullanılarak 4000-50 cm⁻¹ bölgesinde incelenmiştir.

Serbest piperazin molekülü bükülmüş sandal. sandal veya sandal konformasyonundaki sterik etkiden dolayı sandalye konformasyonunda bulunur (Trikha, Kumar and Kaur, 1996, s. 110; Alver, Parlak and Senyel, 2007, s. 793). Koordinasyon yapan piperazin molekülü tek veya çift dişli ligand olarak sandal veya bükülmüş sandal konformasyonunda (a,b) (Trikha, Kumar and Kaur, 1996, s. 110; Paital, vd., 2009, s. 1352), çift dişli bir ligand olarak sandalye konformasyonunda (Manhas and Trikha, 1978, s. 432; Manhas and Trikha, 1985, s. 1986) bulunabilmektedir. M metal atomu olmak üzere, bu konformasyonlar sırasıyla Şekil 1.1'de görülmektedir. Bu çalışmada kullanılan moleküllerin fiziksel özellikleri ve literatür bilgisi aşağıda verilmektedir.

Şekil 1.1. Koordinasyon yapan piperazin ligand molekülü Kaynak: Paital, vd., 2009, s. 1352

1.1. 1-Siklobütilpiperazin Molekülü

Kimyasal formülü $C_8H_{16}N_2$ ve moleküler ağırlığı 140,23 g/mol olan 1siklobütilpiperazin (1cbpp) molekülü literatürde N-siklobütilpiperazin; 1-piperazinamin-4-siklobütil; 4-siklobütilpiperazin-1-amin veya 1-amino-4-siklobütilpiperazin olarak farklı şekillerde isimlendirilen katı bir maddedir.

Şekil 1.2. 1-siklobütilpiperazin molekülü

Birçok piperazin türevi ilaç ve eczacılık sektöründe kullanılmaktadır. 1siklobütilpiperazin (1cbpp) molekülünün de bir piperazin türevi olarak ilaç tasarımında kullanıldığına dair birçok çalışma bulunmaktadır. 1cbpp hipertansiyon ve kanser gibi durumların gelişmesinde büyük risk faktörü olan obezitenin tedavisi için elde edilen ilaçların yapımında (Pierson vd., 2009, s. 3857), nörolojik ve psikiyatrik hastalıkların tedavisi için sentezlenen piperazin türevlerinde (Bruton, Orlek, and Rana, 2009, s. 10) kullanılır. Ayrıca dipiperazin ketonlar (Xie vd., 2007, s. 36), sübstitüe dihidropirazolonlar (Jeske vd., 2009, s. 14), tiyazol veya imidazol amidlerin (Pringle vd., 2010, s. 32) sentezinde kullanılır.

1.2. 1-Bütilpiperazin Molekülü

Kimyasal formülü C₈H₁₈N₂ ve moleküler ağırlığı 142,25 g/mol olan 1bütilpiperazin (1bpp) molekülü literatürde 1-(N-Bütil)piperazin; N-bütilpiperazin; 1-nbütil-piperazin; bütilpiperazin; 1-(1-bütil)piperazin ya da 1-n-bütilpiperazin olarak farklı şekillerde isimlendirilen sıvı bir maddedir.

Şekil 1.3. 1-bütilpiperazin molekülü

Bir piperazin türevi olarak 1-bütilpiperazin molekülünün ilaç tasarımı için önemli bir bileşik olduğuna dair birçok çalışma bulunmaktadır (Tapia, vd., 1999, s. 2877; Hamlin, vd., 1949, s. 2732; Song, vd., 2008, s. 4041). 1bpp molekülü ağrı (Merla, vd., 2009, s. 12), alerjik, iltihap ve bulaşıcı hastalıkların tedavisinde (Bazin-Lee, vd., 2011, s. 32), gastrik asit salgısının engellenmesinde (Brenner and Loev, 1975, s. 5) antipsikotik aktivite ve dopamin D2 reseptörü için düşük benzerliğe sahip olan ilaçların (McClelland and Mills, 2002, s. 11; Kapur and McClelland, 2009, s. 11) elde edilmesinde kullanılmaktadır. Ayrıca imidazo piridin türevlerinin sentezinde (Taracido, vd., 2009, s. 3), polietilen elde edilme sürecinde (Ford, vd., 2001, s. 4), dibenzo sikloheptodien (Fouche, 1966, s. 2), piperazin siklobütenon, glioksal ve türevlerinin (Krimmel, 1977, s. 3; Treybig, 1988, s. 2) sentezinde kullanılır.

1.3. 1-Siklopentilpiperazin Molekülü

Kimyasal formülü C₉H₁₈N₂ ve moleküler ağırlığı 154,25 g/mol olan 1siklopentilpiperazin (1cppp) molekülü literatürde N-siklopentilpiperazin; 1siyanopentilpiperazin veya (piperazin-1-yl)siklopentan olarak farklı şekillerde isimlendirilen katı bir maddedir.

Şekil 1.4. 1-siklopentilpiperazin molekülü

1-siklopentilpiperazin molekülü yeni imidazol-serbest histamin H₃ reseptör antagonisti sağlamak amacıyla kullanılır (Zaragoza, vd., 2005, s. 3). Tıp ve eczacılık alanında obeziteye karşı ilaç yapımında (Nettekoven and Roche, 2008, s. 9), viral hastalıkların tedavisinde (Cooper, vd., 2010, s. 35), tıbbi tedavi için yararlı olan ilaç bileşimlerinde (DeJohnge, vd., 2008, s. 17), antimikrobik ilaçlarda (Petersen, vd., 1989, s. 4), takininin ilaçlarında (Matsuo, vd., 2000, s. 15), alerjik burun iltihabı veya soğuk algınlığı (Johnson and Phebus, 1999, s. 6) ve kanser (Baiji, vd., 2010, s. 8) tedavisinde kullanılır. Ayrıca bazı piperidin pirimidin türevlerinin (Nettekoven and Roche, 2008, s. 14), imidazo piridin türevlerinin (Taracido, vd., 2009, s. 3), dipiperazin ketonların (Xie, vd., 2007, s. 14) sentezinde kullanılır.

1.4. 2-Metilpiperazin Molekülü

Kimyasal formülü $C_5H_{12}N_2$ ve moleküler ağırlığı 100,16 g/mol olan 2metilpiperazin (2mpp) molekülü literatürde piperazin, 2-metil- olarak da isimlendirilen katı bir maddedir.

Şekil 1.5. 2-metilpiperazin molekülü

2-metilpiperazin zirai kimyasal ve eczacılık alanında kullanılan bir moleküldür (Krishnakumar and Seshadri, 2007, s. 833). 2-metilpiperazin molekülü germanyum merkezli boşluklu germanat yapısının elde edilmesinde (Pan, vd., 2008, s. 7868), protein kinaz c inhibitörüne Ca⁺² iyonunun etkisinin araştırılması çalışmalarında (Matsui, vd. 1986, s. 583), protein kinaz inhibitörünün tümör gelişimine etkisinin incelenmesinde (Blaya, vd., 1998, s. 99), CO₂ soğurma kapasite çalışmalarında (Kim, vd., 2012, s. 105), alüminofosfatın sentezlenmesinde (Tuel, vd., 2002, s. 119) kullanılır.

2. SPEKTROSKOPİ

elektromanyetik ışınımın madde ile etkilesmesini Spektroskopi vani veya moleküller tarafından elektromanyetik ışınımın atom absorpsiyonunu (soğurulmasını), emisyonunu (yayılımını) veya saçılmasını inceleyen bilim dalıdır (Erdik, 2008, s. 1; Hollas, 1996, s. 1). Atomların veya moleküllerin spektrumlarından moleküler yapı (moleküler simetri, bağ uzunlukları ve bağ açıları) ve kimyasal özellikler (elektronik dağılım, bağ kuvveti, molekül içi ve moleküller arası süreçler) ile ilgili bilgiler elde edilebilir (Chang, R., 1971, s. 1).

Elektromanyetik ışınım Şekil 2.1'de gösterildiği gibi uzayda titreşen elektrik ve manyetik alan bileşenlerinden oluşur. Titreşen elektrik ve manyetik alanlar hem birbirlerine hem de dalganın ilerleme yönüne diktir. Maddenin elektromanyetik ışınım ile etkileşimi maddenin elektrik özelliklerinin (elektrik dipol, elektrik kuadrapol) dalganın elektrik alan bileşeni ile ya da maddenin manyetik özelliklerinin (manyetik dipol) dalganın manyetik alan bileşeni ile olacaktır (Yurdakul, Ş., 2010, s. 21).

Şekil 2.1. *Elektromanyetik dalganın gösterimi* **Kaynak:** *Averill and Eldredge, 2011, s. 500*

Klasik teori elektromanyetik ışınımı frekansı veya dalga boyu ile ifade edilen sürekli bir dalga olarak tanımlar ve elektromanyetik ışınımın kırılma ve kırınım gibi özelliklerini açıklar. Kuantum mekanik teori ise elektromanyetik ışınımı belirli enerji seviyelerinde bulunabilen parçacıklar olarak tanımlar ve bu teori ile elektromanyetik ışınımın absorpsiyonu ve emisyonu açıklanabilir. Foton adı verilen bu parçacıkların durgun kütlesi yoktur ve $h\nu$ enerjisine sahiptirler. Yayılan ışınımın birçok özelliği elektromanyetik ışınımın dalga-parçacık ikili karakteri ile açıklanır (Coleman, 1993, s. 3).

Işın ile madde etkileşmesi üç şekilde olabilir; ışın maddeden yansıyabilir, maddeden geçebilir veya madde tarafından soğurulabilir. I_0 gelen ışınımın şiddeti olmak üzere;

$$I_0 = I_r + I_t + I_a (1.1)$$

şeklinde ifade edilebilir ve yansıyan (I_r) , geçen (I_t) ve soğurulan (I_a) ışın şiddetlerini göstermektedir. Bu üç süreci ayrı ayrı ele almamıza rağmen hepsi aynı anda meydana gelir (Ball, 2001, s 23).

Analitik amaçlar için önem taşıyan spektrum bölgelerinin dalga boyu ve frekans aralıkları ve bu bölgelerle ilgili spektroskopik yöntemlerin listesi Çizelge 2.1'de verilmektedir (Skoog, Koller and Nieman, 2007, s. 119). Çekirdek veya elektron spininin yön değiştirmesinden kaynaklanan enerji değişimleri radyo frekans bölgesinde incelenir. Bu bölgede nükleer manyetik rezonans (NMR) veya elektron spin rezonans (ESR) spektroskopileri kullanılır. Moleküllerin dönme seviyeleri arasındaki geçişler mikrodalga bölgesindedir ve dönme spektroskopisi ile incelenir. Molekülün titreşim ve dönme enerji seviyeleri arasındaki geçişler infrared bölgesinde incelenir. Titreşim enerji seviyeleri arasındaki geçişler infrared soğurma ve Raman saçılma spektroskopileri ile incelenir. Valans elektronlarının enerjileri arasındaki farklar görünür ve ultraviyole bölgesindedir. Bu bölgede elektronik spektroskopi kullanılır. Bir atom veya molekülün iç kabuk elektronlarının enerji değişimlerini kapsayan bölge X-ışınları bölgesindedir. Gekirdeğin içindeki enerji seviyeleri arasındaki geçişler γ -ışınları bölgesindedir. Bu geçişlerde çekirdek çok kısa süre uyarılmış seviyede kaldıktan sonra temel hale döner. (Banwell and McCash, 1994, s. 5).

Spektroskopi Tipi	Dalga boyu Bölgesi	Dalga Sayısı Bölgesi (cm ⁻¹)	Kuantum Geçiş Türü
γ-ışını yayınım	0,05-1.4 A ⁰		Nükleer
X-ışını soğurma, yayınım, fluoresans ve kırınım	0,1-100 A ⁰		İç elektron
Vakum ultraviyole soğurma	10-180 nm	1x10 ⁶ -5x10 ⁴	Bağ elektronları
Ultraviyole görünür soğurma, yayınım, fluoresans	180-780 nm	5x10 ⁴ -1,3x10 ⁴	Bağ elektronları
İnfrared soğurma ve Raman saçılması	0,78-300 μm	1,3x10 ⁶ -33	Moleküllerin dönmesi/titreşimi
Mikrodalga soğurma	0,75-3,75 mm	13-27	Moleküllerin dönmesi
Elektron spin rezonans	3 cm	0,33	Magnetik alandaki elektron spinleri
Nükleer manyetik rezonans	0,6-10 m	1,7x10 ⁻² -1000	Magnetik alandaki çekirdeklerin spinleri

Çizelge 2.1. Elektromanyetik spektruma dayalı spektroskopik yöntemler

Kaynak: Skoog, Koller and Nieman, 2007, s. 119

3. MOLEKÜLER TİTREŞİM SPEKTROSKOPİSİ

Molekül iki veya daha fazla atomun bir araya gelmesiyle oluşur. Molekülün enerjisi molekülü oluşturan atomların enerjileri toplamından daha düşük ise molekül oluşur.

Şekil 3.1. İki atomlu bir molekülün enerji seviyeleri (elektronik seviyeler arasındaki mesafeler şekilde gösterildiğinden daha büyük dönme seviyeleri arasındaki mesafeler ise gösterildiğinden daha küçüktür) Kaynak: Nakamoto, 1997, s. 4

Molekülü oluşturan bağlar metalik, kovalent veya iyoniktir, zayıf bağlar ise van der Waals bağlarıdır. Şekil 3.1 de görüldüğü gibi moleküllerde farklı elektronik düzenlemelere uyan enerji seviyelerinden başka dönme ve titreşim hareketlerine karşılık gelen enerji seviyeleri de olduğu için moleküllerin enerji seviye diyagramları atomlarınkinden daha karmaşıktır (Svanberg, 2004, s. 31).

Molekül ile elektromanyetik alan etkileştiğinde, Bohr frekans durumu sağlandığında alandan moleküle enerji transferi olur;

$$\Delta E = h\nu \tag{3.2}$$

Burada ΔE ; iki seviye arasındaki enerji farkı, h; Planck sabiti ve v; elektromanyetik dalganın frekansıdır. Molekül alt enerji seviyesinden üst enerji seviyesine uyarıldığında enerji soğurur, üst enerji seviyesinden alt enerji seviyesine geri dönmesi esnasında da enerji yayınlar. İki seviye arasındaki enerji farkı ΔE 'nin büyüklüğü geçişe bağlı olarak değişir. Şekil 3.1' de iki atomlu bir molekül için elektronik, titreşim ve dönme geçişleri gösterilmiştir. Elektronik spektrumlar titreşim geçişlerini de içerir. Titreşim geçişleri $10^4 \sim 10^2 \text{ cm}^{-1}$ bölgesinde gözlenir ve molekülü oluşturan çekirdeğin titreşiminden kaynaklanır. Küçük moleküllerin gaz fazındaki titreşim spektrumlarında dönme geçişleri de gözlenir. Çözelti halinde iken dönme geçişleri gözlenmez çünkü bir dönme tamamlandığında ($10^{-11} s$) moleküler çarpışmalar ($10^{-13} s$) meydana gelir. Katı halde, moleküller arası etkileşmeler nedeniyle moleküler dönme hareketi gözlenmez (Ferraro, Nakamoto, and Brown, 2003, s. 5).

Molekülün toplam enerjisi Born-Oppenheimer yaklaşımına göre;

$$E_{toplam} = E_{dönme} + E_{titreşim} + E_{elektronik}$$
(3.3)

şeklinde ifade edilir. Molekülün öteleme enerjisi kuantumlu olmadığı için bu eşitlikte yer almamıştır. Molekülün elektronik enerjisi (E_e) moleküldeki elektronların sürekli hareketinden kaynaklanır. Titreşim enerjisi (E_t) moleküldeki atomların denge konumlarından periyodik olarak yer değiştirmeleri, dönme enerjisi (E_d) ise molekülün bütünüyle kendi kütle merkezi etrafında dönmesinden kaynaklanır. Molekülün toplam enerjisini bu şekilde üç farklı enerjinin toplamı olarak ifade etmenin temeli, elektronik geçişlerin titreşim geçişlerine göre daha kısa sürede, dönme geçişlerinin ise titreşim geçişlerine göre daha uzun sürede gerçekleşmesi gerçeğine dayalıdır (Nakamoto, 1997, s. 1). Bir moleküldeki toplam enerji değişimi ise,

$$\Delta E_{toplam} = \Delta E_{dönme} + \Delta E_{titresim} + \Delta E_{elektronik}$$
(3.4)

şeklinde yazılır, bu enerji değişimlerinin birbirlerine göre oranları ise,

$$\Delta E_{elektronik} \equiv \Delta E_{titresim} \times 10^3 \equiv \Delta E_{dönme} \times 10^6 \tag{3.5}$$

şeklindedir (Banwell, 1994, s. 6) (3.4) denklemine göre her bir geçiş arasında 10³ 'lük bir fark olduğundan elektronik, titreşim ve dönme geçişleri ayrı ayrı incelenebilir.

3.1. İnfrared Spektroskopisi

İnfrared spektroskopisi, maddenin infrared ışınlarını soğurması üzerine kurulmuş olan ve daha çok yapı analizinde kullanılan bir spektroskopi dalıdır. Homonükleer (N₂, O₂, Cl₂ gibi) moleküller hariç bütün moleküller infrared ışınlarını soğururlar ve infrared spektrumu verirler. İnfrared ışınlarının dalga boyları 1000-300000 nm arasında olmasına rağmen infrared spektroskopisinde, genellikle dalga boyları 2500-25000 nm arasında olan ışınlardan yararlanılır (Gündüz, 2005, s. 322).

Hem cihaz hem de uygulama açısından infrared spektroskopisi yakın, orta ve uzak infrared bölge olmak üzere üç kısma ayrılır. İnfrared spektrum bölgelerinin dalga boyu, dalga sayısı ve frekans aralıkları Çizelge 3.1'de gösterilmiştir. İnfrared spektroskopisinde ışınlar genellikle dalga sayısı ile temsil edilirler ve dalga sayısı $\overline{v} = 1/\lambda$ (cm⁻¹) şeklindedir (Skoog, Koller and Nieman, 2007, s. 381).

Bölge	Dalga boyu(λ)	Dalga sayısı(v)	Frekans(v)
	aralığı, µm	aralığı, cm ⁻¹	aralığı, Hz
Yakın(Near) Bölge	0,78–2,5	12800-4000	$3,8x10^{14}-1,2x10^{14}$
Orta(Mıddle) Bölge	2,5–50	4000–200	$1,2x10^{14}-6,0x10^{12}$
Uzak(Far) Bölge	50-1000	200–10	6,0x10 ¹² –3,0x10 ¹¹
En Çok Kullanılan Bölge	2,5–15	4000–670	$1,2x10^{14}-2,0x10^{13}$

Çizelge 3.1. İnfrared spektral bölgeleri

Kaynak: Skoog, Koller and Nieman, 2007, s. 381.

Moleküllerin uzak infrared bölgesindeki bandları ağır atomlar tarafından oluşturulan gerilme titreşimlerinden (S-S, C-Br, gibi) meydana gelir. Bu bölgedeki spektrumlardan maddelerin örgü dinamiği ve konformasyonu, fonksiyonel grup analizi ve nicel analiz gibi yapısal bilgiler elde edilebilir. Orta infrared bölgesi yapısal ve analitik çalışmalar için uygundur. Bu bölge de kendi içinde iki bölgeye ayrılabilir. 1350 cm⁻¹'in üzerindeki bölge, birçok gerilme titreşiminin gözlendiği bölgedir. 1350 cm⁻¹'in altındaki bölge ise bazı gerilme titreşimlerini içermesine rağmen parmak izi bölgesi olarak adlandırılır. Yakın infrared bölgesinde gözlenen soğurma bandlarının hemen hepsi hidrojen atomu içeren fonksiyonel grupların titreşimlerinden meydana gelir. Bu bandlar hidrojenin gerilme titreşimlerinin üstton ve kombinasyon bandlarından oluşur (-CH, -NH, -OH) (Skoog, Koller and Nieman, 2007, s. 411).

Bir molekülün infrared ışınını soğurabilmesi için dipol momentinin değişmesi veya büyümesi gerekir. Bir molekül üzerine düşen ışının elektrik bileşeninin frekansı, molekülde bulunan bir titreşim hareketinin frekansına uyunca soğurma olur. Soğurma sonucu ışının enerjisi moleküle geçer ve titreşimin genliği büyür. Bunun sonucunda molekülün dipol momenti büyür. İnfrared bölgedeki titreşimlerle ilgili olan bu absorpsiyon klasik ve kuantum mekaniksel olarak aşağıda incelenmektedir (Gündüz, 2005, s. 323).

3.1.1. Klasik kuram

Klasik elektrodinamiğe göre bir sistem elektrik dipol momentindeki periyodik değişimin etkisine bağlı olarak ışın yayınlar ve yayınlanan ışığın frekansı dipol salınımlarının frekansıyla aynıdır. Soğurma ise yayınlamanın tersi olarak bilinir. İnfrared spektroskopisi numuneden geçen ışının soğurulması ile ilgilidir.

Molekülün $\vec{\mu}$ elektrik dipol momenti μ_x , μ_y ve μ_z bileşenlerine sahip olan bir vektördür. Klasik elektrodinamiğe göre molekülün ν frekanslı bir ışını soğurabilmesi veya yayınlayabilmesi için $\vec{\mu}$ elektrik dipol momentinin veya bileşenlerinden en az birinin bu frekansta titreşim yapması gerekir. Dipol moment atomların uzaysal dağılımlarının bir fonksiyonudur ve molekül titreşim yaptığında dipol moment de bu titreşime uygun olarak değişir.

Dipol momentin bileşenlerinin büyüklüğü *Q* titreşim koordinatlarının fonksiyonudur. Molekülün dipol momentinin, denge konumu yakınında, Taylor serisine açılımı;

$$\vec{\mu} = \vec{\mu_0} + \sum_{k} \left\{ \left(\frac{\partial \vec{\mu}}{\partial Q_k} \right)_0 Q_k \right\} + y \ddot{u} k. mer. ter.$$
(3.6)

şeklindedir. Burada sıfır indisi molekülün denge durumuna karşılık gelir. k ise tüm titreşim koordinatlarının üzerinden toplamı göstermektedir. Küçük genlikli salınımlar için ilk iki terim alınıp, daha yüksek mertebeden terimler ihmal edilebilir. Bu durumda elektrik dipol moment vektörü;

$$\vec{\mu} = \vec{\mu_0} + \sum_k \left\{ \left(\frac{\partial \vec{\mu}}{\partial Q_k} \right)_0 Q_k \right\}$$
(3.7)

şeklinde yazılabilir. Klasik kurama göre, bir moleküler titreşimin infrared aktif olabilmesi için moleküler dipol momentinin veya bileşenlerinden en az birinin sıfırdan farklı olması gerekir. Bu ise,

$$\left(\frac{\partial \mu_i}{\partial Q_k}\right) \neq 0$$
 $(i = x, y, z)$ (3.8)

şeklinde belirtilir. Bu infrared soğurması için seçicilik kuralının genel ifadesidir (Bransden and Joachain, 1983, s. 429).

3.1.2. Kuantum kuramı

Kuantum mekaniksel teoriye göre, $\psi^{(n)}$ ve $\psi^{(m)}$ dalga fonksiyonları ile tanımlanan taban ve uyarılmış titreşim enerji düzeyleri arasındaki geçiş dipol momenti;

$$\vec{\mu}_{nm} = \int \psi^{(n)} \vec{\mu} \, \psi^{(m)} d\tau \tag{3.9}$$

şeklinde tanımlanır. İki titreşim enerji düzeyi arasındaki geçiş için soğurulan veya yayılan ışınımın şiddetini geçiş dipol momenti belirler, yani şiddet $|\vec{\mu}_{nm}|^2$ ile orantılıdır. Kuantum mekaniğine göre, $\psi^{(n)}$ ve $\psi^{(m)}$ dalga fonksiyonları ile tanımlanan taban ve uyarılmış titreşim enerji düzeyleri arasında geçiş olabilmesi için $\vec{\mu}_{nm}$ geçiş dipol momentinin veya bileşenlerinden en az birinin sıfırdan farklı olması gerekir.

$$\vec{\mu}_{nm} = \int \psi^{(n)} \vec{\mu} \, \psi^{(m)} d\tau \neq 0 \tag{3.10}$$

Bu denklemde $\vec{\mu}$ yerine (3.6) ifadesi yazılırsa;

$$\vec{\mu}_{nm} = \vec{\mu}_0 \int \psi^{(n)} \psi^{(m)} d\tau + \sum_k \left\{ \left(\frac{\partial \vec{\mu}}{\partial Q_k} \right)_0 \int \psi^{(n)} Q_k \psi^{(m)} d\tau \right\}$$
(3.11)

elde edilir. $\psi^{(n)}$ ve $\psi^{(m)}$ dalga fonksiyonları ortogonal olduğundan $(n \neq m)$, eşitliğin sağ tarafındaki ilk terim sıfırdır. Bu durumda elektriksel dipol momentteki değişimin ve (3.10) denkleminin sağ tarafında yer alan ikinci terimdeki integral ifadesinin sıfırdan farklı olması gerekir (Woodward, 1972, s. 254).

Eğer geçiş dipol momenti integralinde μ 'nün daha yüksek dereceden terimleri ihmal edilmezse, integrale aşağıdaki ilave terimler getirilecektir.

$$\left(\frac{\partial^2 \mu}{\partial Q_k^2}\right)_0 \int \psi^{(n)} Q_k^2 \psi^{(m)} d\tau \dots$$
(3.12)

Bu ise seçim kuralının $\Delta v = \pm 1, \pm 2, \pm 3, ...$ olması demektir. Fakat,

$$\left(\frac{\partial\mu}{\partial Q_k}\right)_0 \gg \left(\frac{\partial^2\mu}{\partial Q_k^2}\right)_0 \gg \left(\frac{\partial^3\mu}{\partial Q_k^3}\right)_0$$
(3.13)

 $\frac{\partial \mu}{\partial Q_k}$ terimi temel bandla ilgili geçiştir, bu nedenle temel band en şiddetli band olarak gözlenir. μ 'nün anharmonikliği ihmal edilirse seçim kuralı $\Delta \nu = \pm 1$ şeklindedir (Yurdakul, 2010, s. 61).

Eğer moleküler titreşim dipol momenti değiştirmezse, dipol moment salınımı bu titreşimi aktif hale getiremez. Bu "infrared ışınının soğurulabilmesi için moleküler titreşim molekülün dipol momentini değiştirmelidir" şeklindeki diğer seçicilik kuralı ile ifade edilir. İnfrared soğurma bandının şiddeti dipol moment değişiminin karesi ile orantılıdır (Colthup, Daly, and Wiberley, 1990, s. 13).

Moleküllerin infrared spektrumlarında simetrik moleküllerde eş enerjili titreşimlerin varlığı, moleküllerin farklı kısımlarındaki benzer grupların benzer titreşimleri ve titreşimlerin aktif olmaması nedeniyle beklenenden daha az sayıda band gözlenir (Özpozan, 1996, s. 15).

3.2. Raman Spektroskopisi

Raman spektroskopisi moleküler spektroskopinin temel formudur. Raman spektroskopisi infrared spektroskopisi ile birlikte moleküllerin titreşim geçişlerinden yapıları ve özellikleri hakkında bilgi elde etmek için kullanılır. İnfrared spektroskopisi, infrared ışınının frekansı ve normal mod titreşim frekansı arasındaki rezonans sonucunda oluşur. Rezonans etkileşmesinde yer alan molekülün özelliği titreşim hareketine göre

dipol momentindeki değişimdir. İnfrared soğurması tek fotonlu bir olaydır. İnfrared fotonu molekülle etkileşir, foton yok olur ve molekül titreşim rezonans frekansındaki fotonun enerjisi ile üst titreşim enerji seviyesine uyarılır. Raman saçılması ise spektrumun görünür bölgesindeki ışığın kullanıldığı iki fotonlu bir süreçtir. Bu durumda molekülün titreşim hareketine göre kutuplanma yatkınlığındaki (polarizibilite) değişim önemlidir. Gelen ışınım ile molekülün kutuplanma yatkınlığının etkileşmesi molekülde bir indüklenmiş dipol moment oluşturur ve indüklenen dipol moment tarafından yayılan ışınım gözlenen Raman saçılımını içerir (Lewis and Edwards, 2001, s. 1). İnfrared spektroskopisi gibi Raman spektroskopisi de klasik ve kuantum mekaniksel olarak açıklanabilir.

3.2.1. Klasik kuram

Klasik teoriye göre molekül üzerine ν frekanslı ve elektrik alanı;

$$E = E_0 \cos(2\pi\nu t) \tag{3.14}$$

ile verilen bir elektromanyetik dalga gönderilir. Coulomb yasasına göre elektronlar ve çekirdek birbirine göre zıt yönde hareket ederler. Böylece uygulanan elektrik alan molekülde bir dipol moment indükler. Başlangıçta molekül elektrik dipol momente sahipse, bu dipol moment değişir. Oluşan veya değişen dipol moment uygulanan elektrik alan ile doğru orantılıdır.

$$\vec{\mu} = \alpha \vec{E} \tag{3.15}$$

Burada, $\vec{\mu}$ indüklenen elektriksel dipol moment, α katsayısı ise molekülün kutuplanabilme yatkınlığı (polarizibilite)'dir. $\vec{\mu}$ 'nün bileşenlerinin büyüklükleri, elektrik alanının bileşenlerinin büyüklükleri cinsinden,

$$\begin{bmatrix} \mu_x \\ \mu_y \\ \mu_z \end{bmatrix} = \begin{bmatrix} \alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{zz} \end{bmatrix} \begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix}$$
(3.16)

şeklinde matris formunda yazılabilir. α katsayısı dokuz bileşenli simetrik bir tensördür. Bir molekülün polarizibilitesi dipol moment gibi normal titreşim koordinatlarının bir fonksiyonudur;

$$\alpha = \alpha_0 + \sum_k \left\{ \left(\frac{\partial \alpha}{\partial Q_k} \right)_0 Q_k \right\}$$
(3.17)

Burada α_0 , molekülün denge konumu yakınındaki kutuplanabilme yatkınlığı tensörüdür. $\left(\frac{\partial \alpha}{\partial Q_k}\right)_0$ ise *k*. normal mod için titreşim sırasındaki kutuplanabilme yatkınlığındaki değişimi ifade eder. Buna göre, indüklenmiş dipol moment;

$$\vec{\mu} = \alpha \vec{E} = \alpha_0 \vec{E} + \sum_k \left\{ \left(\frac{\partial \alpha}{\partial Q_k} \right)_0 Q_k \right\} \vec{E}$$
(3.18)

şeklinde yazılabilir. İndüklenmiş dipol momentin x bileşeni ise;

$$\mu_{x} = (\alpha_{xx})_{0}E_{x} + (\alpha_{xy})_{0}E_{y} + (\alpha_{xz})_{0}E_{z} + \sum_{k} \left[\left\{ \left(\frac{\partial \alpha_{xx}}{\partial Q_{k}} \right)_{0}E_{x} + \left(\frac{\partial \alpha_{xy}}{\partial Q_{k}} \right)_{0}E_{y} + \left(\frac{\partial \alpha_{xz}}{\partial Q_{k}} \right)_{0}E_{z} \right\} Q_{k} \right]$$
(3.19)

ile verilir. Bu denklemin sağ tarafında ilk ifadede yer alan α_0 'ın her bileşeni moleküler sabittir. \vec{E} 'nin her bileşeni gelen ışığın ν_0 frekansı ile titreşmektedir. Böylece $\vec{\mu}$ 'nün bileşenleri de aynı frekansta titreşir. Gelen ışın molekül ile etkileştikten sonra gelen ışığın farklı yönlerinde ancak aynı frekanslı ışınlar yayınlanır. Bu Rayleigh saçılması olarak bilinir. Denklemin sağ tarafındaki ikinci kısımda $(\partial \alpha / \partial Q_k)_0$ türevli tensörün her bileşeni basit bir sabittir. Q_k zamana bağlı normal koordinattır ve molekülün titreşim frekansı ν_m ile titreşir. \vec{E} 'nin her bileşeni ise gelen ışığın ν_m frekansı ile titreşir. Molekülün titreşimi veya dönmesi ile α değişiyorsa molekülün titreşim frekansı ν_m için denklem (3.16)'da verilen α katsayısının denge konumu civarında Taylor serisine açılımı;

$$\alpha = \alpha_0 + (\partial \alpha / \partial Q)_0 Q + 1/2 (\partial^2 \alpha / \partial Q^2) Q^2 + y \ddot{u}k.mer.ter.$$
(3.19)

şeklindedir. (3.19) denklemindeki Q titreşim koordinatı ise;

$$Q = Q_0 \cos(2\pi\nu_m t) \tag{3.20}$$

şeklinde yazılabilir. Burada Q_0 titreşim genliğidir (Ferraro, Nakamoto and Brown, 2003, s. 15).

Denge konumu civarındaki küçük genlikli titreşimler için α , Q'nun lineer fonksiyonudur. Böylece, kutuplanabilme yatkınlığı,

$$\alpha = \alpha_0 + (\partial \alpha / \partial Q)_0 Q \tag{3.21}$$

şeklini alır. (3.21), (3.14) ve (3.20)'de verilen ifadeler (3.15) denkleminde yerine yazılırsa;

$$\vec{\mu} = [\alpha_0 + (\partial \alpha / \partial Q)_0 Q_0 \cos(2\pi\nu_m t)] E_0 \cos(2\pi\nu t)$$
(3.22)

eşitliği elde edilir. Trigonometrik eşitliklerden yararlanarak bu eşitlik;

$$\vec{\mu} = \alpha_0 E_0 \cos(2\pi\nu t) + 1/2 (\partial \alpha / \partial Q)_0 Q_0 E_0 [\cos\{2\pi(\nu + \nu_m)t\} + \cos\{2\pi(\nu - \nu_m)t\}]$$
(3.23)

şeklinde elde edilir.

Klasik teoriye göre ilk terim Rayleigh saçılmasına karşılık gelir. Diğer iki terim ise $v + v_m$ frekanslı Anti-Stokes ve $v - v_m$ frekanslı Stokes Raman saçılmalarına karşılık gelir. Bir titreşimin Raman spektrumunda gözlenebilmesi için molekülün titreşimi sırasında kutuplanma yatkınlığının değişmesi gerekir. Bu, Raman aktifliği için bir seçim kuralıdır ve genel bir ifade ile şöyle verilir (Chang, 1971, s. 164; Woodward, 1972, s. 266):

$$\left(\frac{\partial \alpha_{ij}}{\partial Q_k}\right)_0 \neq 0 \quad (i, j = x, y, z)$$
(3.24)

3.2.2. Kuantum kuramı

Moleküller hv enerjili fotonlarla etkileştiğinde esnek veya esnek olmayan çarpışma yapabilirler. Esnek çarpışmada enerji kaybı olmayacağı için saçılan fotonun frekansı gelen fotonun v frekansıyla aynı olur. Bu tür saçılmaya Rayleigh saçılması denir (Şekil 3.2). Esnek olmayan çarpışmada ise saçılan fotonun frekansı gelen fotonun frekansından düşük veya yüksek olabilir. Bu tür saçılmaya Raman saçılması denir. Molekül taban titreşim enerji seviyesinde iken hv enerjisini soğurarak üst kararsız titreşim seviyesine uyarılır. Molekül $h(v - v_m)$ enerjili foton yayınlayarak başka bir titreşim enerji seviyesine geçiş yapar. Bu saçılmaya Stokes saçılması denir (Şekil 3.2). Moleküller birinci uyarılmış titreşim enerji seviyesindeyken hv enerjisini soğurarak üst kararsız enerji seviyesine uyarılır ve $h(v + v_m)$ enerjili foton yayınlarak taban enerji seviyesine geçerler (Woodward, 1972, s. 262; Long, 2002, s. 52). Bu saçılma ise Anti-Stokes saçılması olarak adlandırılır (Şekil 3.2).

Şekil 3.2. Rayleigh, Stokes ve Anti-Stokes saçılmaları Kaynak: Larkin, P. 2011, s. 16

İnfrared spektrumunda olduğu gibi Raman saçılması için de seçicilik kuralı $\Delta v = \pm 1$ 'dir. Yani Raman saçılması titreşim kuantum sayısının birer değişmesi durumunda gerçekleşir. Stokes geçişleri $\Delta v = +1$, Anti-Stokes geçişleri ise $\Delta v = -1$ olması durumunda meydana gelir (Brown, 1998, s. 52). Normal koşullarda taban enerji seviyesinde bulunan molekül sayısı bir üst enerji seviyesinde bulunan molekül sayısından daha fazladır. Bu yüzden Stokes saçılmaları Anti-Stokes saçılmalarından daha şiddetlidir (Levine, 1975, s. 772).

Bir titreşimin infrared aktif olabilmesi için molekülün titreşimi esnasında değişen bir dipol momentinin olması, Raman aktif olabilmesi için moleküler kutuplanma yatkınlığı katsayısında bir değişiklik olması gerekir. Simetrik olan birçok molekülde, normal modların biri veya birkaçında dipol moment değişikliği olmaz ve infrared spektrumunda normal mod titreşimlerinin hepsi gözlenmeyebilir. İnfrared spektrumunda aktif olmayan titreşimler Raman spektrumunda aktif olabilir ve böylece bu titreşimlerin frekansları belirlenebilir. Karşılıklı dışarlama ilkesi simetri merkezine sahip olan molekülde bir titreşim geçişinin hem infrared hem de Raman spektrumunda gözlenemeyeceğini ifade eder. Bazı temel frekanslar hem infrared hem de Raman spektrumunda aktif olmayabilirler. Bu frekanslar infrared ve Raman kombinasyon bandlarından belirlenebilir (Banwell, 1994, s. 112).

3.3. Çok Atomlu Moleküllerin Titreşimleri

Bir molekülün bütün atomlarının aynı frekans ve fazda basit harmonik hareket yaptıkları titreşimlere temel titreşimler veya normal modlar denir. Boltzmann dağılım fonksiyonuna göre oda sıcaklığında moleküllerin çoğu temel titreşim seviyesinde bulunurlar. Bu nedenle, bir molekülün infrared spektumunda en şiddetli bandlar temel titreşim düzeyinden birinci uyarılmış titreşim düzeyine olan geçişlerde gözlenir. $v: 0 \rightarrow 1$ geçişi temel geçiş olarak bilinir ve bu geçişlerde gözlenen titreşim frekanslarına temel titreşim frekansları adı verilir.

Temel titreşim bandlarının dışında üstton, kombinasyon ve sıcak bandlar da gözlenir. Temel titreşim frekanslarının iki, üç veya daha fazla katlarında $(2\nu, 3\nu, ...)$ meydana gelen geçişlere üstton bandları denir. Bir veya daha fazla temel veya üstton frekanslarının toplamı veya farkından oluşan bandlara kombinasyon (birleşim veya fark) bandları adı verilir. Üst uyarılmış titreşim düzeylerinden başlayan geçişlerde $(\nu: 1 \rightarrow 2, 2 \rightarrow 3)$ meydana gelen bandları ise sıcak band olarak isimlendirilir. Üstton, kombinasyon ve sıcak bandların şiddetleri temel titreşim bandlarından daha zayıftır.

Aynı simetri türünde bir temel titreşim ile bir üstton veya kombinasyon bandının frekansı birbirine çok yakın ise aralarında bir etkileşme (rezonans) olur. Bu durumda spektrumda şiddetli bir temel titreşim bandı ile zayıf bir üstton veya kombinasyon bandı yerine, temel titreşim bandı yakınlarında gerçek değerinden sapmış iki şiddetli titreşim bandı gözlenir. Bu etkileşme Fermi rezonansı olarak bilinir (Banwell, 1994, s. 74).

3.4. Moleküler Simetri ve Grup Teori

Molekülü oluşturan atomların uzaydaki geometrik düzeni molekülün simetrisini oluşturur. Bir molekülün denge konumundaki simetri özellikleri molekülün simetri elemanlarına ve bir nokta grubuna sahip oluşu ile ifade edilir. Bir moleküle nokta, eksen, düzlem gibi geometrik simetri elemanları uygulandığında molekül ilk durumuna göre değişmeden kalabiliyorsa molekülün sahip olduğu tüm simetri elemanları bir grup oluşturur. Simetri elemanlarının uygulanması sonucunda molekülün en az bir noktası (kütle merkezi veya simetri elemanlarının kesiştiği nokta) yer değiştirmediğinden bu gruplara nokta gruplar denir (Cotton, 1970, s. 14). Çizelge 3.2'de simetri işlemleri ve elemanları sıralanmıştır.
Simetri	Simge	Simetri İşlemi
Elemanı		
Özdeşlik	Е	Molekülde hiçbir değişikliğe neden olmaz (360° dönme)
Dönme ekseni	C_n	Eksen etrafında 360°/n'lik dönme
Simetri	σ	Düzlemden yansıma
düzlemi		
Simetri	i	Bir merkeze göre tüm atomların ters dönmesi
merkezi		
Dönme-	$\mathbf{S}_{\mathbf{n}}$	Eksen etrafında $360^{\circ}/n$ 'lik dönme ve ardından bu
yansıma ekseni	1 117 10	dönme eksenine dik düzlemde yansıma

Çizelge 3.2. Simetri elemanları ve işlemleri

Kaynak: Haken and Wolf, 2004, s. 109.

Moleküllerin simetri özelliklerinden yararlanılarak karakter tabloları hazırlanmıştır. Grup teorisi yardımı ile karakter tabloları kullanılarak her bir temel titreşimin indirgenemez gösterimlerinden hangisine temel oluşturduğu ve hangi simetri türünde olduğu bulunabilir (Cotton, 1970, s. 16). Molekül simetrisi yardımıyla bir molekülün titreşiminin normal modları ve frekansları hesaplanabilir. Ayrıca temel frekansların sayısı ve dejenere durumları, infrared ve Raman spektrumları için seçim kuralları, band özellikleri gibi bilgiler molekül simetrisi ve geometrisinden elde edilebilir (Wilson, Decius, and Cross, 1980, s. 77). İndirgenemez gösterimden yararlanarak bir molekülün toplam titreşimlerinin hangi simetri türünde oldukları indirgeme formülü kullanılarak bulunabilir;

$$n = \frac{1}{h} \sum_{s} \chi_R \chi_I N \qquad (s: b \ddot{u} t \ddot{u} n siniflar \ddot{u} zerinden)$$
(3.25)

Bu eşitlikte n; indirgenebilir gösterimin bileşeni olan bir indirgenemez gösterimlerin oluşma sayısını, h; grubun mertebesini (gruptaki eleman sayısı), χ_R ; indirgenebilir gösterimi, χ_I ; indirgenemez gösterimi, N; sınıftaki simetri işlemlerinin sayısını göstermektedir (Vincent, 1977, s. 55).

3.5. Grup Frekansları

C=O, C=C, C-H, C = C veya O-H gibi organik fonksiyonlu grupların soğurdukları infrared ışınlarının frekansları (veya dalga sayıları), atomların kütlesinden ve atomlar arasındaki bağların kuvvet sabitinden yaklaşık olarak hesaplanabilir. Bu frekanslar grup frekansları olarak bilinirler ve nadiren değişmezdirler. Çünkü bu grubu oluşturan bir veya iki atomla ilgili diğer titreşimlerle etkileşimler söz konusudur. Öte yandan, bu tip etkileşme güçleri genellikle zayıftır ve bunun sonucunda belirli bir fonksiyonel grubun soğurma pikinin bulunma olasılığının yüksek olduğu frekans aralığı belirlenebilir. Çizelge 3.3'de bazı yaygın fonksiyonel grupların grup frekansları listelenmiştir.

Grup frekansı moleküldeki bir grubun, molekülün geri kalan kısmından bağımsız olarak hareket ettiği fikrine dayanır. Molekül içindeki bir grup, moleküldeki diğer atomlara göre daha hafif (OH, NH, NH₂, CH, CH₂, CH₃ gibi) veya daha ağır atomlar içeriyorsa (CCl, CBr, Cl gibi) bu atomların harmonik titreşim genliklerinin (veya hızlarının) moleküldeki diğer atomlara göre daha büyük ya da küçük olmasından dolayı bu grupların molekülün geri kalan kısmından bağımsız olarak hareket ettiği kabul edilir. Kuvvet sabitinin büyük olması, atomların denge pozisyonlarında hareketin zorlaşmasına sebep olacağından, ikili ve üçlü bağların (C=C, C=O, C=N, C=C, C=N gibi) gerilme frekansı tekli bağlardan daha yüksektir (Nakamoto, 1997, s. 89).

Moleküllerin iskelet titreşimleri genellikle 1400 cm⁻¹ ile 700 cm⁻¹ arasındaki bölgede moleküldeki lineer veya dallanmış zincir yapılar yüzünden gözlenirler. Bu bölgeye parmak izi bölgesi de denir. Grup frekanslarının çoğu 3600-1250 cm⁻¹ arasında bulunmaktadır. Ancak birkaç grup frekansı da parmak izi bölgesine düşer. Bunlar 1200 cm⁻¹ civarında C-O-C esneme titreşimlerini ve 700-800 cm⁻¹'deki C-Cl gerilme titreşimlerini kapsar (Nakamoto, 1997, s. 65; Skoog, Koller, and Nieman, 2007, s 411). Moleküler titreşim frekansları infrared ve Raman spektrumlarında aynıdır. O-H, C-H, C=N, C=O, C=C gibi gruplar için titreşim frekansları da her iki teknikte aynıdır. Genellikle iki spektrumdaki band şiddetleri farklıdır. Eğer molekül simetri merkezine sahipse infrared spektrumunda gözlenen bandlar Raman spektrumunda gözlenmeyebilir veya bunun tersi de mümkündür (Colthup, Daly and Wiberley, 1990, s. 176).

Ci cc	Titreşim Dalga	
Singe	Sayısı(cm ⁻¹)	
v (OH)	3640-3600	
v (NH)	3500-3380	
v (CH)	3100-3010	
v (CH)	3000-2900	
v (CH ₃)	2960-2870	
v (CH ₂)	2930–2855	
v (SH)	2600-2550	
v (CC)	2260-2100	
v (CN)	2200-2000	
v (CO)	1800-1600	
δ(NH ₂)	1540	
δ(CH ₂)	1465	
δ(CH ₃)	1450–1375	
$\rho_r(CH_3)$	1150-850	
v (SO)	1080-1000	
v (CS)	1200-1050	
v (CF)	1400-1000	
v (CCl)	800-600	
v (CBr)	600-500	
v (CI)	500	
	Simge v (OH) v (NH) v (CH) v (CH3) v (CH2) v (CH2) v (CH2) v (CH2) v (CH2) v (CN) v (CC) v (CN) v (CO) δ (CH2) δ (CH3) ρ r(CH3) v (SO) v (CS) v (CC) v (CC) v (CC) v (CC) v (CC) v (CC) v (CC) v (CC) v (CC) v (CC) v (CC) v (CC) v (CC) v (CC)	

Çizelge 3.3. Grup frekansları tablosu

Kaynak: Gündüz, 2005, s. 357; Skoog, Koller and Nieman, 2007, s. 410.

3.6. Grup Frekanslarını Etkileyen Faktörler

Grup frekanslarını etkileyen faktörler molekül içi etkiler ve molekül dışı etkiler olmak üzere iki grupta incelenir. Çiftlenim, komşu bağın kuvvet sabiti etkisi ve elektronik etki molekül içi etkilerdir. Dipolar etkilenme ve hidrojen bağı ile etkilenme ise molekül dışı etkilerdir (Gündüz, 2005, s. 365).

3.6.1. Çiftlenim

Bir atoma bağlı iki titreşim olması durumunda gerilme titreşimleri arasında şiddetli etkileşme meydana gelir. Örneğin X=Y gibi bir bağa sahip olan molekülün gerilme titreşimi için temel titreşim frekansı V_1 olsun. Bu iki atomlu molekülden türetilen

X=Y=X bağı için $v_2 < v_1$ ve $v_3 > v_1$ frekanslarında iki gerilme titreşimi gözlenir. Bunun nedeni YX₂ molekülündeki titreşimlerin birbirini etkileyerek v_1 frekanslı titreşimde v_2 ve v_3 frekanslı iki titreşim meydana gelmesidir. Bu olaya çiftlenim denir. Çiftlenim çizgisel moleküllerde en fazla, açılı moleküllerde ise açıdaki artışa bağlı olarak azalmaktadır. Çiftlenime neden olan çeşitli sebepler vardır. Bunlar bir atomun iki tarafındaki titreşimlerin birbirine eşit olması, titreşen gruplar arasında ortak bir bağ olması, titreşen grupların enerjilerinin aynı olması, bir esneme titreşiminin bağının bir bükülme titreşimi açısının bir tarafını meydana getirmesi ve titreşimlerin aynı simetri sınıfından olmasıdır.

Çiftlenim infrared spektroskopisinde çok rastlanan olaylardan biridir. Bu nedenle organik fonksiyonel bir grubun soğurma pikinin yerini tam olarak tespit etmek mümkün olmaz. Örneğin, C-O gerilme titreşimleri, metanolde 1034 cm⁻¹, etanolde 1055 cm⁻¹, 2butanolde ise 1108 cm⁻¹ de görülür. Bu değişmeler, C-O titreşiminin C-C ve C-H titreşimleriyle etkileşmesinden ileri gelir. 1200 cm⁻¹'in altında kalan bölgede etkileşmeler çok daha fazladır. Böyle etkileşmeler, bir molekülde bulunan fonksiyonel grupların belirlenmesinde bir takım belirsizlikler meydana getirmelerine rağmen, özel bir molekülün yapısının açıklanmasında bilgiler veren önemli ipuçlarından birisidir (Gündüz, 2005, s. 365).

3.6.2. Komşu bağın kuvvet sabiti etkisi

Bir bağa komşu olan bağın kuvvet sabitinin küçülmesi o bağın kuvvet sabitinin de küçülmesi ve dolayısıyla titreşim frekansının düşmesine neden olur. Bu şekilde komşu bağın etkisiyle bir bağın frekansının düşmesine komşu bağ etkisi denir. Örneğin, nitril bileşiklerinde (R-C=N, R = alkali radikal) R yerine Cl, Br veya I gibi halojenler geldiği zaman titreşim frekansının düştüğü görülmektedir. Bunu çiftlenim ile açıklayamayız. Çünkü, X halojen olmak üzere (X-C) frekansı üçlü bağ frekansından çok farklıdır ve küçüktür. Bu kadar farklı frekanslar arasında çiftlenim olmaz. Bundan başka karbon yerine halojen gelmesi sonucu kütle değişmesi düşünülebilir. Ancak yapılan hesaplamalar karbon atomu yerine değil bir halojen, çok ağır atomlar geldiği zaman bile frekans kaymasının çok az olacağını göstermektedir. O halde frekans kaymalarının sebebi kütle değişmesinden de olamaz. Bu kaymaları meydana getiren etkiler komşu bağın kuvvet sabiti etkisidir. (Gündüz, 2005, s. 366).

3.6.3. Elektronik etki

Elektronik etki söz konusu bağın elektron yoğunluğunda değişiklik meydana getiren etkidir. Elektronik etki indüktif etki ve rezonans etkisi olmak üzere ikiye ayrılır.

İndüktif etki bağ elektronlarının atomlar arasında ortaklaşılmasının zincir boyunca atomda atoma değiştiren etkidir. Söz konusu bağın elektron yoğunluğunu arttıran pozitif indüktif etki ve söz konusu bağın elektron yoğunluğunu azaltan negatif indüktif etki olarak ikiye ayrılır. Pozitif indüktif etkiyi Şekil 3.3'de görülen asetaldehit ve asetilklorür üzerinden açıklayalım. Asetaldehitteki polar aldehit grubu iki rezonans halde bulunur. Gerçek yapı bu iki hal arasında olan bir hibrit yapıdır. Asetaldehitte hidrojen yerine bir klor geçerse, negatif klor atomu bağın elektronlarını kendine doğru çeker. Bunun sonucu karbon etrafında elektron yoğunluğu azalır. Karbon bu elektron eksikliğini gidermek için C = O çift bağındaki elektronları, aldehitte olduğundan daha çok kendine çekmeye başlar. Başka bir deyişle karbonun elektronegativitesi artar ve çifte bağın elektronlarını oksijenle ortaklaşa kullanmaya çalışır. Asetilklorürdeki C = O çift bağın karakteri asetaldehittekine göre daha güçlü olur. Asetaldehit 1730 cm⁻¹ 'de soğurma yaparken asetilklorür ise 1802 cm⁻¹'de soğurma yapar (Gündüz, 2005, s. 368).

Asetilklorür

Şekil 3.3. Asetaldehit ve asetilklorür moleküllerinde pozitif indüktif etki Kaynak: Gündüz, 2005, s. 368

Bağın elektron yoğunluğunu azaltan negatif indüktif etkiyi açıklayalım.

Şekil 3.4. Aseton molekülünde negatif indüktif etki Kaynak: Gündüz, 2005, s. 368

Negatif indüktif etkiyi Şekil 3.4'de gösterilen asetaldehit ve aseton ile açıklayalım. Komşu bağ etkisine göre, asetonun asetaldehitten daha yüksek frekansta soğurma yapması gerekirdi. Bunun tam tersi bir durum ile karşılaşılır. Bu alkil gruplarının bağlı oldukları atoma kısmen de olsa elektron vermesi ile açıklanabilir. Böylece karbonilin çift bağ karakteri azalır. Yani karbonilde kısmen pozitif yüklü olan karbon alkillerden aldığı negatif yüklerle elektron eksikliğini giderir.

Rezonans etkisi ise çift bağ karakterinin azalmasına ve bağın zayıflamasına neden olur. Asetaldehitteki hidrojen yerine bir vinil grubu geçerse Şekil 3.5'de görüldüğü gibi 3-buten-2-on molekülü elde edilir. Molekül 1686 cm⁻¹'de soğurma yapar. Böyle bir sonuç karbon oksijen bağının asetaldehitteki bağdan bile zayıf olduğunu, çift bağın rezonans nedeniyle büyük ölçüde tek bağa dönüştüğünü ve rezonansın bağı zayıflattığını gösterir.

Şekil 3.5. 3-buten-2-on molekülünün rezonans durumları Kaynak: Gündüz, 2005, s. 369

3.6.4. Dipolar etkilenme

Dipolar etkilenme polar bir molekülün pozitif ucu ile diğer bir molekülün negatif ucunun birbirlerini çekmesidir. Örneğin aseton molekülünün gaz halindeki titreşim frekansı 1742 cm⁻¹ iken sıvı haldeki titreşim frekansı 1715 cm⁻¹'dir. Bunun nedeni sıvı haldeyken dipol olan iki C=O grubunun birbirlerini çekmeleridir. Böylece bağların polarlığı daha da artar ve karbonilin bağ derecesi düşer. Bu halde meydana gelen kaymalar 25 cm⁻¹ civarındadır. Polar çözücülerde çözücü-çözünen arasında etkileşim olmaktadır. Dolayısıyla değişik çözücülerde değişik dalga boylarında band oluşabilmektedir (Gündüz, 2005, s. 372).

3.6.5. Hidrojen bağı ile etkilenme

Hidrojen bağı molekül içi veya moleküller arasında olabilir. Her iki durumda da hidrojen bağını içeren grup frekanslarında kaymalar olur. Dipolar özellikten ileri gelen kaymalar az olduğu halde hidrojen bağından ileri gelen kaymalar fazladır. Hidrojen bağı bir molekülün X-H bağı ile bir başka molekülün Y atomu arasındaki etkileşmedir. X atomu O, N ve F gibi elektronegatif bir atom, Y atomu ise çiftlenmemiş elektrona sahip bir atomdur. Hidrojen bağının $(X - H \cdots Y)$ X-H bağını zayıflatmasından dolayı X-H esneme titreşim frekansları azalırken, $H \cdots Y$ bağı nedeniyle X-H bükülme titreşim frekanslarında artma meydana gelir. Frekans kaymasının büyüklüğü hidrojen bağının şiddetine bağlıdır (Gündüz, 2005, s. 372).

3.7. Katıların Titreşim Spektrumları

Gaz fazından sıvı ve katı faza geçen moleküllerin infrared ve Raman spektrumlarında, moleküllerin dönmeleri önleneceğinden, genellikle dönme enerji seviyelerine ait bandlar kaybolur ve titreşim bandları keskinleşir (Gündüz, 2005, s. 27). Faz değişimi sonucu molekülün titreşim frekanslarında ve şiddetlerinde küçük değişimler gözlenebilir (Nakamoto, 1997, s. 117).

Katı fazdaki bir numunenin normal titreşimlerine ek olarak kristal yapısına ait örgü titreşimlerinin de incelenmesi gerekir. Kristal yapıdaki moleküllerin simetrisi, serbest haline göre farklıdır. Kristal içindeki moleküllerin potansiyel enerjilerindeki değişim nedeniyle, temel titreşim frekanslarında küçük kaymalar meydana gelir. Bu tip kaymalara statik kayma adı verilir. Ayrıca potansiyel alandaki simetri değişimi ile seçim kuralları da değişir. Molekülün kristal içerisindeki simetrisine yer simetrisi denir. Yer simetri elemanları, molekülün kütle merkezinden geçen kristal simetri elemanlarıdır. Molekülün ait olduğu nokta grubunda aktif olmayan bir titreşim, kristal içindeki yer simetrisinde aktif hale gelebilir. Bunun tersi de mümkündür. Yer simetri etkisiyle, serbest molekül için dejenere olan bazı titreşim bandlarında yarılmalarda gözlenebilir. Bu tür yarılmalara yer grup yarılmaları denir (Gündüz, 2005, s. 27).

Sonsuz büyük bir kristal yapıda molekülün ve örgünün titreşim modları da sonsuz sayıdadır. Kristal titreşim modları, kristali oluşturan birim hücrelerdeki titreşim modları ile aynı olmalıdır. Çünkü birim hücrelerdeki titreşim hareketlerinin aynı fazda olduğu titreşim modları infrared veya Raman aktiftir. Aralarında faz farkı olan özdeş titreşim modları gözlenmez. Bu nedenle kristalin normal titreşimleri sadece bir birim hücre içindeki moleküllerin titreşim modları incelenerek bulunabilir. Bu kristalin birim hücresine simetri elemanlarının uygulanmasıyla, birim hücre içindeki bir nokta, komşu birim hücredeki özdeş bir noktaya taşınır. Bu işlemler faktör grubu olarak adlandırılır. Eğer birim hücrede N molekül varsa titreşim modu N katlı dejeneredir. Kristal içinde, moleküller arası etkileşim büyükse bu dejenerelik ortadan kalkarak spektrumda yarılmalar gözlenir. Bu yarılmalara faktör grup veya kristal alan yarılmaları adı verilir.

3.8. Moleküler Titreşim Türleri

Molekülde bulunan her atomun konumunu tanımlayabilmek için kartezyen koordinat sisteminde (x, y ve z) üç koordinata ihtiyaç vardır. Böylece x, y ve z yönlerinde hareketin üç serbestlik derecesi vardır. Molekülde N atom varsa molekülün 3N serbestlik derecesi vardır. Molekülün kütle merkezinin öteleme hareketinden kaynaklanan hareketin serbestlik derecesi üçtür. Lineer olmayan bir molekül üç dönme serbestlik derecesine sahiptir. Lineer molekül ise iki dönme serbestlik derecesine sahiptir. 3N serbestlik derecesinden dönme ve öteleme serbestlik derecelerini çıkardığımızda lineer moleküller 3N - 5, lineer olmayan moleküller ise 3N - 6 temel titreşim moduna sahiptir (Colthup, Daly and Wiberley, 1990, s. 3).

N atomlu bir molekül kapalı bir halka oluşturmuyorsa, N-1 bağa sahip olduğundan 3N-6 titreşiminden N-1 tanesi gerilme titreşimi 2N-5 tanesi de açı bükülme titreşimidir. Lineer moleküllerde ise 3N-5 titreşimin N-1 tanesi gerilme titreşimi, 2N-4 tanesi ise açı bükülme titreşimidir (Banwell, 1994, s. 71).

Çok atomlu moleküllerin titreşimleri dört grupta incelenebilir. (Gans, 1971, s. 92)

a) *Gerilme Titreşimi (stretching)*: Bağın ekseni doğrultusunda periyodik olarak meydana gelen uzama ve kısalma hareketidir. v ile gösterilir. Bu titreşimler simetrik ve asimetrik gerilme olmak üzere ikiye ayrılır. Simetrik gerilme (v_s) moleküldeki bütün bağların aynı anda uzaması veya kısalması ile oluşan hareket iken asimetrik gerilme (v_a) bağlardan bir veya birkaçı uzarken diğerlerinin kısalması ile oluşan harekettir.

(a) Simetrik gerilme, v_s

(b) Asimetrik gerilme, v_a

Şekil 3.6. *Gerilme titreşimleri, v* **Kaynak:** Gans, 1971, s. 92 b) *Açı Bükülme Titreşimi (bending)*: İki bağ arasındaki açının periyodik olarak değiştiği titreşimlerdir ve δ ile gösterilir. Yer değiştirme vektörleri bağ doğrultusuna diktir. Açı bükülme titreşiminin özel durumları makaslama, sallanma, dalgalanma ve kıvırma olarak adlandırılır.

Şekil 3.7. *Açı bükülmesi, δ* **Kaynak:** *Gans, 1971, s. 93*

• *Makaslama (scissoring)*: İki bağ arasındaki açının bağlar tarafından kesilmesi ile periyodik olarak oluşan değişim hareketidir ve δ_s ile gösterilir. Yer değiştirme vektörleri bağa dik doğrultuda ve aynı noktaya doğru yönelmiştir.

Şekil 3.8. *Makaslama, δs* **Kaynak:** *Gans, 1971, s. 93*

• *Sallanma (rocking)*: İki bağ veya bir bağ ile bir grup atom arasındaki açının bükülmesi ile oluşan titreşim hareketidir. ρ_r ile gösterilir. Yer değiştirme vektörleri birbirini takip edecek yöndedir. Bağ uzunluğu ve bağ açısı değişmez.

Şekil 3.9. *Sallanma*, *ρ*_r **Kaynak:** *Gans*, 1971, *s*. 94

 Dalgalanma (wagging): Bir bağ ile iki bağ tarafından tanımlanan düzlem arasındaki açının değişmesine sebep olan titreşim hareketidir. w ile gösterilir. Molekülün tüm atomları denge konumunda düzlemsel iken, bir atomun düzleme dik hareket etmesi ile oluşur.

Şekil 3.10. Dalgalanma, w Kaynak: Gans, 1971, s. 94

• *Kıvırma (twisting)*: Lineer ve düzlemsel olmayan moleküllerde bağların atomlar tarafından bükülmesidir. t ile gösterilir. Yer değiştirme vektörleri bağ doğrultusuna diktir ve zıt yöndedir.

Şekil 3.11. *Kıvırma, t* **Kaynak:** *Gans, 1971, s. 95*

c) *Burulma Titreşimi*: İki düzlem arasındaki açının bir bağ veya açıyı deforme edecek şekilde periyodik olarak meydana gelen titreşimlerdir. τ ile gösterilir.

Şekil 3.12. *Burulma*, *τ* **Kaynak:** *Gans*, 1971, s. 96

d) Düzlem Dışı Açı Bükülmesi: Atomların hareketi ile bir düzlemin (genellikle bir simetri düzlemi) yok edilmesine sebep olan titreşimdir. Genellikle kapalı bir halka oluşturan moleküllerde görülür. Hareketin biçiminden dolayı şemsiye titreşimi olarak bilinir. γ ile gösterilir.

Şekil 3.13. Düzlem dışı açı bükülmesi, y Kaynak: Gans, 1971, s. 96

4. KONAK-KONUK BİLEŞİKLERİ

Konak-konuk bileşikleri biri konak, diğeri konuk olmak üzere iki bileşenli moleküler yapılardır. Bu bileşikler kafes şeklinde bir yapıya sahip olduklarından Latince "Clathratus" kelimesinden alınan "klatrat" adını almışlardır (Powell and Rayner, 1949, s. 566). Konak olarak adlandırılan ana örgü yapısında oluşan farklı boyut ve şekillerdeki boşluklara ikinci bileşen olan konuk moleküller değişik oranlarda girebilirler (Davies, 1985, s. 277).

Konak-konuk bileşikleri düzgün kristal yapıya sahiptirler (Minceva-Sukarova, Andreeva and Sherman, 1993, s. 152). Kristallografik veriler konak örgü ile konuk moleküller arasında kimyasal bir bağ olmadığını gösterir. Ayrıca iki bileşen arasındaki etkileşim hidrojen bağı, iyon-dipol, dipol-dipol veya van der Waals kuvvetleri gibi kovalent olmayan kuvvetleri içerir. Bu durumda konuk molekülleri konak örgü içinde hapsedilmiş olarak düşünülebilir. İki bileşen arasında hiçbir bağ yoktur (Davies, 1998, s. 120). Dolayısıyla konuk moleküller sözü edilen boşlukları doldurabildikleri gibi yapıyı terk de edebilirler. Konuk moleküller ısıtma, ezme ve vakum gibi işlemler sonucunda yapıdan ayrılabilirler (Herbstein, 2005, s. 8).

Konak ve konuk bileşenlerine ait olan bandların gözlenmesi konak-konuk bileşiklerinin oluştuğunun kesin göstergesi değildir. Elde edilen ürün konak-konuk bileşiğinden çok fiziksel bir karışım da olabilir. Band konumlarında meydana gelen değişikliğin belirlenmesi bu iki olasılığın ayırt edilebilmesini sağlar. Fiziksel bir karışımın spektrumu iki bileşenin spektrumlarını da içerir. Buna karşılık konak-konuk bileşiklerinin oluşumu band konumlarında meydana gelen değişiklik yani bandların dalga sayılarındaki kaymalar ile anlaşılır (Davies, 1998, s. 120).

Konak-konuk bileşikleri teknolojide yaygın olarak kullanılırlar. Bunlardan bazıları kanser kemoterapisi, kötü kokuların tutulması, deniz suyunun damıtılması, moleküler elek, izomerlerin ayrılması, hidrojen depolama, kimyasal sensör şeklinde sıralanabilir (Atwood, Davies and Mac Nicol, 1984, s. 63; Iwamoto, 1996, s. 102; Lefebvre, Batchelor and Leznoff, 2004, s. 16117; Monlien, vd., 2002, s. 1718; , Xie, vd., 2007, s. 1950; Culp, vd., 2008, s. 7079).

Kükürt dioksitli hidrokinon konak-konuk bileşiği, 3C₆H₄(OH)₂.SO₂, bilinen ilk konak-konuk bileşiğidir. Hidrokinon moleküllerinin hidrojen bağları ile birbirine bağlanıp ve bunların birbiri içinden geçirilmesiyle üç boyutlu aynı yapı ve aynı özellikte iki kristal örgü meydana gelir. Konuk molekül olan SO₂ molekülleri iki kristal örgü arasında oluşan boşluklara yerleşmektedir. Şekil 4.1'de hidrokinon molekülünün yapısı görülmektedir. Daha sonraları dianinli konak-konuk bileşikleri, konak-konuk bileşikli hidratlar ve Hofmann tipi konak-konuk bileşikleri elde edilmişlerdir (Iwamoto, 1996, s. 63).

Şekil 4.1. Hidrokinon bileşiğinin yapısal şekli Kaynak: Palin and Powell, 1947, s. 220

4.1. Hofmann Tipi Konak-Konuk Bileşikleri

Konak-konuk bileşiklerinden ilk gözlenenler arasında önemli bir yeri olan Hofmann tipi konak-konuk bileşikleri Hofmann ve Küspert tarafından 1897 yılında yapılmıştır. Bu çalışmada amonyaklı nikel siyanür çözeltisine [Ni(CN)₂] benzen ilavesi yapıldığında Ni(CN)₂NH₃C₆H₆ formülü ile verdikleri bir bileşiğin oluştuğunu gözlemlediler. İlk defa elde edilen Ni(CN)₂NH₃C₆H₆ Hoffmann benzen konak-konuk yapısı olarak bilinir. (Kasap and Kantarcı, 1995, s. 34). Powell ve Rayner tek kristal Xışınları kırınım çalışmaları sonucunda bu bileşiğin kristal yapısını açıklayarak birim hücre formülünü Ni(NH₃)₂Ni(CN)₄2C₆H₆ olarak vermişlerdir (Powell, and Rayner, 1952, s. 326).

Hofmann tipi konak-konuk bileşiklerinin genel formülü ML₂M'(CN)₄.nG şeklindedir. Bu formülde M: oktahedral düzende çevrili iki değerlikli geçiş metallerini (Ni, Mn, Fe, Zn, Co, Cu veya Cd), M': kare düzlem (Ni, Pd, Pt) veya tetrahedral (Hg, Cd, Zn) iki değerlikli geçiş metalini, L: bir tane çift dişli (iki donör atomlu) ya da iki tane tek dişli (tek donör atomlu) ligand molekülünü, G: genelde küçük aromatik konuk molekülü ve n ise konuk molekül sayısını göstermektedir (Minceva-Sukarova, Andreeva and Akyüz, 2007, s. 48). Bu yapılarda kare düzlem M'(CN)₄⁻² (M'=Ni, Pt veya Pd) anyonları M(L)⁺² katyonları ile çevrelenerek |M- M'(CN)₄|_∞ polimerik tabakaları oluşturmaktadır. Şekil 4.2.'de tabaka yapısı ve benzen konuk molekülünü gösteren yapının üç boyutlu görünüşü gösterilmiştir. Konak örgü iki farklı Ni atomu içermektedir. Ni_C atomu CN^- iyonlarının karbon atomlarına düzgün karesel düzende bağlıdır. Ni_N atomu ise CN^- iyonlarının dört azot atomu ile iki amonyak (NH₃) molekülünün azot atomları ile oktahedral düzende çevrilidir (Ruiz and Alvarez, 1995, s. 3261). Konuk moleküller ile ana örgü atomları arasında doğrudan bir kimyasal bağ olmadığından konuk moleküller yapı içerisinde yaptıkları zayıf hidrojen bağı sayesinde hapsolurlar.

Hofmann tipi konak-konuk bileşikleri konuk moleküllerin yönelmesi ve konakkonuk etkileşimlerinin doğası gibi yapısal özellikleri açısından dikkat çekmiştir. Bu bileşikler kafes yapısı nedeniyle organik maddeler için depolama ve ayrıştırma işlemlerinde kullanılabilir. Konak-konuk bileşiklerinin incelenmesinin asıl amacı moleküler etkileşimlerin doğasını belirlemektir (Minceva-Sukarova, Andreeva and Sherman, 1993, s. 153).

Ni(NH₃)₂Ni(CN)₄.2C₆H₆ formülü ile temsil edilen Hofmann tipi benzen konakkonuk bileşiğinde (NH₃) yerine farklı ligandlar kullanılarak benzer yapıda pek çok yeni konak-konuk bileşiği elde edilmiştir. Hofmann tipi benzen konak-konuk bileşiğinin kristal yapısı ve birim hücrenin iki farklı bakış açısından görünüşü Şekil 4.2.'de gösterilmiştir (Ruiz, Alvarez and Hofmann, 1994, s. 8211).

Genel formülü Hofmann tipi konak-konuk bileşiklerine benzeyen çeşitli konakkonuk bileşikleri model yapıları ile şematik olarak Şekil 4.2'de gösterilmiştir. Hofmann tipi konak-konuk bileşilerinin yapısal özelliklerine benzeyen çeşitli konak-konuk bileşikleri serileri konak kısımların uygun yer değişimi ile elde edilmiştir. Konak yapı modelleri aşağıdaki gibi üç gruba ayrılır:

- i) Hofmann tipi, Hofmann -en- tipi ve Hofmann -mea- tipi (2)
- ii) Hofmann $-T_d$ tipi, en- T_d tipi ve tn- T_d tipi
- iii) Hofmann -pn- tipi

Bu konak yapı modelleri Şekil 4.3'de gösterilmiştir.

Şekil 4.2. Hofmann tipi benzen konak-konuk bileşiğinin yapısal şekli. Siyah toplar azot atomlarını, büyük beyaz toplar nikel atomlarını ve küçük beyaz toplar karbon atomlarını göstermektedir.

Kaynak: Ruiz, Alvarez and Hofmann, 1994, s. 8211-8212

Şekil 4.3. Hofmann tipine benzer konak-konuk bileşiklerinin türetilmesi Kaynak: Parlak, 2009, s. 3

Hofmann tipine benzer konak-konuk bileşiklerini türetmek için kullanılan yöntemler üç ana grupta toplanmıştır.

- Bir çift NH₃ ligand yerine etilendiamin (en), trimetilendiamin (tn), propilendiamin (pn) veya monoetanolamin (mea) gibi çift dişli bir ligand kullanmak.
- 2. Kare düzlemsel tetrasiyanometalat (II) yerine Cd(CN)₄ veya Hg(CN)₄ gibi bir tetrahedral tetrasiyanometalat (II) kullanmak.
- NH₃ ligand yerine monoetanolamin gibi sübstitüe edilmiş bir amin kullanmak. Ancak burada mea'nın çift dişli ligand ya da tek dişli ligand gibi davranış gösterdiğine dikkat edilmelidir.

Hofmann-tipine benzer konak-konuk bileşiklerin yapısal şekilleri ise Şekil 4.4'de gösterilmiştir (Iwamoto, 1981, s. 57). Aşağıda görülen yapılarda boş daireler oktahedral düzende M metal atomunu, dolu daireler kare düzlem düzende M' metal atomunu, boş kolonlar bir çift veya çift dişli bir ligand molekülünü, kalın çizgiler CN köprüsünü ve ince çizgi boşluk kenarlarını ifade etmektedir (Parlak, 2009, s. 4).

i) Hofmann tipi, Hofmann -en- tipi ve Hofmann -mea- tipi (2) konak-konuk bileşikleri

ii) Hofmann-T_d-tipi, en-T_d-tipi ve tn-T_d tipi konak-konuk bileşikleri

iii) Hofmann-pn-tipi konak-konuk bileşikleri

Şekil 4.4. Hofmann tipine benzer konak-konuk bileşiklerinin yapısı Kaynak: Aydın, 2005, s. 32

5. KUANTUM KİMYASAL HESAPLAMALAR

Hesaplamalı yöntemler deneysel çalışmaları destekleyebilmek ya da elde edilecek sonuçları önceden tahmin edebilmek amacıyla geliştirilmiştir. Geliştirilen kuantum kimyasal hesaplamalar sonucunda çekirdek ve elektronlardan oluşan bir sistem için molekülün hangi geometrik düzeninin daha kararlı olduğu, bunların göreli enerjileri, dipol moment, polarizibilite, NMR etkileşme sabiti gibi özellikleri, farklı moleküllerin etkileşme süreçleri, moleküler yapı ve özelliklerin zamana bağlılığı, moleküler orbitaller, atomik yükler gibi özellikler bulunabilir (Foresman and Frisch, 1996, s. 3; Dorsett and White, 2000, s. 1; Frisch and Trucks, 2003, s. 1).

Kuantum kimyasal hesaplamalar moleküler mekanik ve elektronik yapı yöntemi olarak ikiye ayrılır. Her ikisi de benzer tip hesaplamalar yapar. Bunlar;

Belli bir moleküler yapının enerjisinin hesaplanması,

Geometrik optimizasyon: En kararlı duruma karşılık gelen başka bir deyişle en düşük enerjili moleküler yapının geometrisinin bulunmasıdır. Geometrik optimizasyon enerjinin atomik koordinatlara göre birinci türevine yani gradyentine dayanır.

Frekans hesabı: Atomların hareketinden kaynaklanır ve enerjinin atomik koordinatlara göre ikinci türevinden hesaplanır.

5.1. Moleküler Mekanik Yöntemler

Moleküler mekanik yöntemlerde çekirdek etkileşimleri klasik mekanik yasaları kullanılarak ele alınır. Atomlar birer küre, bağlar ise yay olarak düşünülür. Moleküldeki etkileşmeler bağlı atomlar arasındaki etkileşmeler ve bağlı olmayan atomlar arasındaki etkileşmeler olmak üzere ikiye ayrılır. Bu yöntemde moleküler sistemdeki elektronlar hesaba katılmaz. Elektronların etkileri kuvvet alanlarında parametre olarak alınır. Moleküler mekanik modelleri kullanan paket programlar MM1, MM2, CHARM, AMBER, MMFF olarak sıralanabilir. Bu yöntemdeki programlar hızlı ve ucuz hesaplamayı sağlar (Foresman and Frisch, 1996, s. 4).

5.2. Elektronik Yapı Yöntemleri

Elektronik yapı yöntemleri moleküldeki atomların elektronik yapısını göz önüne alarak hesap yapar. Bu yöntem Schrödinger denkleminin ilgili moleküler sistem için oluşturulmasına ve çözümüne dayanmaktadır. Elektronik yapı göz önüne alındığı için hesaplama zamanı moleküler mekanik yöntemlere göre çok daha fazla zaman alır. Sonuçları daha iyi olmasına rağmen moleküler mekanik yöntemlerin aksine büyük moleküllerde hesap yapılamayabilir. Elektronik yapı yöntemleri; yarı deneysel (semiempirical) ve ab-initio olarak iki kısma ayrılır. Ancak elektronik yapı yöntemlerinin üçüncü bir grubu olarak yoğunluk fonksiyonel yöntemler (DFT; Density Functional Theory) yaygın olarak kullanılmaktadır. Günümüzde ise DFT ve ab-initio yöntemlerinin birleştirilmesi ile oluşan hibrit yöntemler kullanılmaktadır (Jensen, 2006, s. 81).

5.2.1. Yarı deneysel yöntemler

Yarı deneysel yöntemlerde hesaplamayı basitleştirmek için deneysel çalışmalardan elde edilen bazı parametreler kullanılır. Hesaplamalarda kullanılan deneysel parametreler incelenen moleküler sistem için uygun olduğundan bu yöntemler ile yapılan hesaplamalarda Schrödinger denkleminin yaklaşık çözümü ile iyi sonuçlar elde etmek mümkündür. Bu yöntemde sadece valans elektronları gözönüne alınır. Ayrıca, moleküler sistemdeki tüm orbitaller küresel simetrik kabul edilir. Hesaplama süresi ab initio yöntemlere oranla daha kısadır. Büyük moleküllü sistemlerde de iyi sonuçlar verdiği için yaygın olarak kullanılmaktadır. Yarı deneysel yöntemlerden bazıları ZDO (Zero Differential Overlap), CNDO (Complete Neglect of Differential Overlap), INDO (Intermediate Neglect of Differential Overlap), NDDO (Neglect of Diatomic Differential Overlap) olarak verilebilir.

5.2.2. Ab-initio yöntemler

Ab-initio yöntemlerde ışık hızı, Planck sabiti, elektronların hızı ve kütlesi gibi fiziksel sabitler hariç deneysel değerler kullanılmaz. Hesaplamalar sadece kuantum mekanik yasalarına dayanarak yapıldığı için moleküler yapı ve özellikler hesaplanabilir. Hesaplama süresi moleküler mekanik yöntemlere göre fazladır. Hartee-Fock (HF) teorisini kullanan ab-initio yöntemlerde merkezi alan yaklaşıklığı kullanılır. Bu yaklaşımda her bir elektron kendisi dışında kalan diğer elektron ve çekirdeğin oluşturduğu ortalama küresel potansiyel alanda hareket eder (Cramer, 2004, s. 165).

5.2.3. DFT yöntemleri

Enerjinin açık ifadesi moleküler dalga fonksiyonu ψ 'ye bağımlı ise bu HF yöntemi olarak adlandırılır. HF yönteminde korelasyon yani etkileşim enerjsi dikkate alınmaz.

Enerji ifadesi ρ yani elektron yoğunluğuna bağlı ise bu yoğunluk fonksiyonel yöntemi olarak adlandırılır. DFT yönteminde ise korelasyon enerjileri kısmen dikkate alınır. Günümüzde ise HF ve DFT modellerinin enerji ifadelerinin toplam enerji ifadesinde yer aldığı karma modeller kullanılmaktadır. Karma modeller içerisinde en iyi sonuç verenlerinden biri LYP korelasyon enerjili üç parametreli Becke karma yöntemi B3LYP'dir (Jensen, 2006, s. 133).

5.3. Baz Setleri

Kuantum mekanik atomik fonksiyonlardan oluşur. Baz seti bir sistemdeki teorik hesaplamaları gerçekleştirebilmek için kullanılan orbitallerin matematiksel ifadesidir. Büyük baz setleri elektronların konumlarına daha az kısıtlama getirerek doğru moleküler dalga fonksiyonu için iyi bir yaklaşım sağlarlar. Elektronik yapı hesaplamaları için baz setleri gaussian fonksiyonlarının lineer kombinasyonlarını kullanır. Baz setleri moleküldeki her bir atom için baz fonksiyonu belirler. Bir s-tipi kabuk tek, p-tipi kabuk üç, sp-tipi kabuk ise bir tane s ve üç tane p-tipi olmak üzere dört tane baz fonksiyonu içerir. (Foresman and Frisch,1996, s. 97; Leach, 2001, s. 65). Kullanılan baz setleri aşağıda verilmiştir.

5.3.1. Minimum baz setleri

Minimum baz setleri her bir atom için ihtiyaç duyulan en az sayıdaki baz fonksiyonunu içerir. Örneğin hidrojen atomunda 1s için bir, karbon atomunda ise 1s, 2s, 2p_x, 2p_y, 2p_z için birer tane olmak üzere toplam beş fonksiyon kullanır. Minimum baz setleri sabit büyüklükteki atomik orbital tipini kullanırlar. STO-3G bir minimum baz setidir. Her baz fonksiyonuna üç (3G) gaussian tipi fonksiyon kullanır. STO ise Slater tipi orbital olarak adlandırılır (Foresman and Frisch,1996, s. 97).

5.3.2. Yarılmış valans baz setleri

Bir baz setini genişletmenin ilk yolu her bir atomun baz fonksiyonunun sayısını arttırmaktır. 3-21G ve 6-31G gibi yarılmış valans baz setleri her bir valans orbitali için iki veya daha fazla büyüklükteki baz fonksiyonuna sahiptirler. Dunning-Huzinaga baz seti gibi çift zeta baz setleri tüm moleküler orbitalleri her bir atomik orbital için iki farklı büyüklükteki fonksiyonun lineer kombinasyonlarını kullanarak tanımlar. 6-311G gibi üçe

yarılmış valans baz seti her bir orbital için üç baz fonksiyonu kullanmaktadır (Foresman and Frisch,1996, s. 98).

5.3.3. Polarize Baz Setleri

Yarılmış valans baz setleri orbitallerin büyüklüğünün değişmesine imkan sağlarken şeklinin değişmesine izin vermez. Polarize baz setleri her bir atomun taban seviyesine uygun açısal momentuma sahip olan orbitaller ekleyerek bu sorunu ortadan kaldırır. Örneğin polarize baz setleri karbon atomuna d, geçiş metallerine f ve bazıları da hidrojen atomuna p-tipi fonksiyonlar ekler. Karbon atomuna d-tipi fonksiyon eklenmesinin nedeni orbitallerin hibritleşmesidir. sp³ orbitalleri tam dolu 2s orbitali ile yarı dolu 2p orbitali arasında meydana gelir.

6-31G(d) polarize baz seti, 6-31G baz seti ile ağır atomlara eklenen d tipi fonksiyonları ifade eder. Bu baz seti orta boyutlu sistemlerin hesaplamalarında yaygın olarak kullanılır. Diğer bir polarize baz seti 6-31G^{**} olarakta bilinen 6-31G(d,p) baz setidir. Bu baz setinde ise hidrojen atomuna p-tipi fonksiyonla birlikte ağır atomlara d-tipi fonksiyon eklenmiştir (Foresman and Frisch, 1996, s. 98).

5.3.4. Difüze baz setleri

Difüze fonksiyonlar s ve p-tipi fonksiyonların büyük boyutlu halleridir. Orbitallerin daha büyük bir bölge işgal etmesini sağlarlar. Difüze fonksiyonların kullanıldığı baz setleri anyonlar ve negatif yüklü sistemler, uyarılmış durumdaki sistemler, düşük iyonizasyon potansiyeline sahip sistemler gibi elektronların çekirdekten uzak olduğu sistemler için kullanışlıdır. 6-31+G(d) baz seti ağır atomlara difüze fonksiyonların eklenmesi ile oluşan baz setidir. 6-31++G(d) baz seti ise hidrojen atomlarına da difüze fonksiyonların eklenmesi ile oluşur (Foresman and Frisch, 1996, s. 98).

5.3.5. Yüksek açısal momentum baz setleri

Gaussian programı hem polarize hem de difüze fonksiyonlarını içeren birçok baz setini bünyesinde bulundurur. Difüze fonksiyonları içeren baz setlerinde polarize fonksiyon sayısı arttırılarak çoklu polarize fonksiyonları içeren baz setleri elde edilir. Bu tür baz setleri yüksek açısal momentumlu baz setleri olarak bilinir. Yüksek açısal momentumlu baz setleri genellikle üçlü zeta (triple zeta) baz setlerine (6-311G gibi) difüze ve polarize fonksiyonlar eklenerek elde edilir. Örneğin, 6-311++G(2df,2pd) baz seti yüksek açısal momentumlu bir baz setidir. Bu baz seti her bir ağır atoma 2 tane d ve 1 tane f-fonksiyonunun eklendiğini, hidrojen atomlarına ise 2 tane p ve 1 tane dfonksiyonlarının eklendiğini gösterir. Yüksek açısal momentumlu baz setleri, özellikle elektron korelasyon metotlarını içeren hesaplamalarda, elektronlar arasındaki ilişkileri ve etkileşimleri açıklamakta tercih edilir. Bu tür baz setlerine Hartree-Fock hesaplamalarında genellikle gerek duyulmaz. Bazı büyük baz setleri, atomların periyodik tabloda bulundukları sıraya bağlı olarak ağır atomlar için polarize fonksiyonların farklı setlerini kullanır. Örneğin, 6-311+G(3df,2df,p) baz seti; periyodik tablonun ikinci ve daha yüksek sıralarında bulunan ağır atomların her birine 3 tane d-fonksiyonunun ve 1 tane f-fonksiyonunun eklendiğini, birinci sıradaki ağır atomların her birine 2 tane dfonksiyonlarının eklendiğini belirtir. Periyodik tablonun üçüncü sırasından sonraki atomlar için kullanılan baz setleri oldukça farklıdır ve farklı sembollerle gösterilirler. Örneğin; LANL2DZ temel seti bu temel setlerden birisidir.

5.4. HOMO LUMO Sınır Orbitalleri

HOMO ve LUMO kimyasal tepkimelerde ana molekül orbitalleri olarak görev yaparlar. Bu yüzden Frontier (Sınır) Molekül Orbitaller olarak adlandırılırlar. Sınır moleküler orbitallerin incelenmesi işgal edilmiş en dış moleküler orbitalden (HOMO) işgal edilmemiş ilk boş moleküler orbitale bir elektronun uyarılmasını ifade eder. HOMO enerjisi iyonizasyon potansiyeli ile ilgilidir. LUMO enerjisi ise elektron ilgisi ile ilişkilidir. HOMO-LUMO enerji farkı önemli bir kararlılık indeksidir ve molekülün kimyasal aktivitesini yansıtır. Ayrıca π elektron sistemlerinde en aktif kısmın belirlenmesi için frontier elektron yoğunluğunda da kullanılır. HOMO-LUMO enerji farkı bir molekülün kararlılığını gösterir ve biyoaktivitesi hakkında bilgi verir (Prabavathi, Nilufer and Krishnakumar, 2014, s. 492; Srivastava, vd., 2011, s. 149; Padmaja, vd., 2009, s. 427).

6. TEORİK-DENEYSEL ÇALIŞMA

Bu bölümde çalışmada kullanılan 1cbpp, 1bpp, 1cppp ve 2mpp moleküllerinin titreşim işaretlemeleri ve frekansları için yapılan teorik hesaplamalar ve deneysel incelemeler, konak ve konak-konuk bileşiklerinin elde edilmesi, elde edilen bileşiklerin infrared ve Raman spektrumları, kullanılan cihazlar hakkında bilgiler verilmektedir.

6.1. Teorik Çalışma

Çalışmada 1cbpp, 1bpp, 1cppp ve 2mpp moleküllerinin titreşim işaretlemeleri ve frekansları üç farklı ortam için (gaz fazı, kloroform ve dimetilsülfoksit çözücüleri içerisinde) DFT yöntemlerinden B3LYP yöntemi kullanılarak belirlenmiştir (Becke, 1993, s. 5650). Yapılan hesaplamalarda 6-31++G(d,p) baz seti uygulanmıştır.

Tüm hesaplamalar MSI GE72 6QF-052XTR kişisel dizüstü bilgisayarda gerçekleştirilmiştir. Tüm titreşim hesaplamaları için Gaussian 09.A1 (Frisch, vd., 2009), titreşim işaretlemeleri ve teorik titreşim spektrumları için GaussView 5.0.8 (Dennington, Keith and Millam, 2008), potansiyel enerji dağılımları için VEDA4 (Jamróz, 2004) programları kullanılmıştır. Çözücü hesaplamaları için polarize süreklilik modeli kullanılmıştır (Miertus, Scrocco and Tomasi, 1981, s. 120).

Hesaplamalar için öncelikle moleküllerin aşağıda açıklanan konformasyonlarının gaz fazında, kloroform ve dimetilsülfoksit çözücüleri içerisinde optimizasyonu yapılmıştır. Hesaplamalar sonucunda moleküller için elde edilen kararlı formların titreşim frekansları aynı yöntem ve baz setleri kullanılarak hesaplanmıştır. Hesaplanan frekanslar 6-31++G(d,p) baz seti için 1800 cm⁻¹ üstü 0.955, 1800 cm⁻¹ altı 0.977 ile skala edilmiştir (Alver and Parlak, 2010, s. 90; Alver and Parlak, 2010, s. 682). Sonuçlarda negatif frekansın gözlenmemesi optimizasyon islemlerinin başarı ile yapıldığını göstermektedir.

Molekülün her bir normal titreşim modu için iç koordinatlarının göreli katkılarını gösteren ve böylece her bir modun karakterini sayısal olarak belirlemeyi sağlayan potansiyel enerji dağılım yüzdeliklerinin hesaplamaları VEDA4 (Vibrational Energy Distribution Analysis) (Jamróz, 2004) programı ile yapılmıştır.

6.1.1. 1-Siklobütilpiperazin molekülü

1cbpp molekülü için birçok olası konformasyon önerilebilir. Ancak burada inceleme molekülün C_1 nokta grubundaki e-e (ekvatoryal-ekvatoryal), e-a (ekvatoryal-aksiyal), a-a (aksiyal-aksiyal) ve a-e (aksiyal-ekvatoryal) konformasyonları ile

sınırlandırılmıştır. Burada ilk kısım NH'ı temsil ederken ikinci kısım siklobütil grubunu temsil etmektedir. N13-H14 ve siklobütil grupları aksiyel veya ekvatoryel pozisyonda olabilirler. Bu pozisyonlar grupların C1-C3 ve C2-C6 atomları arasındaki bağların bulunduğu düzleme dik ya da paralel olması ile belirlenir. Grup bu düzleme dikse aksiyel, paralelse ekvatoryel konumda bulunur. Böylece, molekül dört ayrı konformasyonda incelenebilir. Bu konformasyonlar Şekil 6.1'de gösterilmiştir. Daha önceki bir çalışmada Brouwer, pp ve radikal katyonunun (pp⁺) bazı geometrik parametrelerini hesaplamıştır (Brouwer, 1997, s. 3626). pp molekülü için N-H grubu ekvatoryel pozisyonda ele alınarak, 6-31G(d) baz seti ile B3LYP yöntemini kullanmıştır. pp⁺ için N-H grubu hem aksiyel hem ekvatoryel pozisyonda düşünülerek, 6-31G(d) baz seti ile B3LYP yöntemini ve N-H grubu aksiyel konumda tutularak, gene aynı baz seti ile BLYP yöntemi

Şekil 6.1. 1*cbpp molekülünün dört farklı konformasyonu (a) a-a, (b) a-e, (c) e-a,* (*d*) *e-e*

6.1.2. 1-Bütilpiperazin molekülü

1bpp molekülü için birçok konformasyon olasılığı vardır. Bu çalışmada C₁ nokta grubundaki molekülün e-e (ekvatoryal-ekvatoryal), e-a (ekvatoryal-aksiyal), a-a (aksiyalaksiyal) ve a-e (aksiyal-ekvatoryal) konformasyonları incelenmiştir. (N4-H15) ve bütil grupları aksiyel (axial) veya ekvatoryel (equatorial) pozisyonda olabilirler. Grup C2-C3 ve C5-C6 atomları arasındaki bağların bulunduğu düzleme dikse aksiyel, paralelse ekvatoryal konumdadır. Bu konformasyonlar Şekil 6.2'de gösterilmiştir.

Şekil 6.2. 1bpp molekülünün dört farklı konformasyonu (a) a-a, (b) a-e, (c) e-a, (d) e-e

6.1.3. 1-Siklopentilpiperazin molekülü

lcppp molekülü için enerjileri açısından incelendiğinde mümkün olan birçok olası konformasyon önerilebilir. Buradaki inceleme molekülün C_s ve C_1 nokta gruplarındaki e-e, e-a, a-a ve a-e konformasyonları ile sınırlandırılmıştır. Burada ilk kısım NH'ı temsil ederken ikinci kısım siklopentanı temsil etmektedir. Bu grupların, 1cppp molekülünün C_1 , C_2 , C_3 ve C_6 karbon atomları tarafından oluşturulan düzleme dik ya da paralel olduğu durumlar ele alınmıştır. Bu konformasyonlar Şekil 6.3'de gösterilmiştir.

Şekil 6.3. 1cppp molekülünün dört farklı konformasyonu (a) a-a, (b) a-e, (c) e-a, (d) e-e

6.1.4. 2-Metilpiperazin molekülü

2mpp molekülü için mümkün olan birçok konformasyon önerilebilir. Buradaki inceleme molekülün C₁ nokta grubundaki e-e, e-a, a-a ve a-e konformasyonları ile sınırlandırılmıştır. Burada ilk kısım N1-H8'ı temsil ederken ikinci kısım N4-H9'u temsil

etmektedir. Bu grupların, 2mpp molekülünün C_2 , C_3 , C_5 ve C_6 karbon atomlarının oluşturduğu düzleme dik ya da paralel olduğu durumlar ele alınmıştır. Bu konformasyonlar Şekil 6.4'de gösterilmiştir.

Şekil 6.4. 2mpp molekülünün dört farklı konformasyonu (a) a-a, (b) a-e, (c) e-a, (d) e-e

6.2. Hofmann Tipi Konak ve Konak-Konuk Bileşiklerinin Elde Edilmesi

Bu çalışmada genel formülü [M(2mpp)Ni(CN)₄] (M=Cd) ve [M(2mpp)Ni(CN)₄] .nG (M=Cd; G=benzen) olan Hofmann tipi konak ve konak-konuk bileşikleri kimyasal yollardan elde edildi. Numunelerin elde edilmesinde [K₂Ni(CN)₄] bileşiğinden yararlanılmıştır. Numunelerde kullanılan 2-Metilpiperazin (Sigma Aldrich, %98) ligand molekülü, NiCl₂.6H₂O (Aldrich, %98), CdCl₂ (Merck, %98) ile benzen (Merck, %99) konuk molekülü kullanılmadan önce hiçbir işleme tabi tutulmamıştır.

i) K₂Ni(CN)4.nH₂O bileşiğinin elde edilmesi: Kaynar su içerisinde 14,5 g
 NiCl₂ çözüldükten sonra 100 ml kaynar su içerisinde çözülen 7 g KCN bu çözeltiye damla
 damla ilave edilerek manyetik karıştırıcı ile karıştırıldı. Hazırlanan bu karışım büyük bir

behere süzüldü. Geride kalan madde için karışım yapılan kap 20 ml' lik kısımlar halinde su ile beş defa çalkalandı ve süzgeç kağıdı da 10 ml su ile iki defa yıkandı. Elde edilen çözeltinin üzerine 15 ml su içinde çözünen 7 gram KCN damla damla ilave edildi. Bu karışım manyetik karıştırıcıda karıştırıldıktan sonra su banyosunda tutularak suyu uçuruldu. Açık sarı renkte elde edilen K₂Ni(CN)₄.H₂O bileşiği kurumaya bırakıldı.

ii) [Cd(2mpp)Ni(CN)4] konak bileşiğinin elde edilmesi: 1 mmol (0,259 g) $K_2Ni(CN)_4.H_2O$ sudaki çözeltisi hazırlandı. Bu sırada katı haldeki 1 mmol (0,1 g) 2mpp ligandı, etil alkol içerisinde çözüldü. Etil alkol içerisinde çözülen ligand, manyetik karıştırıcıda karışmakta olan $K_2Ni(CN)_4.H_2O$ çözeltisi üzerine damla damla ilave edildi. Karıştırma işlemi devam ederken son olarak 10 ml su içerisinde çözülen 1 mmol CdCl₂ (0,183 g) karışıma ilave edildi. 5 gün bu şekilde karıştırıldıktan sonra elde edilen kompleks süzülerek üç defa distile saf su, üç defa etil alkol ve bir defa eter ile yıkandıktan sonra içerisinde P_2O_5 bulunan desikatörde kurumaya bırakıldı.

iii) Cd(2mpp)Ni(CN)4.nBz konak-konuk bileşiğinin elde edilmesi: 1 mmol (0,259 g) K₂Ni(CN)4 sudaki çözeltisi hazırlandı. 1 mmol (0,1 g) 2mpp ligandı etil alkol içerisinde çözülerek karışmakta olan K₂Ni(CN)4.H₂O çözeltisi üzerine damla damla ilave edildi. Daha sonra 3 mmol sıvı olan benzen konuk molekülü karışıma eklendi. Son olarak, suda çözülen CdCl₂ karışıma ilave edildi. Meydana gelen son karışım yaklaşık bir hafta manyetik karıştırıcıda karıştırıldı. Elde edilen konak-konuk bileşiği süzülerek üç defa distile saf su, üç defa etil alkol ve bir defa eter ile yıkandıktan sonra içerisinde konuk molekülün bulunduğu desikatörlerde muhafaza edildi.

6.3. Kullanılan Teknik ve Düzenekler

Bu çalışmada kullanılan piperazin türevleri, elde edilen Hofmann tipi konak ve konak-konuk bileşiklerinin infrared spektrumları Anadolu Üniversitesi Fen Fakültesi Fizik Bölümü FT-IR ve Raman Spektroskopi laboratuvarında bulunan IFS 66v/S Spektrometresi ile 2 cm⁻¹ çözünürlükle 4000-400 cm⁻¹ ve 400-30 cm⁻¹ bölgelerinde alınmıştır. 2- metilpiperazin ligandının infrared spektrumu ise Hyperion 2000 İnfrared mikroskobu kullanılarak 4000-400 cm⁻¹ bölgesinde kaydedilmiştir. Raman spektrumları Anadolu Üniversitesi Fen Fakültesi Fizik Bölümü FT-IR ve Raman Spektroskopi laboratuvarında bulunan Senterra Dispersif Raman Mikroskop ile 3 cm⁻¹ çözünürlükle 4000-50 cm⁻¹ bölgesinde alınmıştır.

6.3.1. FT-IR spektrometresi

Fourier dönüşümlü infrared spektroskopisi (FT-IR) iki ışın arasında meydana gelen girişim ilkesine dayanmaktadır. İki ışın arasındaki optik yolun değişiminin fonksiyonu olarak sinyal elde edilir. Uzaklık ve frekans ise matematiksel Fourier dönüşümü metodu ile birbirine dönüştürülebilirler (Stuart, George and McIntyre, 1996, s. 19).

FT sisteminde ışık kaynağı, interferometre ve dedektör olmak üzere üç temel bileşen vardır. En yaygın kullanılan interferometre Michelson interferometresidir. Michelson interferometresi ışın demetini yaklaşık eşit güçte iki demete ayırabilen ve bu iki demetin ışık yolları arasında fark oluştuğunda yeniden birleştirilmesini sağlayan bir düzenektir. Bu durum demetler arasında girişim olduğu zaman meydana gelir. İnterferometreden çıkan iki demetin ışık yolları farkının fonksiyonu olarak demetin şiddet değişimleri ölçülür. FT-IR spektrometresinin şematik gösterimi Şekil 6.5'de verilmektedir (Griffiths and De Haseth, 1986, s.1; Günzler and Gremlich, 2002, s. 38).

Maddelerin infrared spektrumlarının alınmasında Fourier dönüşümlü spektrometrelerin kullanılmasının birçok üstünlüğü vardır. Bunlardan ilki, bu spektrometrelerde çok az optik elemanın kullanılmış olmasıdır. Bunun sonucunda dedektöre ulaşan ışınların şiddeti dispersif cihazlara oranla daha büyük olmakta ve daha büyük sinyal gözlenebilmektedir. İkinci üstünlüğü ayırım güçlerinin büyük ve dalga boyu tekrarlanabilirliğinin iyi olmasıdır. Bu birbirleriyle örtüşerek oluşan karmaşık spektrumlardaki çizgilerin analizini mümkün kılar. Diğer bir üstünlüğü ise numunedeki bütün elementlerin sinyallerinin dedektöre aynı zamanda gelmesinden kaynaklanır. Bu özellik spektrumun tümünü bir saniye veya daha az bir süre içinde almayı sağlar.

Hareketli ayna konumu

Şekil 6.5. FT-IR spektrometresinin şematik gösterimi Kaynak: Settle, 1997, s. 255

Michelson interferometresinde ışık kaynağı, sabit ayna ve hareketli ayna farklı kollarda yer alır. Bu kolların merkezinde ise üzerine gelen ışığın yarısını geçiren yarısını ise yansıtan ışın bölücü yer alır. Işın bölücü tarafından geçirilen ışın sabit aynaya, yansıtılan ışın ise hareketli aynaya gider. Sabit ve hareketli aynalardan yansıyan ışın demetleri ışın bölücüde tekrar birleşir ve numuneyle etkileşmek üzere interferometreyi terk ederek dedektöre ulaşır (Smith, 1996, s. 15).

Eğer hareketli ve sabit ayna ışın bölücüden eşit uzaklıkta ise aynalardan yansıyan ışın demetleri tarafından alınan yollar eşittir. İki ışın demeti aynı fazdadır, yapıcı girişim meydana gelir ve detektöre ulaşan sinyal şiddeti en büyük değerindedir. Bu durum sıfır yol farkı olarak adlandırılır (ZPD). Hareketli ayna hareket ettirildiğinde bu eşitlik bozulur ve meydana gelen yol farkına optik yol farkı (δ) denir. Hareketli ayna $\lambda/4$ kadar hareket ettirildiğinde optik yol $2(\lambda/4)$ veya $\lambda/2$ kadar değişir. İki ışın demeti arasında 180° faz farkı vardır. Bu durumda yıkıcı girişim meydana gelir. Hareketli ayna $\lambda/2$ kadar yer değiştirdiğinde optik yol $2(\lambda/2)$ veya λ olur. İki ışın demeti tekrar aynı fazdadır ve yapıcı girişim meydana gelir (Settle, 1997, s. 255). Yapıcı girişim iki ışın demetinin aynı fazda olduğu δ'nın herhangi bir değerinde meydana gelebilir. Bu durum şu eşitlikle ifade edilir:

$$\delta = n\lambda \tag{6.20}$$

Burada n=0,1,2,3,... değerlerini alabilen tam sayıdır. n=0 olması durumunda sıfır yol farkı oluşur. Yıkıcı girişimin oluştuğu optik yol farkları ise şu eşitlikle ifade edilir:

$$\delta = \left(n + \frac{1}{2}\right)\lambda\tag{6.21}$$

Burada n=0,1,2,3,... değerlerini alabilir (Smith, 1996, s. 19).

Ayna sabit hızla hareket ettiğinde detektöre ulaşan ışık şiddeti Şekil 6.5'de görüldüğü gibi sinüzoidal olarak değişir. İnterferogram girişim sinyalinin kaydedilmesi ile oluşur. Bu zaman ölçekli bir spektrumdur ve zamana karşı dedektöre ulaşan sinyaldeki değişiklikleri kaydeder. İnterferogram dedektörün duyarlı olduğu tüm infrared bölgesindeki bilgileri içerir. Fourier dönüşümü olarak bilinen matematiksel bir işlem interferogramı frekansa karşı şiddeti gösteren frekans ölçekli spektruma dönüştürür (Settle, 1997, s. 255).

Görsel 6.1'de bu çalışmada numunelerin infrared spektrumlarını almak için kullanılan IFS 66v/S Spektrometre cihazı görülmektedir.

Görsel 6.1. FT-IR IFS 66v/S Spektrometresi

6.3.2. ATR (Azaltılmış toplam yansıma)

ATR tekniği katı, sıvı ve ince filmlerin spektrumlarının alınmasında kullanılan bir tekniktir. ATR cihazının şematik gösterimi Şekil 6.7'de gösterilmiştir. Kullanılan aparatın temelinde yüksek kırılma indisine sahip olan infrared geçirgen bir malzemeden yapılmış kristal bulunur. Daha çok kullanılan malzemeler ZnSe, germanyum ve talyum iyodittir. İnfrared ışını kristalin yüzeyine aparatta bulunan aynalar sayesinde ulaşır. Kristali geçerek üst yüzeyine ulaşan infrared ışınının kristali terk etmesi beklenir. Ancak kristal uygun kırılma indisine ve ışın da uygun geliş açısına sahipse ışın toplam iç yansımaya maruz kalır. İnfrared enerjisi kristal yüzeyinden yansır (Stuart, George and McIntyre, 1996, s. 45).

İnfrared ışını kristal içerisinde iken sonsuzluk dalgası (evanescent wave) olarak adlandırılan ışının duran dalgası oluşur. Duran dalga kristalden biraz daha büyüktür ve bu nedenle kristal yüzeyinden içeri nüfuz eder. Bu durum Şekil 6.7'de gösterilmiştir. IR ışınının küçük bir kısmının kristalin altı ve üstüne nüfuz ettiği görülmektedir. Kristalle temas eden numune sonsuzluk dalgası ile etkileşir, infrared ışınını soğurur ve infrared spektrumu kaydedilmiş olur. Sonsuzluk dalgası numunenin soğurması ile azaltılır, bu nedenle azaltılmış toplam yansıma denir. Bazen iyi bir numune-sonsuzluk dalgası çifti oluşturabilmek amacıyla numuneleri kristale göre düzleştirmek için basınç uygulanır (Smith, 1996, s. 117).

Şekil 6.6. Azaltılmış toplam yansımanın şematik gösterimi Kaynak: Stuart, George and McIntyre, 1996, s. 46

Görsel 6.2'de bu çalışmada kullanılan Hyperion 2000 İnfrared mikroskobu görülmektedir.

Görsel 6.2. Hyperion 2000 İnfrared Mikroskop

6.3.2. Raman spektrometresi

Raman cihazları başlıca dört kısımdan meydana gelir. Bunlar;

Lazer kaynağı: 1960'lı yıllarda lazerin keşfine kadar Raman spektroskopisi için uyarıcı kaynak civa lambası idi. Lazerler, lazer ışığının şu özelliklerinden dolayı Raman spektroskopisi için ideal uyarıcı kaynaklardır:

- Sürekli dalga lazerlerinin tek çizgisi 1-2 W güç sağlayabilirken puls lazerleri
 10-100 MW dolaylarında güç sağlayabilirler.
- ii) Lazer ışınları monokromatiktir.
- iii) Birçok lazer ışını basit mercek sistemleri ile 0.1 mm'ye kadar azaltılabilen küçük çapa (1-2 mm) sahiptirler. Böylece ışıma merkezi küçük numunelerin üzerine odaklanabilir.
- iv) Lazer ışınları lineer polarize olarak sayılabilir ve depolarizasyon oranlarının ölçümü için idealdir.
- v) Dye lazer veya başka cihazlar kullanılarak geniş dalga boyu aralığına sahip lazer ışını meydana getirilebilir.

Numune aydınlatma ve toplama sistemi: Raman saçılması çok düşük şiddette olduğundan lazer ışını numune üzerine uygun bir şekilde odaklanmalı ve saçılan ışınım da verimli bir

şekilde toplanmalıdır. Lazer ışığının küçük çapa sahip olmasından dolayı lazerin numune üzerine odaklanması sorun teşkil etmez. Numunenin uyarılması ve veri toplanması birçok optik konfigürasyonlar kullanılarak yapılabilir. Toplayıcı ve odaklayıcı mercekler veri toplama için kullanılabilecek akromatik mercek sistemleridir. Toplayıcı mercek yerine ayna da kullanılarak başka bir konfigürasyon elde edilebilir.

Dalga boyu seçicileri: Dalga boyu seçicileri birçok kategoriye ayrılabilir. En basiti, yapıcı girişim oluşturabilmek için iki düz optik yüzeye sahip olan ve filtrenin kalınlığının iki katına uygun olan dalga boyu aralığını geçiren bir girişim filtresidir. Girişim filtreleri tek dalga boyu için üretilmiştir. İstenen dalga boylarının seçilebildiği girişim filtreleri de mevcuttur, ancak bunların spektral çözünürlükleri Raman spektrumu için çok düşüktür.

Raman spektrumlarını ölçebilmek için prizmalar, monokromatörler ve spektrograflar yaygın şekilde kullanılmaktadır. Monokromatörlerin yaygın şekilde kullanılmasına rağmen günümüzde FT-Raman sistemleri ilerleme göstermiştir. FT-Raman sistemleri yakın-infrared bölgesinde spektrum alarak floresans etkisinin azaltılması, yüksek çözünürlük, spektrumu elde etme süresi ve sinyal/gürültü oranı açısından klasik Raman sistemlerine göre avantajlıdır.

Dedektör: Raman sinyalleri çok düşük şiddette olduğundan sinyali algılama ve yükseltme problemleri fotografik dedektör sistemleri kullanılarak çözülmeye çalışılmıştır. Günümüzde güçlü lazer kaynakları ve hassas algılama teknikleri ile bu durum değişmiştir. Kullanılan dedektör sistemlerinden bazıları foton sayımı, fotoçoğaltıcı ve yük-eşleşmiş (CCD) düzenektir (Ferraro, Nakamoto and Brown, 2003, s.112; Köksal ve Köseoğlu, R, 2010, s. 216).

Bu çalışmada numunelerin Raman spektrumlarını almak için kullanılan Dispersif Raman Mikroskobun şematik gösterimi Şekil 6.9'da verilmiştir. Sistem lazer, mikroskop, CCD dedektör ile spektrometreden oluşmaktadır. Numunenin tarama hareketi konum sensörleri ile donanımlı olduğunda hızlı ve kesin olan piezo-tarayıcı tarafından gerçekleştirilir.

Şekil 6.7. *Raman mikroskop* **Kaynak:** *Dieing, Hollricher and Toporski, 2010, s. 46*

Raman saçılma şiddeti v^4 ile orantılıdır, burada v uyarıcı lazer ışınımının frekansıdır. Raman mikroskobu için uygun lazer şu özelliklere sahip olmalı:

- Gaussian ışın şekline sahip olmalı, böylece kırınım sınırlı nokta üzerine odaklanabilir.
- Polarizasyon bağımlı numune özelliklerinin incelenebilmesi için lineer olarak odaklanabilir olmalı.
- Raman çizgilerinin genişlemesini önlemek için 1 cm⁻¹'in altında dar çizgi genişliğine sahip olmalı.
- Basınç ölçümlerinin doğru bir şekilde elde edilebilmesi için frekans değeri kararlı olmalı (değişimi 0.01 cm⁻¹'den küçük olacak şekilde).
- Tekrarlanabilir ve kesin ölçümler yapılabilmesi için şiddeti kararlı olmalı (< %1-2 güç değişimleri olacak şekilde).

Raman sinyalinin şiddeti uyarıcı lazer ışınımının gücü ile de orantılıdır. Uyarıcı lazer ışınımının gücü soğurma sonucu numunenin termal bozunmasına sebep olacak değerden daha düşük seçilmelidir. Uygun lazer gücü lazerin dalga boyuna, numune özellikleri (soğurma, termal iletkenlik) ve diğer görüntüleme koşullarına (lazer odak çapı) bağlıdır.

Spektrometredeki grating herbir dalga boyunu farklı açılarla saptırarak sinyali CCD dedektör üzerine dağıtır. CCD kameralar çeşitli boyutlarda, soğutmalı veya soğutmasız, ön veya arka aydınlatmalı gibi çeşitli özelliklere sahip olabilir. CCD (yük eşleşmiş düzenek) dedektör her biri kapasitöre bağlı olan ışığa duyarlı bir dizi silisyum fotodiyottan oluşur. Fotodiyotta algılanan herbir foton iç elektrik alan tarafından ayrılan elektron çifti meydana getirir ve elektronlar kapasitörde depolanır (Dieing, Hollricher and Toporski, 2010, s. 47).

Görsel 6.3'de bu çalışmada numunelerin Raman spektrumlarını almak için kullanılan Senterra Dispersif Raman Mikroskop cihazı görülmektedir. Senterra Dispersif Raman Mikroskobu, dispersif Raman teknolojisinin hassaslığını ve Fourier dönüşümlü Raman spektroskopisinin ise doğru dalga boyu özelliğini birleştirir.

Görsel 6.3. Senterra Dispersif Raman Mikroskop

6.4. Katı ve Sıvıların İnfrared ve Raman Spektrumlarının Alınması

İnfrared spektrumu almada kullanılan pencerelerin infrared ışığını geçirmesi gerekir. En çok kullanılan geçirgen pencereler ise alkali halojenürlerdir. Sıvıların infrared spektrumu alınırken bir pencere üzerine küçük bir damla sıvı alınır ve iki pencere arasına sıkıştırılarak çok ince bir film haline getirilir. Pencereler numune tutucu yardımıyla cihaza yerleştirilerek spektrumu alınır.

Katı numunelerin infrared spektrumunu almak için kullanılan üç farklı yöntem vardır. Bu yöntemler alkali halojenür disk haline getirme, karışım haline getirme ve film haline getirmedir.

Alkali halojenür disk haline getirme yönteminde bir miligram veya daha az çok ince öğütülmüş katı numune yaklaşık 100 mg kurutulmuş alkali halojenür ile karıştırılır. Karışım agat havanda havan eli yardımıyla karıştırılarak öğütülür. Elde edilen karışıma 10000-15000 psi'lik basınç uygulanarak saydam bir disk haline getirilir. En çok kullanılan alkali halojenür potasyum bromürdür (KBr), potasyum bromür orta infrared bölgede geçirgendir. Bu yöntemin kullanılmasında numunenin alkali halojenüre göre oranının yanlış olması, hazırlanan diskin çok kalın veya çok ince olması, numunenin parçacık boyutlarının büyük olması ve alkali halojenürün kurutulmuş olmaması gibi problemlerle karşılaşılabilir. Bu durumda disk tekrar hazırlanarak spektrumu alınmak üzere cihaza yerleştirilir. Bu çalışmada katı numunelerin bazılarının infrared spektrumları KBr kullanılarak disk haline getirme yöntemi ile alınmıştır.

Karışım haline getirme yönteminde ince öğütülerek toz haline getirilmiş yaklaşık 50 mg numune bir veya iki damla ağır hidrokarbon yağı ile karıştırılır. Pürüzsüz bir karışım elde edildikten sonra hazırlanan karışım iki pencere arasında yayıldıktan sonra spektrumu alınır. En çok kullanılan hidrokarbon yağı nujoldür. Eğer hidrokarbon bandları girişim yapıyorsa, yerine florlanmış halojenli bir hidrokarbon kullanılabilir, ancak kullanılan hidrokarbon yağ oranında hata olması, numunenin parçacık boyutunun büyük olması, hazırlanan karışımın pencereler arasında homojen bir şekilde yayılmaması, çok az olması veya çok fazla olması gibi durumlar ortaya çıktığında karışım tekrar hazırlanarak spektrum alınır. Bu çalışmada katı numunelerin bazılarının infrared spektrumları nujol kullanılarak karışım haline getirme yöntemi ile alınmıştır.

Film haline getirme yöntemi genellikle polimerler için kullanılır. Numune oranı istenilen film kalınlığına bağlı olarak uygun bir çözücüde çözelti haline getirilir. Homojen bir film oluşabilmesi için hem numunenin çözülebileceği hem de düşük kaynama noktasına sahip olan çözücü seçilmelidir. Çözelti düz cam veya metal bir yüzey üzerine damlatılır ve kalınlığı aynı olacak şekilde yüzey üzerinde dağıtılır. Hazırlanan çözelti infrared spektrumu almak için kullanılacak pencereler üzerine de damlatılabilir. Daha sonra çözücü etüv içerisinde buharlaştırılır ve kuruduktan sonra film yüzey üzerinden çıkartılarak spektrumu alınmak üzere cihaza yerleştirilir (Smith, 1996, s. 88; Stuart, George and McIntyre, 1996, s. 32).

Raman spektroskopisi spektrumu almak için çok az numune gerektiren bir tekniktir. Numune katı olduğu zaman iyice ezilerek toz haline getirilir ve bir kabın

içerisine yerleştirilir. Raman spekrometrelerinde genellikle fotomültipliye tüpler kullanılır. Bu çalışmadaki katı ve sıvı numuneler herhangi bir ön işlem yapılmadan cam lamelin üzerine konularak Senterra Dispersif Raman Mikroskobu ile spektrumları alınmıştır (Larkin, 2011, s. 29).

7. TEORİK-DENEYSEL SONUÇLAR VE TARTIŞMA

Bu bölümde öncelikle bu çalışmada ele alınan 1cbpp, 1bpp, 1cppp, ve 2mpp moleküllerinin moleküler konformasyon ve geometrik parametreleri üzerine yapılan hesaplama sonuçları incelenecektir. Daha sonra çözücü etkisi ile birlikte deneysel, teorik titreşim frekansları ve şiddetleri hakkında bilgi verilecektir. Ayrıca elde edilen konak, konak-konuk bileşiği ve 2mpp ligand molekülünün infrared ve Raman spektrumları incelenerek sonuçlara dayanarak oluşan yapılar hakkında yorumlar yapılacaktır.

7.1. 1-Siklobütilpiperazin Molekülü

7.1.1. Geometrik yapının incelenmesi

Moleküllerin geometrisindeki küçük değişiklikler titreşim frekanslarında önemli değişiklikler meydana getirdiği için geometrik yapının belirlenmesi çok önemlidir. Molekülün her bir konformasyonunun mol kesri aşağıdaki formüller kullanılarak hesaplanabilir:

$$a \stackrel{K_c}{\longleftrightarrow} b \tag{7.22}$$

- - - -

Yukarıda verilen denkleme göre,

$$K_c = \frac{N_a}{N_b} \tag{7.23}$$

ve

$$N_a + N_b = 1 \tag{7.24}$$

yazılabilir. Burada K_c, a ve b formları arasındaki konformasyon denge sabiti, N_a ve N_b ise a ve b konformasyonlarının mol kesri olarak adlandırılır (Hür and Güven, 2002, s. 4). Burada;

$$N_a = \frac{1}{1 + K_c}$$
 , $N_b = \frac{K_c}{1 + K_c}$ (7.25)

$$K_c = e^{-\delta \Delta G/RT}$$
, $\delta \Delta G = \Delta G_b - \Delta G_a$ (7.26)

$$R = 1,987 \times 10^{-3} \ kcal/mol \ K \ , \ T = 298 \ K \tag{7.27}$$

1cbpp molekülünün dört konformasyonunun gaz fazında, kloroform ve dimetilsülfoksit çözücüleri içerisinde B3LYP/6-31++G(d,p) baz seti kullanılarak hesaplanan optimize edilmiş geometrilerinin serbest enerjileri, bağıl kararlılıkları ve denge sabitleri Çizelge 7.1'de verilmiştir. Gaz fazı için hesaplanan serbest enerjilere göre e-e formu e-a formuna göre 4,01 kcal/mol, a-e formuna göre 0,33 kcal/mol ve a-a formuna göre 4,67 kcal/mol enerji farkı ile daha kararlıdır. e-a ve a-a formlarının enerji farkları 2 kcal/mol'den daha büyük olduğu için ihmal edilerek denge sabitleri hesaplanmamıştır.

Yapılan hesaplama sonuçlarından 1cbpp molekülünün gaz fazında % 64 oranında e-e formunu, % 36 oranında ise a-e formunu tercih ettiği elde edilmiştir. Polar olmayan bir çözücü olarak kloroform içerisinde hesaplanan serbest enerjiler e-e formunun diğer formlara göre kararlı olduğunu ve 1cbpp molekülünün e-e formunu % 58 oranında, a-e formunu ise % 42 oranında tercih ettiğini göstermektedir. Ayrıca polar bir çözücü olarak dimetilsülfoksit içerisinde hesaplanan serbest enerjiler e-e formunun diğer formlardan kararlı olduğunu ve 1cbpp molekülünün e-e formunu diğer formlardan kararlı olduğunu ve 1cbpp molekülünün e-e formunu % 55 oranında, a-e formunu ise % 45 oranında tercih ettiğini göstermektedir.

Ortam / Özellik	B3LYP/6-31++G(d,p)						
Nokta Grubu	C1						
Konformasyon	e-a e-e a-e a-a						
Gaz Fazı ΔG (Hartree) Bağıl kararlılık (δΔG;kcal/mol) Mol kesri (%)	-423,770910 4,01 0	-423,777297 0,00 64	-423,776769 0,33 36	-423,769862 4,67 0			
Kloroform (ε = 4,9) ΔG (Hartree) Göreli kararlılık (δΔG;kcal/mol) Mol kesri (%)	-423,777604 4,03 0	-423,784019 0,00 58	-423,783718 0,19 42	-423,777096 4,34 0			
Dimetilsülfoksit (ε = 46,7) ΔG (Hartree) Göreli kararlılık (δΔG;kcal/mol) Mol kesri (%)	-423,780987 3,99 0	-423,787340 0,00 55	-423,787145 0,12 45	-423,780695 4,17 0			

Çizelge 7.1. 1cbpp molekülünün konformasyon enerjileri

B3LYP metodu ile 6-31++G(d,p) baz setinde hesaplanarak elde edilen bazı optimize geometrik parametreler (bağ uzunlukları, bağ ve dihedral açıları) Çizelge 7.2'de listelenmiştir. 1cbpp molekülü için burada kullanılan atom numaralandırmaları Şekil

7.1'de verilmiştir. 1cbpp molekülünün geometrik yapısı ile ilgili deneysel veriler literatürde yer almamaktadır. Bu nedenle teorik sonuçlar, piperazin (Yokazeki and Kuchitsu, 1971, s. 2354) ve siklobütil (Pauptit and Trotter, 1983, s. 66) bileşiklerinin deneysel verileri ile karşılaştırılmıştır. Gaz fazından çözücü ortamına geçildiğinde tüm parametrelerin değiştiği görülmüştür. 1cbpp molekülünün gaz fazında e-e formu için D(2;6;13;14) ve D(16;15;2;6) dihedral açılarının büyüklükleri 177°, a-e formu için sırasıyla 70° ve 177° olarak bulunmuştur (Bağlayan vd., 2012, s. 112).

Şekil 7.1. Atom numaraları ile 1 cbpp molekülünün moleküler yapısı

lcbpp molekülünün e-e ve a-e formlarının B3LYP metodu ile 6-31++G(d,p) baz setinde hesaplanan ısı kapasitesi, sıfır nokta enerjisi, entropi gibi bazı termodinamik parametreleri Çizelge 7.3'de verilmiştir. Sıfır nokta titreşim enerjilerinde çok fazla değişim olmamıştır. 1cbpp molekülünün toplam enerjisi ve entropideki değişimi oda sıcaklığında ele alınmıştır. Çözücü ortamındaki dipol momentin gaz fazındaki dipol momente göre daha büyük olması beklenir. Bu durum Çizelge 7.3'de gözlenmektedir ve ortamın dielektrik sabiti arttıkça dipol moment artmaktadır. Gaz fazı ile polar olmayan çözücü arasındaki bu artış % 36 ile % 43 iken gaz fazı ile polar çözücü arasında % 61 ile % 84 oranında değişmektedir.

Daramatra	Da	noveol		Teorik	
Farametre	De	lleysei		e-e	
Bağ uzunlukları	Siklobütil ^a	Piperazin ^b	Gaz	Klrfrm	Dmso
N13-H14			1,016	1,022	1,025
N15-C1		1,467	1,466	1,468	1,470
N15-C2		1,467	1,466	1,468	1,470
N15-C16			1,454	1,457	1,459
C1-C3		1,540	1,529	1,528	1,528
C1-H4		1,110	1,108	1,108	1,108
C1-H5		1,110	1,095	1,095	1,095
C3-N13		1,467	1,464	1,466	1,467
С3-Н9		1,110	1,095	1,096	1,096
C3-H10		1,110	1,106	1,106	1,106
N13-C6		1,467	1,464	1,466	1,467
C2-C6		1,540	1,529	1,528	1,528
C6-H11		1,110	1,095	1,096	1,096
C6-H12		1.110	1.106	1.106	1.106
C2-H8		1.110	1.095	1.095	1.095
C2-H7		1.110	1.108	1.108	1.108
C16-C17	1.577	, -	1.552	1.552	1.552
C17-C20	1.571		1.553	1.554	1.554
C16-C18	1.534		1.552	1.551	1.552
C18-C20	1.521		1,553	1,554	1,554
Bağ acıları	1,0 = 1		1,000	1,00	1,001
C2-N15-C1		109.0	110.7	110.5	110.3
N15-C2-C6		110.4	110.4	110.6	110.7
Н7-С2-Н8		109.1	107.9	107.8	107.7
C2-C6-N13		110.4	109.2	109.4	109.6
H11-C6-H12		109.1	108.2	108.0	107.9
C6-N13-C3		109.0	111.3	110.8	110.6
N13-C3-C1		110.4	109.2	109.4	109.5
H9-C3-H10		109.1	108.2	108.0	107.9
N15-C1-C3		110.4	110.4	110.6	110.7
H4-C1-H5		109.1	107.9	107.8	107.7
C16-C17-C20	88.3	107,1	88.3	88.2	88.2
C17-C16-C18	89.6		88 57	88.6	88.6
C17-C20-C18	90.3		88.48	88.5	88.5
C16-C18-C20	91.7		88 30	88.2	88.2
Dihedral acılar	> 1,1		00,00	00,2	00,2
C16-N15-C2-C6			1767	178.0	178.6
C16-N15-C1-C3			-176.7	-178.0	-178.6
C2-C6-N13-C3			-170,7	-170,0	-178,0
C1-C3-N13-H14			-177.2	-178 7	-179.3
C2-C6-N13-H14			177.2	178 7	1794
C18 C16 N15 C1			169.6	170,7	170,4
$C18_C16_N15_C2$			-65 /	-65.8	-65.0
C17-C16-N15-C1			-0 <i>5</i> , 4 65 /	-05,0	-05,9
C17-C16 N15 C2			-160 6	_170.3	_170.5
C20_C17_C16 N15			120.0	-170,5	1/0,5
C_{20} - C_{18} - C_{16} - N_{15}			_139,9	-140.3	_140,4
C20-C10-C10-INIJ			-132,2	-1-0,5	-140,4

Çizelge 7.2. 1cbpp molekülünün optimize edilmiş bağ uzunlukları, bağ ve dihedral açıları

Kaynak: ^aPauptit and Trotter, 1983, s. 66. ^bYokazeki and Kuchitsu, 1971, s. 2354.

Parametre	Der	neysel		Teorik	
Rač uzunluklara	Sildobütila	Diporazin ^b	Goz	a-e Klrfrm	Dmso
	Sikiobutii	riperazin	1 012	1.024	1.029
N15-H14 N15-C1		1 467	1,018	1,024	1,028
N15-C1 N15-C2		1,407	1,405	1,407	1,409
N15-C2 N15-C16		1,407	1,405	1,407	1,469
N13-C10		1 540	1,434	1,437	1,439
		1,540	1,555	1,554	1,554
C1-H4 C1-H5		1,110	1,112	1,111	1,110
C1-HJ C3 N13		1,110	1,090	1,090	1,090
C3 H0		1,407	1,405	1,409	1,470
C3 H10		1,110	1,090	1,090	1,090
N13 C6		1,110	1,097	1,098	1,099
$C^2 C^6$		1,407	1,405	1,409	1,470
C6 H11		1,540	1,006	1,006	1,006
С6-Н12		1,110	1,090	1,090	1,090
C2 H8		1,110	1,098	1,096	1,099
C2 H7		1,110	1,090	1,090	1,090
$C_{2}-117$	1 577	1,110	1,112	1,111	1,110
C10-C17 C17 $C20$	1,577		1,552	1,552	1,552
C16 C18	1,571		1,555	1,557	1,554
C18-C20	1,534		1,552	1,552	1,552
Bağ acıları	1,521		1,555	1,554	1,554
C2-N15-C1		109.0	110.7	110.4	110.1
N15-C2-C6		110.4	110,7	110,1	110,1
H7-C2-H8		109.1	107.3	107.4	107.5
C2-C6-N13		110.4	113.5	113.5	113.5
H11-C6-H12		109.1	107.6	113,5	107.6
C6-N13-C3		109,0	111.0	110,5	110.7
N13-C3-C1		110.4	113.5	113.5	113,5
H9-C3-H10		109.1	107.6	107.6	107.6
N15-C1-C3		110.4	110.5	110.7	110.7
H4-C1-H5		109.1	107.3	107.4	107.5
C16-C17-C20	88.3	107,1	88.3	88.2	88.2
C17-C16-C18	89.6		88.6	88.6	88.7
C17-C20-C18	90.3		88.5	88.5	88.5
C16-C18-C20	91.7		88.3	88.2	88.2
Dihedral açılar			00,2		
C16-N15-C2-C6			176.6	178.0	178.1
C16-N15-C1-C3			-176.6	-178.0	-178.1
C2-C6-N13-C3			-50.5	-50.6	-50.5
C1-C3-N13-H14			-70.9	-69.7	-69.3
C2-C6-N13-H14			70.9	69.7	69.3
C18-C16-N15-C1			169.5	170.1	170.5
C18-C16-N15-C2			-65.2	-65.8	-66
C17-C16-N15-C1			65.2	65.6	65.8
C17-C16-N15-C2			-169.5	-170.3	-170.7
C20-C17-C16-N15			139,9	140,3	140,4
C20-C18-C16-N15			-139,9	-140,3	-140,4

Çizelge 7.2. (Devam) 1cbpp molekülünün optimize edilmiş bağ uzunlukları, bağ ve dihedral açıları

Kaynak: ^aPauptit and Trotter, 1983, s. 66. ^bYokazeki and Kuchitsu, 1971, s. 2354.

Parametreler		e-e	
	Gaz	Klrfm	Dmso
Termal toplam enerji, (kcal/mol)	155,591	155,040	154,783
Titreșim enerjisi, (kcal/mol)	153,814	153,263	153,005
Sıfir nokta titreşim enerjisi, (kcal/mol)	149,742	149,188	148,932
Entropi, (cal/mol K)	93,943	93,963	93,919
Isı kapasitesi, (cal/mol K)	37,281	37,373	37,412
Dipol moment (Debye)	0,185	0,265	0,341

Çizelge 7.3. 1cbpp molekülünün bazı termodinamik parametreleri

Cizelge 7.3. (Devam) 1 cbpp molekülünün bazı termodinamik parametreleri

Parametreler		a-e	
	Gaz	Klrfrm	Dmso
Termal toplam enerji, (kcal/mol)	155,544	155,038	154,814
Titreșim enerjisi, (kcal/mol)	153,766	153,261	153,037
Sıfır nokta titreşim enerjisi, (kcal/mol)	149,678	149,160	148,938
Entropi, (cal/mol K)	94,057	94,198	94,177
Isı kapasitesi, (cal/mol K)	37,396	37,471	37,493
Dipol moment (Debye)	1,870	2,537	3,005

7.1.2. Titreşim frekanslarının incelenmesi

1cbpp molekülü için 4000-50 cm⁻¹ bölgesinde titreşim frekansları ve işaretlemeleri ile ilgili bir çalışma literatürde bulunmamaktadır. Ölçülen ve hesaplanan titreşim frekansları ile titreşim işaretlemeleri ve şiddetler Ek-1'de Çizelge E1.1-E1.3'de verilmiştir. Teorik ve deneysel titreşim spektrumları ise Ek-2'de Şekil E2.1-E2.6'da verilmiştir. Bu çalışmada hesaplanan tüm frekans değerleri harmonik yaklaşım ile elde edilmiştir. Bu yaklaşım titreşim hareketini her biri basit tek boyutlu harmonik potansiyel tarafından yönetilen birbirinden bağımsız titreşim modları cinsinden tanımlamamızı sağlar.

Hesaplanan Raman aktiviteleri Raman saçılmasının şiddet teorisinden elde edilen

$$I_i = f(\nu_0 - \nu_i)^4 S_i / \nu_i \left[1 - \exp(-hc \nu_i / kT) \right]$$
(7.28)

bağıntısı kullanılarak bağıl Raman şiddetlerine dönüştürülmüştür. Burada v₀; uyarıcı lazer ışığının cm⁻¹ cinsinden dalga sayısı, v_i; i. normal modun titreşim dalga sayısı, S_i; v_i normal modunun Raman saçılma aktivitesi ve f tüm pik şiddetleri için seçilen uygun normalizasyon faktörüdür (10⁻¹⁴). h, k, c ve T ise sırasıyla Planck sabiti, Boltzmann sabiti, ışık hızı ve Kelvin cinsinden sıcaklıktır (Alver and Parlak, 2010, s. 4; Keresztury, vd., 1993, s. 2010).

1cbpp molekülü 26 atomlu bir molekül olduğundan 72 normal titreşim moduna sahiptir. Ayrıca sadece E özdeşlik simetri elemanı veya işlemine sahip olup C_1 nokta

grubuna aittir. 1cbpp molekülünün düşük simetriye sahip olmasından dolayı elde edilen spektrumdan titreşim işaretlemelerini belirleyebilmek zordur. Bu nedenle e-e formundaki molekülün titreşim modlarının işaretlemeleri VEDA4 programı kullanılarak yapılmış ve Ek-1 Çizelge E1.1-E1.3'de verilmiştir. Hesaplamalara göre 7 normal titreşim modu 400 cm⁻¹'in altında iken 65 titreşim modu 4000 cm⁻¹ ile 400 cm⁻¹ arasındadır.

Yüksek frekans bölgesi IR spektrumunda 3449 cm⁻¹'de güçlü bir band, Raman spektrumunda ise 3452 cm⁻¹'de orta şiddetli bir band olarak gözlenen NH gerilme titreşimlerini içermektedir. 1cbpp molekülünün NH gerilme bandı piperazin grubundan kaynaklanmaktadır. Serbest piperazin molekülü IR spektrumunda 3225 cm⁻¹'de (3276 cm⁻¹) NH bandına sahiptir (Hendra and Powell, 1962, s. 304). Bu modun üç farklı ortamda hesaplanan skalalanmış teorik değerleri 3379 cm⁻¹, 3374 cm⁻¹ ve 3372 cm⁻¹'dir. 1cbpp molekülünün CH₂ simetrik ve asimetrik gerilme titreşimleri 2990 cm⁻¹ ve 2763 cm⁻¹ arasında gözlenmiş iken bu modlara ait teorik değerler 2984 cm⁻¹ ve 2769 cm⁻¹ arasında bulunmuştur. Spektrumun yüksek dalga sayılı bölgesinde deneysel ve teorik değerler arasındaki fark anharmoniklik ile açıklanabilir. Ayrıca bu farklar molekül içi ve moleküller arası hidrojen bağları ile Raman için kullanılan lazerden kaynaklanmış olabilir (Bağlayan vd., 2012, s. 112).

Makaslama, kıvırma, dalgalanma ve sallanmadan oluşan temel CH₂ titreşimleri 1600-1800 cm⁻¹ bölgesinde meydana gelir (Vedal vd., 1976, s. 887). Bu titreşimler CH₂ dalgalanma, CH₂ kıvırma, CH₂ sallanma, CH₂ makaslama, CNH açı bükülme, CC veya CN gerilme titreşimlerinin birleşiminden oluşmaktadır. CCC veya CCH açı bükülme ve bazı burulma modları 1000-500 cm⁻¹ bölgesinde baskındır. Ayrıca CCC veya CCN açı bükülme ve CCCN, CCNH veya CCCC burulma modları düşük frekans bölgesinde gözlenir. Benzer durumlar hesaplama sonuçlarında da elde edilmiştir. Spektrumun düşük frekans bölgesinde gözlenen titreşim modları bazı iç koordinatların katkılarını içerir ve bunların işaretlemeleri iki iç koordinatın bire indirgeme yaklaşımına sahiptir.

E1.1-E1.3 çizelgeleri ile E2.1-E2.6 şekilleri incelendiğinde deneysel ve teorik titreşim frekanslarının birbiri ile uyumlu olduğu görülmektedir. Deneysel titreşim frekanslarını teorik veriler ile karşılaştırabilmek için çizilen korelasyon grafikleri Şekil 7.2 ve 7.3'de verilmiştir. Buna göre korelasyon değerleri, gaz fazı için 0,99936 (IR) ve 0,99942 (R), kloroform için 0,99932 (IR) ve 0,99939 (R), dimetilsülfoksit için 0,99928 (IR) ve 0,99935 (R) olarak bulunmuştur. Sonuç olarak B3LYP metodu ve 6-31++G(d,p) baz setinin titreşim frekansları için güvenilir sonuçlar verdiği söylenebilir.

Şekil 7.2. 1 cbpp molekülünün infrared titreşim frekansları için korelasyon grafikleri

Şekil 7.3. 1cbpp molekülünün Raman titreşim frekansları için korelasyon grafikleri

Çözücü etkisi

Ek-1'de 1cbpp molekülü için verilen Çizelge E1.1-E1.3'den görüldüğü gibi titreşim işaretlemeleri incelendiğinde üç farklı ortamdaki titreşim işaretlemelerinin birbiriyle uyumlu olduğu görülmektedir. Ortamın dielektrik sabitinin titreşim frekanslarına büyük etkisi olduğu bilindiğinden, teorik titreşim frekans değerlerinde büyük değişiklikler meydana gelmiştir. Burada bazı önemli titreşim hareketleri ele alınacaktır. NH ve CN bağ uzunluklarının gaz fazından çözücü ortamına geçildiğinde arttığı görülmüştür. Buna göre NH ve CN gerilme titreşim frekansları azalmalıdır. Ek-1'deki Çizelge E1.1-E1.3 incelendiğinde titreşim frekanslarının gaz fazından çözücü ortamına geçildiğinde aşeçildiğinde azaldığı görülmektedir. Bu frekans kaymaları, yüksek dielektrik sabite sahip olan çözücü içerisindeki azot atomları üzerindeki pozitif karakterin artması şeklinde açıklanabilir (Bağlayan vd., 2012, s. 112).

Hesaplama sonuçlarına göre hesaplanan titreşim şiddetleri deneysel sonuçlarla uyum içindedir. IR şiddetlerinin çözücü ortamında büyük oranda değişmesi beklenir ve bu çalışmada çözücü içerisindeki IR şiddetleri artmıştır. Ek-1 Çizelge E1.1-E1.3 ve Ek-2 Şekil E2.1-E2.6'dan görüldüğü gibi hesaplanan IR şiddetlerinin çözücü ortamında gaz fazına göre bir çok mod için büyük oranda değiştiği söylenebilir. IR şiddetleri gibi molekül çözücü ortamında iken Raman şiddetlerinde de büyük değişiklikler olduğu görülmüştür. IR ve Raman şiddetleri için, dimetilsülfoksit çözücüsü içerisindeki artış kloroform çözücüsü içerisindeki artıştan daha büyüktür.

HOMO ve LUMO kimyasal kararlılıkta rol alan orbitallerdir. HOMO bir elektron verebilme, LUMO ise bir elektron alabilme kabiliyetini tanımlar. Elektronik geçiş taban seviyesinden ilk uyarılmış seviyeye geçiş olarak bilinir. Diğer bir deyişle geçişler HOMO'dan LUMO'ya olarak ifade edilir. 1cbpp molekülünde HOMO, bütün karbon atomları ve N15 atomu üzerinde yer alırken LUMO N13 atomuna hakimdir. Üç farklı ortam için sınır moleküler orbitallerin atomik yerleşimleri, sınır moleküler orbital enerjileri ve enerji farkı Şekil 7.4-7.6'da verilmiştir.

Şekil 7.4. 1cbpp molekülünün gaz fazında HOMO ve LUMO geçiş enerji şeması

Şekil 7.5. 1cbpp molekülünün kloroform içerisindeki HOMO ve LUMO geçiş enerji şeması

Şekil 7.6. 1cbpp molekülünün dimetilsülfoksit içerisindeki HOMO ve LUMO geçiş enerji şeması

7.2. 1-Bütilpiperazin Molekülü

7.2.1. Geometrik yapının incelenmesi

lbpp molekülünün dört konformasyonunun gaz fazında, kloroform ve dimetilsülfoksit çözücüleri içerisinde B3LYP/6-31++G(d,p) baz seti kullanılarak hesaplanan optimize edilmiş geometrilerinin Gibbs serbest enerjileri, bağıl kararlılıkları ve denge sabitleri Çizelge 7.4'de verilmiştir. Hesaplanan enerji değerlerine göre üç ortam için de e-e formunun daha kararlı olduğu görülmektedir. e-a ve a-a formlarının enerji farkları 2 kcal/mol'den daha büyük olduğu için denge sabitleri hesaplanmamıştır. Bu durum (7.1)-(7.6) denklemleri kullanılarak elde edilmiştir. 1bpp molekülünün gaz fazında e-e ve a-e formlarını sırasıyla % 62 ve % 38 oranında tercih ettiği görülmektedir. Polar olmayan bir çözücü olan kloroform içerisinde 1bpp molekülünün e-e formunu % 60 oranında, a-e formunu ise % 40 oranında tercih ettiği, polar bir çözücü olan dimetilsülfoksit içerisinde ise 1bpp molekülünün e-e formunu % 58 oranında, a-e formunu ise % 42 oranında tercih ettiği görülmektedir (Bağlayan vd., 2016, s. 326).

Ortam / Özellik	B3LYP/6-31++G(d,p)					
Nokta Grubu	C_1					
Konformasyon	e-a	e-e	a-e	a-a		
Gaz Fazı ΔG (Hartree) Bağıl kararlılık (δΔG;kcal/mol) Mol kesri (%)	-424,992099 4,06 0	-424,998576 0,00 62	-424,998098 0,30 38	-424,990978 4,77 0		
Kloroform ($\epsilon = 4,9$) ΔG (Hartree) Göreli kararlılık ($\delta \Delta G$;kcal/mol) Mol kesri (%)	-424,995844 4,07 0	-425,002335 0,00 60	-425,001971 0,23 40	-424,995138 4,52 0		
Dimetilsülfoksit (ϵ = 46,7) ΔG (Hartree) Göreli kararlılık ($\delta \Delta G$;kcal/mol) Mol kesri (%)	-424,997763 4,07 0	-425,004246 0,00 58	-425,003935 0,20 42	-424,997225 4,41 0		

Cizelge 7.4. *Ibpp molekülünün konformasyon enerjileri*

lbpp molekülünün B3LYP metodu ile 6-31++G(d,p) baz setinde hesaplanan bazı optimize geometrik parametreleri Çizelge 7.5'de verilmiştir. 1bpp molekülünün burada kullanılan atom numaralarını gösteren şekli Şekil 7.7'de görülmektedir. 1bpp molekülünün geometrik parametrelerinin deneysel verileri literatürde bulunmadığından teorik veriler piperazin (Yokazeki and Kuchitsu, 1971, s. 2354) ve bütil (Temel, Özbey and Ertan, 1996, s. 240) moleküllerinin deneysel verileri ile karşılaştırılmıştır. Çizelge 7.5 incelendiğinde teorik verilerin deneysel verilerle uyumlu olduğu, gaz fazından çözücü ortamına geçildiğinde ise tüm parametrelerin değiştiği görülmektedir. Kristal paket yapısı boyunca hidrojen atom uzaklığı daha kısa olduğundan (1-Butyl-3-cyano-6-hydroxy-4-methyl-5-(2-thiazolylazo)-2-(1H)pyridone) kristalinde CH₃ bağ uzunlukları sıvı ve gaz fazına göre daha kısadır.

Piperazin halkasına bağlı olan sübstitüentlerin genellikle e-e ve a-e konumlarında bulundukları piperazinin kristal yapısı incelenerek de görülebilir (Prabavathi, Nilufer and Krishnakumar, 2014, s. 484). e-e ve a-e formları için NH grubu C6-C5-N4-H15 ile sırasıyla aksiyel (71°) ve ekvatoryal (177°) konumunda bulunmaktadır. Ancak bütil grubu için hesaplanan C5-C6-N1-C7 dihedral açısı 176° olduğundan ekvatoryal ve aksiyel konumları tercih edilmemektedir. Bu durumun sebebi piperazine bağlı olan sübstitüentlerin sterik etkisidir. Çizelge 7.5 incelendiğinde, serbest piperazine göre 1bpp

molekülündeki C-C bağlarının uzunluğunun diğer bağlara göre daha kısaldığı görülmektedir. Bunun sebebinin azot atomlarının ortaklanmamış elektron çiftleri arasındaki etkileşme olabileceği düşünülmektedir (Bağlayan vd., 2016, s. 326).

Şekil 7.7. Atom numaraları ile birlikte 1bpp molekülünün moleküler yapısı

1bpp molekülü için B3LYP metodu ile 6-31++G(d,p) baz setinde hesaplanan ısı kapasitesi, sıfır nokta enerjisi, entropi gibi bazı termodinamik parametreler Çizelge 7.6'da verilmiştir. Çizelge 7.6 incelendiğinde sıfır nokta titreşim enerjilerinde çok fazla değişim olmadığı görülmektedir. 1bpp molekülünün toplam enerjisi ve entropideki değişimi oda sıcaklığında ele alınmıştır. Çözücü ortamındaki dipol momentin gaz fazındaki dipol momente göre daha büyük olması beklenir. Bu durum Çizelge 7.6'da gözlenmektedir ve ortamın dielektrik sabiti arttıkça dipol moment artmaktadır. Gaz fazı ile polar olmayan çözücü arasındaki bu artış % 13 ile % 31 oranında değişirken, gaz fazı ile polar çözücü arasında % 15 ile % 50 oranında değişmektedir.

Doromotro		Donovsol		Teorik	
Farametre		Deneysei		e-e	
Bağ uzunlukları	Bütil ^a	Piperazin ^b	Gaz	Klrfrm	Dmso
N4-H15			1,016	1,017	1,017
N1-C2		1,467	1,467	1,468	1,469
N1-C6		1,467	1,467	1,468	1,469
N1-C7	1,390		1,465	1,467	1,468
C2-C3		1,540	1,528	1,528	1,528
C2-H11		1,110	1,109	1,109	1,109
C2-H12		1,110	1,094	1,093	1,093
C3-N4		1,467	1,464	1,466	1,467
C3-H13		1,110	1.095	1,095	1,095
C3-H14		1.110	1.106	1.105	1.105
N4-C5		1.467	1,464	1.466	1.467
C5-C6		1.540	1.529	1.527	1.527
C5-H16		1.110	1.096	1.095	1.095
C5-H17		1.110	1,106	1,105	1,105
C6-H18		1.110	1.096	1.096	1.095
C6-H19		1.110	1.108	1,108	1.108
C7-C8	1.550	-,	1.533	1.533	1,533
C8-C9	1,490		1,535	1.535	1.535
C9-C10	1.510		1.533	1.533	1.533
Bağ acıları	-,		-,	-,	_,
C2-N1-C6		109,0	110,3	110,1	110,0
N1-C2-C3		110.4	110.7	110.8	110.8
H11-C2-H12		109.1	107.9	107.8	107.7
C2-C3-N4		110,4	109,4	109,5	109,6
H13-C3-H14		109,1	108,2	108,0	107.9
C3-N4-C5		109,0	111.0	110,7	110,6
N4-C5-C6		110,4	109,1	109,3	109,4
H16-C5-H17		109,1	108,2	108,0	107.5
N1-C6-C5		110,4	110.8	110,9	110,9
H18-C6-H19		109,1	107.9	107,7	107.7
N1-C7-C8	113,0	,	114,1	114,3	114,3
C7-C8-C9	113.0		112,4	112,4	112,3
C8-C9-C10	113.0		113,1	113,1	113,1
Dihedral açılar	,		,	,	,
C7-N1-C6-C5			176,0	176,8	177,1
C7-N1-C2-C3			-177,1	-177,9	-178,2
C6-C5-N4-C3			-59,2	-59,1	-59,0
C2-C3-N4-H15			-177,5	-178,9	-179,5
C6-C5-N4-H15			177,4	178,8	179,4
C8-C7-N1-C2			69,8	70,0	70,2
C8-C7-N1-C6			-165,3	-165,7	-165,7
C7-N1-C6-C5			176,0	176,8	177,1
C7-N1-C2-C3			-177,1	-177,9	-178,2
C2-C3-N4-C5			59,1	59,0	59,0
C7-C8-C9-C10			179,1	179,4	179,5

Çizelge 7.5. 1bpp molekülünün optimize edilmiş bağ uzunlukları, bağ ve dihedral açıları

Kaynak: ^a Yokazeki and Kuchitsu, 1971, s. 2354. ^b Temel, Özbey and Ertan, 1996, s. 240.

Parametre	I	Deneysel		Teorik	
D - ¥	D:::4:18	Dimensiph	Car	a-e Klafaa	Davas
Bag uzuniukiari	Butil	Piperazin ^o	Gaz	KIFIFIII 1.010	Dmso
N4-H15		1 467	1,019	1,019	1,019
NI-C2 NI-C6		1,407	1,405	1,408	1,469
NI-CO	1 200	1,407	1,405	1,407	1,469
NI-C/	1,390	1 540	1,405	1,408	1,409
$C_2 - C_3$		1,540	1,355	1,334	1,355
C2-H11		1,110	1,112	1,111	1,110
C2-H12 C2 N4		1,110	1,094	1,094	1,094
C3-IN4 C2 H12		1,407	1,405	1,408	1,470
C3-H13 C2 H14		1,110	1,090	1,093	1,095
N4 C5		1,110	1,097	1,098	1,098
N4-C3 C5 C6		1,407	1,405	1,409	1,470
C5 H16		1,540	1,006	1,005	1,555
C5 H17		1,110	1,090	1,095	1,095
C5-II17		1,110	1,097	1,098	1,098
C6 H10		1,110	1,097	1,090	1,090
C_{7}	1 550	1,110	1,112	1,111	1,110
C_{1}	1,330		1,335	1,535	1,555
$C_0 C_1 0$	1,490		1,555	1,535	1,555
Rağ acıları	1,510		1,555	1,555	1,555
C2 N1 C6		100.0	110.3	110.0	100.0
C_2 -N1- C_0		109,0	110,5	110,0	109,9
NI-C2-C5		110,4	107.2	107.2	110,8
$C_{2} C_{3} N_{4}$		109,1	107,5	107,5	107,4
$U_2 - U_3 - W_4$		100,4	107.6	107.6	107.6
C3 N4 C5		109,1	107,0	110,6	107,0
$V_{3}-N_{4}-C_{3}$		110.4	110,8	113.5	110,0
H16 C5 H17		100,4	107.6	107.6	107.6
N1-C6-C5		110 /	110.8	110.9	110.9
H18-C6-H19		109.1	107.3	107.3	107.3
N1-C7-C8	113.0	10),1	114.2	114.3	114.2
C7-C8-C9	113,0		112.5	117,5	117,2
C_{8} - C_{9} - C_{10}	113,0		112,5	112,4	112,4
Dihedral acılar	115,0		115,1	115,1	115,0
C7-N1-C6-C5			175.9	176.5	176.8
C7 N1 C2 C3			175,9	170,5	170,8
C6-C5-N4-C3			-50.5	-50.5	-177,0
C2-C3-N4-H15			-70.7	-69.6	-69.2
C6-C5-N4-H15			70,7	69.5	69,2 69,2
C8-C7-N1-C2			70,0	70.8	71.0
C8-C7-N1-C6			-164 3	-164.9	-165.0
C7-N1-C6-C5			175 9	176 5	176.8
C7-N1-C2-C3			-176.9	-177.6	-177 8
C2-C3-N4-C5			50.4	50.4	50.4
C7-C8-C9-C10			179.4	179.6	179.7

Çizelge 7.5. (Devam) 1bpp molekülünün optimize edilmiş bağ uzunlukları, bağ ve dihedral açıları

Kaynak: ^a Yokazeki and Kuchitsu, 1971, s. 2354. ^b Temel, Özbey and Ertan, 1996, s. 240.

Parametreler		e-e	
	Gaz	Klrfm	Dmso
Termal toplam enerji, (kcal/mol)	170,307	170,182	170,116
Titreșim enerjisi, (kcal/mol)	168,530	168,404	168,339
Sıfır nokta titreşim enerjisi, (kcal/mol)	163,452	163,339	163,274
Entropi, (cal/mol K)	102,798	102,640	102,680
Isı kapasitesi, (cal/mol K)	41,394	41,404	41,414
Dipol moment (Debye)	0,470	0,530	0,540

Cizelge 7.6. 1bpp molekülünün bazı termodinamik parametreleri

Çizelge 7.6. (Devam) *1bpp bazı termodinamik parametreleri*

Parametreler		a-e	
	Gaz	Klrfrm	Dmso
Termal toplam enerji, (kcal/mol)	170,250	170,184	170,150
Titreșim enerjisi, (kcal/mol)	168,472	168,407	168,372
Sıfır nokta titreşim enerjisi, (kcal/mol)	163,376	163,324	163,287
Entropi, (cal/mol K)	102,928	102,728	102,774
Isı kapasitesi, (cal/mol K)	41,520	41,508	41,517
Dipol moment (Debye)	1,582	2,064	2,364

7.2.2. Titreşim Frekanslarının İncelenmesi

Ibpp molekülü için 4000-50 cm⁻¹ bölgesinde titreşim frekansları ve işaretlemeleri ile ilgili bir çalışma literatürde bulunmamktadır. Ibpp molekülü 28 atomlu bir molekül olduğu için 78 normal titreşim modu bulunmaktadır. Molekül C₁ nokta grubuna aittir ve sadece E özdeşlik simetri elemanı veya işlemine sahiptir. Molekülün düşük simetriye sahip olmasından dolayı titreşim işaretlemelerini belirleyebilmek zordur. Bu nedenle molekülün en kararlı olan e-e formunun titreşim işaretlemeleri VEDA 4 programı kullanılarak yapılmış, titreşim frekansları ve şiddetleri ile birlikte Ek-1 Çizelge E1.4-E1.6'da verilmiştir. Hesaplama sonuçlarına göre 10 titreşim modu 400 cm⁻¹'in altında iken 68 titreşim modu 4000 cm⁻¹ ile 400 cm⁻¹ arasındadır. Deneysel ve teorik titreşim spektrumları ise Ek-2 Şekil E2.7-E2.12'de verilmiştir. Hesaplanan tüm frekans değerleri harmonik yaklaşım ile elde edilmiştir. Bu yaklaşım titreşim hareketlerinin her birini basit tek boyutlu harmonik potansiyel tarafından yönetilen bağımsız titreşim modları cinsinden tanımlamamızı sağlar. Hesaplanan Raman aktiviteleri daha önce verilen (7.7) denklemi kullanılarak bağıl Raman şiddetlerine dönüştürülmüştür.

NH ekvatoryal konformasyonu (lone pair axial) için serbest piperazin molekülü IR spektrumunda 3314 cm⁻¹'de bir omuz ile birlikte 3351 cm⁻¹'de bir banda sahiptir (El-Gogary and Soliman, 2001, s. 2652). 1bpp molekülü için spektrumun yüksek frekans bölgesi karakteristik NH gerilme bandlarını içermektedir. IR ve Raman spektrumlarında

sırasıyla 3271 ve 3311 cm⁻¹ gözlenen bandlar piperazin grubundan kaynaklanmaktadır. NH gerilme titreşim frekansı serbest piperazine göre daha düşük frekansta gözlenmiştir. Hesaplanan frekans değeri ise 3378 cm⁻¹'dir. Bu farkın katı fazda meydana gelen moleküler etkileşmelerden kaynaklanmış olabileceği düşünülmektedir. Hesaplama yapılırken incelenen molekül gaz fazında ele alınır ve hiçbir etkileşmenin olmadığı var sayılır. Bu modun kloroform ve dimetilsülfoksit çözücüleri içerisindeki hesaplanan skalalanmış teorik değerleri ise 3373 ve 3371 cm⁻¹'dir (Bağlayan vd., 2016, s. 328).

Piperazin molekülünde tüm CH₂ grupları azot atomuna bağlı olduğu ve sübstitüentler güçlü elektron donörleri olduğu için pertürbe CH bandlarına sahiptir. Piperazin molekülünün aksiyel veya ekvatoryal konumlarındaki kombinasyonlarından dolayı CH soğurma bandları karmaşıktır. Piperazinin 2944 cm⁻¹'de (2918, 2911 ve 2883 cm⁻¹'de pertürbe olmuş) gözlenen bandı CH₂ asimetrik gerilme titreşimi iken 2855 cm⁻¹'de (2825, 2812 ve 2749 cm⁻¹'de pertürbe olmuş) gözlenen bandı CH₂ simetrik gerilme titreşimine aittir (El-Gogary and Soliman, 2001, s. 2652). 1bpp molekülünde CH₂ asimetrik gerilme modları IR'de 2954 ve 2934 cm⁻¹'de iken Raman'da 2945, 2939 ve 2934 cm⁻¹'de gözlenmiştir. Hesaplanan teorik değerler ise 2962, 2959, 2938 cm⁻¹ olarak bulunmuştur. CH₂ simetrik modları ise IR'de 2806, 2684 cm⁻¹'de iken Raman'da 2820, 2813, 2784 cm⁻¹'de gözlenmiştir. Bu mod için hesaplanan teorik değerler 2813, 2810, 2783 cm⁻¹ olarak bulunmuştur. Bu veriler incelendiğinde teorik frekansların deneysel verilerle uyumlu olduğu görülmektedir.

N-bütil molekülü için CH₂ asimetrik gerilme bandları IR spektrumunda 2835, 2809 cm⁻¹'de, simetrik gerilme bandı ise 2886 cm⁻¹'de gözlenir (Pacansky and Gutlerrez, 1983, s. 3078). CH₂ asimetrik gerilme bandı deneysel olarak IR'de 2873, 2863 cm⁻¹'de, Raman'da 2885, 2862 cm⁻¹'de elde edilmiştir. Bu moda ait hesaplanan teorik değerler ise 2896 ve 2880 cm⁻¹'dir. CH₂ simetrik gerilme bandı Raman'da 2873 cm⁻¹'de gözlenmiş ve 2892 cm⁻¹ olarak hesaplanmıştır. Elde edilen verilere göre CH gerilme titreşimleri beklenen bölgede gözlenmiştir. Bütil grubunun CH₂ simetrik bandları tarafından piperazinin pertürbe olmuş asimetrik CH₂ bandlarına etkisi dışında halka üzerindeki yer değişiminin çok büyük bir etkisi yoktur.

CH₂'nin makaslama, kıvırma, dalgalanma ve sallanma olarak bilinen açı bükülme titreşimleri şu şekilde işaretlenmiştir. Makaslama modu IR'de 1680, 1598, 1548, 1521, 1468, 1457,1445 cm⁻¹'de, Raman'da ise 1460 ve 1443 cm⁻¹'de gözlenmiş olup bu moda ait teorik değerler 1483, 1476, 1472, 1470, 1466, 1462, 1460, 1459, 1452 cm⁻¹'dir.

Deneysel ve teorik değerlerin uyumlu olduğu görülmektedir. CN titreşimlerinin olduğu bölgede birçok titreşim meydana geldiği için belirlenebilmesi zordur. Ancak teorik hesaplamaların da yardımıyla CN gerilme titreşimleri IR'de 1126, 1060 cm⁻¹'de, Raman'da ise 1142, 1128, 1061 cm⁻¹'de elde edilmiştir. CC gerilme modları 1100-890 cm⁻¹ bölgesinde gözlenir. Bununla birlikte CCC ve CCN açı bükülme, NCCN, HCCH, HNCC ve CCCC burulma modları da düşük frekans bölgesinde gözlenir. Benzer sonuçlar hesaplama verilerinden de elde edilmiştir. 1bpp molekülü için elde edilen titreşim frekanslarının literatür ile de uyumlu olduğu görülmüştür (Zeroka, Jensen and Samuels, 1999, s. 130; Keresztury vd., 1993, s. 2010; Bytheway and Wong, 1998, s. 223).

Ek-1 Çizelge E1.4-E1.6'daki çizelgeler kullanılarak deneysel titreşim frekanslarının teorik veriler ile uyumları incelenmiş ve korelasyon grafikleri çizilmiştir. Grafikler Şekil 7.8 ve 7.9'da verilmiştir. Buna göre korelasyon değerleri, gaz fazı için 0,99755 (IR) ve 0,99975 (R), kloroform için 0,99745 (IR) ve 0,99978 (R), dimetilsülfoksit için 0,99739 (IR) ve 0,99978 (R) olarak bulunmuştur. Sonuç olarak B3LYP metodu ve 6-31++G(d,p) baz setinin titreşim frekansları için güvenilir sonuçlar verdiği söylenebilir.

Şekil 7.8. *1bpp molekülünün infrared titreşim frekansları için korelasyon grafikleri*

Şekil 7.8. (Devam) *1bpp molekülünün infrared titreşim frekansları için korelasyon grafikleri*

Şekil 7.9. 1bpp molekülünün Raman titreşim frekansları için korelasyon grafikleri

Şekil 7.9. (Devam) *1bpp molekülünün Raman titreşim frekansları için korelasyon* grafikleri

Çözücü etkisi

Ek-1'de 1bpp molekülü için verilen Çizelge E1.4-E1.6'da üç farklı ortamdaki titreşim işaretlemeleri incelendiğinde birbiriyle uyumlu oldukları görülmektedir. Ortamın dielektrik sabitinin titreşim frekanslarına büyük etkisi olduğu bilindiğinden, teorik titreşim frekans değerlerinde değişiklikler meydana gelmiştir. NH ve CN bağ uzunluklarının gaz fazından çözücü ortamına geçildiğinde arttığı görülmüştür. Buna göre NH ve CN gerilme titreşim frekansların azalmalıdır. Ek-1'deki Çizelge E1.4-E1.6 incelendiğinde titreşim frekanslarının gaz fazından çözücü ortamına gezildiğinde azaldığı

görülmektedir. Bu frekans kaymaları, yüksek dielektrik sabite sahip olan çözücü içerisindeki azot atomları üzerindeki pozitif karakterin artması şeklinde açıklanabilir.

Üç farklı ortamdaki titreşim şiddetleri incelendiğinde hesaplanan şiddetlerin deneysel sonuçlarla uyum içinde olduğu görülmektedir. IR şiddetlerinin çözücü ortamında büyük oranda değişmesi beklenir ve bu çalışmada çözücü içerisindeki IR şiddetleri artmıştır. Ek-1 Çizelge E1.4-E1.6 ve Ek-2 Şekil E2.7-E2.12'den görüldüğü gibi hesaplanan IR şiddetlerinin çözücü ortamında gaz fazına göre birçok mod için büyük oranda değiştiği söylenebilir. IR şiddetleri gibi, molekül çözücü ortamında iken Raman şiddetlerinde de büyük değişiklikler olduğu görülmüştür. IR ve Raman şiddetleri için, dimetilsülfoksit çözücüsü içerisindeki artış kloroform çözücüsü içerisindeki artıştan daha büyüktür.

1bpp molekülü için HOMO karbon atomları ve piperazinin azot atomları üzerinde yoğunlaşırken ve LUMO N4 atomu üzerinde yer almıştır. Üç farklı ortam için sınır moleküler orbitallerin atomik yerleşimleri, sınır moleküler orbital enerjileri ve enerji farkı Şekil 7.10-7.12'de verilmiştir.

Şekil 7.10. 1bpp molekülünün gaz fazında HOMO ve LUMO geçiş enerji şeması

Şekil 7.11. *Ibpp molekülünün kloroform içerisindeki HOMO ve LUMO geçiş enerji şeması*

Şekil 7.12. 1bpp molekülünün dimetilsülfoksit içerisindeki HOMO ve LUMO geçiş enerji şeması

7.3. 1-Siklopentilpiperazin Molekülü

7.3.1. Geometrik yapının incelenmesi

lcppp molekülünün C_s ve C₁ iki farklı nokta grubundaki dört konformasyonunun gaz fazında, kloroform ve dimetilsülfoksit çözücüleri içerisinde B3LYP/6-31++G(d,p) baz seti kullanılarak hesaplanan optimize edilmiş geometrilerinin Gibbs serbest enerjileri, bağıl kararlılıkları ve denge sabitleri Çizelge 7.7'de verilmiştir. Gaz fazı için hesaplanan serbest enerjilere göre e-e formu e-a formuna göre 4,50 kcal/mol, a-e formuna göre 0,32 kcal/mol ve a-a formuna göre 4,10 kcal/mol enerji farkı ile daha kararlıdır. e-a ve a-a formlarının enerji farkları 2 kcal/mol'den daha büyük olduğu için ihmal edilerek denge sabitleri hesaplanmamıştır.

Molekülün her bir konformasyonun mol kesri aşağıdaki formüller kullanılarak hesaplanabilir:

$$a \xleftarrow{K_{c1}} b \xleftarrow{K_{c2}} c \xleftarrow{K_{c3}} d \tag{7.29}$$

Burada a, b, c, d sırasıyla e-e (C_1), a-e (C_1), e-e (C_s) ve a-e (C_s) konformasyonlarının mol kesridir. Yukarıda verilen denkleme göre;

$$K_{c1} = \frac{N_b}{N_a}$$

$$K_{c2} = \frac{N_c}{N_b}$$

$$K_{c3} = \frac{N_d}{N_c}$$
(7.30)

ve

$$N_a + N_b + N_c + N_d = 1$$

yazılabilir. Bu denklemlerde yer alan K_{c1} , K_{c2} , K_{c3} a, b, c ve d formları arasındaki konformasyon denge sabiti, N_a , N_b , N_c ve N_d ise a, b, c ve d konformasyonlarının mol kesri olarak adlandırılır. Burada;

$$N_{a} = \frac{1}{1 + K_{c1} + K_{c1}K_{c2} + K_{c1}K_{c2}K_{c3}}$$
$$N_{b} = \frac{K_{c1}}{1 + K_{c1} + K_{c1}K_{c2} + K_{c1}K_{c2}K_{c3}}$$
(7.31)

$$N_{c} = \frac{K_{c1}K_{c2}}{1 + K_{c1} + K_{c1}K_{c2} + K_{c1}K_{c2}K_{c3}}$$
$$N_{d} = \frac{K_{c1}K_{c2}K_{c3}}{1 + K_{c1} + K_{c1}K_{c2} + K_{c1}K_{c2}K_{c3}}$$
$$K_{c} = e^{-\delta\Delta G/RT} , \ \delta\Delta G = \Delta G_{b} - \Delta G_{a}$$
(7.32)

$$R = 1.987 \times 10^{-3} \ kcal/mol \ K \ , \ T = 298 \ K \tag{7.33}$$

şeklindedir (Alver and Parlak, 2010, s. 87; Alver and Parlak, 2010, s. 4)

Yapılan hesaplama sonuçlarından 1cppp molekülünün gaz fazında e-e (C₁) formunu % 54 oranında, a-e (C₁) formunu % 32 oranında, e-e (C_s) formunu % 9 oranında ve a-e (C_s) formunu % 5 oranında tercih ettiği elde edilmiştir. Gaz fazında e-e (C₁) formu diğer formlardan daha kararlıdır. Polar olmayan bir çözücü olan kloroform içerisinde hesaplanan serbest enerjiler e-e (C₁) formunu en kararlı form olduğunu ve 1cppp molekülünün e-e (C₁) formunu % 51 oranında, a-e (C₁) formunu % 33 oranında, e-e (C_s) formunu % 10 oranında, a-e (C_s) formunu % 6 oranında tercih ettiğini göstermektedir. Polar bir çözücü olan dimetilsülfoksit içerisinde hesaplanan serbest enerjiler ise e-e (C₁) formunu % 48 oranında, a-e (C₁) formunu % 34 oranında, e-e (C_s) formunu % 11 oranında, a-e (C_s) formunu % 7 oranında tercih ettiğini göstermektedir.

Ortam / Özellik	B3LYP/6-31++G(d,p)						
Nokta Grubu	C1						
Konformasyon	e-a e-e a-e a-a						
Gaz Fazı ΔG (Hartree) Bağıl kararlılık (δΔG;kcal/mol) Mol kesri (%)	-463,080940 4,50 0	-463,088114 0,00 54	-463,087603 0,32 32	-463,081572 4,10 0			
Kloroform (ε = 4,9) ΔG (Hartree) Göreli kararlılık (δΔG;kcal/mol) Mol kesri (%)	-463,084408 4,71 0	-463,091914 0,00 51	-463,091504 0,26 33	-463,085425 4,07 0			
Dimetilsülfoksit (ε = 46,7) ΔG (Hartree) Göreli kararlılık ($\delta \Delta G$;kcal/mol) Mol kesri (%)	-463,087905 3,65 0	-463,093715 0,00 48	-463,093374 0,22 34	-463,087329 4,01 0			

Çizelge 7.7. 1 cppp molekülünün konformasyon enerjileri

Çizelge 7.7. (Devam) 1 cppp molekülünün konformasyon enerjileri

Ortam / Özellik	B3LYP/6-31++G(d,p)						
Nokta Grubu	Cs						
Konformasyon	e-a	e-e	a-e	a-a			
Gaz Fazı ΔG (Hartree) Bağıl kararlılık ($\delta \Delta G$;kcal/mol) Mol kesri (%) Kloroform ($\epsilon = 4,9$) ΔG (Hartree) Göreli kararlılık ($\delta \Delta G$;kcal/mol) Mol kesri (%)	- - - -	-463,086394 1,08 9 -463,090323 1,00 10	-463,085951 1,36 5 -463,089818 1,32 6	- - - -			
Dimetilsülfoksit (ϵ = 46,7) Δ G (Hartree) Göreli kararlılık ($\delta\Delta$ G;kcal/mol) Mol kesri (%)	- - -	-463,092278 0,91 11	-463,091894 1,15 7	- - -			

B3LYP metodu ile 6-31++G(d,p) baz setinde hesaplanarak elde edilen bazı optimize geometrik parametreler (bağ uzunluğu, bağ açıları ve dihedral açıları) Çizelge 7.8'de verilmiştir. Burada kullanılan atom numaralarının yer aldığı 1cppp molekülünün şekli Şekil 7.13'de görülmektedir. 1cppp molekülünün geometrik yapısı ile ilgili deneysel

veriler literatürde yer almamaktadır. Bu nedenle hesaplamalar ile elde edilen teorik sonuçlar piperazin (Yokazeki and Kuchitsu, 1971, s. 2354) ve siklopentan (Ji and Lu, 2010, m881) bileşiklerinin deneysel verileri ile karşılaştırılmıştır. Gaz fazından çözücü ortamına geçildiğinde tüm parametrelerin değiştiği görülmüştür. 1cppp molekülünün gaz fazında D(6;5;4;16) dihedral açısı e-e (C₁) formu için 177°, a-e (C₁) formu için 71°, e-e (C_s) formu için 178° ve a-e formu için 71° olarak bulunmuştur. Gaz fazında D(7;1;6;5) dihedral açısının büyüklüğü ise e-e (C₁) formu için 172°, a-e (C₁) formu için 171°, e-e (C_s) formu için 177° ve a-e (C_s) formu için 177° olarak bulunmuştur.

Şekil 7.13. Atom numaraları ile birlikte 1 cppp molekülünün moleküler yapısı

Doromotro	Don	oveol		Teorik	
Falametre	Den	eysei		e-e (C ₁)	
Bağ uzunlukları	Siklopentan ^a	Piperazin ^b	Gaz	Klrfrm	Dmso
N4-H16			1,016	1,017	1,017
N1-C2		1,467	1,465	1,467	1,468
N1-C6		1,467	1,465	1,467	1,468
N1-C7			1,472	1,475	1,476
C2-C3		1,540	1,529	1,528	1,528
C2-H12		1,110	1,107	1,107	1,107
C2-H13		1,110	1,096	1,096	1,096
C3-N4		1,467	1,464	1,466	1,467
C3-H14		1,110	1,096	1,095	1,095
C3-H15		1,110	1,106	1,105	1,105
N4-C5		1,467	1,464	1,466	1,468
C5-C6		1,540	1,530	1,529	1,529
C5-H17		1,110	1,096	1,095	1,095
C5-H18		1,110	1,106	1,105	1,105
C6-H19		1,110	1,094	1,093	1,093
C6-H20		1,110	1,106	1,106	1,106
C7-C8	1,527		1,554	1,554	1,554
C8-C9	1,522		1,538	1,538	1,538
C9-C10	1,535		1,539	1,539	1,539
C10-C11	1,529		1,542	1,542	1,542
C7-C11	1,529		1,573	1,573	1,572
Bağ açıları					
C2-N1-C6		109,0	110,4	110,2	110,1
N1-C2-C3		110,4	110,4	110,5	110,6
H12-C2-H13		109,1	107,8	107,7	107,6
C2-C3-N4		110,4	109,2	109,4	109,4
H14-C3-H15		109,1	108,3	108,1	108,0
C3-N4-C5		109,0	111,1	110,8	110,7
N4-C5-C6		110,4	109,2	109,4	109,4
H17-C5-H18		109,1	108,3	108,1	108,0
N1-C6-C5		110,4	110,1	110,2	110,2
H19-C6-H20		109,1	107,8	107,7	107,6
C7-C8-C9	102,8		105,6	105,5	105,5
C8-C9-C10	106,0		103,3	103,2	103,2
C9-C10-C11	106,2		103,5	103,5	103,5
C10-C11-C7	104,1		105,9	105,9	105,9
Dihedral açılar					
C7-N1-C2-C3			-169,9	170,8	171,1
C7-N1-C6-C5			171,2	172,2	172,5
C2-C3-N4-C5			59,0	58,9	58,8
C6-C5-N4-H16			177,2	178,6	179,1
C2-C3-N4-H16			-177,6	-179,0	-179,5
C11-C7-N1-C6			52,7	52,9	52,7
C11-C7-N1-C2			-76,3	-75,4	-75,3
C8-C7-N1-C6			-70,0	-69,8	-70,0
C8-C7-N1-C2			161,0	161,9	162,0
C9-C8-C7-N1			145,9	146,0	146,2
C10-C11-C7-N1			-117,9	-118,1	-118,2

Çizelge 7.8. 1 cppp molekülünün optimize edilmiş bağ uzunlukları, bağ ve dihedral açıları

Kaynak: ^{*a*}*Yokazeki and Kuchitsu, 1971, s. 2354.* ^{*b*} *Ji and Lu, 2010, m881.*

Doromotro	Don	oveol		Teorik	
rarametre	Den	eysei		a-e (C ₁)	
Bağ uzunlukları	Siklopentan ^a	Piperazin ^b	Gaz	Klrfrm	Dmso
N4-H16			1,019	1,019	1,019
N1-C2		1,467	1,464	1,466	1,467
N1-C6		1,467	1,464	1,466	1,468
N1-C7			1,473	1,475	1,477
C2-C3		1,540	1,535	1,534	1,534
C2-H12		1,110	1,111	1,110	1,109
C2-H13		1,110	1,097	1,097	1,096
C3-N4		1,467	1,466	1,469	1,471
C3-H14		1,110	1,096	1,095	1,095
C3-H15		1.110	1.097	1.098	1.098
N4-C5		1,467	1,465	1,469	1,470
C5-C6		1.540	1.536	1.535	1.535
C5-H17		1.110	1.096	1.095	1.095
C5-H18		1.110	1.097	1.097	1.098
C6-H19		1.110	1.095	1.094	1.094
C6-H20		1.110	1.110	1,109	1,108
C7-C8	1.527	1,110	1,554	1,553	1,553
C8-C9	1,522		1,538	1,538	1,538
C9-C10	1,535		1,539	1,539	1 539
C10-C11	1,529		1,542	1,542	1,542
C7-C11	1,529		1,573	1 573	1 572
Bağ acıları	1,525		1,575	1,070	1,572
C2-N1-C6		109.0	110.4	110.1	109.9
N1-C2-C3		110.4	110,4	110,1	110,5
H12-C2-H13		109.1	107.2	107.3	107.3
C2-C3-N4		110.4	113.5	113.5	113.5
H14-C3-H15		109.1	107.7	107.7	107.7
C3-N4-C5		109,1	110.9	110.7	110.7
N4-C5-C6		110.4	113,5	113,7	113,7
H17-C5-H18		109.1	107.7	107.7	107.7
N1-C6-C5		110.4	110.1	110.2	110.2
H19-C6-H20		109.1	107.2	107.2	107.3
C7 - C8 - C9	102.8	109,1	107,2	107,2	107,5
C_{8} - C_{9} - C_{10}	102,0		103,3	103,4	103,4
C9-C10-C11	106,0		103,2	103,2	103,2
C_{10}	100,2		105,0	105,0	105,0
Dihedral acılar	104,1		105,7	105,7	105,7
C7 N1 C2 C3			160.5	170.3	170.7
C7-N1-C2-C5			-109,5	-170,3	-170,7
C_{1}^{-1} C_{2}^{-1} $C_{$			170,8	1/1,/	172,1
C_2 - C_5 - N_4 - C_5			30,1 70,6	50,1	50,1
$C_{2} C_{2} N_{4} H_{10}$			/0,0	09,4	69,0
C11 C7 N1 C6			-/1,0	-09,8	-09,5
C11 C7 N1 C2			52,9	52,8 75 5	52,1 75 1
CII-C/-NI-C2			-/0,5	-/3,5	-/5,1
C8 C7 N1 C2			-69,9	-/0,0	-/0,1
$C_0 C_2 C_7 N_1$			100,/	101,/	162,1
C9-C8-C7-NI			146,8	146,9	146,9
C10-C11-C/-N1			-118,9	-119,0	-118,9

Çizelge 7.8. (Devam) 1 cppp molekülünün optimize edilmiş bağ uzunlukları, bağ ve dihedral açıları

Kaynak: ^aYokazeki and Kuchitsu, 1971, s. 2354. ^b Ji and Lu, 2010, m881.

Doromotro	Don	oveol		Teorik	
Farametre	Den	eysei		$e-e(C_s)$	
Bağ uzunlukları	Siklopentan ^a	Piperazin ^b	Gaz	Klrfrm	Dmso
N4-H16			1,016	1,017	1,017
N1-C2		1,467	1,469	1,471	1,471
N1-C6		1,467	1,469	1,471	1,471
N1-C7			1,468	1,470	1,471
C2-C3		1,540	1,528	1,528	1,528
C2-H12		1,110	1,093	1,093	1,092
C2-H13		1,110	1,108	1,108	1,108
C3-N4		1,467	1,463	1,465	1,466
C3-H14		1,110	1,096	1,095	1,095
C3-H15		1,110	1,106	1,105	1,105
N4-C5		1,467	1,463	1,465	1,466
C5-C6		1,540	1,528	1,528	1,528
C5-H17		1,110	1,096	1,095	1,095
C5-H18		1,110	1,106	1,105	1,105
C6-H19		1,110	1,093	1,093	1,092
C6-H20		1,110	1,108	1,108	1,108
C7-C8	1,527		1,543	1,542	1,542
C8-C9	1,522		1,545	1,545	1,546
C9-C10	1,535		1,558	1,558	1,558
C10-C11	1,529		1,545	1,545	1,546
C7-C11	1,529		1,543	1,542	1,542
Bağ açıları	,		,	,	,
C2-N1-C6		109.0	109,9	109.7	109.7
N1-C2-C3		110.4	111.0	111.1	111.2
H12-C2-H13		109,1	107.9	107.8	107.7
C2-C3-N4		110.4	109.4	109.6	109.7
H14-C3-H15		109.1	108.1	108.0	107.9
C3-N4-C5		109.0	110.7	110.4	110.3
N4-C5-C6		110.4	109.4	109.6	109.7
H17-C5-H18		109.1	108.1	108.0	107.9
N1-C6-C5		110,4	111.0	111,1	111.2
H19-C6-H20		109,1	107.9	107.8	107.7
C7-C8-C9	102.8	,	104,9	104.8	104,8
C8-C9-C10	106,0		105,8	105,8	105,9
C9-C10-C11	106,2		105,8	105,8	105,9
C10-C11-C7	104,1		104,9	104,8	104,8
Dihedral açılar					
C7-N1-C2-C3			177.0	178.0	178.4
C7-N1-C6-C5			-177.0	-178.0	-178.4
C2-C3-N4-C5			-59.2	-59.1	-59.1
C6-C5-N4-H16			-177.6	-179.0	-179.5
C2-C3-N4-H16			177.6	179.0	179.5
C11-C7-N1-C6			175.9	176.4	176.5
C11-C7-N1-C2			-59.4	-59.6	-59.7
C8-C7-N1-C6			59.4	59.6	59.7
C8-C7-N1-C2			-175.9	-176,4	-176.5
C9-C8-C7-N1			161.7	162.1	162.3
C10-C11-C7-N1			-161,7	-162,1	-162,3

Çizelge 7.8. (Devam) 1 cppp molekülünün optimize edilmiş bağ uzunlukları, bağ ve dihedral açıları

Kaynak: ^aYokazeki and Kuchitsu, 1971, s. 2354. ^b Ji and Lu, 2010, m881.

Doromotro	Don	oveol		Teorik	
Farametre	Den	eysei		a-e (C_s)	
Bağ uzunlukları	Siklopentan ^a	Piperazin ^b	Gaz	Klrfrm	Dmso
N4-H16			1,019	1,019	1,019
N1-C2		1,467	1,468	1,470	1,471
N1-C6		1,467	1,468	1,470	1,471
N1-C7		,	1,468	1,470	1,472
C2-C3		1,540	1,535	1,534	1,534
C2-H12		1,110	1,094	1,093	1,093
C2-H13		1,110	1,112	1,111	1,110
C3-N4		1,467	1,464	1,468	1,469
C3-H14		1,110	1,096	1,095	1,095
C3-H15		1,110	1,098	1,098	1,098
N4-C5		1,467	1,464	1,468	1,469
C5-C6		1,540	1,535	1,534	1,534
C5-H17		1,110	1,096	1,095	1,095
C5-H18		1,110	1,098	1,098	1,098
C6-H19		1,110	1,094	1,093	1,093
C6-H20		1.110	1.112	1.111	1.110
C7-C8	1.527	, -	1.543	1,542	1.542
C8-C9	1.522		1.545	1.545	1.546
C9-C10	1.535		1.558	1.558	1.558
C10-C11	1.529		1.545	1.545	1.546
C7-C11	1.529		1.543	1.542	1.542
Bağ acıları	y		7	7-	7 -
C2-N1-C6		109.0	109.9	109.6	109.5
N1-C2-C3		110.4	111.0	111.2	111.2
H12-C2-H13		109.1	107.3	107.4	107.4
C2-C3-N4		110.4	113.8	113.8	113.8
H14-C3-H15		109.1	107.5	107.5	107.5
C3-N4-C5		109.0	110.5	110.3	110.3
N4-C5-C6		110.4	113.8	113.8	113.8
H17-C5-H18		109.1	107.5	107.5	107.5
N1-C6-C5		110.4	111.0	111.2	111.2
H19-C6-H20		109.1	107.3	107.4	107.4
C7-C8-C9	102.8	,	104.9	104.8	104.8
C8-C9-C10	106,0		105,8	105,9	105,9
C9-C10-C11	106,2		105,8	105,9	105,9
C10-C11-C7	104,1		104,9	104.8	104,8
Dihedral açılar	,		,	,	,
C7-N1-C2-C3			176.7	177.5	177.8
C7-N1-C6-C5			-176.7	-177.5	-177.8
C2-C3-N4-C5			-50.3	-50.4	-50.4
C6-C5-N4-H16			-70.7	-69.5	-69.1
C2-C3-N4-H16			70.7	69.5	69.1
C11-C7-N1-C6			175.8	176.4	176.6
C11-C7-N1-C2			-59.3	-59.6	-59.8
C8-C7-N1-C6			59.3	59.6	59.8
C8-C7-N1-C2			-175.8	-176.4	-176.6
C9-C8-C7-N1			161.8	162.2	162.3
C10-C11-C7-N1			-161,8	-162,2	-162,3

Çizelge 7.8. (Devam) 1 cppp molekülünün optimize edilmiş bağ uzunlukları, bağ ve dihedral açıları

Kaynak: ^aYokazeki and Kuchitsu, 1971, s. 2354. ^b Ji and Lu, 2010, m881.

lcppp molekülünün e-e (C₁), a-e (C₁), e-e (C_s) ve a-e (C_s) formları için B3LYP metodu ile 6-31++G(d,p) baz setinde hesaplanan ısı kapasitesi, sıfır nokta titreşim enerjisi, entropi gibi termodinamik parametreleri Çizelge 7.9'da verilmiştir. Sıfır nokta titreşim enerjisinde çok küçük değişimler meydana gelmiştir. Toplam enerji ve entropideki değişimler oda sıcaklığında ele alınmıştır. Çözücü ortamındaki dipol momentin gaz fazındaki dipol moment değerine göre daha büyük olması beklenir. Bu durum Çizelge 7.9'da görülmektedir. Ortamın dielektrik sabiti arttıkça dipol moment artmaktadır ve bu artış gaz fazı ile polar olmayan çözücü ortamında % 11 ile % 30 arasında değişirken, gaz fazı ile polar çözücü ortamında % 21 ile % 49 arasında değişmektedir.

Parametreler	e-e (C ₁)			
	Gaz	Klrfm	Dmso	
Termal toplam enerji, (kcal/mol)	175,042	174,926	174,870	
Titreșim enerjisi, (kcal/mol)	173,265	173,149	173,092	
Sıfır nokta titreşim enerjisi, (kcal/mol)	168,638	168,526	168,477	
Entropi, (cal/mol K)	99,286	99,356	99,176	
Isı kapasitesi, (cal/mol K)	41,235	41,245	41,260	
Dipol moment (Debye)	0,381	0,442	0,462	

Çizelge 7.9. 1 cppp molekülünün bazı termodinamik parametreleri

Cizelge 7.9. (Devam) 1 cppp molekülünün bazı termodinamik parametreleri

Parametreler	a-e (C ₁)			
	Gaz	Klrfrm	Dmso	
Termal toplam enerji, (kcal/mol)	174,970	174,912	174,896	
Titreșim enerjisi, (kcal/mol)	173,192	173,134	173,118	
Sıfir nokta titreşim enerjisi, (kcal/mol)	168,542	168,495	168,488	
Entropi, (cal/mol K)	99,515	99,393	99,200	
Isı kapasitesi, (cal/mol K)	41,368	41,354	41,351	
Dipol moment (Debye)	1,710	2,215	2,520	

Çizelge 7.9. *Icppp molekülünün bazı termodinamik parametreleri*

Parametreler	e-e (C _s)			
	Gaz	Klrfm	Dmso	
Termal toplam enerji, (kcal/mol)	174,498	174,383	174,304	
Titreșim enerjisi, (kcal/mol)	172,721	172,605	172,527	
Sıfir nokta titreşim enerjisi, (kcal/mol)	168,465	168,366	168,291	
Entropi, (cal/mol K)	96,038	95,930	95,860	
Isı kapasitesi, (cal/mol K)	39,305	39,293	39,314	
Dipol moment (Debye)	0,478	0,531	0,583	
Parametreler		a-e (C _s)		
---	---------	-----------------------	---------	
	Gaz	Klrfrm	Dmso	
Termal toplam enerji, (kcal/mol)	174,447	174,365	174,309	
Titreșim enerjisi, (kcal/mol)	172,670	172,588	172,532	
Sıfir nokta titreşim enerjisi, (kcal/mol)	168,396	168,313	168,253	
Entropi, (cal/mol K)	96,188	96,257	96,283	
Isı kapasitesi, (cal/mol K)	39,423	39,432	39,459	
Dipol moment (Debye)	1,617	2,106	2,417	

Çizelge 7.9. (Devam) 1 cppp molekülünün bazı termodinamik parametreleri

7.3.2. Titreşim Frekanslarının İncelenmesi

Literatürde 1cppp molekülünün 4000-50 cm⁻¹ bölgesinde titreşim frekansları ve işaretlemeleri ilgili bir çalışma bulunmamaktadır. Ölçülen ve hesaplanan titreşim frekansları, titreşim işaretlemeleri ve şiddetleri Ek-1'de Çizelge E1.7-E1.9'da verilmiştir. Teorik ve deneysel titreşim spektrumları ise Ek-2 Şekil E2.13-E2.18'de verilmiştir.

lcppp molekülü 29 atomlu bir molekül olduğundan 81 normal titreşim moduna sahiptir. Molekülün en kararlı formu C₁ nokta grubuna aittir ve sadece E özdeşlik simetri elemanı veya işlemine sahiptir. C₁ nokta grubunun e-e formundaki molekülün titreşim modlarının işaretlemeleri VEDA 4 programı ile yapılmış olup Ek-1'de Çizelge E1.7-E1.9'da verilmiştir. Bu hesaplamalara göre 1cppp molekülünün 9 normal titreşim modu 400 cm⁻¹'in altında iken 72 normal titreşim modu 4000 cm⁻¹ ile 400 cm⁻¹ arasındaki bölgede yer almaktadır.

Spektrumların yüksek frekans bölgesi piperazin grubunun karakteristik NH gerilme bandlarını içermektedir. Serbest piperazin molekülünün IR spektrumunda 3225 cm⁻¹'de NH bandı bulunmaktadır (Hendra and Powell, 1962, s. 304). IR spektrumunda 3266 cm⁻¹'de ve Raman spektrumunda 3256 cm⁻¹'de gözlenen güçlü band NH gerilme titreşimine aittir. 1cppp molekülünün simetrik ve asimetrik CH₂ gerilme titreşimleri piperazin ve siklopentan gruplarından kaynaklanmaktadır. IR spektrumunda 2955 cm⁻¹'de ve Raman spektrumunda 2971 cm⁻¹'de gözlenen titreşim bandı bu grupların her ikisinden kaynaklanan simetrik ve asimetrik CH₂ titreşimleri sebebiyle meydana gelmiştir. Bu bandların hesaplanan teorik değerleri ise 2967 cm⁻¹ ve 2958 cm⁻¹'dir. Siklopentanın CH₂ gerilme titreşimleri IR spektrumunda 2866 cm⁻¹ ve 2791 cm⁻¹ gözlenirken Raman spektrumunda 2878 cm⁻¹'de gözlenmiştir. Bu bandlar için hesaplanan teorik değerler ise 2896 cm⁻¹ ve 2891 cm⁻¹ olarak bulunmuştur. 1cppp molekülünde piperazin grubuna ait CH₂ gerilme titreşimleri IR spektrumunda 2940 cm⁻¹ ile 2600 cm⁻¹ arasında gözlenirken Raman spektrumunda 2933 cm⁻¹ ile 2764 cm⁻¹ arasında gözlenmiştir. Bu titreşimlere ait teorik değerler ise 2936 cm⁻¹ ile 2793 cm⁻¹ arasında elde edilmiştir. Ek-1 Çizelge E.1.7-E.1.9 ve Ek-2 Şekil E2.13-E2.18'de spektrumların yüksek frekans bölgesinde deneysel ve teorik şiddetler arasında bazı farklılıklar olduğu görülmektedir. Bu farklılıklar anharmoniklik ile açıklanabilir. Ayrıca hesaplamalar gaz fazında bulunan tek bir molekül için yapılırken deneysel veriler molekül içi ve moleküller arası etkileşimlerin varlığında elde edilmiştir. Bu farklılıklar hidrojen bağı nedeniyle oluşan etkileşimler ve Raman için kullanılan lazerden de kaynaklanmış olabilir (Bağlayan vd., 2014, s. 1654).

Makaslama, kıvırma, dalgalanma ve sallanmadan oluşan temel CH₂ titreşimleri 1600-800 cm⁻¹ bölgesinde beklenir (Vedal vd., 1976, s. 887). Bu titreşimler CH₂ dalgalanma, CH₂ kıvırma, CH₂ sallanma, CH₂ makaslama, CNH açı bükülme, CC veya CN gerilme titreşimlerinin kombinasyonlarından oluşmaktadır. Piperazin ve siklopentan gruplarının her ikisinden de kaynaklanan CH₂ makaslama titreşimi IR spektrumunda 1450 cm⁻¹'de, Raman spektrumunda ise 1458 cm⁻¹'de gözlenmiştir. IR spektrumunda 1388 cm⁻¹, 1369 cm⁻¹, 1354 cm⁻¹'de, Raman spektrumunda ise 1394 cm⁻¹, 1367 cm⁻¹, 1339 cm⁻¹, 1311 cm⁻¹'de gözlenen bandlar CNH bükülme titreşimlerine aittir ve bu modlar için teorik değerler 1389 cm⁻¹, 1374 cm⁻¹, 1335 cm⁻¹, 1311 cm⁻¹ olarak hesaplanmıştır. Piperazin halkasındaki CN gerilme titreşimi IR spektrumunda 1138 cm⁻¹, 1123 cm⁻¹, 1084 cm⁻¹'de, Raman spektrumunda ise 1129 cm⁻¹, 1080 cm⁻¹'de gözlenmiş olup bu moda ait teorik değerler 1137 cm⁻¹, 1128 cm⁻¹, 1097 cm⁻¹ olarak elde edilmiştir. Piperazin ve siklopentan gruplarından kaynaklanan CC gerilme titreşimi IR spektrumunda 889 cm⁻¹'de gözlenmiştir. Bu modların teorik değerleri sırasıyla 886 cm⁻¹ ve 889 cm⁻¹ olarak elde edilmiştir.

CC veya CN gerilme, CCC veya CCH açı bükülmesi ve bazı burulma modları 1000-500 cm⁻¹ bölgesinde baskın iken CCC veya CCN açı bükülme ve CCCN, CCNH, CCCH veya CCCC burulma modları düşük frekans bölgesinde gözlenir. Benzer sonuçlar hesaplamalarda da görülmüştür. Spektrumun düşük frekans bölgesindeki titreşim modları bazı iç koordanatların katkılarını içerir ve bunların işaretlemeleri iki iç koordinatın bire indirgeme yaklaşımına sahiptir.

Ek-1 Çizelge E1.7-E1.9 ve Ek-2 Şekil E2.13-E2.18 incelendiğinde deneysel ve teorik titreşim frekanslarının uyumlu olduğu görülmektedir. Deneysel titreşim frekanslarını karşılaştırabilmek amacıyla yapılan teorik hesaplamalara dayanarak gaz fazı, kloroform ve dimetilsülfoksit çözücü ortamları için çizilen korelasyon grafikleri

Şekil 7.14 ve 7.15'de verilmiştir. Deneysel ve teorik titreşim frekansları arasındaki korelasyon değerleri gaz fazı için 0,99711 (IR) ve 0,99929 (R), kloroform için 0,99699 (IR) ve 0,99933 (R), dimetilsülfoksit için 0,99692 (IR) ve 0,99934 (R) olarak bulunmuştur. Elde edilen sonuçlara göre B3LYP metodu ve 6-31++G(d,p) baz setinin 1cppp molekülünün titreşim frekansları için güvenilir sonuçlar verdiği söylenebilir.

Şekil 7.14. *Icppp molekülünün infrared titreşim frekansları için korelasyon grafikleri*

Şekil 7.14. (Devam) *lcppp molekülünün infrared titreşim frekansları için korelasyon grafikleri*

Şekil 7.15. *Icppp molekülünün Raman titreşim frekansları için korelasyon grafikleri*

Şekil 7.15. (Devam) 1 cppp molekülünün Raman titreşim frekansları için korelasyon grafikleri

Çözücü etkisi

Ek 1'deki Çizelge E.1.7-E.1.9 ve Ek-2 Şekil E2.13-E2.18 kullanılarak üç farklı ortamda 1cppp molekülü için titreşim işaretlemeleri birebir incelendiğinde birbiriyle uyumlu oldukları görülmektedir. Ortamın dielektrik sabitinin titreşim işaretlemeleri üzerinde büyük bir etkisi olduğundan hesaplanan teorik titreşim frekans değerlerinde değişimler meydana gelmiştir. Burada bazı önemli titreşim modları ele alınmıştır. Gaz fazından çözücü ortamına geçildiğinde NH ve CN bağ uzunluklarının arttığı görülmüştür. Bu durumda NH ve CN gerilme titreşim frekansları azalmalıdır. EK-1'deki Çizelge E1.7-E1.9 incelendiğinde 1cppp molekülü için gaz fazından çözücü ortamına geçildiğinde titreşim frekansları ayunluklarının azaldığı görülmektedir. Bu frekans kaymaları yüksek dielektrik

sabite sahip olan çözücü ortamında bulunan azot atomları üzerindeki pozitif karakterin artması şeklinde açıklanabilir.

Spektrumun yüksek ve düşük frekans bölgesinde gaz fazında hesaplanan titreşim şiddetleri deneysel değerler ile uyum içindedir. IR şiddetlerinin çözücü ortamında gaz fazına göre büyük oranda değişmesi beklenir ve bu çalışmada çözücü içerisindeki IR şiddetleri artmıştır. Ek-1 Çizelge E1.7-E1.9 ve Ek-2 Şekil E2.13-E2.18'de çözücü ortamında gaz fazına göre birçok mod için şiddetin arttığı görülmektedir. Çözücü ortamında IR şiddetleri gibi Raman şiddetlerinde de değişimler meydana gelmiştir. IR ve Raman şiddetleri için dimetilsülfoksit çözücüsü içerisindeki artış kloroform çözücüsü içerisindeki artışa göre daha fazladır.

lcppp molekülü için HOMO tüm karbon ve N1 atomları üzerinde yoğunlaşırken LUMO N4 atomu üzerinde yer almıştır. Üç farklı ortam için sınır moleküler orbitallerin atomik yerleşimleri, sınır moleküler orbital enerjileri ve enerji farkı Şekil 7.16-7.18'de verilmiştir.

Şekil 7.16. 1cppp molekülünün gaz fazında HOMO ve LUMO geçiş enerji şeması

Şekil 7.17. 1 cppp molekülünün kloroform içerisindeki HOMO ve LUMO geçiş enerji şeması

Şekil 7.18. 1cppp molekülünün dimetilsülfoksit içerisindeki HOMO ve LUMO geçiş enerji şeması

7.4. 2-Metilpiperazin Molekülü

7.4.1. Geometrik yapının incelenmesi

2mpp molekülünün ele alınan dört konformasyonunun gaz fazında, kloroform ve dimetilsülfoksit çözücüleri içerisinde B3LYP metodu 6-31++G(d,p) baz seti ile hesaplanan optimize edilmiş geometrilerinin Gibbs serbest enerjileri, bağıl kararlılıkları ve denge sabitleri Çizelge 7.10'da verilmiştir. Hesaplanan serbest enerjilere göre gaz fazında, polar bir çözücü olarak kloroform içerisinde ve polar olmayan biz çözücü olarak dimetilsülfoksit içerisinde e-e en kararlı formdur. Gaz fazında e-e formu a-e formuna göre 0,28 kcal/mol, e-a formuna göre 0,67 kcal/mol ve a-a formuna göre 1,22 kcal/mol enerji farkı ile daha kararlıdır. Buna göre 2mpp molekülü gaz fazında % 48 oranında e-e formunu, % 30 oranında a-e formunu, % 16 oranında e-a formunu, % 6 oranında a-a formunu tercih etmektedir. Kloroform çözücüsü içerisinde iken % 41 oranında e-e formunu, % 27 oranında a-e formunu, % 22 oranında e-a formunu, % 10 oranında a-a formunu tercih etmektedir. Dimetilsülfoksit çözücüsü içerisinde ise % 35 oranında a-a formunu, % 28 oranında a-e formunu, % 24 oranında e-a formunu ve % 13 oranında a-a formunu tercih etmektedir.

Ortam / Özellik	B3LYP/6-31++G(d,p)				
Nokta Grubu		C	2		
Konformasyon	e-a	e-e	a-e	a-a	
Gaz Fazı ΔG (Hartree) Bağıl kararlılık (δΔG;kcal/mol) Mol kesri (%)	-307,128302 0,67 16	-307,129376 0,00 48	-307,128931 0,28 30	-307,127420 1,22 6	
Kloroform ($\epsilon = 4,9$) ΔG (Hartree) Göreli kararlılık ($\delta \Delta G$;kcal/mol) Mol kesri (%)	-307,132918 0,38 22	-307,133529 0,00 41	-307,133130 0,25 27	-307,132231 0,81 10	
Dimetilsülfoksit (ϵ = 46,7) ΔG (Hartree) Göreli kararlılık ($\delta \Delta G$;kcal/mol) Mol kesri (%)	-307,135095 0,23 24	-307,135461 0,00 35	-307,135259 0,13 28	-307,134533 0,58 13	

Cizelge 7.10. 2mpp molekülünün konformasyon enerjileri

B3LYP metodu ile 6-31+++G(d,p) baz setinde hesaplanarak elde edilen bazı optimize geometrik parametreler (bağ uzunlukları, bağ ve dihedral açıları) Çizelge 7.11'de listelenmiştir. 2mpp molekülü için burada kullanılan atom numaralandırmaları Şekil 7.19'da verilmiştir. 2mpp molekülünün geometrik yapısı ile ilgili deneysel veriler literatürde yer almamaktadır. Bu nedenle teorik sonuçlar piperazin (Yokazeki and Kuchitsu, 1971, s. 2354) bileşiğinin deneysel verileri ile karşılaştırılmıştır. Gaz fazından çözücü ortamına geçildiğinde tüm parametrelerin değiştiği görülmüştür. 2mpp molekülünün gaz fazında e-e, e-a, a-e ve a-a formları için D(2;3;4;12) ve D(8;1;2;3) dihedral açılarının büyüklükleri sırasıyla -175°, -175°, -71°, -72° ve -178°, -73°, -178°, -73° olarak bulunmuştur.

Şekil 7.19. Atom numaraları ile birlikte 2mpp molekülünün moleküler yapısı

Parametre		Teori	k	
D × 1.11	D : : : :	e-e	771.0	
Bağ uzunlukları	Piperazin ^a	Gaz	Klrfrm	Dmso
N4-H12	=	1,015	1,016	1,017
N1-C6	1,467	1,467	1,470	1,471
N1-C2	1,467	1,475	1,478	1,479
N1-H8		1,016	1,017	1,017
C5-C6	1,540	1,528	1,528	1,527
C6-H16	1,110	1,104	1,103	1,103
C6-H15	1,110	1,096	1,095	1,095
C5-N4	1,467	1,466	1,468	1,469
C5-H13	1,110	1,095	1,095	1,095
C5-H14	1,110	1,106	1,106	1,106
N4-C3	1,467	1,466	1,468	1,469
C2-C3	1,540	1,538	1,538	1,538
C3-H10	1,110	1,095	1,095	1,095
C3-H11	1,110	1,105	1,105	1,105
C2-C7		1,541	1,540	1,540
C2-H9	1,110	1,098	1,098	1,098
C7-H17		1,097	1,096	1,096
C7-H18		1,093	1,093	1,093
C7-C19		1,097	1,096	1,096
Bağ açıları				
C2-N1-C6	109,0	114,3	113,8	113,7
N1-C2-C3	110,4	107,5	107,7	107,8
H9-C2-C7	109,1	108,1	107,9	107,8
C2-C3-N4	110,4	109,9	110,2	110,4
H10-C3-H11	109,1	108,2	108,0	107,9
C3-N4-C5	109,0	111,3	111,1	110,9
N4-C5-C6	110,4	108,6	108,8	108,9
H13-C5-H14	109,1	108,4	108,2	108,1
N1-C6-C5	110,4	109,0	109,2	109,3
H15-C6-H16	109,1	107,8	107,7	107,6
Dihedral açılar				
H8-N1-C2-C3		-178,0	-179,6	179,7
H8-N1-C6-C5		177,0	178,4	179,0
C2-C3-N4-C5		61,5	61,1	60,9
C6-C5-N4-H12		175,6	177,2	177,9
C2-C3-N4-H12		-175,0	-176,7	-177,5

Çizelge 7.11. 2mpp molekülünün optimize edilmiş bağ uzunlukları, bağ ve dihedral açıları

Kaynak: ^aYokazeki and Kuchitsu, 1971, s. 2354.

Parametre		Teorik		
Tarametre		a-e		
Bağ uzunlukları	Piperazin ^a	Gaz	Klrfrm	Dmso
N4-H12		1,015	1,016	1,016
N1-C6	1,467	1,470	1,473	1,474
N1-C2	1,467	1,479	1,482	1,484
N1-H8		1,018	1,019	1,019
C5-C6	1,540	1,534	1,533	1,533
C6-H16	1,110	1,096	1,096	1,096
C6-H15	1,110	1,096	1,095	1,095
C5-N4	1,467	1,465	1,467	1,469
C5-H13	1,110	1,096	1,096	1,096
C5-H14	1,110	1,110	1,109	1,108
N4-C3	1,467	1,465	1,467	1,469
C2-C3	1,540	1,544	1,543	1,543
C3-H10	1,110	1,096	1,096	1,096
C3-H11	1,110	1,109	1,108	1,107
C2-C7		1,534	1,533	1,534
C2-H9	1,110	1,097	1,097	1,097
C7-H17		1,096	1,096	1,096
C7-H18		1,093	1,093	1,093
C7-C19		1,094	1,094	1,095
Bağ açıları				
C2-N1-C6	109,0	113,5	113,2	113,2
N1-C2-C3	110,4	111,4	111,4	111,4
H9-C2-C7	109,1	107,9	107,9	107,8
C2-C3-N4	110,4	109,8	110,1	110,3
H10-C3-H11	109,1	107,6	107,6	107,6
C3-N4-C5	109,0	111,6	111,2	110,9
N4-C5-C6	110,4	108,6	108,8	108,9
H13-C5-H14	109,1	107,8	107,8	107,8
N1-C6-C5	110,4	113,3	113,3	113,3
H15-C6-H16	109,1	107,3	107,3	107,3
Dihedral açılar				
H8-N1-C2-C3		-73,0	-71,7	-71,3
H8-N1-C6-C5		72,1	70,7	70,2
C2-C3-N4-C5		61,2	61,2	61,2
C6-C5-N4-H12		175,4	177,1	177,9
C2-C3-N4-H12		-174,5	-176,2	-177,1

Çizelge 7.11. (Devam) 2mpp molekülünün optimize edilmiş bağ uzunlukları, bağ ve dihedral açıları

Kaynak: Yokazeki and Kuchitsu, 1971, s. 2354.

Darametro		Teoril	ζ.	
Tarametre		e-a		
Bağ uzunlukları	Piperazin ^a	Gaz	Klrfrm	Dmso
N4-H12		1,017	1,018	1,018
N1-C6	1,467	1,467	1,470	1,471
N1-C2	1,467	1,475	1,478	1,479
N1-H8		1,016	1,017	1,017
C5-C6	1,540	1,533	1,532	1,532
C6-H16	1,110	1,107	1,105	1,104
C6-H15	1,110	1,097	1,096	1,096
C5-N4	1,467	1,467	1,471	1,472
C5-H13	1,110	1,096	1,095	1,095
C5-H14	1,110	1,098	1,098	1,098
N4-C3	1,467	1,466	1,470	1,471
C2-C3	1,540	1,545	1,544	1,543
C3-H10	1,110	1,096	1,095	1,095
C3-H11	1,110	1,097	1,097	1,097
C2-C7		1,542	1,541	1,541
C2-H9	1,110	1,098	1,098	1,098
C7-H17		1,097	1,096	1,096
C7-H18		1,095	1,095	1,095
C7-C19		1,096	1,096	1,096
Bağ açıları				
C2-N1-C6	109,0	114,4	113,9	113,7
N1-C2-C3	110,4	107,6	107,7	107,8
H9-C2-C7	109,1	107,7	107,6	107,6
C2-C3-N4	110,4	114,6	114,6	114,5
H10-C3-H11	109,1	107,6	107,6	107,6
C3-N4-C5	109,0	111,6	111,4	111,3
N4-C5-C6	110,4	113,1	113,1	113,1
H13-C5-H14	109,1	107,7	107,7	107,7
N1-C6-C5	110,4	108,9	109,1	109,2
H15-C6-H16	109,1	107,2	107,2	107,2
Dihedral açılar				
H8-N1-C2-C3		-177,7	-179,2	-179,8
H8-N1-C6-C5		176,2	177,8	178,4
C2-C3-N4-C5		51,6	51,6	51,6
C6-C5-N4-H12		71,3	70,1	69,8
C2-C3-N4-H12		71,2	-69,9	-69,5

Çizelge 7.11. (Devam) 2mpp molekülünün optimize edilmiş bağ uzunlukları, bağ ve dihedral açıları

Kaynak: Yokazeki and Kuchitsu, 1971, s. 2354.

Product $a-a$ Bağ uzunlukları Piperazin ^s Gaz Klrfrm Dmso N4-H12 1,017 1,018 1,018 N1-C6 1,467 1,471 1,474 1,475 N1-C2 1,467 1,480 1,483 1,484 N1-H8 1,019 1,019 1,019 1,019 C5-C6 1,540 1,538 1,537 1,536 C6-H16 1,110 1,097 1,096 1,096 C5-N4 1,467 1,468 1,471 1,473 C5-H13 1,110 1,097 1,096 1,096 C5-H14 1,110 1,097 1,096 1,096 C3-H10 1,110 1,097 1,096 1,096 C3-H10 1,110 1,097 1,096 1,096 C3-H11 1,110 1,097 1,096 1,095 C2-T1 1,535 1,534 1,534 C2-H9 1,110 1,098 1,095 1,095	Daramatra		Teoril	κ.	
Bağ uzunluklarıPiperazin ^a GazKlrfrmDmsoN4-H121,0171,0181,018N1-C61,4671,4711,4741,475N1-C21,4671,4801,4831,484N1-H81,0181,0191,019C5-C61,5401,5381,5371,536C6-H161,1101,0971,0961,096C5-N41,4671,4681,4711,473C5-H131,1101,0971,0961,096C5-H141,1101,1001,1001,100N4-C31,4671,4671,4701,471C2-C31,5401,5491,5481,472C3-H101,1101,0971,0961,096C3-H111,1101,0971,0961,096C3-H111,1101,0981,0981,097C7-H171,0961,0951,095C7-H181,0961,0951,095C7-C191,0941,0941,094Bağ açıları1107,5107,6C2-C7109,1107,5107,6107,6C2-C3-N4110,4114,4114,4H10-C3-H11109,1107,0107,1N4-C5-C6110,4113,1113,1H13,1113,1113,1H13,2113,2113,2H13-C6-C572,370,6Dihedral açılar106,7106,8H8-N1-C2-C3-73,4-71,8H8-N1-C2-C5110,4 </td <td>r ai aillette</td> <td></td> <td>a-a</td> <td></td> <td></td>	r ai aillette		a-a		
N4-H121,0171,0181,018N1-C61,4671,4711,4741,475N1-C21,4671,4801,4831,484N1-H81,0181,0191,019C5-C61,5401,5381,5371,536C6-H161,1101,0971,0961,096C5-N41,4671,4681,4711,473C5-H131,1101,0971,0961,096C5-H141,1101,1011,1001,100N4-C31,4671,4671,4701,471C2-C31,5401,5491,5481,472C3-H101,1101,0971,0961,096C3-H111,1101,0071,0961,096C3-H111,1101,0971,0961,095C7-H171,0961,0951,095C7-H181,0961,0951,095C7-C191,0941,0941,094Bağ açıları1107,5107,6C2-C3-N4110,4111,6111,5H12-C5-C6110,4113,1113,1H13.C5-H14109,1107,0107,1N1-C6-C5109,0111,9111,6111,5N1-C2-C3-73,4-71,8-71,0H8-N1-C2-C3-73,4-71,8-71,0H8-N1-C2-C510,4113,3113,2H3.C5-C610,4113,3113,2H8-N1-C2-C572,370,669,9C2-C3-N4-C551,451,7	Bağ uzunlukları	Piperazin ^a	Gaz	Klrfrm	Dmso
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N4-H12		1,017	1,018	1,018
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N1-C6	1,467	1,471	1,474	1,475
N1-H81,0181,0191,019C5-C61,5401,5381,5371,536C6-H161,1101,0981,0981,097C6-H151,1101,0971,0961,096C5-N41,4671,4681,4711,473C5-H131,1101,0971,0961,096C5-H141,1101,1011,1001,100N4-C31,4671,4671,4701,471C2-C31,5401,5491,5481,472C3-H101,1101,0971,0961,096C3-H111,1101,0071,0961,096C2-C71,5351,5341,534C2-H91,1101,0981,098C7-H171,0961,0951,095C7-H181,0961,0951,095C7-C191,0941,0941,094Bağ açıları107,0107,5107,6C2-N1-C6109,0113,7113,3113,2N1-C2-C3110,4114,4114,4H10-C3-H11109,1107,0107,1D9,0111,9111,6111,5N4-C5-C6110,4113,1113,1H13-C5-H14109,1107,1107,3N1-C6-C5109,0111,9113,2H3-C6-C572,370,669,9Dihedral açılar106,7106,8106,9Dihedral açılar100,1100,7107,4H8-N1-C2-C3-73,4-71,8-71,0<	N1-C2	1,467	1,480	1,483	1,484
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-H8		1,018	1,019	1,019
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5-C6	1,540	1,538	1,537	1,536
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-H16	1,110	1,098	1,098	1,097
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-H15	1,110	1,097	1,096	1,096
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5-N4	1,467	1,468	1,471	1,473
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5-H13	1,110	1,097	1,096	1,096
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C5-H14	1,110	1,101	1,100	1,100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4-C3	1,467	1,467	1,470	1,471
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C3	1,540	1,549	1,548	1,472
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-H10	1,110	1,097	1,096	1,096
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3-H11	1,110	1,100	1,099	1,099
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C7		1,535	1,534	1,534
$\begin{array}{cccccccc} C7-H17 & 1,096 & 1,095 & 1,095 \\ C7-H18 & 1,096 & 1,095 & 1,095 \\ C7-C19 & 1,094 & 1,094 & 1,094 \\ \hline Bağ açıları & & & & & & \\ \hline C2-N1-C6 & 109,0 & 113,7 & 113,3 & 113,2 \\ N1-C2-C3 & 110,4 & 111,6 & 111,6 & 111,5 \\ H9-C2-C7 & 109,1 & 107,5 & 107,6 & 107,6 \\ C2-C3-N4 & 110,4 & 114,4 & 114,4 & 114,4 \\ H10-C3-H11 & 109,1 & 107,0 & 107,1 & 107,2 \\ C3-N4-C5 & 109,0 & 111,9 & 111,6 & 111,5 \\ N4-C5-C6 & 110,4 & 113,1 & 113,1 & 113,1 \\ H13-C5-H14 & 109,1 & 107,1 & 107,3 & 107,4 \\ N1-C6-C5 & 110,4 & 113,3 & 113,2 & 113,2 \\ H15-C6-H16 & 109,1 & 106,7 & 106,8 & 106,9 \\ \hline Dihedral açılar & & & & \\ \hline H8-N1-C2-C3 & -73,4 & -71,8 & -71,0 \\ H8-N1-C6-C5 & 51,4 & 51,7 & 51,8 \\ C6-C5-N4-H12 & 72,2 & 70,6 & 70,0 \\ C2-C3-N4-H12 & -71,7 & -70,0 & -69,4 \\ \hline \end{array}$	C2-H9	1,110	1,098	1,098	1,097
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7-H17		1,096	1,095	1,095
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7-H18		1,096	1,095	1,095
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C7-C19		1,094	1,094	1,094
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bağ açıları				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-N1-C6	109,0	113,7	113,3	113,2
$\begin{array}{cccccccccccccc} H9-C2-C7 & 109,1 & 107,5 & 107,6 & 107,6 \\ C2-C3-N4 & 110,4 & 114,4 & 114,4 & 114,4 \\ H10-C3-H11 & 109,1 & 107,0 & 107,1 & 107,2 \\ C3-N4-C5 & 109,0 & 111,9 & 111,6 & 111,5 \\ N4-C5-C6 & 110,4 & 113,1 & 113,1 & 113,1 \\ H13-C5-H14 & 109,1 & 107,1 & 107,3 & 107,4 \\ N1-C6-C5 & 110,4 & 113,3 & 113,2 & 113,2 \\ H15-C6-H16 & 109,1 & 106,7 & 106,8 & 106,9 \\ \hline Dihedral açılar & & & & & \\ H8-N1-C2-C3 & -73,4 & -71,8 & -71,0 \\ H8-N1-C6-C5 & 51,4 & 51,7 & 51,8 \\ C6-C5-N4-H12 & 72,2 & 70,6 & 70,0 \\ C2-C3-N4-H12 & -71,7 & -70,0 & -69,4 \\ \end{array}$	N1-C2-C3	110,4	111,6	111,6	111,5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H9-C2-C7	109,1	107,5	107,6	107,6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C3-N4	110,4	114,4	114,4	114,4
$\begin{array}{cccccccc} C3-N4-C5 & 109,0 & 111,9 & 111,6 & 111,5 \\ N4-C5-C6 & 110,4 & 113,1 & 113,1 & 113,1 \\ H13-C5-H14 & 109,1 & 107,1 & 107,3 & 107,4 \\ N1-C6-C5 & 110,4 & 113,3 & 113,2 & 113,2 \\ H15-C6-H16 & 109,1 & 106,7 & 106,8 & 106,9 \\ \hline \\ Dihedral açılar & & & & & & & \\ \hline \\ H8-N1-C2-C3 & & -73,4 & -71,8 & -71,0 \\ H8-N1-C6-C5 & & 72,3 & 70,6 & 69,9 \\ C2-C3-N4-C5 & & 51,4 & 51,7 & 51,8 \\ C6-C5-N4-H12 & & 72,2 & 70,6 & 70,0 \\ C2-C3-N4-H12 & & -71,7 & -70,0 & -69,4 \\ \hline \end{array}$	H10-C3-H11	109,1	107,0	107,1	107,2
$\begin{array}{c cccccc} N4-C5-C6 & 110,4 & 113,1 & 113,1 & 113,1 \\ H13-C5-H14 & 109,1 & 107,1 & 107,3 & 107,4 \\ N1-C6-C5 & 110,4 & 113,3 & 113,2 & 113,2 \\ H15-C6-H16 & 109,1 & 106,7 & 106,8 & 106,9 \\ \hline \\ \hline \\ \hline \\ H8-N1-C2-C3 & -73,4 & -71,8 & -71,0 \\ H8-N1-C6-C5 & 72,3 & 70,6 & 69,9 \\ C2-C3-N4-C5 & 51,4 & 51,7 & 51,8 \\ C6-C5-N4-H12 & 72,2 & 70,6 & 70,0 \\ \hline \\ \hline \\ C2-C3-N4-H12 & -71,7 & -70,0 & -69,4 \\ \hline \end{array}$	C3-N4-C5	109,0	111,9	111,6	111,5
H13-C5-H14109,1107,1107,3107,4N1-C6-C5110,4113,3113,2113,2H15-C6-H16109,1106,7106,8106,9Dihedral açılar-73,4-71,8-71,0H8-N1-C2-C3-73,4-71,8-71,0H8-N1-C6-C572,370,669,9C2-C3-N4-C551,451,751,8C6-C5-N4-H1272,270,670,0C2-C3-N4-H12-71,7-70,0-69,4	N4-C5-C6	110,4	113,1	113,1	113,1
N1-C6-C5110,4113,3113,2113,2H15-C6-H16109,1106,7106,8106,9Dihedral açılar-73,4-71,8-71,0H8-N1-C2-C3-73,4-71,8-71,0H8-N1-C6-C572,370,669,9C2-C3-N4-C551,451,751,8C6-C5-N4-H1272,270,670,0C2-C3-N4-H12-71,7-70,0-69,4	H13-C5-H14	109,1	107,1	107,3	107,4
H15-C6-H16109,1106,7106,8106,9Dihedral açılar-73,4-71,8-71,0H8-N1-C2-C3-73,4-71,8-71,0H8-N1-C6-C572,370,669,9C2-C3-N4-C551,451,751,8C6-C5-N4-H1272,270,670,0C2-C3-N4-H12-71,7-70,0-69,4	N1-C6-C5	110,4	113,3	113,2	113,2
Dihedral açılarH8-N1-C2-C3-73,4-71,8-71,0H8-N1-C6-C572,370,669,9C2-C3-N4-C551,451,751,8C6-C5-N4-H1272,270,670,0C2-C3-N4-H12-71,7-70,0-69,4	H15-C6-H16	109,1	106,7	106,8	106,9
H8-N1-C2-C3-73,4-71,8-71,0H8-N1-C6-C572,370,669,9C2-C3-N4-C551,451,751,8C6-C5-N4-H1272,270,670,0C2-C3-N4-H12-71,7-70,0-69,4	Dihedral açılar				
H8-N1-C6-C572,370,669,9C2-C3-N4-C551,451,751,8C6-C5-N4-H1272,270,670,0C2-C3-N4-H12-71,7-70,0-69,4	H8-N1-C2-C3		-73,4	-71,8	-71,0
C2-C3-N4-C551,451,751,8C6-C5-N4-H1272,270,670,0C2-C3-N4-H12-71,7-70,0-69,4	H8-N1-C6-C5		72,3	70,6	69,9
C6-C5-N4-H1272,270,670,0C2-C3-N4-H12-71,7-70,0-69,4	C2-C3-N4-C5		51,4	51,7	51,8
C2-C3-N4-H12 -71,7 -70,0 -69,4	C6-C5-N4-H12		72,2	70,6	70,0
	C2-C3-N4-H12		-71,7	-70,0	-69,4

Çizelge 7.11. (Devam) *2mpp molekülünün optimize edilmiş bağ uzunlukları, bağ ve dihedral açıları*

Kaynak: Yokazeki and Kuchitsu, 1971, s. 2354.

2mpp molekülünün e-e, e-a, a-e ve a-a formlarının B3LYP metodu ile 6-31++G(d,p) baz setinde hesaplanan ısı kapasitesi, sıfır nokta enerjisi, entropi gibi bazı termodinamik parametreleri Çizelge 7.12'de verilmiştir. Sıfır nokta titreşim enerjisindeki değişimler önemsenmeyecek kadar küçüktür. 2mpp molekülünün toplam enerjisi ve entropisindeki değişimler oda sıcaklığında ele alınmıştır. Dipol momentin çözücü ortamında gaz fazına göre daha büyük olması beklenir. Bu durum Çizelge 7.12'de görülmektedir. Dipol moment ortamın dielektrik sabiti arttıkça artmakta ve bu artış gaz

ile polar olmayan çözücü ortamında % 13 ile % 37 arasında değişmekte iken gaz ile polar çözücü ortamında % 32 ile % 71 arasında değişmiştir.

Parametreler e-e Klrfm Dmso Gaz Termal toplam enerji, (kcal/mol) 114,534 114,450 114,436 Titreșim enerjisi, (kcal/mol) 112,756 112,672 112,658 Sıfir nokta titreşim enerjisi, (kcal/mol) 110,151 110,145 110,239 Entropi, (cal/mol K) 80,088 80,139 80,095 Isı kapasitesi, (cal/mol K) 27,073 27,097 27,101 Dipol moment (Debye) 0,164 0,186 0,267

Çizelge 7.12. 2mpp molekülünün için bazı termodinamik parametreleri

Çizelge 7.12. (Devam) 2mpp molekülünün bazı termodinamik parametreleri

Parametreler		a-e	
	Gaz	Klrfm	Dmso
Termal toplam enerji, (kcal/mol)	114,532	114,530	114,525
Titreșim enerjisi, (kcal/mol)	112,755	112,752	112,747
Sıfır nokta titreşim enerjisi, (kcal/mol)	110,249	110,241	110,236
Entropi, (cal/mol K)	80,037	80,116	80,062
Isı kapasitesi, (cal/mol K)	27,037	27,046	27,103
Dipol moment (Debye)	1,936	2,268	2,560

Çizelge 7.12. (Devam) 2mpp molekülünün bazı termodinamik parametreleri

Parametreler		e-a	
	Gaz	Klrfm	Dmso
Termal toplam enerji, (kcal/mol)	114,571	114,559	114,533
Titreșim enerjisi, (kcal/mol)	112,793	112,781	112,755
Sıfir nokta titreşim enerjisi, (kcal/mol)	110,289	110,264	110,222
Entropi, (cal/mol K)	80,015	80,209	80,115
Isı kapasitesi, (cal/mol K)	27,100	27,141	27,228
Dipol moment (Debye)	1,982	2,524	2,821

Çizelge 7.12. (Devam)	2mpp	molekülünün	bazı	termodinamik	parametrel	leri
-----------------------	------	-------------	------	--------------	------------	------

Parametreler		a-a	
	Gaz	Klrfm	Dmso
Termal toplam enerji, (kcal/mol)	114,610	114,590	114,532
Titreșim enerjisi, (kcal/mol)	112,833	112,813	112,754
Sıfır nokta titreşim enerjisi, (kcal/mol)	110,318	110,292	110,217
Entropi, (cal/mol K)	80,178	80,255	80,144
Isı kapasitesi, (cal/mol K)	27,100	27,135	27,248
Dipol moment (Debye)	0,062	0,085	0,106

7.4.2. Titreşim Frekanslarının İncelenmesi

2mpp molekülünün titreşim işaretlemeleri ile ilgili bir çalışma literatürde yer almamaktadır. 2mpp molekülünün e-e formu için gaz fazında, kloroform ve dimetilsülfoksit çözücüleri içerisindeki ölçülen ve hesaplanan titreşim frekansları, titreşim işaretlemeleri ve titreşim şiddetleri Ek-1 Çizelge E7.10-E7.12'de verilmektedir. Molekülün deneysel ve teorik titreşim spektrumları ise Ek-2 Şekil E2.19-E2.24'de verilmektedir.

2mpp molekülü 19 atomlu bir molekül olduğundan 51 normal titreşim moduna sahiptir. Molekülün en kararlı formu C₁ nokta grubuna aittir ve sadece E özdeşlik simetri elemanı veya işlemine sahiptir. C₁ nokta grubunun e-e formundaki molekülün titreşim modlarının işaretlemeleri VEDA 4 programı ile yapılmış olup Ek-1 Çizelge E1.10-E1.12'da verilmiştir. Bu hesaplamalara göre 2mpp molekülünün 5 normal titreşim modu 400 cm⁻¹'in altında iken 46 normal titreşim modu 4000 cm⁻¹ ile 400 cm⁻¹ arasındaki bölgede yer almaktadır. Molekülün deneysel spektrumu alkali halojenür disk haline getirme, karışım haline getirme ve film haline getirme yöntemleri ile alınamadığından ATR yöntemi kullanılmıştır. ATR yöntemi ile FIR bölgesinde spektrum kaydedilemediği için molekülün FIR bölgesindeki deneysel verileri verilememiştir.

Spektrumların yüksek frekans bölgesinde gözlenen NH gerilme bandları piperazin grubundan kaynaklanmaktadır. Serbest piperazin molekülünün NH ekvatoryel konformasyonu (lone pair axial) IR spektrumunda 3314 cm⁻¹'de bir omuz ile birlikte 3351 cm⁻¹'de bir banda sahiptir (El-Gogary and Soliman, 2001, s. 2652). 2mpp molekülünün NH bandları IR ve Raman spektrumlarında sırasıyla 3206 ve 3207 cm⁻¹'de omuz olarak gözlenen bandlarla birlikte 3221 ve 3230 cm⁻¹'de görülmüştür. 2mpp molekülünün CH₂ simetrik ve asimetrik gerilme titreşimleri 2952 cm⁻¹ ve 2719 cm⁻¹ arasında gözlenmiş iken bu modlara ait teorik değerler 2989 cm⁻¹ ve 2805 cm⁻¹ arasında bulunmuştur. İnfrared spektrumunda 2899 ve 2893 cm⁻¹'de gözlenen band CH₃ simetrik gerilme titreşiminden kaynaklanmaktadır (Krishnakumar and Seshadri, 2007, s. 837). CH₃ simetrik gerilme titreşimi infrared spektrumunda 2832 ve 2817 cm⁻¹'de, Raman'da ise 2824 ve 2770 cm⁻¹'de gözlenmiştir. CH₃ asimetrik gerilme titreşimi infrared spektrumunda 2968 ve 2953 cm⁻¹'de gözlenmiştir. Spektrumunda 2964 ve 2952 cm⁻¹'de, Raman'da ise 2968 ve 2953 cm⁻¹'de gözlenmiştir. Spektrumunda 2964 ve 2952 cm⁻¹'de, Raman'da ise 2968 ve 2953 cm⁻¹'de gözlenmiştir.

açıklanabilir. Ayrıca bu farklar molekül içi ve moleküller arası hidrojen bağları ile Raman için kullanılan lazerden kaynaklanmış olabilir.

Makaslama, kıvırma, dalgalanma ve sallanmadan oluşan temel CH₂ titreşimleri 1600-1800 cm⁻¹ bölgesinde meydana gelir (Vedal vd., 1976, s. 887). Bu titreşimler CH₂ dalgalanma, CH₂ kıvırma, CH₂ sallanma, CH₂ makaslama, CNH açı bükülme, CC veya CN gerilme titreşimlerinin birleşiminden oluşmaktadır. Piperazin ve metil grubundan kaynaklanan CH₂ makaslama modu IR spektrumunda 1452 ve 1443 cm⁻¹'de, Raman spektrumunda ise 1452 ve 1432 cm⁻¹'de gözlenmiştir. CC ve NC gerilme modları IR spektrumunda 843 ve 793 cm⁻¹'de, Raman spektrumunda ise 858 ve 795 cm⁻¹'de gözlenmiştir. CCC veya CCH açı bükülme ve bazı burulma modları 1000-500 cm⁻¹ bölgesinde baskındır. Ayrıca CCC veya CCN açı bükülme ve CCCN, CCNH veya CCCC burulma modları düşük frekans bölgesinde gözlenir. Benzer durumlar hesaplama sonuçlarında da elde edilmiştir. Spektrumun düşük frekans bölgesinde gözlenen titreşim modları bazı iç koordinatların katkılarını içerir ve bunların işaretlemeleri iki iç koordinatın bire indirgeme yaklaşımına sahiptir.

Ek-1 Çizelge E1.10-E1.12 ve EK-2 Şekil E2.19-E2.24 incelendiğinde deneysel ve teorik titreşim frekans değerlerinin birbiri ile uyumlu oldukları görülmüştür. Deneysel değerlerin teorik değerler ile uyumlarını inceleyebilmek amacıyla korelasyon grafikleri çizilerek Şekil 7.20 ve 7.21'da verilmiştir. Deneysel ve teorik titreşim frekansları için korelasyon değerleri gaz fazında 0,99681 (IR) ve 0,99869 (R), kloroform çözücü ortamında 0,99681 (IR) ve 0,99877 (R), dimetilsülfoksit çözücü ortamında ise 0,99684 (IR) ve 0,9988 (R) olarak bulunmuştur. Elde edilen bu sonuçlara göre B3LYP/6-31++G(d,p) baz setinin 2mpp molekülünün titreşim spektrumu için güvenilir sonuçlar verdiği söylenebilir.

Şekil 7.20. 2mpp molekülünün infrared titreşim frekansları için korelasyon grafikleri

Şekil 7.21. 2mpp molekülünün Raman titreşim frekansları için korelasyon grafikleri

2mpp molekülünde üç farklı ortam için sınır moleküler orbitallerin atomik yerleşimleri, sınır moleküler orbital enerjileri ve enerji farkı Şekil 7.22-7.24'de verilmiştir. 2mpp molekülünde HOMO bütün karbon atomları, N1 ve N4 atomları üzerinde yer alırken LUMO N4 atomuna hakimdir.

Şekil 7.22. 2mpp molekülünün gaz fazında HOMO ve LUMO geçiş enerji şeması

Şekil 7.23. 2mpp molekülünün kloroform içerisindeki HOMO ve LUMO geçiş enerji şeması

Şekil 7.24. 2mpp molekülünün dimetilsülfoksit içerisindeki HOMO ve LUMO geçiş enerji şeması

7.5. Hoffmann Tipi Konak ve Konak-Konuk Bileşiklerindeki Frekans Kaymalarının İncelenmesi

7.5.1. 2-Metilpiperazin Molekülünün Frekans Kaymalarının İncelenmesi

2mpp ligand molekülü kullanılarak elde edilen konak ve konak-konuk bileşiklerinin infrared spektrumlarında 2mpp ligand molekülüne ait titreşim frekansları serbest 2mpp molekülünün titreşim frekansları ile karşılaştırılmış ve Ek-1 Çizelge E1.13'de verilmiştir. Ayrıca konak ve konak-konuk bileşiklerinin infrared ve Raman spektrumları Ek-2 Şekil E2.25-E2.28'de görülmektedir.

Bu çalışmada ligand olarak kullanılan 2mpp molekülünün titreşim frekansları ve bu molekül kullanılarak elde edilen konak, konak-konuk bileşiğinin titreşim frekansları ile karsılastırıldığında yüksek ve düsük frekansa kaymalar olduğu görülmüstür. Serbest 2mpp molekülünün infrared spektrumunda 3221 ve 3206 cm⁻¹'de, Raman spektrumunda ise 3230 ve 3207 cm⁻¹'de gözlenen titreşim modlarından ilki NH₂ asimetrik gerilme diğeri ise NH₂ simetrik gerilme titresimine aittir. Elde edilen konak ve konak-konuk bileşiklerinin infrared ve Raman spektrumlarında asimetrik NH2 gerilme titreşimi ile simetrik NH2 gerilme titreşimi düşük frekans bölgesinde gözlenmiştir. Ayrıca konak ve konak-konuk bileşiklerindeki CH₂ gerilme frekansları da serbest 2mpp molekülüne göre yüksek frekans bölgesine kaymıştır. Meydana gelen bu frekans kaymalarının nedeni ise 2mpp molekülünün azot uçlarından M (Cd) metal atomlarına bağlanmasıyla oluşan indüktif etki sonucunda N-H bağının zayıflaması, C-H bağının ise güçlenmesidir. Bu çalışmada gözlenen frekans kaymalarının piperazin ve türev molekülleri ile elde edilen Hoffmann tipi konak ve konak-konuk bilesiklerindeki kaymalarla uyumlu olduğu görülmüştür (Kantarcı, Sertbakan and Kasap, 2005, s. 589; Parlak, 2009, s. 87). Bu önemli kaymalar dışında gözlenen küçük dalga sayılı kaymalar ise 2mpp ligand molekülünün koordinasyon sonucu çevresini değiştirmesinden kaynaklanmaktadır.

7.5.2. [M-Ni(CN)4][∞] Polimerik Yapı Titreşimleri

Ni(CN)₄⁻² iyonu D_{4h} simetrisine sahip olan kare düzlemsel bir yapıya sahiptir. Nikel atomu köşegenlerin kesişim merkezinde, azot atomları karelerin köşelerinde ve karbon atomları da nikel ve azot atomları arasında köşegenlerin üst kısmında bulunur.

2mpp ligand molekülü kullanılarak elde edilen konak ve konak-konuk bileşiklerinin infrared ve Raman spektrumlarında Ni(CN)₄⁻² iyonuna ait olan temel titreşim frekansları ve işaretlemeleri McCullough ve ark. (McCullough, Jones, and

Crosby, 1960, s. 938) işaretlemelerine göre yapılmıştır. Buna göre katı haldeki $Na_2Ni(CN)_4$ tuzundaki $Ni(CN)_4^{-2}$ iyonu için yapılan işaretlemeler kullanılmıştır. Bu tuzlardaki $Ni(CN)_4^{-2}$ iyonları, Na^+ veya K⁺ katyonlarıyla bağlı olmadığı için serbest haldeki D_{4h} simetrisini korumaktadır.

Ni(CN)₄⁻² iyonunun v(CN) titreşim bandı elde edilen konak ve konak-konuk bileşiklerinin infrared spektrumlarında şiddetli, orta ve keskin bandlar olarak gözlenmiştir. Ni(CN)₄⁻² iyonunun infrared spektrumunda 2132 cm⁻¹'de belirlenen v(CN) gerilme titreşimi elde edilen konak ve konak-konuk bileşiğinde sırasıyla 13-20 cm⁻¹ yüksek frekans bölgesine kaymıştır. Ayrıca Çizelge 7.13'de görüldüğü gibi Ni(CN)₄⁻² iyonunun Raman aktif v₁(CN), A_{1g} ve v₄(CN), B_{1g} gerilme titreşimleri 2149 ve 2141 cm⁻¹'de meydana gelmiştir. Konak ve konak-konuk bileşiklerinde ise bu titreşimler 17-18 cm⁻¹ yüksek frekans bölgesine kaymıştır. CN grubunun Cd metal atomuna azot ucundan bağlanması sonucu C = N bağındaki çiftlenim v(CN) gerilme titreşiminin yüksek frekans bölgesine kaymasına sebep olur. Ni(CN)₄⁻² iyonunun (CN) gerilme titreşim bandının elde edilen konak ve konak-konuk bileşiklerinde yüksek frekans bölgesine kayması Ni(CN)₄⁻² iyonunun azot uçlarından Cd metal atomuna bağlanarak [Cd-Ni(CN)4]_∞ polimerik tabakalarını oluşturduklarını kanıtlar.

Çizelge 7.13. Elde edilen konak ve konak-konuk bileşiklerindeki $Ni(CN)_4^{-2}$ iyonunun titreşim dalga sayıları.

^a İşaretleme	^a Na ₂ Ni(CN) ₄	Cd-Ni-2mpp	Cd-Ni-2mpp-Bz
$v_1(CN), A_{1g}$	(2149)	(2167 s)	(2166) s
v4(CN), B1g	(2141)	(2158 s)	-
v8(CN), Eu	2132	2145 vs	2152 vs
v9(NiC),Eu	543	544 vw	542 vw
δ (NiCN), E _u	433	430 vs	424 vs

Kaynak: McCullough, Jones and Crosby, 1960, s. 935.

v, çok; s, güçlü; m, orta; w, zayıf. Parantez içindeki veriler Raman bandlarını göstermektedir.

7.5.3. Konuk Molekülün Titreşimleri

Serbest benzen konuk molekülünün temel titreşimleri, simetri türleri ve bu molekül ile elde edilen konak-konuk bileşiğinin infrared ve Raman spektrumlarında kaydedilen titreşim dalga sayıları Çizelge 7.14'de verilmiştir.

İşaretleme ^a	Sıvı benzen ^a		Cd-Ni-2mpp-n	Cd-Ni-2mpp-nG		
			G=benzen			
	IR	Raman	IR	Raman		
$v_8 + v_{19}$	3075	3062	3086 w	3077 vw		
$\nu_{20}E_{1u}$	3073	-	-	-		
$\nu_{13} B_{1u}$	3048	3046	3069 w	3045 w		
$\nu_5 + \nu_5 E_{1u}$	1955	-	1967 w	-		
$\nu_{10+}\nu_{17}$	1815	-	1827 w	-		
$\nu_{19} E_{1u}$	1479	-	1477 vs	-		
$\nu_{14} B_{2u}$	1309	-	1313 vw	-		
$\nu_{15} B_{2u}$	1149	-	1150 w	-		
$\nu_{18}E_{2u}$	1036	-	obsc.	-		
$\nu_{17} E_{2u}$	966	992	obsc.	obsc.		
$\nu_{11} \; A_{2u}$	670	-	683 vs	-		

Çizelge 7.14. Elde edilen konak-konuk bileşiğindeki benzenin titreşim dalga sayıları

Kaynak: ^aPainter and Koening, 1977, s. 1014.

v, çok; s, şiddetli; m, orta; w, zayıf; obsc., ligand tarafından örtüldü.

Çizelge 7.14 incelendiğinde konuk molekül benzenin serbest haldeki infrared ve Raman titreşim frekansları ile konak-konuk bileşiğindeki titreşim frekansları arasında çok büyük farklılıklar olmadığı gözlenmiştir. Meydana gelen küçük frekans kaymalarına konak örgüde bulunan 2mpp ligand molekülünün azot ucuna bağlı olan hidrojen atomları ile benzen halka düzleminin alt ve üstünde yer alan π elektronları arasındaki zayıf hidrojen bağının sebep olduğu söylenebilir. Konuk moleküllerin titreşim dalga sayılarında meydana gelen önemsiz kaymalar konak-konuk etkileşiminin olmadığını gösterir.

8. SONUÇLAR

1cbpp, 1bpp, 1cppp ve 2mpp moleküllerinin deneysel ve teorik titreşim incelemeleri kuantum mekaniksel hesaplamalar ve titreşim spektroskopisi yardımıyla yapılmıştır. Ayrıca 2mpp ligand molekülü kullanılarak konak ve konak-konuk bileşikleri elde edilmiştir. Elde edilen sonuçlar şu şekilde özetlenebilir:

- i. Gaz fazı ve çözücü ortamında yapılan hesaplama sonuçlarından incelenen moleküller için e-e formunun en kararlı konfomasyon olduğu görülmüştür. 1cbpp, 1bpp ve 1cppp molekülleri için a-a ve e-a formlarının enerjileri en kararlı form olan e-e formuna göre 2 kcal/mol'den daha büyük olduğu için göreli mol kesirleri ihmal edilebilir. Aynı durum kloroform ve dimetilsülfoksit çözücü ortamlarında da elde edildiği için konformasyonel bariyer enerjisinin çözücüye bağlı olmadığı görülmektedir.
- ii. Çözücü ortamında incelenen moleküllerin geometrik parametrelerinde değişiklik olduğu görülmektedir.
- iii. Teorik ve deneysel titreşim frekanslarının birbiri ile uyumlu olduğu görülmektedir. Elde edilen veriler kullanılarak çizilen korelasyon grafiklerinden 1cbpp molekülü için korelasyon değerleri, gaz fazı için 0.99936 (IR) ve 0,99942 (R), kloroform için 0,99932 (IR) ve 0,99939 (R), dimetilsülfoksit için 0,99928 (IR) ve 0,99935 (R) olarak bulunmuştur. 1bpp molekülü için korelasyon değerleri gaz fazı için 0,99755 (IR) ve 0,99975 (R), kloroform için 0,99741 (IR) ve 0,99975 (R), dimetilsülfoksit için 0,9975 (R), dimetilsülfoksit için 0,9975 (R), olarak hesaplanmıştır. 1cppp molekülü için korelasyon değerleri gaz fazı için 0,99711 (IR) ve 0,99929 (R), kloroform için 0,99699 (IR) ve 0,99933 (R), dimetilsülfoksit için 0,99692 (IR) ve 0,99934 (R) olarak elde edilmiştir. 2mpp molekülü için korelasyon değerleri, gaz fazında 0,99681 (IR) ve 0,99869 (R), kloroform çözücü ortamında 0,99681 (IR) ve 0,99877 (R), dimetilsülfoksit çözücü ortamında ise 0,99684 (IR) ve 0,9988 (R) olarak ortaya çıkmıştır. Elde edilen bu sonuçlara göre B3LYP/6-31++G(d,p) baz setinin 1cbpp, 1bpp, 1cppp ve 2mpp molekülünün titreşim spektrumu için güvenilir sonuçlar verdiği söylenebilir.
- iv. Ortamın dielektrik sabiti arttıkça dipol moment artmakta ve titreşim frekanslarında kaymalar meydana gelmektedir. Bu kaymaların polar çözücüde daha fazla olduğu görülmektedir.
- v. Titreşim şiddetleri üzerinde çözücünün etkili olduğu ve ortamın dielektrik sabiti arttıkça şiddetin de arttığı görülmektedir.

- vi. 1cbpp molekülünde HOMO, bütün karbon atomları ve N15 atomu üzerinde yer alırken LUMO N13 atomuna hakimdir. 1bpp molekülünde HOMO, karbon atomları ve piperazinin azot atomları üzerinde yoğunlaşırken ve LUMO N4 atomu üzerinde yer almıştır. 1cppp molekülünde HOMO tüm karbon ve N1 atomları üzerinde yoğunlaşırken LUMO N4 atomu üzerinde yer almıştır. 2mpp molekülünde HOMO bütün karbon atomları, N1 ve N4 atomları üzerinde yer alırken LUMO N4 atomuna hakimdir.
- vii. HOMO LUMO enerjilerinin farkı yani enerji geçiş aralıkları incelendiğinde incelenen moleküllerin yalıtkan olduğu sonucuna ulaşılır (Said, E., 2009, s. 11). Buna göre molekülleri yalıtkanlıklarına göre en yalıtkandan başlayarak kıyasladığımızda sıralamanın 1cbpp, 1bpp, 1cppp şeklinde olduğu görülmektedir.
- viii. Ele alınan moleküllerin konformasyon enerjileri incelendiğinde en düşük enerjiye sahip olan yani en kararlı olan molekülün 1cppp olduğu görülmektedir. Moleküllerin kararlılıklarını en kararlıdan daha az kararlı olana göre kıyasladığımızda 1cppp, 1bpp, 1cbpp şeklinde sıralandığı görülmektedir.
- ix. HOMO LUMO ve konformasyon enerji sonuçlarına göre 1cbpp, 1bpp ve 1cppp molekülleri için en kararlı olan molekülün yalıtkanlığı en yüksek olan molekül olduğu sonucuna ulaşılmıştır.
- x. 2mpp ligand molekülü kullanılarak elde edilen Hoffmann tipi konak ve konak-konuk bileşiklerinde 2mpp ligand molekülünün infrared ve Raman spektrumlarında NH₂ gerilme titreşimlerinde meydana gelen düşük frekans bölgesine kaymalar ve CH₂ gerilme frekanslarında meydana gelen yüksek frekans bölgesine kaymaların sebebi 2mpp molekülünün azot uçlarından Cd metal atomlarına bağlanmasıyla oluşan indüktif etki sonucunda N-H bağının zayıflaması, C-H bağının ise güçlenmesidir. Ayrıca Ni(CN)4⁻² iyonunun (CN) gerilme titreşim bandının elde edilen konak ve konak-konuk bileşiklerinde yüksek frekans bölgesine kayması Ni(CN)4⁻² iyonunun azot uçlarından Cd metal atomuna bağlanarak [Cd-Ni(CN)4]∞ polimerik tabakalarını oluşturduklarını kanıtlar. Benzen konuk molekülünde meydana gelen küçük frekans kaymalarına ise konak örgüde bulunan 2mpp ligand molekülünün azot ucuna bağlı olan hidrojen atomları ile benzen halka düzleminin alt ve üstünde yer alan π elektronları arasındaki zayıf hidrojen bağının sebep olduğu söylenebilir. Elde edilen bileşikler Hofmann tipi konak ve konak-konuk bileşiklerine yeni birer örnekleridir.

KAYNAKÇA

- Alver, Ö., Parlak, C., Şenyel, M., (2007). FT-IR and NMR investigation of 1phenylpiperazine: A combined experimental and theoretical study. *Spectrochim. Acta A*, 67, 793–801.
- Alver, Ö., Parlak, C. (2010). Vibrational spectroscopic investigation and conformational analysis of 1-cyclohexylpiperazine. J. Mol. Struct., 975, 85–92.
- Alver, Ö., Parlak, C. (2010). Vibrational spectroscopic investigation and conformational analysis of 1-pentylamine: A comparative density functional study. J. Theor. Comput. Chem., 9, 667–685.
- Alver, Ö., Parlak, C., (2010), DFT, FT-Raman, FT-IR, liquid and solid state NMR studies of 2,6-dimethoxyphenylboronic acid. *Vibrational Spectroscopy*, 54, 1-9.
- Atwood J.L., Davies J.E.D., Mac Nicol D.D. (1984). Structural aspects of inclusion compounds formed by organic host lattices, inclusion compounds physical properties and applications, Vol. 2-3. New York: Academic Press.
- Averill, B., Eldredge, P. (2011). *General Chemistry: Principles, Patterns and Applications*. USA: Saylor Foundation.
- Aytekin Aydın, M.T. (2005), Hofmann-cba-tipi bazı konak ve konak-konuk bileşiklerinin titreşim spektroskopik ve gravimetrik yöntem ile incelenmesi, Doktora Tezi, Eskişehir: Anadolu Üniversitesi.
- Baiji, A.C, Kim, S.H, Markovitz B, Trovato, R., Tangallapaly, R., Anderson, M.B., Wettstein, D., Shenderovich, M., Vanecko, J.A. (2010). Therapeutic compounds and their use in cancer. U.S. Patent, No: 0016586 A1.
- Bağlayan, Ö., Kaya, M.F., Parlak, C., Şenyel, M. (2012). DFT, FT-Raman and FT-IR investigations of 1-cyclobutylpiperazine. Spectrochim. Acta A, 90, 109-117.
- Bağlayan, Ö., Keşan, G., Parlak, C., Alver, Ö., Şenyel, M. (2014). Vibrational Investigation of 1-Cyclopentylpiperazine: A Combined Experimental and Theoretical Study. Sci. China Phys. Mech. Astronomy, 57, 1654–1661.
- Bağlayan, Ö., Kaya, M.F., Güneş, E., Şenyel, M. (2016). Vibrational spectra, DFT calculations, conformational stabilities and assignments of the fundamentals of the 1-butylpiperazine. *Journal of Molecular Structure*, 1122, 324-330.
- Ball, D.W. (2001). The Basics of Spectroscopy. USA: Spie Press.
- Banwell, C.B., McCash, E.M. (1994). *Fundamentals of molecular spectroscopy*. New-Delhi: McGraw-Hill.
- Bazin-Lee, H., Biggadike, K., Coe, D.M., Lewell, X.Q., Mitchell, C.J., Trivedi, N., (2011). Purine derivatives for use in the treatment of allergic, inflammatory and infectious diseases. U.S. Patent, No:0135671.
- Becke, A.D. (1993). Density-functional thermochemistry; III. The role of exact exchange. *J. Chem. Phys.*, 98, 5648-5652.

- Brenner, L.M., Loev, B., (1975). Pharmaceutical compositions and methods of inhibiting gastric acid secretion. U.S. Patent, No: 3896233.
- Blaya, C., Crespo, J., Crespo, A., Alino, S.F., (1998). Effect of the protein kinase inhibitors, 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine H-7 and N-(2-[methylamino]ethyl)-5-isoquinoline-sulfonamide H-8 on Lewis lung carcinoma tumor progression bytheway. *European Journal of Pharmacology*, 354, 99–104.
- Bransden B.H., Joachain C.J., (1983). *Physics of atoms and molecules*. London: Longman.
- Brouwer, A.M. (1997). Ab initio study of the structures and vibrational spectra of some diamine radical cations, *J. Phys. Chem.*, 101, 3626-3633.
- Brown, J. M. (1998). *Molecular spectroscopy*. United Kingdom: Oxford University Press.
- Bruton, G., Orlek, B.S., Rana, K.K., (2009). Piperazine derivates and their use for the treatment of neurological and psychiatric diseases. U.S. Patent, No: 7592347 B2.
- Bytheway, I., Wong, M.W. (1998). The prediction of vibrational frequencies of inorganic molecules using density functional theory. *Chem. Phys. Lett.*, 282, 219-226.
- Chang, R., (1971). Basic Principles of Spectroscopy. USA: McGraw-Hill.
- Coleman, P.B. (1993). *Practical Sampling Techniques for Infrared Analysis*. USA: CRC Press.
- Colthup, N.B., Daly, L. H., Wiberley, S. E. (1990). *Introduction to infrared and Raman spectroscopy*. USA: Academic Press.
- Cooper J, Duan M, Grimes R, Kazmierski, W., Tallant, M., (2010). Compounds. U.S. Patent, No: 0196321 A1.
- Cotton, F.A. (1970). Chemical applications of group theory. London: Wiley.
- Culp, J.T., Natesakhawat, S., Smith, M.R., Bittner, E., Matranga, C., Bockrath, B. (2008).
 Hydrogen storage properties of rigid three-dimensional hofmann clathrate derivatives: The effects of pore size, *J. Phys. Chem. C*, 112, 7079-7083.
- Cramer, J.C. (2004). *Essentials of Computational Chemistry*, England: John Wiley & Sons.
- Davies J.E.D. (1985). Clathrate and Inclusion Compounds. Part 8 [1]. An Investigation of the Usefulness of the Spectral Subtraction Technique in Analysing the Infrared Spectra of Clathrates. *Journal of Inclusion Phenomena*, 3, 269-279.
- Davies, J.E.D., (1998). Vibrational spectroscopic studies of host-guest compounds. *Art*, 51, 120-125.
- DeJohnge S, Dolusic, E, Gao, L J, Maurits, P., Herdewijn, M., Pfleiderer, W. (2008). Pyrido(3, 2-D)pyrimidines and pharmaceutical compositions useful for medical treatment. U.S. Patent, No: 0004285A1.
- Dennington R.D., Keith T.A., Millam J.M. (2008). GaussView 5.0.8, Gaussian Inc.

- Dieing, T., Hollricher, O., Toporski, J. (2010). *Confocal Raman Microscopy*. Germany: Springer.
- Dorsett, H.E., White, A., Overview of molecular modelling and ab-initio molecular orbital methods suitable for use with energetic materials. DSTO technical report, Australia, 2000.
- El-Gogary, T.M., Soliman, M.S. (2001). Ab-Initio molecular geometry and normal coordinate analysis of pyrrolidine molecule. *Spectrochim. Acta A*, 57, 2647-2657.
- Erdik, E., (2008). Organik Kimyada Spektroskopik Yöntemler. Ankara: Gazi Kitabevi.
- Ferraro, J.R., Nakamoto, K., Brown, C. W. (2003). *Introductory Raman spectroscopy*. USA: Academic Press.
- Ford, R.R., Ames, W.A., Dooley, K.A., Vanderbilt, J.J., Wonders, A.G., (2001). Process for producing polyethlene. U.S. Patent, 6228957 B1.
- Foresman J.B., Frisch A. (1996). *Exploring chemistry with electronic structure methods*. Pittsburgh: Gaussian, Inc
- Fouche, J.C.L., (1966). S-oxides of 10-alkylpiperazino-10,11dihydrodibenzo(b,f)thiepines. U.S. Patent, 3509154 A.
- Frisch, E., Frisch, M.J., Trucks, G.W. (2003). *Gaussian 03 User's Reference*, USA: Gaussian Inc.
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Peterson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich, S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. (2009). Gaussian 09, Revision A.1, Gaussian Inc., Wallingford CT.
- Gans, P., (1971). Vibrating molecules. London: Chapman and Hall Ltd.
- Griffiths, P. R., De Haseth, J. A. (1986). *Fourier transform infrared spectrometry*. USA: John Wiley&Sons.
- Gündüz, T. (2005). İnstrumental analiz. Ankara: Gazi Kitapevi.
- Gündüz, T. (2005). Koordinasyon kimyası. Ankara: Gazi Kitabevi.
- Günzler, H., Gremlich, H-U. (2002). IR Spectroscopy. Germany: Wiley-VCH.

- Haken, H., Wolf, H.C. (2004). *Molecular physics and elements of quantum chemistry*. Germany: Springer.
- Hamlin, K.E., Weston, A.W., Fischer, F.E., Michaels, R.J., (1949). Histamine Antagonists. II. Unsymmetrical 1, 4-Disubstituted Piperazines. *Journal of the American Chemical Society*, 71 (8), 2731-2734.
- Hendra, P.J., Powell, D.B. (1962). The infra-red and Raman spectra of piperazine. *Spectrochim. Acta*, 18, 299–306.
- Herbstein, F.H. (2005). *Crystalline molecular complexes and compounds*, New York: Oxford University Press.
- Hollas, J.M., (1996). Modern Spectroscopy. England: John Wiley&Sons.
- Iwamoto, T. (1981). Recent developments in the chemistry of Hofmann-type and the analogous clathrates, *J. Mol. Struc.*, 75, 51-65.
- Hür, D., Güven, A. (2002). The acdities of some indoles, J. Mol. Struct. (Theochem), 583, 1–18.
- Iwamoto, T. (1981). Recent developments in the chemistry of Hofmann-type and the analogous clathrates. *J. Mol. Struc.*, 75, 51-65.
- Iwamoto, T. (1996). Past, present and future of the clathrate inclusion compounds built of cyanometallate hosts. *J. Incl. Phenom.*, 24, 61-132.
- Jamróz M.H. (2004) Vibrational energy distribution analysis: VEDA 4 program, Warsaw.
- Jensen, F. (2006). *Introduction to computational chemistry*. New York: John Wiley & Sons.
- Jeske, M., Flamme, I., Stoll, F., Beck, H., Akbaba, M., (2009). Substituted dihydropyrazolones and their use. U.S. Patent, No: 0269420 A1.
- Ji, X.H., Lu, J.F. (2010). Bis[2-(cyclopentyliminomethyl)-5-methoxyphenolato] copper(II), *Acta Crystallogr. Sect. E-Struct. Rep. Online. E66 (8)*, m881.
- Johnson, K. W., Phebus, L. A., (1999). Methods of treating or ameliorating the symptoms of common cold or allergic rhinitis with serotonin 5-HT1F. U.S. Patent, 5962473.
- Kantarcı, Z., Sertbakan, T.R., Kasap, E. (2005). Infrared spectroscopic study of Td-type piperazinemetal(II) tetracyanometallate(II) benzene (1/1) clathrates:Cd(C4H10N2)Cd(CN)4.C6H6andCd(C4H10N2)Hg(CN)4.1,25C6H6, *Spectrosc. Lett.*, 38, 583-594, 2005.
- Kapur, S., McClelland, R., (2009). A typical antipsychotic agents having low affinity for the D2 receptor. U.S. Patent, No: 0149442 A1.
- Kasap, E. and Kantarcı, Z., (1995). Vibrational Spectroscopic Studies on the Hofmann-Td-Type Clathrates: M(NH3)2M '(CN)4. 2C6H6 (M=Mn or Cd and M =Cd or Hg), J.Incl. Phenom., 20, 33-41.

- Keresztury, G., Holly, S., Varga, J., Besenyei, G., Wang, A.Y., Durig, J.R. (1993). Vibrational spectra of monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of S-methyl-N,Ndimethylthiocarbamate. *Spectrochim. Acta A*, 49, 2007-2026.
- Kim, Y.E., Choi, J.H., Nam, S.C, Yoon, Y., (2012). CO2 absorption capacity using aqueous potassium carbonate with 2-methylpiperazine and piperazine. *Journal of Industrial and Engineering Chemistry*, 18, 105–110.
- Köksal, F., Köseoğlu, R. (2010). *Spektroskopi ve lazerlere giriş*, Ankara: Nobel Yayın Dağıtım.
- Krimmel, C.P., (1977). Piperazinyl cyclobutanones. U.S. Patent, No: 4051136.
- Krishnakumar, V., Seshadri, S., (2007). Scaled quantum chemical calculations and FT-IR, FT-Raman spectral analysis of 2-methyl piperazine. *Spectrochimica Acta Part* A, 68, 833–838.
- Larkin, P. (2011). Infrared and raman spectroscopy: principles and spectral interpretation. USA: Elsevier.
- Leach, A.R. (2001). *Molecular modelling principles and applications*. England: Prentice Hall.
- Lefebvre, J., Batchelor, R.J., Leznoff, D.B. (2004). Cu[Au(CN)2]2(DMSO)2: Golden polymorphs that exhibit vapochromic behaviour, J. Am. Chem. Soc., 126, 16117-16125.
- Levine, I.N., (1995). Physical chemistry. New York: McGraw Hill.
- Lewis, I.R., Edwards, H. G. M., (2001). *Handbook of Raman spectroscopy*. New York: CRC Press.
- Long, D. A. (2002). The Raman effect. England: John Wiley & Sons.
- Manhas, B. S., Trikha, A. K., (1978). Complexes of uranyl acetate, uranyl chloride and uranyl-nitrate with n-methylpiperazine, 2-methylpiperazine, n-phenylpiperazine and n, n'-dimethylpiperazine. *Indian Journal of Chemistry Section A-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry*, 16 (5), 431-433.
- Manhas B.S. and Trikha A.K., (1985). Synthesis and characterisation of uranium(IV) nitrate complexes with piperazines. *J. Chem. Soc. Dalton Trans.*, 9, 1985-1987.
- Matsui, T., Nakao, Y., Koizumi, T., Katakami, Y., Fujita, T., (1986). Inhibition of Phorbol Ester-induced Phenotypic Differentiation of HL-60 Cells by 1-(5-Isoquinolinylsulfonyl)-2-methylpiperazine, a Protein Kinase Inhibitor. *Canser Research*, 46, 583-587.
- Matsuo, M, Manabe T, Konishi N, Take, K., Igari, N., Shigenaga, S., Matsuda, H., Terasaka, T., (2000). Piperazine derivatives as tachykinin antagonists. U.S. Patent, No: 6087357

- McClelland, R., Mills, D., (2002). 8-Chloro-11-(4-(2'-hydroxyethyl)piperazin-1-yl)dibenzo[b,f][1,4]oxazepine of atypical antipsychotic activity and having a low affinity for the dopamine D2 receptor. European Patent, No: 1593676 B1.
- McCullough R.L., Jones L.H., Crosby G.A. (1960). An analysis of the vib. spectrum of the tetracyanonickelate (II) ion in a crystal lattice. *Spectrochimica Acta*, 16, 929-944.
- Merla, B., Oberboersch, S., Kuehnert, S., Bahrenberg, G., Kless, A., (2009). Substituted tetrahydroimidazopyridine compounds and the use thereof in the treatment of pain and other conditions. U.S. Patent, No: 8288424 B2.
- Miertus, S., Scrocco, E., Tomasi, J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. *Chem. Phys.*, 55, 117–129.
- Minceva-Sukarova, B., Andreeva, L., Sherman, W.F. (1993). Vibrational anharmonicity of the C-H out of plane vibrations in some Hofmann-type clathrates, *Journal of Molecular Structure.*, 293, 151-154.
- Minceva-Sukarova, B., Andreeva, L., Akyüz, S. (2007). Hofmann type clathratesspectroscopic studies of the low frequency region. *Journal of Molecular Structure*, 834-836, 48-56.
- Monlien, F.J., Helm, L., Abou-Hamdan, A., Merbach, A.E. (2002). Mechanistic diversity Covering 15 Orders of magnitude in rates: Cyanide exchange on [M(CN)4-2 (M = Ni, Pd, and Pt), *Inorg. Chem.*, 41, 1717-1727.
- Nakamoto, K. (1997). Infrared and Raman spectra of inorganic and coordination compounds Part A., USA: John Wiley&Sons.
- Nakamoto, K. (1997). Infrared and Raman spectra of inorganic and coordination compounds Part B., USA: John Wiley&Sons.
- Nettekoven M H, Roche O., (2008). Piperazinyl pyridine derivatives as antiobesity agents. European Patent, No: EP1828134 B1.
- Özpozan, T. (1996). Titreşim spektroskopisi. Kayseri: Erciyes Üniversitesi Yayınları.
- Pacansky, J., Gutierrez, A. (1983). Infrared spectra of the n-butyl and n-pentyl radicals. *The Journal of Physical Chemistry*, 87(16), 3074-3079.
- Padmaja, L., Ravikumar, C., Sajan D., Hubert Joe, I., Jayakumar, V. S.,
- Pettit, G. R., Faurskov Nielsenc, O. (2008). Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin-A2. *Journal of Raman Spectroscopy*, 40, 419-428.
- Painter, P.C. ve Koening, J.L. (1977). Liquid phase vibrational spectra of 13C-isotops of benzene. Spectrochim. Acta, 33A, 1003-1018.

- Paital, A. R., Mandal, D., Huang, X., Li, J., Aromi, G., Ray, G. (2009) Structure and dimensionality of coordination complexes correlated to piperazine conformation: from discrete [CuII 2] and [CuII 4] complexes to a 11,3-N3 - bridged [CuII 2]n chain. *Dalton Trans.*, 1352–1362.
- Palin, D.E., Powell, H.M., (1947). The structure of molecular compounds. Part III. crystal structure of addition complexes of quinol with certain volatile compounds. *J. Chem. Soc.*, 208-221.
- Pan, Q., Li, J., Christensen, K. E., Bonneau, C., Ren, X., Shi, L., Sun, J., Zou, X., Li, G., Yu, J., Xu, R., (2008). A Germanate Built from a 68126 Cavity Cotemplated by an (H2O)16 Cluster and 2-Methylpiperazine. *Angew. Chem. Int. Ed.*, 47, 7868 – 7871.
- Parlak, C. (2009). 1-Fenilpiperazin molekülünün titreşim bandlarının kimyasal hesaplamalarla belirlenmesi ve bu moleküle ait Hofmann tipi kompleks ve klatratların titreşim spektroskopisiyle incelenmesi, Doktora Tezi, Eskişehir: Anadolu Üniversitesi.
- Pauptit, R.A., Trotter, J. (1983). Crystal structures of an a-cyclobutyl tricyclic enone and its p-bromobenzoate derivative. *Can. J. Chem.*, 61, 63–69.
- Petersen, U., Grohe, K, Zeiler, H.J, Metzger, K.G., (1989). 1-Cyclopropyl-6-fluoro-1,4dihydro-4-oxo-7-(1-piperazinyll)-3 quinolinecarboxykic acids and antibacterial agents containing them. U.S. Patent, No: 4806539.
- Pierson, P.D., Fettes, A., Freichel, C., McArthur, S.G., Hertel, C., Huwyler, J., Mohr, P., Nakagawa, T., Nettekoven, M., Plancher, J.M., Raab, S., Richter, H., Roche, O., Sarmiento, R.M.R., Schmitt, M., Schuler, F., Takahashi, T., Taylor, S., Ullmer, C., Wiegand, R., (2009). 5-Hydroxyindole-2-carboxylic acid amides: novel histamine-3 receptor inverse agonists for the treatment of obesity. *Journal* of Medicinal Chemistry, 52 (13), 3855-3868.
- Powell, H.M. and Rayner, J.H. (1949). Clathrate compounds formed by benzene with an ammonian nickel cyanide complex. *Nature*, 163, 566-567.
- Powell, H.M. and Rayner, J.H. (1952). Structure of molecular compounds. Part X. Crystal structure of the compound of benzene with an ammonia-nickel cyanide complex. *Journal of the Chemical Society*. 319-328.
- Prabavathi, N., Nilufer, A., Krishnakumar, V., FT-IR, FT-Raman and DFT quantum chemical study on the molecular conformation, vibrational and electronic transitions of 1-(m-(trifluoromethyl)phenyl)piperazine. *Spectrochim. Acta A*, 121, 483-493.
- Pringle, W.C., Peterson, J.M., Xie, L., Ge, P., Gao, Y., Ochterski, J.W., Lan, J., (2010). Thiazole amides, imidazole amides and related analogues. U.S. Patent, No: 7728009 B1.
- Pulay, P. (1969). Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules, *Mol. Phys.*, 17, 197-204.

- Ruiz, E., Alvarez, S., Hofmann, R. (1994). Bernstein, J., Crystal orbital displacement analysis of interactions in the solid state. Application to the study host-guest interactions in the Hofmann clathrates. J. Am. Chem. Soc., 116, 8207-8222.
- Ruiz, E., Alvarez, S. (1995). Host-guest interactions in the pyrrole and aniline Hofmann clathrates. *Inorganic chemistry*, 34, 3260-3269.
- Said, E,. (2009). Electrolyte semiconductor combinations for organic electronic devices. Sweden: Linköping University.
- Settle, F. (1997). *Handbook of instrumental techniques for analytical chemistry*. USA: Prentice Hall PTR.
- Skoog, D.A., Koller, F.J., Nieman, T.A. (2007). *Principles of Instrumental Analysis*. Canada: Thomson Brooks/Cole
- Smith, B. C. (1996). Fundamentals of fourier transform infrared spectroscopy. USA: CRC Press.
- Song, K.S., Lee, S.H., Chun, H.J., Kim, J.Y., Jung, M.E., Ahn, K., Kim, S.U., Kim, J., Lee, J., (2008). Design, synthesis and biological evaluation of piperazine analogues as CB1 cannabinoid receptor ligands. *Bioorg. Med. Chem.*, 16, 4035-4051.
- Srivastava, A., Tandon, P., Jain, S., Asthana, B.P., (2011). Antagonistic properties of a natural product-Bicuculline with the gamma-aminobutyric acid receptor: studied through electrostatic potential mapping, electronic and vibrational spectra using ab initio and density functional theory. *Spectrochim. Acta A*, 84, 144–155.
- Stuart, B., George, W.O., McIntyre, P.S. (1996). *Modern Infrared spectroscopy*. England: John Wiley&Sons.
- Svanberg, S. (2004). Atomic and molecular spectroscopy. Germany: Springer.
- Tapia, I., Alonso-Cires, L., Lopez-Tudanca, P.L., Mosquera, R., Labeaga, L., Innerarity, A., Orjales, A., (1999). 2,3-Dihydro-2-oxo-1H-benzimidazole-1-carboxamides with Selective Affinity for the 5-HT4 Receptor: Synthesis and Structure–Affinity and Structure–Activity Relationships of a New Series of Partial Agonist and Antagonist Derivatives, J. Med. Chem., 42 (15), 2870–2880.
- Taracido, I.C., Harrington, E.M., Hersperger, R., Lattmann, R., Miltz, W., Weignad, K., (2009). Imidazo pyridine derivatives. U.S. Patent, No: 0291942.
- Temel, A., Özbey, S., Ertan, N. (1996). Crystal Structure of Hydrazone Form of 1-Butyl-3-cyano-6-hydroxy-4-methyl-5-(2-thiazolylazo)-2-(lH)-pyridone. *Dyes Pigments*, 32, 237-244.
- Trikha, A.K., Kumar, A., Kaur, S., (1996). Complexes of LnIII theonyltrifluoroacetylacetonates with 1-phenylpiperazine: (synthesis and characterisation). *J. Fluorine Chem.*, 78, 109–112.

- Treybig, D.S. (1988). Compounds formed by the reaction of piperazine, and derivatives thereof, with glyoxal, and derivatives thereof. U.S. Patent, No: 4761476.
- Tuel, A., Gramlich, V., Baerlocher, Ch. (2002). Synthesis, characterization and structure determination of two novel layered aluminophosphates templated by 2methylpiperazine. *Microporous and Mesoporous Materials*, 56, 119–130.
- Vedal, D., Ellestad, O.H., Klaboe, P., Hagen, G. (1976), The vibrational spectra of piperidine and morpholine and their N-deuterated analogs. *Spectrochim. Acta A*, 32, 877–890.
- Vincent, A. (1977). *Molecular symmetry and group theory*. New York: John Wiley&Sons.
- Wilson, E.B., Decius, J.C., Cross, P.C. (1980). *Molecular vibrations*. New York: Dover Publications.
- Woodward, L.A., (1972). Introduction to the theory of molecular vibrations and vibrational spectroscopy. London: Oxford University Press.
- Xie, L., Shao, L.Y., Wang, Y.T., Li, Y., Li, X.G. (2007). Synthesis and hydrogen storing properties of nanostructured ternary Mg–Ni–Co compounds. *Int. J. Hydrogen Energy*, 32, 1949-1953.
- Xie, L., Ochterski, J.W., Gao, Y., Han, B., Caldwell, T.M., Xu, Y., Peterson, J.M., Ge, P., Ohliger, R. (2007). Dipiperazinyl ketones and related analogues. U.S. Patent, No: 0049571 A1.
- Yokazeki, A., Kuchitsu, K. (1971). Molecular Structure of Piperazine as Studied by Gas Electron Diffraction. *Bull. Chem. Soc. Jpn.*, 44, 2352–2355.
- Yurdakul, Ş., (2010). Spektroskopi ve grup teorisinin temelleri. Ankara: Gazi Kitabevi.
- Zaragoza, F., Stephensen, H., Peschke, B., Rimvall, K., (2005). 2-(4-Alkylpiperazin-1yl)quinolines as a new class of imidazole-free histamine H3 receptor antagonists. *Journal of Medical Chemistry*, 48, 306–311.
- Zeroka, D., Jensen, J.O., Samuels, A.C. (1999). Infrared spectra of some isotopomers of ethylamine and the ethylammonium ion: a theoretical study. *J. Mol. Struct.* (*Theochem*), 465, 119-139.

EK-1

MOLEKÜLLERİN GAZ FAZINDA, KLOROFORM VE DİMETİLSÜLFOKSİT ÇÖZÜCÜLERİ İÇERİSİNDEKİ TİTREŞİM FREKANSLARI

ELDE EDİLEN KONAK VE KONAK-KONUK BİLEŞİKLERİNİN İNFRARED VE RAMAN TİTREŞİM FREKANSLARI

Mod	İşaretlemeler	De	neysel	B3LYP / 6-31++G(d,p)			
	PED (≥ %10)	IR	Raman	Skalalanmamıs	Skalalanmıs	I _{IR}	I _R
				Frekans	Frekans		
ν_1	v NH (100)	3449 s	3452 m	3539	3379	0,01	25,43
v_2	v CH (97)	-	-	3124	2984	64,50	12,80
v_3	v CH (100)	2990 s	2991 vs	3113	2972	19,43	14,47
V 4	v CH (94)	2976 m	2980 vs	3103	2963	14,04	18,81
v_5	v CH (93)	-	2963 vs	3082	2944	5,71	38,10
v_6	v CH (89)	2959 s	-	3081	2942	72,79	3,02
V 7	v CH (90)	2941 s	-	3075	2937	43,70	15,54
ν_8	v CH (89)	-	-	3075	2937	28,60	26,99
v 9	v CH (96)	-	2924 m	3065	2927	32,75	53,29
v_{10}	v CH (99)	-	-	3058	2921	21,99	18,07
v_{11}	v CH (99)	-	-	3056	2918	55,90	0,34
v_{12}	v CH (89)	-	2815 vw	2945	2813	217,20	21,01
V13	v CH (91)	-	-	2942	2810	21,51	9,71
v_{14}	v CH (84)	-	-	2926	2794	79,31	77,29
V ₁₅	v CH (93)	-	2776 vw	2917	2786	51,00	3,72
V16	v CH (94)	2764 w	2763 vw	2900	2769	45,77	12,71
v_{17}	δ HCH (83)	1578 vs	1579 w	1516	1481	3,39	0,42
			1568 w				
v_{18}	δ HCH (82)	-	-	1508	1473	0,24	6,11
V 19	δ HCH (90)	1482 w	1482 vw	1501	1466	16,58	0,72
v_{20}	δ HCH (89)	1461 s	1459 s	1494	1460	0,36	0,94
V21	δ HCH (94)	1454 vs	-	1488	1454	0,00	13,08
V22	δ HCH (93)	1445 vs	1446 m	1488	1454	2,15	10,17
V ₂₃	δ HNC (80)	1437 vs	-	1482	1447	2,90	0,70
v_{24}	δ HCH (95)	1432 vs	1431 vw	1479	1444	1,67	1,42
V25	τ HCNC (75)	1405 w	1408 m	1434	1401	5,46	1,58
V26	δ HCC (65)	1385 s	1385 w	1416	1384	1,26	0,95
V27	δ HCN (64)	1363 m	1361 w	1383	1352	66,78	2,83
V28	δ HCC (83)	1352 m	1348 vw	1373	1341	10,53	0,85
V29	δ HCN (76)	1322 m	1316 w	1353	1321	31,30	0,94
V ₃₀	δ HCN (67)	1300 s	1299 s	1330	1299	2,66	12,47

Çizelge E1.1. 1cbpp molekülünün e-e formunun gaz fazındaki titreşim frekansları (cm⁻¹)
Mod	İşaretlemeler	Dei	neysel	B3	BLYP / 6-31++G	(d,p)	<u> </u>
	PED (> % 10)	ID	Paman	Skalalanmamış	Skalalanmış	I	T_
	$\operatorname{FED}(\geq \%10)$	IK	Kalliali	Frekans	Frekans	I _{IR}	IR
v ₃₁	τ HCCC (72)	1284 w	-	1311	1281	4,84	2,49
v_{32}	δ HCN (81)	1255 s	1251 m	1298	1268	12,11	0,63
V ₃₃	τ HCCC (70)	1247 m	-	1277	1247	2,27	1,36
V 34	δ HCC (54) + ν NC (10)	1240 w	1240 vw	1275	1245	10,02	0,75
V35	δ HCC (78)	1231 vw	1229 s	1264	1235	0,30	1,27
v_{36}	δ HCC (87)	1226 w	-	1250	1222	0,03	0,68
V 37	δ HCC (80)	1216 vw	-	1246	1218	2,21	2,42
v_{38}	δ HCN (90)	-	-	1222	1194	0,01	8,86
V39	δ HCN (11) + ν NC (41)	1180 m	1180 s	1204	1176	57,33	4,10
v_{40}	δ HCC (67) + ν CC (11)	1166 vw	1166 vw	1202	1175	0,07	1,93
v_{41}	δ HCC (14) + ν NC (47)	-	-	1169	1143	0,14	2,80
v_{42}	v NC (78)	1134 s	1135 m	1162	1135	50,76	0,03
V 43	τ HCNC (49)	1102 m	1102 w	1150	1124	2,33	4,51
v_{44}	δ HCC (57)	-	1095 w	1120	1094	4,78	2,63
v_{45}	δ HCN (67)	1081 vs	1084 w	1081	1056	0,83	0,11
v_{46}	δ HC (48) + ν CC (10)	-	-	1072	1047	14,24	6,44
v_{47}	$v C (44) + \delta HCC (20)$	1038 m	1040 s	1060	1036	0,43	0,95
v_{48}	v CC (60)	1021 s	1022 s	1052	1028	1,69	12,00
V 49	v CC (70)	966 w	961 m	984	962	7,35	15,56
V 50	ν CC (29) + δ HCC(49)	942 s	943 s	965	943	0,22	2,73
v_{51}	v CC (79)	913 w	-	932	911	1,69	9,99
V 52	v CC (68)	906 w	908 m	921	900	0,78	1,98
V 53	v NC (67)	900 s	896 s	919	898	9,71	0,80
v_{54}	$v \text{ CC} (48) + \delta \text{ CNC} (11)$	873 m	873 w	898	878	0,47	1,88
V55	ν NC (12) + τ HCCN (69)	832 w	831 w	868	848	0,00	0,65
V56	$v \text{ NC} (59) + \delta \text{ CNC} (10)$	824 w	823 vs	845	825	6,58	13,17
V 57	τ HCCC (74)	776 w	775 w	794	776	0,79	1,05
V58	τ HCNH (45)	762 m	-	793	774	101,24	1,56
V 59	δ HCC (10) + ν CC (13) + ν NC (13) + τ HNCC (11) + τ HCCN (13)	722 m	-	760	742	2,40	6,38
v_{60}	δ CCC (38) + τ HCCN (29)	662 vs	662 w	656	641	7,17	3,17

Çizelge E1.1. (Devam) 1cbpp molekülünün e-e formunun gaz fazındaki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	De	eneysel	B3L		d,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
V61	δ CCN (66)	563 m 559 m	561 w	545	533	33,23	2,83
v_{62}	τ HNCC (50)	496 m	497 s	487	476	3,00	10,98
V63	δ CCN (71)	468 w	469 m	481	470	0,03	6,25
v_{64}	δ CCN (70)	422 vw	435 m	428	419	0,05	7,27
v_{65}	τ HCCN (75)	410 w	409 m	418	409	0,77	9,72
V66	γ CCCN (39) + δ CNC (11)	359 s 348 s	313 s	327	319	2,31	18,23
v_{67}	γ CCCN (20) + δ CNC (36) + τ HCNH (10)	-	-	289	282	5,16	2,59
v_{68}	τ HCCN (83)	254 m	255 w	268	262	0,83	0,66
v_{69}	τ CCCN (75)	187 m 182 m	182 vw	170	166	1,56	2,41
v_{70}	δ CNC (90)	155 w 152 w	160 vw	157	153	0,02	0,14
v_{71}	τ CCNC (81)	102 w 97 w	121 s 112 s	91	89	0,85	5,67
v ₇₂	τ CNCC (88)	82 w	72 w	88	86	0,00	0,00

Çizelge E1.1. (Devam) 1cbpp molekülünün e-e formunun gaz fazındaki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	Der	neysel]	B3LYP / 6-31++G(d,p)			
	PED (> % 10)	IP	Raman	Skalalanmamış	Skalalanmış	- Im	I.	
	$I ED (\geq \%10)$	IK	Kalilali	Frekans	Frekans	\mathbf{I}_{IR}	\mathbf{I}_{R}	
v_1	v NH (100)	3449 s	3452 m	3533	3374	0,45	37,91	
v_2	v CH (97)	-	-	3122	2982	98,13	23,07	
v_3	v CH (99)	2990 s	2991 vs	3111	2971	30,14	29,27	
v_4	v CH (94)	2976 m	2980 vs	3103	2963	18,24	34,93	
V5	v CH (98)	-	2963 vs	3085	2947	5,54	79,01	
v_6	v CH (95)	2959 s	-	3083	2945	99,34	7,39	
v_7	v CH (97)	2941 s	-	3079	2941	62,19	16,82	
ν_8	v CH (93)	-	-	3079	2941	35,08	48,67	
v 9	v CH (96)	-	2924 m	3065	2927	41,87	95,43	
V 10	v CH (99)	-	-	3057	2920	32,97	34,22	
v_{11}	v CH (99)	-	-	3054	2917	86,80	0,30	
v_{12}	v CH (95)	-	2815 vw	2950	2817	275,31	65,12	
V 13	v CH (94)	-	-	2948	2815	33,87	17,14	
V 14	v CH (90)	-	-	2925	2794	206,31	147,87	
V15	v CH (95)	-	2776 vw	2916	2785	68,94	10,30	
V 16	v CH (94)	2764 w	2763 vw	2905	2775	69,49	27,07	
v_{17}	δ HCH (85)	1578 vs	1579 w	1508	1473	4,04	0,82	
			1568 w					
V18	δ HCH (87)	-	-	1505	1471	0,49	10,95	
V19	δ HCH (87)	1482 w	1482 vw	1497	1463	22,05	1,67	
v_{20}	δ HCH (93)	1461 s	1459 s	1491	1457	0,37	2,11	
v_{21}	δ HCH (95)	1454 vs	-	1486	1452	0,01	24,22	
v_{22}	δ HCH (94)	1445 vs	1446 m	1483	1449	3,09	16,60	
V23	δ HNC (83)	1437 vs	-	1480	1446	4,70	1,43	
V24	δ HCH (97)	1432 vs	1431 vw	1473	1439	1,84	2,82	
V ₂₅	δ HCC (59)	1405 w	1408 m	1432	1399	5,38	2,75	
v_{26}	δ HCN (73)	1385 s	1385 w	1415	1383	1,50	2,27	
V 27	δ HCN (64)	1363 m	1361 w	1381	1349	84,16	5,42	
V ₂₈	δ HCC (82)	1352 m	1348 vw	1372	1340	11,58	1,93	
V29	δ HCN (67)	1322 m	1316 w	1348	1317	47,72	1,17	
V 30	δ HCN (70)	1300 s	1299 s	1327	1296	2,62	23,96	

Çizelge E1.2. 1cbpp molekülünün e-e formunun kloroform içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	Dei	neysel	В	3LYP / 6-31++C	G(d,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
V31	δ HCC (60)	1284 w	-	1309	1279	6,84	4,40
v ₃₂	δ HCN (83)	1255 s	1251 m	1295	1265	20,50	1,10
V ₃₃	τ HCCC (65)	1247 m	-	1276	1247	3,21	3,12
V 34	δ HCC (63)	1240 w	1240 vw	1271	1241	13,79	0,86
V35	δ HCC (77)	1231 vw	1229 s	1262	1233	1,26	2,46
v_{36}	δ HCC (86)	1226 w	-	1248	1220	0,00	1,86
V 37	δ HCC (80)	1216 vw	-	1243	1214	3,28	4,51
V ₃₈	δ HCN (86)	-	-	1219	1191	0,04	15,65
V39	δ HCC (70) + ν CC (12)	1180 m	1180 s	1200	1172	0,00	2,84
V 40	δ HCN (15) + v NC (46)	1166 vw	1166 vw	1199	1171	81,03	7,15
V41	δ HCC (13) + v NC (44)	-	-	1165	1139	2,48	6,14
V42	v NC (85)	1134 s	1135 m	1156	1130	76,41	0,09
V 43	τ HCNC (38) + τ HNCC (10)	1102 m	1102 w	1149	1123	3,58	13,45
V44	τ HCCH (35)	-	1095 w	1120	1094	6,90	6,71
V45	δ HCN (11) + τ HCNH (43)	1081 vs	1084 w	1078	1054	0,76	0,24
V 46	δ HCC (60)	-	-	1070	1046	21,32	11,40
V47	$v CC (44) + \delta HCC (26)$	1038 m	1040 s	1060	1035	0,64	1,18
v_{48}	$v CC (55) + \delta CNC (13)$	1021 s	1022 s	1051	1027	2,54	19,79
V 49	v CC (71)	966 w	961 m	982	959	9,69	26,83
V50	$v CC (29) + \delta HCC (54)$	942 s	943 s	964	942	0,64	4,78
V51	δ HCC (17) + $ν$ CC (74)	913 w	-	929	908	2,29	18,11
V 52	v CC (73)	906 w	908 m	919	898	1,18	4,33
V53	v NC (60)	900 s	896 s	919	898	11,02	1,64
V54	$v NC (32) + \delta CCC (43)$	873 m	873 w	898	877	0,25	3,23
V55	$v NC (10) + \tau HCNC (65)$	832 w	831 w	866	846	0,01	1,68
V56	$v \text{ NC} (57) + \delta \text{ CCC} (18)$	824 w	823 vs	843	824	19,56	20,47
V 57	δ HCC (10) + τ HNCC (11) + τ HCNH (37)	776 w	775 w	805	786	147,21	3,77
V58	τHCCH(77)	762 m	-	792	774	1,46	2,23
V 59	τ HNCC (10) + δ HCC (12) + ν NC (36)	722 m	-	760	742	4,37	12,23
v_{60}	δ HCC (65)	662 vs	662 w	658	643	8,84	5,12

Çizelge E1.2. (Devam) 1cbpp molekülünün e-e formunun kloroform içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	De	eneysel	B3I	LYP / 6-31++G	(d,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
v_{61}	τ HNCC (57)	563 m	561 w	549	537	41,89	3,47
		559 m					
v_{62}	τ HNCC (33)	496 m	497 s	492	481	3,84	16,53
V63	τ HNCC (44)	468 w	469 m	482	471	0,08	9,86
v_{64}	δ CCN (81)	422 vw	435 m	429	419	0,04	11,67
v_{65}	τ HCCN (65)	410 w	409 m	423	413	1,49	13,43
V66	γ CCCN (53)	359 s	313 s	329	321	3,92	24,44
		348 s					
V 67	δ CNC (50)	-	-	291	285	7,64	5,12
v_{68}	τ HCCN (70)	254 m	255 w	272	265	1,67	0,65
v_{69}	τ HCCC (60)	187 m	182 vw	169	165	2,31	3,97
		182 m					
v_{70}	δ CNC (88)	155 w	160 vw	156	153	0,07	0,15
		152 w					
V71	τ HNCC (12) + τ CCNC (54) + τ HCCH (11)	102 w	121 s	93	91	1,27	10,94
		97 w	112 s			,	,
V72	τCNCC(90)	82 w	72 w	82	81	0,00	0,45

Çizelge E1.2. (Devam) 1cbpp molekülünün e-e formunun kloroform içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	De	neysel	I	B3LYP / 6-31++	-G(d,p)	
	PED (> %10)	IR	Raman	Skalalanmamış	Skalalanmış	Im	In
		in	Rumun	Frekans	Frekans	1 IK	1 _R
v_1	v NH (100)	3449 s	3452 m	3531	3372	1,07	43,91
v_2	v CH (97)	-	-	3121	2981	124,00	29,57
v_3	v CH (99)	2990 s	2991 vs	3111	2971	37,54	40,52
v_4	v CH (94)	2976 m	2980 vs	3103	2963	20,56	45,11
V5	v CH (98)	-	2963 vs	3087	2948	5,64	102,41
ν_6	v CH (90)	2959 s	-	3085	2946	113,76	10,19
v_7	v CH (97)	2941 s	-	3081	2943	73,13	17,38
ν_8	v CH (89)	-	-	3081	2943	37,46	60,90
V 9	v CH (95)	-	2924 m	3065	2927	47,84	127,20
V 10	v CH (99)	-	-	3057	2919	38,25	49,39
v_{11}	v CH (98)	-	-	3054	2916	103,83	0,32
v_{12}	v CH (97)	-	2815 vw	2949	2816	311,75	119,83
V 13	v CH (95)	-	-	2948	2816	39,83	22,29
V 14	v CH (89)	-	-	2922	2790	353,02	217,09
V15	v CH (96)	-	2776 vw	2914	2782	78,16	15,97
V16	v CH (90)	2764 w	2763 vw	2910	2779	68,14	31,55
V17	δ HCH (84)	1578 vs	1579 w	1504	1469	3,42	3,31
			1568 w			,	,
v_{18}	δ HCH (77)	-	-	1502	1467	0,81	10,47
v_{19}	δ HCH (91)	1482 w	1482 vw	1494	1459	23,24	2,04
v_{20}	δ HCH (82)	1461 s	1459 s	1490	1456	0,35	3,36
v_{21}	δ HCH (95)	1454 vs	-	1485	1451	0,02	29,21
V 22	δ HCH (94)	1445 vs	1446 m	1481	1447	3,31	19,69
V23	δ HNC (68)	1437 vs	-	1479	1445	5,38	2,02
V24	δ HCH (98)	1432 vs	1431 vw	1471	1437	2.18	3.91
V25	δ HCC (69)	1405 w	1408 m	1430	1398	4,88	3,77
V26	δ HCC (76)	1385 s	1385 w	1415	1382	1,43	3,18
V27	δ HCN (69)	1363 m	1361 w	1380	1348	90.23	8.15
V28	δ HCC (80)	1352 m	1348 vw	1371	1339	11.97	2.37
V29	δ HCN (79)	1322 m	1316 w	1346	1314	55.82	1.14
V30	δ HCN (75)	1300 s	1299 s	1325	1294	2,33	32,12

Çizelge E1.3. 1cbpp molekülünün e-e formunun dimetilsülfoksit içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	Der	neysel]	B3LYP / 6-31++	G(d,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
V31	δ HCC (56)	1284 w	-	1308	1277	7,52	5,68
V ₃₂	δ HCN (77)	1255 s	1251 m	1293	1263	26,02	1,98
V ₃₃	τ HCCH (68)	1247 m	-	1276	1246	3,68	4,57
V 34	δ HCC (52)	1240 w	1240 vw	1269	1240	15,17	0,58
V35	δ HCC (76)	1231 vw	1229 s	1262	1233	2,89	3,32
v_{36}	δ HCC (82)	1226 w	-	1247	1219	0,05	2,42
V 37	δ HCC (78)	1216 vw	-	1241	1212	4,62	6,73
V ₃₈	δ HCN (89)	-	-	1217	1189	0,05	20,78
V39	δ HCC (67) + ν CC (14)	1180 m	1180 s	1198	1171	0,01	3,12
v 40	$v NC (42) + \tau NCCN (11)$	1166 vw	1166 vw	1196	1169	93,28	11,03
v_{41}	δ HCC (13) + v NC (41)	-	-	1164	1137	3,92	8,04
v_{42}	v NC (84)	1134 s	1135 m	1154	1128	89,91	0,13
V43	τ NCCN (40)	1102 m	1102 w	1148	1122	3,75	22,47
v 44	τ HCNH (32)	-	1095 w	1119	1093	8,03	10,74
v_{45}	τ NCCN (12) + τ HCNH (52)	1081 vs	1084 w	1077	1052	0,77	0,34
v_{46}	δ HCC (53) + v NC (14)	-	-	1069	1045	26,03	15,25
v_{47}	$v CC (49) + \delta HCC (15)$	1038 m	1040 s	1058	1034	0,71	2,02
v_{48}	$v NC (43) + \tau HCNC (15)$	1021 s	1022 s	1050	1026	3,01	23,99
V 49	v NC (73)	966 w	961 m	981	959	10,81	31,78
V50	$v CC (26) + \delta HCC (62)$	942 s	943 s	963	941	0,92	5,64
v ₅₁	δ HCC (16) + ν CC (74)	913 w	-	927	906	2,67	22,21
V 52	v CC (71)	906 w	908 m	919	897	1,31	5,95
V53	v NC (65)	900 s	896 s	919	897	11,51	2,44
V54	$v CC (47) + \delta CCC (13)$	873 m	873 w	897	877	0,38	4,01
V55	$v NC(11) + \tau HCNC(77)$	832 w	831 w	865	845	0,03	2,31
V56	v NC (50)	824 w	823 vs	843	823	30,49	22,86
V 57	$v NC(11) + \tau HCNC(32)$	776 w	775 w	809	790	168,91	6,78
V58	δ HCC (10) + τ HCCH (78)	762 m	-	791	773	1,88	2,88
V 59	$v NC (11) + \tau HCCC (43)$	722 m	-	760	742	6,68	18,17
v_{60}	τ HNCC (10) + τ HCCC (12) + δ CCC (51)	662 vs	662 w	659	644	10,17	7,89

Çizelge E1.3. (Devam) 1cbpp molekülünün e-e formunun dimetilsülfoksit içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	De	eneysel	В	3LYP / 6-31++C	G(d,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
V61	τ NCCN (10) + δ CCN (55)	563 m	561 w	551	538	47,56	3,61
		559 m					
v_{62}	τ HNCC (56)	496 m	497 s	492	481	4,13	21,68
V63	δ CCN (67)	468 w	469 m	482	471	0,12	11,93
v_{64}	δ CCN (74)	422 vw	435 m	428	418	0,04	13,91
v_{65}	τ HCCN (67)	410 w	409 m	424	415	1,97	16,68
v_{66}	γ CCCN (52)	359 s	313 s	329	321	4,93	28,84
		348 s					
v_{67}	τ HCNC (43)	-	-	292	286	8,75	6,73
V68	τ NCCN (77) + τ HCNH (15)	254 m	255 w	273	267	2,10	0,88
v_{69}	τ HCCN (63)	187 m	182 vw	170	166	2,79	5,96
		182 m					
v_{70}	δ CNC (85)	155 w	160 vw	157	154	0,10	0,00
		152 w					
V 71	τ CCNC (81)	102 w	121 s	93	91	1,55	20,10
		97 w	112 s			*	*
v 72	τ HCNC (93)	82 w	72 w	86	84	0,00	2,50

Çizelge E1.3. (Devam) 1cbpp molekülünün e-e formunun dimetilsülfoksit içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	Der	neysel		B3LYP / 6-31++		
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
ν_1	v NH (100)	3271 w	3311 vw	3537	3378	0,0	0,0
v_2	v CH (96)	2954 vs	2945 vs	3101	2962	46,8	9,9
V 3	v CH (92)	2934 vs	2939 vs	3098	2959	70,3	15,0
v_4	v CH (93)	-	-	3096	2957	38,1	8,1
v_5	v CH (80)	-	2934 vs	3077	2938	34,5	7,4
ν_6	v CH (86)	-	-	3075	2937	31,6	6,8
ν ₇	v CH (87)	-	-	3075	2937	70,0	15,1
ν_8	v CH (89)	-	2931 vs	3068	2930	25,8	5,6
v 9	v CH (80)	-	2919 vs	3048	2911	17,9	3,9
v_{10}	v CH (85)	-	2905 vs	3042	2905	7,4	1,6
v_{11}	v CH (90)	2873 vs	2885 m	3032	2896	49,3	10,9
v_{12}	v CH (88)	-	2873 s	3028	2892	18,3	4,1
V13	v CH (93)	2863 s	2862 s	3016	2880	21,7	4,8
v_{14}	v CH (91)	-	2820 w	2946	2813	207,9	48,3
v_{15}	v CH (92)	2806 vs	2813 w	2942	2810	23,1	5,3
V16	v CH (82)	2764 s	2794 w	2924	2793	87,5	20,5
v_{17}	v CH (89)	2684 w	2784 w	2914	2783	52,1	12,3
v_{18}	v CH (93)	2662 w	2762 w	2896	2766	54,7	13,1
V19	δ HCH (85)	1680 m	1460 m	1518	1483	8,3	5,0
V 20	δ HCH (80)	1598 vw	1443 s	1511	1476	0,9	0,6
v_{21}	δ HCH (84)	1548 vw	-	1507	1472	3,6	2,2
V 22	δ HCH (82)	1521 vw	-	1504	1470	8,2	5,1
V23	δ HCH (84)	1468 m	-	1501	1466	10,3	6,3
v_{24}	δ HCH (82)	1457 m	-	1497	1462	1,1	0,7
V25	δ HCH (86)	1445 s	-	1494	1460	1,4	0,9
V26	δ HCH (87)	-	-	1493	1459	1,3	0,8
V27	δ HCH (86)	_	-	1486	1452	1,0	0.6
V28	δ HNC (58)	-	-	1481	1447	2,9	1,8
V29	δ HCC (67)	-	-	1436	1403	3,7	2,4
V ₃₀	$\delta CNH(61)$	1396 vw	1398 vw	1424	1391	0,7	0,5

Çizelge E1.4. 1bpp molekülünün e-e formunun gaz fazındaki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	Der	neysel	B3	B3LYP / 6-31++G(d,p)		
	PED (≥ %10)	IR	Raman	Skalalanmamış	Skalalanmış	I _{IR}	I _R
			1201	Frekans	Frekans		
V31	δ HCH (87)	-	1384 vw	1417	1385	2,8	1,9
v_{32}	δ HCN (71)	1371 m	1373 vw	1409	1377	22,1	14,8
V ₃₃	δ HCC (71)	-	1347 vw	1386	1354	1,3	0,9
V 34	δ HCN (74)	1337 m	1340 vw	1370	1338	19,1	13,3
V35	δ HCN (61)	1320 s	1326 vw	1355	1323	31,2	22,0
v_{36}	δ HCN (70)	1310 m	1310 w	1343	1312	11,9	8,5
V 37	δ HCN (74)	-	1298 w	1328	1297	1,8	1,3
V ₃₈	δ HCN (76)	-	-	1326	1295	1,1	0,8
V39	δ HCC (65)	1275 m	1280 vw	1305	1275	8,4	6,2
v_{40}	δ HCN (72)	1269 m	1267 vw	1300	1270	11,8	8,8
v_{41}	δ HCC (62)	1250 w	1250 vw	1269	1240	5,6	4,3
v_{42}	δ HCC (65)	1226 vw	1223 vw	1248	1219	1,3	1,0
V43	δ HCN (85)	1194 vw	1197 w	1222	1194	0,1	0,1
v_{44}	δ HCC (53)	1175 w	1166 w	1190	1163	3,7	3,1
v_{45}	ν NC (44) + δ CCC(10)	1144 s	1145 w	1174	1147	50,0	42,5
v_{46}	v NC (73)	-	1142 w	1166	1139	24,4	20,9
v_{47}	δ HCC (20) + v NC (12)	1126 m	1128 vw	1153	1127	17,3	15,0
V48	δ HCC (40) + v CC (10)	1098 m	1095 vw	1121	1095	8,1	7,3
V 49	δ HCC (13) + v NC (32)	1060 w	1061 w	1112	1087	14,0	12,7
V50	τ HCCH (45) + τ NCCN (12)	1030 w	1030 vw	1081	1056	0,5	0,5
V51	$v \text{ NC} (14) + \delta \text{ HCC} (44) + v \text{ CC} (10)$	1021 w	1015 vw	1074	1049	14,2	13,5
V52	v CC (71)	1013 w	1009 vw	1065	1040	1,1	1.1
V53	v CC (55)	999 w	995 vw	1043	1019	6.7	6.6
V54	v CC (60)	991 w	973 vw	1009	986	7.6	7.8
V55	τ ΗССН (59)	976 w	946 vw	955	933	0,4	0,4
V56	v CC (61)	916 w	925 vw	929	908	5,4	6,2
V57	δ HCC (33) + v CC (38)	898 w	897 w	908	887	4,4	5,2
V58	v NC (65)	865 w	878 w	902	881	1,2	1,4
V 59	$v NC (11) + \tau HCNC (56)$	831 m	849 vw	867	847	0,1	0,1
v_{60}	τ HCNC (56) + ν NC (11)	807 m	813 vw	813	794	18,4	24,8

Çizelge E1.4. (Devam) 1bpp molekülünün e-e formunun gaz fazındaki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	De	eneysel	B3L		l,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
V61	v NC (50)	786 m	786 w	796	778	5,5	7,6
v_{62}	τ HCNH (43)	778 m	779 w	790	772	82,0	114,7
v_{63}	τ HCCH (88)	733 w	732 vw	743	726	2,8	4,3
v_{64}	δ CNH (51)	597 w	602 vw	600	586	25,9	51,5
v_{65}	τ HNCC (47)	486 vw	485 vw	488	476	4,9	12,9
v_{66}	δ HCC (18) + τ HNCC (41)	480 vw	479 vw	486	475	9,8	25,8
V67	δ CCC (70)	466 vw	467 vw	466	455	4,7	13,0
V68	τ HCCH (75)	420 vw	424 vw	419	409	0,1	0,4
V69	τ HCNC (64)	340 w	322 vw	335	327	4,2	18,8
V 70	δ CCC (57)	276 vw	281 vw	297	291	0,3	1,4
v_{71}	$v NC (10) + \delta CCC (46)$	271 vw	275 vw	273	266	1,4	8,5
V72	τ HCCH (13) + τ NCCN (69)	268 vw	264 vw	268	261	0,9	5,4
V73	τ HCCC (90)	-	-	248	243	0,1	0,8
v_{74}	τ CCNC (44) + δ CCC (16)	195 vw	-	188	184	3,2	35,1
V75	τ СССС (77)	101 vw	108 w	126	123	0,2	3,4
V76	δ CCC (54)	79 w	-	93	91	0,3	11,8
V77	τ CCNC (11) + τ CCCN (72)	66 w	64 vw	63	61	0,2	19,1
V 78	τ CNCC (80)	47 w	-	51	49	0,0	0,1

Çizelge E1.4. (Devam) 1bpp molekülünün e-e formunun gaz fazındaki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	Der	neysel		B3LYP / 6-31++	33LYP / 6-31++G(d,p) Skalalanmış		
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R	
v ₁	v NH (99)	3271 w	3311 vw	3532	3373	0,45	37,87	
v_2	v CH (92)	2954 vs	2945 vs	3101	2961	60,43	34,72	
V ₃	v CH (95)	2934 vs	2939 vs	3099	2959	59,93	33,84	
v_4	v CH (91)	-	-	3094	2955	96,53	10,35	
v_5	v CH (90)	-	2934 vs	3080	2942	36,25	64,26	
ν_6	v CH (93)	-	-	3079	2940	71,16	32,72	
V 7	v CH (90)	-	-	3075	2936	119,11	8,08	
ν_8	v CH (88)	-	2931 vs	3072	2934	8,69	21,02	
V 9	v CH (91)	-	2919 vs	3050	2913	20,40	9,16	
V 10	v CH (88)	-	2905 vs	3042	2905	9,38	61,79	
v_{11}	v CH (93)	2873 vs	2885 m	3030	2894	78,60	73,99	
v_{12}	v CH (89)	-	2873 s	3027	2891	26,49	9,15	
V13	v CH (93)	2863 s	2862 s	3016	2880	34,84	49,64	
V 14	v CH (90)	-	2820 w	2948	2815	259,52	69,51	
v_{15}	v CH (89)	2806 vs	2813 w	2946	2814	49,11	20,79	
v_{16}	v CH (88)	2764 s	2794 w	2922	2790	213,57	139,93	
v_{17}	v CH (93)	2684 w	2784 w	2912	2781	72,33	14,71	
v_{18}	v CH (93)	2662 w	2762 w	2901	2770	79,22	23,95	
V 19	δ HCH (84)	1680 m	1460 m	1513	1478	10,94	3,03	
V20	δ HCH (79)	1598 vw	1443 s	1506	1472	1,69	9,29	
v_{21}	δ HCH (80)	1548 vw	-	1502	1468	3,58	3,22	
V 22	δ HCH (83)	1521 vw	-	1496	1462	9,76	8,19	
V 23	δ HCH (83)	1468 m	-	1496	1461	15,29	1,02	
v_{24}	δ HCH (84)	1457 m	-	1493	1459	0,22	1,38	
v_{25}	δ HCH (88)	1445 s	-	1490	1456	2,60	20,38	
v_{26}	δ HCH (85)	-	-	1486	1452	0,16	25,57	
V 27	δ HCH (87)	-	-	1483	1449	1,83	7,97	
V28	δ HNC (82)	-	-	1479	1445	4,25	2,53	
V29	τ HCNC (64)	-	-	1434	1401	3,76	3,03	
v_{30}	τ HCNC (66)	1396 vw	1398 vw	1423	1390	1,00	1,57	

Çizelge E1.5. 1bpp molekülünün e-e formunun kloroform içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	Der	neysel	B3	BLYP / 6-31++G((d,p)	
	$\mathbf{PED} (> \% 10)$	ID	Domon	Skalalanmamış	Skalalanmış	T	т
	$FED (\geq \%10)$	IK	Kaillall	Frekans	Frekans	I_{IR}	IR
V 31	δ HCH (90)	-	1384 vw	1412	1379	2,38	0,36
V ₃₂	δ HCN (73)	1371 m	1373 vw	1409	1376	26,74	1,31
V ₃₃	δ HCC (71)	-	1347 vw	1385	1353	1,13	0,30
V 34	δ HCN (73)	1337 m	1340 vw	1369	1337	21,65	1,61
V35	δ HCN (66)	1320 s	1326 vw	1350	1319	48,68	1,44
v_{36}	δ HCN (69)	1310 m	1310 w	1341	1310	17,11	5,52
V 37	δ HCC (79)	-	1298 w	1327	1296	1,58	34,58
v_{38}	δ HCC (74)	-	-	1323	1293	1,06	4,12
V39	δ HCC (71)	1275 m	1280 vw	1303	1273	10,17	0,47
v_{40}	δ HCN (76)	1269 m	1267 vw	1297	1267	19,68	1,67
v_{41}	δ HCC (68)	1250 w	1250 vw	1268	1239	7,67	2,07
v_{42}	δ HCC (65)	1226 vw	1223 vw	1246	1217	1,98	1,69
V43	δ HCN (84)	1194 vw	1197 w	1219	1191	0,10	13,54
V 44	τ HCCC (57)	1175 w	1166 w	1187	1160	6,43	7,29
v_{45}	$v \text{ NC} (42) + \delta \text{ HNC} (15)$	1144 s	1145 w	1169	1142	67,64	8,88
V46	v NC (72)	-	1142 w	1161	1135	32,08	3,45
v_{47}	τ HCNH (34)	1126 m	1128 vw	1151	1124	27,33	8,42
v_{48}	δ HCC (52)	1098 m	1095 vw	1120	1094	11,09	4,83
V 49	v NC (36)	1060 w	1061 w	1110	1084	22,20	6,35
V 50	τ NCCN (21) + τ HCNC (40)	1030 w	1030 vw	1078	1053	0,47	0,20
V51	$v \text{ NC} (12) + \delta \text{ HNC} (27) + \tau \text{ HNCC} (13)$	1021 w	1015 vw	1072	1047	20,07	14,71
V 52	v CC (75)	1013 w	1009 vw	1064	1039	1,52	9,01
V 53	v CC (64)	999 w	995 vw	1041	1017	8,48	5,06
v_{54}	v NC (65)	991 w	973 vw	1007	984	11,61	2,28
V55	τ HCCH (61)	976 w	946 vw	954	932	0,59	0,93
V56	v CC (49)	916 w	925 vw	927	906	6,98	0,95
V57	δ HCC (11) + ν CC (38)	898 w	897 w	907	886	5,60	8,83
V58	v CC (70)	865 w	878 w	902	881	0,62	19,16
V 59	τ HCNC (61)	831 m	849 vw	864	845	0,18	1,59
v_{60}	τ HNCH (60) + ν NC (13)	807 m	813 vw	814	795	60,41	1,32

Çizelge E1.5. (Devam) 1bpp molekülünün e-e formunun kloroform içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	De	eneysel	B3L	YP / 6-31++G(d,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
V61	δ HNC (11) + γ NCCH (50)	786 m	786 w	800	781	93,47	7,12
v_{62}	τ HNCH (13) + ν NC (55)	778 m	779 w	794	775	5,70	12,73
v_{63}	τ HCCH (84)	733 w	732 vw	742	725	4,89	0,09
v_{64}	δ HNC (10) + τ HNCC (41)	597 w	602 vw	603	589	32,90	6,57
v_{65}	δ CCN (56)	486 vw	485 vw	489	478	9,40	12,30
v_{66}	τ CCNC (59)	480 vw	479 vw	488	477	10,21	5,14
v_{67}	δ CCC (73)	466 vw	467 vw	467	456	6,21	6,83
v_{68}	τ HCCN (68)	420 vw	424 vw	421	411	0,15	9,78
V 69	τ HCNC (70)	340 w	322 vw	338	331	6,88	6,05
V 70	δ CCC (53)	276 vw	281 vw	297	290	0,49	21,31
v_{71}	δ CCC (55)	271 vw	275 vw	273	267	2,16	9,40
v ₇₂	τ NCCN (63)	268 vw	264 vw	271	265	1,19	8,04
v 73	τ HCCC (85)	-	-	247	241	0,16	0,28
v_{74}	τ HCNC (59) + δ CCC (14)	195 vw	-	189	185	4,56	4,65
V75	τ CCCC (65) + τ CCCN (12)	101 vw	108 w	127	124	0,20	3,74
v_{76}	τ HCNC (12) + δ CCC (64)	79 w	-	94	92	0,48	1,07
v_{77}	τ CCCN (71)	66 w	64 vw	66	64	0,35	4,82
V 78	τ CNCC (85)	47 w	-	50	49	0,01	20,44

Çizelge E1.5. (Devam) 1bpp molekülünün e-e formunun kloroform içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	Der	neysel		B3LYP / 6-31+4	-G(d,p)	
	PED (> %10)	IR	Raman	Skalalanmamış	Skalalanmış	IIR	Ip
				Frekans	Frekans	-110	-K
v_1	v NH (100)	3271 w	3311 vw	3530	3371	1,06	44,19
v_2	v CH (94)	2954 vs	2945 vs	3102	2963	62,29	48,56
v_3	v CH (95)	2934 vs	2939 vs	3098	2958	70,59	37,46
v_4	v CH (95)	-	-	3093	2953	117,41	14,09
v_5	v CH (88)	-	2934 vs	3082	2944	42,86	78,38
ν_6	v CH (93)	-	-	3081	2942	77,00	40,51
v_7	v CH (88)	-	-	3075	2937	130,47	32,59
ν_8	v CH (89)	-	2931 vs	3073	2934	33,63	5,94
v 9	v CH (92)	-	2919 vs	3051	2914	20,63	15,53
v_{10}	v CH (87)	-	2905 vs	3042	2906	10,89	86,88
v_{11}	v CH (94)	2873 vs	2885 m	3029	2892	90,84	108,42
v_{12}	v CH (87)	-	2873 s	3025	2889	40,56	4,07
V13	v CH (92)	2863 s	2862 s	3016	2880	41,90	66,70
V 14	v CH (94)	-	2820 w	2949	2816	215,38	90,10
v_{15}	v CH (93)	2806 vs	2813 w	2947	2815	137,57	56,61
V16	v CH (84)	2764 s	2794 w	2920	2788	322,68	189,65
v_{17}	v CH (89)	2684 w	2784 w	2911	2780	99,68	31,28
v_{18}	v CH (91)	2662 w	2762 w	2905	2774	88,41	31,01
V19	δ HCH (82)	1680 m	1460 m	1511	1476	13,23	3,98
V20	δ HCH (81)	1598 vw	1443 s	1504	1470	1,94	10,68
v_{21}	δ HCH (84)	1548 vw	-	1500	1465	2,77	3,52
V 22	δ HCH (80)	1521 vw	-	1494	1459	18,93	1,39
V 23	δ HCH (89)	1468 m	-	1493	1458	9,85	9,32
v_{24}	δ HCH (85)	1457 m	-	1491	1457	0,49	3,62
V ₂₅	δ HCH (87)	1445 s	-	1487	1453	1,89	20,93
V26	δ HCH (84)	-	-	1484	1449	0,79	17,84
V 27	δ HCH (87)	-	-	1479	1445	2,34	24,61
V28	δ HNC (82)	-	-	1479	1444	4,71	5,63
V29	τ HCNC (60)	-	-	1432	1400	3,32	3,75
v_{30}	δ HCN (66)	1396 vw	1398 vw	1422	1389	1,20	2,15

Çizelge E1.6. 1bpp molekülünün e-e formunun dimetilsülfoksit içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	Der	neysel	B3	BLYP / 6-31++G	(d,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
V31	δ HCH (83)	-	1384 vw	1409	1377	5,06	0,62
V ₃₂	δ HCN (62)	1371 m	1373 vw	1408	1376	24,69	1,51
V33	δ HCC (67)	-	1347 vw	1384	1352	0,93	0,47
V 34	δ HCN (75)	1337 m	1340 vw	1368	1337	22,39	2,22
V35	δ HCN (63)	1320 s	1326 vw	1348	1317	56,50	1,74
v_{36}	δ HCN (74)	1310 m	1310 w	1340	1309	20,75	6,47
V 37	δ HCC (71)	-	1298 w	1326	1295	1,75	44,61
V ₃₈	δ HCC (71)	-	-	1322	1291	1,14	6,42
V39	δ HCC (65)	1275 m	1280 vw	1303	1273	11,21	0,84
V 40	δ HCN (78)	1269 m	1267 vw	1295	1265	24,74	2,74
v_{41}	δ HCC (62)	1250 w	1250 vw	1267	1237	8,74	3,53
v_{42}	δ HCC (65)	1226 vw	1223 vw	1245	1216	2,49	2,39
V 43	δ HCN (84)	1194 vw	1197 w	1218	1190	0,13	17,67
V 44	τ HCCC (57)	1175 w	1166 w	1186	1159	7,84	12,64
V45	δ CCN (11) + v NC (39)	1144 s	1145 w	1167	1140	75,86	11,07
V46	v NC (68)	-	1142 w	1159	1132	35,37	5,59
v_{47}	$v \text{ NC} (22) + \tau \text{ HNCH} (10)$	1126 m	1128 vw	1149	1123	33,39	13,87
v_{48}	τ HNCH (44)	1098 m	1095 vw	1119	1093	12,44	7,72
V 49	$v \text{ NC} (33) + \delta \text{ HCC} (16)$	1060 w	1061 w	1108	1083	26,63	7,79
V50	δ HCN (70)	1030 w	1030 vw	1076	1052	0,45	0,27
V51	$v \text{ NC} (27) + \delta \text{ CCN} (20) + \tau \text{ HNCC} (11)$	1021 w	1015 vw	1071	1047	24,15	18,49
V 52	v CC (75)	1013 w	1009 vw	1063	1038	1,77	10,95
V53	v CC (64)	999 w	995 vw	1040	1016	9,18	6,13
V54	v NC (51)	991 w	973 vw	1006	983	13,71	3,00
V55	δ HCC (60)	976 w	946 vw	954	932	0,71	1,28
V56	v CC (53)	916 w	925 vw	927	906	7,44	1,59
V57	$v CC (42) + \delta HCC (30)$	898 w	897 w	907	886	6,23	9,32
V58	v CC (70)	865 w	878 w	903	882	0,48	23,19
V 59	$v \text{ NC} (10) + \tau \text{ HCNC} (63)$	831 m	849 vw	863	844	0,24	2,41
v_{60}	τ HNCH (55)	807 m	813 vw	815	796	104,24	1,56

Çizelge E1.6. (Devam) 1bpp molekülünün e-e formunun dimetilsülfoksit içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	De	eneysel	B3L	YP / 6-31++G(d,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
V61	ν NC (10) + τ HNCH (49)	786 m	786 w	803	784	78,90	11,50
v_{62}	v NC (56)	778 m	779 w	792	774	10,77	15,97
V ₆₃	δ HCC (79)	733 w	732 vw	741	724	6,80	0,10
V 64	δ CCN (31) + τ HNCC (40)	597 w	602 vw	605	591	37,13	8,90
V65	δ CCN (53)	486 vw	485 vw	490	478	17,01	12,03
v_{66}	τ HCNC (50)	480 vw	479 vw	488	477	5,68	7,48
V 67	τ HCNC (51)	466 vw	467 vw	468	457	6,89	9,33
V68	δ CNC (57)	420 vw	424 vw	423	413	0,17	12,54
V69	τ CCNC (70)	340 w	322 vw	340	332	8,90	8,38
V 70	δ CCC (49)	276 vw	281 vw	297	290	0,63	22,86
V71	δ CCC (50) + τ NCCN (18)	271 vw	275 vw	274	268	2,48	6,68
v ₇₂	δ CCC (12) + τ NCCN (58)	268 vw	264 vw	271	265	1,53	12,53
V 73	τ HCCC (90)	-	-	246	241	0,19	0,28
v_{74}	τ CCNC (60) + δ CCC (17)	195 vw	-	189	185	5,16	5,92
V75	τ СССС (77)	101 vw	108 w	128	125	0,25	4,35
v_{76}	τ CCNC (12) + δ CCC (57) + τ CCCN (12)	79 w	-	94	91	0,52	1,80
v_{77}	τ CCCN (64) + τ CNCC (10)	66 w	64 vw	64	63	0,46	9,45
V 78	τ CCCN (11) + τ CNCC (76)	47 w	-	50	49	0,01	18,17

Çizelge E1.6. (Devam) 1bpp molekülünün e-e formunun dimetilsülfoksit içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	Der	neysel		B3LYP / 6-31++	-G(d,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
ν_1	v NH (100)	3266 m	3256 w	3538	3378	0,00	169,53
v_2	v CH (86)	-	2971 vs	3107	2967	78,90	65,30
V 3	v CH (82)	2955 vs	-	3097	2958	35,61	60,68
v_4	v CH (80)	-	-	3093	2953	30,62	109,95
v_5	v CH (89)	-	-	3087	2948	40,58	63,59
ν_6	v CH (83)	-	-	3084	2945	35,68	251,68
ν7	v CH (90)	2940 vs	-	3074	2936	45,34	176,53
ν_8	v CH (96)	-	2933 m	3073	2935	50,00	103,39
v 9	v CH (86)	2909 s	-	3068	2929	36,66	74,24
v_{10}	v CH (87)	-	-	3059	2922	22,90	92,93
v_{11}	v CH (88)	-	-	3054	2917	33,93	80,51
v_{12}	v CH (84)	-	-	3039	2902	6,49	26,73
V13	v CH (85)	2866 s	-	3033	2896	42,31	42,82
v_{14}	v CH (83)	2791 s	2878 w	3027	2891	27,80	179,01
v_{15}	v CH (86)	2748 s	2839 w	2948	2815	203,65	38,01
V16	v CH (84)	2683 s	2818 w	2943	2811	29,50	86,81
v_{17}	v CH (90)	2656 w	2790 m	2936	2804	21,39	237,30
v_{18}	v CH (81)	2600 w	2764 m	2924	2793	55,72	67,23
V19	δ HCH (87)	1676 vw	1458 w	1519	1484	6,12	1,52
V20	δ HCH (85)	1547 w	-	1509	1475	0,06	9,25
v_{21}	δ HCH (86)	1475 s	-	1504	1469	10,18	1,21
V 22	δ HCH (87)	-	-	1498	1464	4,81	9,20
V23	δ HCH (86)	-	-	1497	1462	12,94	6,78
v_{24}	δ HCH (84)	-	-	1495	1461	1,14	2,01
V25	δ HCH (81)	-	-	1494	1459	0,38	3,41
V26	δ HCH (84)	1450 vs	-	1489	1455	0,42	27,51
V27	δ HNC (63)	1438 s	-	1481	1447	3,44	1,39
V28	δ HCC (65)	1405 w	1408 vw	1429	1396	0,86	2,33
V 29	δ HCN (62)	1388 m	1394 vw	1422	1389	2,95	1,05
v_{30}	δ HCN (65)	1369 m	1367 vw	1406	1374	18,70	0,75

Çizelge E1.7. 1cppp molekülünün e-e formunun gaz fazındaki titreşim frekansları (cm⁻¹)

Mod	İsaretlemeler	Der	nevsel		B3LYP / 6-31++	G(d,p)	
	PED (\geq %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
V31	δ HCN (72)	1354 s	1339 vw	1366	1335	27,66	1,41
V ₃₂	δ HCC (65)	-	-	1354	1322	15,69	1,84
V33	δ HCC (65)	1321 s	-	1350	1319	3,49	1,01
V 34	δ HCC (76)	-	-	1345	1314	1,76	0,52
V35	δ HCN (65)	-	1311 w	1342	1311	9,92	7,75
v_{36}	δ HCN (61)	-	-	1333	1302	0,83	7,33
V 37	τ HCNC (66)	1288 s 1280 s	-	1318	1288	0,80	1,58
V38	δ HCC (82)	-	-	1307	1277	0,51	2,29
V39	δ HCN (75)	1265 vs	-	1302	1272	5,89	2,11
V40	δ HCC (41)	-	-	1266	1236	12,09	0,57
V41	δ HCC (72)	-	-	1251	1222	5,63	5,69
V 42	δ HCC (69)	-	1207 vw	1240	1211	2,25	4,07
V43	δ HCN (82)	1184 s	-	1221	1192	0,17	10,25
V44	δ HCN (51)	-	-	1204	1176	18,25	1,97
V45	δ HCC (41) + v CC (14)	1147 s	1165 vw	1186	1159	11.06	5,05
v_{46}	v NC (68)	1138 s	-	1164	1137	17,95	2,35
V47	v NC (31)	1123 s	1129 vw	1155	1128	32,89	2,78
V48	$v NC(18) + \tau CCCN(32)$	-	-	1130	1104	16,12	2,32
V 49	v NC (28)	1084 vw	1080 vw	1122	1097	13,87	5,06
V50	v CC (34)	1061 m	-	1088	1063	10,09	1,67
V51	τ HCCH (49)	-	1051 vw	1078	1054	1,34	0,09
V52	$v \text{ NC} (16) + \delta \text{ HCC} (41)$	-	1035 vw	1069	1044	9,36	7,25
V53	δ HCC (22) + v CC (45)	1021 m	-	1039	1015	3,46	7,62
V54	δ HCC (55)	-	-	1029	1005	1,77	3,77
V55	v NC (62)	995 m	979 vw	1018	995	18,67	4,56
V56	$\delta HCC (47) + v CC (15)$	962 vw	947 vw	958	936	2,22	1,75
V 57	v CC (56)	910 vw	911 vw	943	921	3,19	1,10
V58	$\delta HCC(10) + v CC(45)$	899 vw	-	913	892	1,10	2,22
V59	v NC (70)	-	889 vw	910	889	4,21	7,30
V ₆₀	v CC (76)	873 m	-	907	886	1,04	10,63

Çizelge E1.7. (Devam) 1 cppp molekülünün e-e formunun gaz fazındaki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	De	eneysel]	B3LYP / 6-31++	G(d,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
V61	τ HCNC (61)	-	-	868	848	0,06	0,71
v_{62}	$v CC (29) + \tau HCCC (38)$	-	-	865	845	0,43	1,36
v_{63}	τ HCCC (23) + ν CC (38)	-	825 vw	851	831	5,45	3,57
v_{64}	$v CC (13) + \tau HCCC (38)$	808 m	-	824	805	1,78	4,83
v_{65}	δ HCC (10) + τ HCNH (43)	779 s	-	792	774	95,46	2,06
v_{66}	τ HCCC (15) + ν CC (49)	-	-	747	730	0,53	7,55
V 67	δ CCC (59)	627 w	656 vw	627	612	5,36	2,50
V68	τ HCCH (45) + δ CNC (12)	601 w	-	617	602	3,31	2,06
V 69	δ CCC (55)	525 m	546 vw	540	528	14,90	1,60
V 70	τ HNCC (45)	493 w	507 vw	505	493	21,02	0,23
v_{71}	τ HCNC (18) + δ CCN (62)	482 w	-	482	470	0,14	1,83
V72	δ CNC (57)	418 vw	433 vw	443	432	0,65	3,79
V73	τ CCCN (17) + τ HCNC (50)	335 s	340 vw	386	377	1,29	1,09
v_{74}	δ CNC (24)	326 vs	318 w	322	314	2,44	2,29
V75	τ NCCN (45)	303 m	-	289	283	2,32	0,15
v_{76}	τ HCCH (54)	-	-	275	269	0,99	0,93
v_{77}	τ NCCN (10) + τ HCCH (45)	272 w	-	247	241	1,41	0,64
V 78	δ CNC (59)	226 vw	-	221	216	1,20	0,35
v 79	τ CCNC (62)	-	126 m	115	113	1,39	0,25
v_{80}	τ CNCC (66)	78 vw	-	75	73	0,26	0,20
v_{81}	τ HCCH (12) + τ CCCN (67)	43 vw	-	41	40	0,02	0,15

Çizelge E1.7. (Devam) 1cppp molekülünün e-e formunun gaz fazında titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	De	neysel		B3LYP / 6-31++	-G(d,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
ν_1	v NH (99)	3266 m	3256 w	3532	3373	0,39	250,67
v_2	v CH (91)	-	2971 vs	3104	2964	121,39	142,01
V ₃	v CH (78)	2955 vs	-	3097	2958	61,98	101,58
v_4	v CH (88)	-	-	3094	2955	19,82	211,06
v ₅	v CH (86)	-	-	3085	2946	64,37	152,94
ν_6	v CH (77)	-	-	3083	2944	50,08	423,54
ν ₇	v CH (83)	2940 vs	-	3078	2939	56,40	282,31
ν_8	v CH (97)	-	2933 m	3077	2938	70,47	182,47
v 9	v CH (90)	2909 s	-	3070	2932	54,19	148,48
v_{10}	v CH (87)	-	-	3057	2919	29,08	271,37
v_{11}	v CH (89)	-	-	3055	2918	61,39	97,11
v_{12}	v CH (85)	-	-	3040	2903	13,44	53,80
V13	v CH (89)	2866 s	-	3032	2895	64,37	72,56
v_{14}	v CH (83)	2791 s	2878 w	3027	2891	38,70	329,83
v_{15}	v CH (84)	2748 s	2839 w	2948	2816	298,78	112,46
v_{16}	v CH (86)	2683 s	2818 w	2945	2813	49,53	198,25
v_{17}	v CH (89)	2656 w	2790 m	2938	2806	51,02	454,85
v_{18}	v CH (88)	2600 w	2764 m	2924	2792	91,39	158,94
V 19	δ HCH (85)	1676 vw	1458 w	1512	1477	7,13	3,06
V20	δ HCH (87)	1547 w	-	1506	1471	0,21	16,74
v_{21}	δ HCH (87)	1475 s	-	1500	1465	12,69	1,49
V22	δ HCH (87)	-	-	1494	1459	9,10	3,80
V23	δ HCH (80)	-	-	1493	1458	3,05	4,63
v_{24}	δ HCH (84)	-	-	1492	1458	11,86	23,38
V25	δ HCH (82)	-	-	1490	1456	1,31	4,93
V26	δ HCH (77)	1450 vs	-	1486	1452	0,97	50,25
V27	δ HNC (67)	1438 s	-	1479	1445	5,02	1,91
V28	δ HCC (65)	1405 w	1408 vw	1427	1394	0,86	4,45
V29	δ HCN (66)	1388 m	1394 vw	1421	1388	4,41	2,34
V ₃₀	δ HCN (71)	1369 m	1367 vw	1405	1372	23,01	1,44

Çizelge E1.8. 1cppp molekülünün e-e formunun kloroform içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	Der	neysel		B3LYP / 6-31++	G(d,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
V31	δ HCC (71)	1354 s	1339 vw	1365	1334	32,60	2,98
V32	δ HCC (65)	-	-	1350	1319	11,08	1,49
V33	δ HCN (66)	1321 s	-	1348	1317	21,01	3,14
V 34	δ HCC (70)	-	-	1342	1311	1,50	0,84
V35	δ HCN (60)	-	1311 w	1339	1308	16,11	13,92
v_{36}	δ HCC (65)	-	-	1331	1300	1,54	15,13
V 37	δ HCC (56)	1288 s 1280 s	-	1316	1286	1,08	3,67
V38	δ HCC (80)	-	-	1306	1276	0,65	4,25
V 39	δ HCN (76)	1265 vs	-	1299	1269	10,38	3,38
v_{40}	δ HCC (51)	-	-	1262	1233	16,65	1,32
V 41	δ HCC (68)	-	-	1249	1220	6,54	11,88
v_{42}	δ HCC (66)	-	1207 vw	1237	1209	2,46	7,18
v_{43}	δ HCN (82)	1184 s	-	1218	1190	0,24	20,05
V 44	δ HCN (54)	-	-	1201	1173	23,84	4,77
V45	τ HCCH (46) + ν CC (13)	1147 s	1165 vw	1183	1156	13,92	8,35
v_{46}	v NC (70)	1138 s	-	1159	1132	23,85	5,73
V 47	τ HCNC (23) + ν NC (18)	1123 s	1129 vw	1151	1125	45,87	6,64
V 48	τ HCNC (15) + ν NC (32)	-	-	1128	1102	27,46	7,24
v_{49}	$v NC (30) + \delta CCN (11)$	1084 vw	1080 vw	1120	1094	21,74	10,08
V50	$v CC (37) + \tau HCCC (10)$	1061 m	-	1087	1062	15,71	3,63
V51	τ HNCH (48) + τ HCCC (10)	-	1051 vw	1075	1051	1,39	0,20
V52	$v \text{ NC} (26) + \delta \text{ HCC} (31) + v \text{ CC} (15)$	-	1035 vw	1068	1043	13,22	13,18
V53	v CC (60)	1021 m	-	1037	1013	4,76	13,89
V 54	τ HCNC (12) + τ HCCH (45)	-	-	1027	1003	3,16	7,04
V55	v NC (61)	995 m	979 vw	1015	992	26,43	7,18
v_{56}	δ HCC (57) + v CC (10)	962 vw	947 vw	957	935	3,96	3,27
V57	v CC (58)	910 vw	911 vw	942	920	5,46	2,16
V58	v CC (56)	899 vw	-	912	891	1,59	3,71
V59	v NC (70)	-	889 vw	910	889	3,93	15,61
v_{60}	v CC (75)	873 m	-	<u>9</u> 07	886	1,73	14,05

Çizelge E1.8. (Devam) 1cppp molekülünün e-e formunun kloroform içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	D	eneysel]	B3LYP / 6-31++	-G(d,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
V61	τ HCNC (71)	-	-	866	846	0,09	1,62
v_{62}	$v CC (16) + \tau HCCC (30)$	-	-	864	844	1,33	2,25
V63	$v CC (30) + \tau HCCN (15) + \tau HCCC (10)$	-	825 vw	850	831	11,96	6,28
V 64	$v CC (19) + \tau HCCN (24)$	808 m	-	823	804	5,84	7,26
v_{65}	τ NCCH (48) + τ HNCC (25)	779 s	-	804	785	140,03	5,12
v_{66}	v CC (51)	-	-	747	730	1,23	12,38
V 67	τ ΗССΗ (39)	627 w	656 vw	628	614	8,00	5,20
V 68	τ ΗССΗ (39)	601 w	-	617	602	2,82	2,41
V 69	τ HNCC (13) + τ HCCH (12) + δ CCN(12)	525 m	546 vw	540	527	22,33	2,22
V 70	δ CCN (46)	493 w	507 vw	507	496	25,96	0,49
V71	δ CCN (43)	482 w	-	483	472	0,19	2,87
v ₇₂	δ CNC (56)	418 vw	433 vw	445	434	1,19	5,32
V 73	τ HCNC (12) + τ HCNC (49)	335 s	340 vw	390	381	2,09	2,13
v_{74}	τ HNCH (38)	326 vs	318 w	321	314	3,67	3,04
V75	τ HCNC (43)	303 m	-	291	284	3,73	0,26
v_{76}	τ HNCH (10) + τ HCCC (41) + τ HCCN (11)	-	-	277	271	1,88	1,26
v_{77}	τ HCCC (38)	272 w	-	247	242	1,79	0,70
V 78	τ HCNC (10) + τ HCCC (48)	226 vw	-	221	216	1,90	0,48
V 79	τ CCNC (68)	-	126 m	116	114	2,10	0,30
v_{80}	τ CNCC (70)	78 vw	-	76	74	0,44	0,25
v_{81}	τ HCCC (14) + τ HCCN (51)	43 vw	-	38	37	0.01	0.14

Çizelge E1.8. (Devam) 1cppp molekülünün e-e formunun kloroform içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	Der	neysel		B3LYP / 6-31+4	-G(d,p)	
	$\mathbf{PED} (> \% 10)$	ID	Domon	Skalalanmamış	Skalalanmış	I_	I_
	$I ED (\geq \% 10)$	IK	Kalilali	Frekans	Frekans	\mathbf{I}_{IR}	$\mathbf{I}_{\mathbf{R}}$
ν_1	v NH (100)	3266 m	3256 w	3530	3372	0,82	284,83
v_2	v CH (94)	-	2971 vs	3103	2963	136,49	228,42
v_3	v CH (90)	2955 vs	-	3098	2958	96,53	106,60
v_4	v CH (94)	-	-	3095	2955	9,39	268,45
v_5	v CH (86)	-	-	3085	2946	72,28	235,68
v_6	v CH (84)	-	-	3082	2944	57,66	521,86
v_7	v CH (89)	2940 vs	-	3080	2941	58,20	337,91
ν_8	v CH (94)	-	2933 m	3079	2940	87,40	213,50
v 9	v CH (91)	2909 s	-	3072	2934	63,69	190,34
V 10	v CH (92)	-	-	3057	2919	50,64	424,09
v_{11}	v CH (92)	-	-	3054	2917	63,45	109,09
v_{12}	v CH (90)	-	-	3041	2904	19,47	74,80
V 13	v CH (91)	2866 s	-	3031	2895	78,12	92,97
V14	v CH (91)	2791 s	2878 w	3028	2892	45,08	432,23
V15	v CH (93)	2748 s	2839 w	2949	2816	316,05	232,30
V16	v CH (90)	2683 s	2818 w	2947	2815	92,24	329,91
v_{17}	v CH (92)	2656 w	2790 m	2939	2807	108,86	593,59
v_{18}	v CH (90)	2600 w	2764 m	2924	2792	119,70	236,91
V19	δ HCH (84)	1676 vw	1458 w	1509	1474	6,86	4,80
V20	δ HCH (85)	1547 w	-	1504	1469	0,23	18,89
v_{21}	δ HCH (81)	1475 s	-	1497	1462	13,24	1,58
V 22	δ HCH (88)	-	-	1491	1457	7,49	4,47
V23	δ HCH (77)	-	-	1491	1456	4,44	5,29
v_{24}	δ HCH (89)	-	-	1490	1455	14,74	29,44
V ₂₅	δ HCH (80)	-	-	1488	1454	2,07	6,63
V26	δ HCH (81)	1450 vs	-	1484	1450	1,39	63,89
v 27	δ HNC (64)	1438 s	-	1478	1444	5,43	1,93
V28	δ HCN (62)	1405 w	1408 vw	1426	1393	0,92	5,54
V29	δ HCC (54)	1388 m	1394 vw	1421	1388	5,77	3,22
V ₃₀	δ HCN (72)	1369 m	1367 vw	1405	1372	23,96	1,89

Çizelge E1.9. 1cppp molekülünün e-e formunun dimetilsülfoksit içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	Der	neysel		B3LYP / 6-31++	G(d,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
V31	δ HCC (66)	1354 s	1339 vw	1365	1333	34,86	3,76
v ₃₂	δ HCC (65)	-	-	1350	1318	5,83	1,19
V33	δ HCN (65)	1321 s	-	1347	1316	31,88	4,18
V 34	δ HCC (72)	-	-	1342	1311	1,36	1,70
V35	δ HCC (64)	-	1311 w	1338	1307	18,95	15,94
V ₃₆	δ HCC (61)	-	-	1330	1300	2,18	21,26
V 37	δ HCC (70)	1288 s 1280 s	-	1315	1285	1,24	5,61
V38	δ HCC (75)	-	-	1306	1276	0,71	5,25
V 39	δ HCN (79)	1265 vs	-	1297	1267	14,04	4,00
v_{40}	δ HCC (49)	-	-	1260	1231	18,98	2,08
V41	δ HCC (66)	-	-	1248	1219	6,64	15,55
V 42	δ HCC (55)	-	1207 vw	1236	1207	2,46	9,04
V43	δ HCN (76)	1184 s	-	1217	1189	0,31	25,81
v_{44}	τ HCNC (34)	-	-	1200	1172	26,12	7,15
V 45	τ HCCH (51) + ν CC (12)	1147 s	1165 vw	1181	1154	15,25	9,92
v_{46}	v NC (65)	1138 s	-	1157	1130	26,21	8,37
V 47	τ HCNH (15) + ν NC (14)	1123 s	1129 vw	1149	1123	53,22	10,64
V48	τ HCNH (42) + ν NC (19)	-	-	1127	1101	32,79	12,13
V49	v NC (32)	1084 vw	1080 vw	1118	1093	26,69	12,56
V50	v CC (36)	1061 m	-	1087	1062	19,46	4,91
V51	δ HCN (75)	-	1051 vw	1074	1049	1,25	0,26
V 52	δ HCC (36) + v NC (22) + v CC (10)	-	1035 vw	1067	1043	16,21	16,09
V 53	τ HCCH (10) + ν CC (49)	1021 m	-	1036	1012	5,27	17,57
V 54	τ HCCH (41)	-	-	1026	1002	4,18	9,21
V55	v NC (55)	995 m	979 vw	1014	990	30,30	8,67
V56	δ HCC (54) + ν CC (13)	962 vw	947 vw	957	935	4,97	4,24
V 57	v NC (48)	910 vw	911 vw	941	919	6,71	2,80
V58	v CC (47)	899 vw	-	912	891	2,10	3,30
V59	v CC (67)	-	889 vw	910	889	3,76	21,40
v_{60}	v CC (74)	873 m	-	906	886	2,22	17,64

Çizelge E1.9. (Devam) 1cppp molekülünün e-e formunun dimetilsülfoksit içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	De	eneysel		B3LYP / 6-31+	+G(d,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
v_{61}	τ HCNC (68)	-	-	865	845	0,13	2,32
v_{62}	$v \text{ CC} (21) + v \text{ NC} (13) + \delta \text{ HCC} (29)$	-	-	864	844	2,16	2,57
v_{63}	v CC (35)	-	825 vw	851	831	17,02	7,20
V 64	$v CC (16) + \tau HCNC (17)$	808 m	-	823	804	10,47	8,39
v_{65}	δ HNC (50)	779 s	-	807	789	162,62	9,04
v_{66}	v CC (52)	-	-	748	730	1,99	14,56
V 67	δ CCC (44)	627 w	656 vw	629	614	9,04	7,63
V68	δ CNC (32) + τ HCCC (13) + τ CCCN (12)	601 w	-	616	602	2,71	3,06
V69	δ CNC (60)	525 m	546 vw	540	528	27,26	2,58
V 70	δ CNC (22) + τ HNCC (31)	493 w	507 vw	508	496	29,63	0,69
V71	τ HCNC (57)	482 w	-	483	471	0,24	3,49
V 72	δ CNC (48)	418 vw	433 vw	446	435	1,66	6,87
V73	τ HCNC (60)	335 s	340 vw	391	382	2,59	2,75
V 74	δ CNC (16) + τ HNCC (12)	326 vs	318 w	322	314	4,40	3,30
V75	τ HCCC (62)	303 m	-	290	284	4,74	0,25
V76	τ HCCH (63) + δ CNC (10)	-	-	278	271	2,19	1,43
V 77	τ HCCC (23) + τ HCNC (13) + δ CNC (18)	272 w	-	248	242	2,03	0,68
V 78	τ CCCC (22) + τ HCNC (14) + δ CNC (11)	226 vw	-	222	216	2,17	0,50
V 79	τ CCNC (74)	-	126 m	118	115	2,49	0,34
v_{80}	τ CNCC (74)	78 vw	-	77	75	0,53	0,36
v_{81}	τ CCCC (24) + τ CCCN (52)	43 vw	-	41	40	0,01	0,09

Çizelge E1.9. (Devam) 1cppp molekülünün e-e formunun dimetilsülfoksit içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	De	neysel		B3LYP / 6-31++G(d,p)			
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R	
ν ₁	v NH (100)	3221 vw	3230 vw	3541	3382	0,08	20,39	
v_2	v NH (100)	3206 w	3207 vw	3533	3374	0,20	19,19	
v ₃	v CH (92)	2964 w	2968 vw	3130	2989	23,43	5,79	
v_4	v CH (91)	2952 w	2953 vw	3091	2952	50,54	22,50	
v_5	v CH (88)	-	-	3078	2940	22,57	32,77	
ν_6	v CH (88)	-	-	3077	2939	49,23	10,68	
ν ₇	v CH (93)	2928 m	2931 vw	3071	2933	41,48	21,14	
ν_8	v CH (91)	-	2885 vw	3036	2899	47,44	44,99	
v 9	v CH (91)	-	-	3029	2893	33,55	13,83	
v_{10}	v CH (91)	2832 w	2824 vw	2965	2831	98,73	12,30	
v_{11}	v CH (95)	2817 m	2770 vw	2947	2814	93,92	38,14	
v_{12}	v CH (91)	2747 vw	2719 vw	2938	2805	64,31	32,48	
V13	δ HCH (73)	1656 w	-	1520	1485	3,58	1,20	
v_{14}	δ HCH (79)	1556 vw	-	1508	1473	3,60	4,57	
v_{15}	δ HCH (80)	1511 vw	-	1502	1467	9,77	2,95	
V16	δ HCH (80)	1462 m	1461 vw	1498	1464	0,32	2,29	
v_{17}	δ HCH (77)	1452 m	1452 vw	1489	1455	4,00	5,53	
v_{18}	δ HCH (74)	1443 m	1432 vw	1489	1455	5,07	8,86	
V 19	δ HNC (74)	1410 m	-	1461	1428	0,45	1,97	
V20	δ HCN (63)	-	1398 vw	1425	1392	2,44	1,00	
v_{21}	τ HCCH (54)	1375 m	-	1408	1376	9,45	1,02	
V22	δ HCH (73)	1364 vw	1364 vw	1404	1371	17,49	0,60	
V23	δ HCC (69)	1340 vw	1342 vw	1372	1341	19,13	2,17	
v_{24}	δ HCC (74)	1326 s	1329 vw	1347	1316	3,03	2,52	
V25	δ HCN (62)	1291 w	1293 w	1332	1302	21,00	6,71	
V26	δ HCC (62)	1275 s	1278 vw	1309	1279	13,12	2,73	
V27	δ HCN (76)	1246 m	1250 vw	1250	1221	6,91	6,12	
V28	δ HCC (52)	1193 vw	1191 vw	1215	1187	1,73	0,28	
V29	$v \text{ NC} (49) + \delta \text{ HCC} (14)$	1145 s	1150 vw	1178	1151	48,21	2,23	
v_{30}	$v \text{ NC} (50) + \tau \text{ HCNH} (14)$	1134 s	-	1148	1121	2,74	5,12	

Çizelge E1.10. 2mpp molekülünün e-e formunun gaz fazındaki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	De	neysel	B3	BLYP / 6-31++G	(d,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
V31	τ HCCC (45)	1093 w	1093 vw	1139	1113	3,86	3,81
V ₃₂	δ CNC (38)	1074 vw	-	1103	1078	8,19	2,44
V33	τ HNCH (50)	1043 w	-	1100	1075	7,61	2,02
V 34	$v NC (35) + \delta HNC (11)$	1027 w	-	1090	1064	9,59	4,23
V35	δ HCC (35) + ν NC (17)	1003 w	-	1003	980	6,33	4,93
v_{36}	δ CNC (10) + v CC (52)	956 m	-	974	952	2,32	3,66
V 37	τ HCNH (45)	898 vw	907 vw	916	895	10,10	2,21
V ₃₈	τ HCCH (12) + ν NC (50) + τ HNCH (10)	885 vw	887 vw	905	884	1,56	2,20
V39	v CC (74)	843 vs	858 vw	871	851	0,94	7,38
V 40	$v \text{ NC} (21) + \tau \text{ HNCH} (38)$	793 vs	795 vw	820	801	104,47	3,27
v_{41}	v CC (71)	-	-	773	755	11,05	20,27
v_{42}	δ HNC (51)	-	-	746	729	5,79	6,42
V43	τ HNCC (54)	620 m	-	639	624	93,32	1,18
V 44	δ CNC (17) + τ HCNC (56)	501 vw	503 vw	513	501	30,74	1,52
v_{45}	δ CNC (78)	468 w	469 vw	460	449	3,49	3,62
V 46	τ HNCH (65)	440 w	440 vw	441	431	0,59	3,59
v_{47}	τ HNCH (15) + τ HCCC (48) + τ HCNC (10)	374 vw	375 vw	385	377	3,55	1,80
v_{48}	τ HCCN (81)	-	311 vw	335	327	3,08	4,97
V 49	τ HCNC (65)	-	-	227	222	5,14	1,41
V 50	τ HCCC (16) + τ HCCH (72)	-	-	214	209	0,14	0,78
v_{51}	τ CNCC (72)	-	-	167	163	0,56	5,20

Çizelge E1.10. (Devam) 2mpp molekülünün e-e formunun gaz fazındaki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	Der	neysel		B3LYP / 6-31++G(d,p)			
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R	
ν_1	v NH (100)	3221 vw	3230 vw	3535	3376	0,59	33,17	
v_2	v NH (100)	3206 w	3207 vw	3525	3367	0,00	33,03	
V 3	v CH (92)	2964 w	2968 vw	3126	2986	38,97	12,37	
v_4	v CH (91)	2952 w	2953 vw	3093	2954	67,59	39,81	
v ₅	v CH (90)	-	-	3082	2943	18,33	56,39	
ν_6	v CH (92)	-	-	3081	2942	76,60	22,86	
ν7	v CH (93)	2928 m	2931 vw	3075	2936	56,77	34,71	
ν_8	v CH (94)	-	2885 vw	3037	2901	62,73	79,96	
v 9	v CH (93)	-	-	3031	2894	44,82	26,61	
v_{10}	v CH (94)	2832 w	2824 vw	2968	2834	133,36	33,77	
v_{11}	v CH (96)	2817 m	2770 vw	2945	2812	156,68	70,50	
v_{12}	v CH (94)	2747 vw	2719 vw	2938	2806	102,07	65,58	
V13	δ HCH (60)	1656 w	-	1514	1479	4,26	1,79	
v_{14}	δ HCH (78)	1556 vw	-	1504	1469	3,30	8,35	
v_{15}	δ HCN (76)	1511 vw	-	1500	1465	14,68	3,00	
v_{16}	δ HCH (76)	1462 m	1461 vw	1492	1458	1,75	2,90	
v_{17}	δ HCH (75)	1452 m	1452 vw	1487	1453	1,09	21,90	
v_{18}	δ HCH (71)	1443 m	1432 vw	1484	1450	11,45	4,88	
V 19	δ HNC (79)	1410 m	-	1457	1424	0,76	3,61	
V20	τ HCNH (38)	-	1398 vw	1423	1390	2,33	1,44	
v_{21}	δ HCN (68)	1375 m	-	1406	1374	10,71	2,18	
V 22	δ ΗCΗ (76)	1364 vw	1364 vw	1398	1366	23,29	1,48	
V23	δ HCC (61)	1340 vw	1342 vw	1373	1342	22,83	3,81	
v_{24}	δ HCC (73)	1326 s	1329 vw	1343	1312	4,68	3,79	
V ₂₅	δ HCN (65)	1291 w	1293 w	1328	1297	32,67	12,92	
V26	δ HCN (75)	1275 s	1278 vw	1306	1276	20,22	4,75	
V27	δ HCN (77)	1246 m	1250 vw	1245	1216	9,74	11,68	
V28	δ HCN (70)	1193 vw	1191 vw	1211	1184	1,42	0,32	
V29	v NC (51)	1145 s	1150 vw	1172	1145	70,82	3,93	
v_{30}	v NC (48)	1134 s	-	1145	1118	2,93	11,90	

Çizelge E1.11. 2mpp molekülünün e-e formunun kloroform içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	De	neysel	B3	BLYP / 6-31++G	(d,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
V31	δ HCC (31) + ν NC (11)	1093 w	1093 vw	1136	1110	7,60	8,24
V32	δ HCC (71)	1074 vw	-	1100	1074	18,91	1,46
V33	τ HNCH (36)	1043 w	-	1098	1073	11,46	5,99
V 34	τ HCNC (40) + ν NC (28)	1027 w	-	1086	1061	9,27	6,91
V35	δ HCC (41) + ν CC (11)	1003 w	-	1003	980	9,48	7,60
v_{36}	v CC (47)	956 m	-	975	952	4,89	6,15
V 37	$v \text{ NC} (11) + \tau \text{ HCNH} (44)$	898 vw	907 vw	915	894	20,32	3,05
V38	$v \text{ NC} (54) + \tau \text{ HNCH} (11)$	885 vw	887 vw	907	886	1,27	3,64
V39	v CC (64)	843 vs	858 vw	870	850	1,38	12,11
v_{40}	$v \text{ NC} (11) + \tau \text{ HNCH} (39)$	793 vs	795 vw	824	805	163,16	4,67
v_{41}	ν CC (41) + τ HNCH (10)	-	-	775	757	7,33	36,61
v_{42}	ν NC (43) + τ HCNH (18)	-	-	759	741	13,39	8,91
V43	$v \text{ NH} (639,73) + v \text{ NC} (11) + \tau \text{ HNCH} (52)$	620 m	-	641	626	126,49	2,27
v_{44}	τ HNCC (56)	501 vw	503 vw	515	503	37,49	1,87
v_{45}	δ CNC (71)	468 w	469 vw	460	450	5,38	5,92
V46	τ HNCH (57)	440 w	440 vw	442	432	0,61	7,13
v_{47}	τ HNCC (54)	374 vw	375 vw	387	378	5,17	2,49
v_{48}	τ HCCN (68)	-	311 vw	334	326	4,82	5,13
V 49	τ CNCC (64)	-	-	235	230	8,26	1,27
V 50	τ HCCH (93)	-	-	198	194	0,17	0,69
V51	τ CNCC (71)	-	-	168	164	1,24	5,66

Çizelge E1.11. (Devam) 2mpp molekülünün e-e formunun kloroform içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	Der	neysel		B3LYP / 6-31++G(d,p)			
		ID	D	Skalalanmamış	Skalalanmış	T	т	
	$PED (\geq \%10)$	IK	Raman	Frekans	Frekans	$I_{\rm IR}$	I_R	
ν_1	v NH (100)	3221 vw	3230 vw	3533	3374	1,07	39,68	
v_2	v NH (100)	3206 w	3207 vw	3523	3364	0,06	40,79	
v_3	v CH (95)	2964 w	2968 vw	3126	2985	48,40	17,21	
V_4	v CH (92)	2952 w	2953 vw	3094	2955	74,88	48,15	
v_5	v CH (91)	-	-	3084	2945	19,56	64,37	
v_6	v CH (95)	-	-	3082	2944	89,44	37,13	
V 7	v CH (93)	2928 m	2931 vw	3076	2938	63,94	41,59	
ν_8	v CH (95)	-	2885 vw	3038	2902	69,15	104,04	
v 9	v CH (92)	-	-	3032	2895	50,80	32,22	
V 10	v CH (95)	2832 w	2824 vw	2971	2837	150,67	50,09	
v_{11}	v CH (97)	2817 m	2770 vw	2944	2812	189,50	88,76	
v_{12}	v CH (96)	2747 vw	2719 vw	2937	2805	133,60	92,78	
V13	δ HCH (57)	1656 w	-	1513	1478	5,15	2,80	
V14	δ HCH (78)	1556 vw	-	1502	1468	2,95	10,67	
V15	δ HCH (76)	1511 vw	-	1498	1463	16,26	4,15	
V16	δ HCH (83)	1462 m	1461 vw	1490	1456	2,61	3,68	
v_{17}	δ HCH (73)	1452 m	1452 vw	1485	1451	2,58	25,42	
v_{18}	δ HCH (68)	1443 m	1432 vw	1482	1448	11,80	6,78	
V19	δ HNC (63)	1410 m	-	1455	1422	0,81	4,51	
V 20	δ HCN (63) + $ν$ CC (10)	-	1398 vw	1422	1390	2,23	1,62	
v_{21}	δ HCN (72)	1375 m	-	1406	1373	11,93	2,63	
V 22	δ HCC (71)	1364 vw	1364 vw	1397	1365	23,47	1,92	
V 23	δ HCC (65)	1340 vw	1342 vw	1374	1343	23,91	4,65	
v_{24}	δ HCC (78)	1326 s	1329 vw	1341	1310	4,76	4,46	
V25	δ HCN (62) + δ HNC (10)	1291 w	1293 w	1326	1296	38,06	16,30	
V26	δ HCN (61)	1275 s	1278 vw	1305	1275	22,97	5,97	
V27	δ HCN (79)	1246 m	1250 vw	1245	1216	12,13	15,02	
V28	δ HCN (70)	1193 vw	1191 vw	1210	1182	1,39	0,32	
V29	$v \text{ NC} (45) + \delta \text{ HNC} (12)$	1145 s	1150 vw	1170	1143	81,81	5,19	
v_{30}	ν NC (38) + τ HNCH (24)	1134 s	-	1144	1117	2,14	17,63	

Çizelge E1.12. 2mpp molekülünün e-e formunun dimetilsülfoksit içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	De	neysel	B3	BLYP / 6-31++G	(d,p)	
	PED (≥ %10)	IR	Raman	Skalalanmamış Frekans	Skalalanmış Frekans	I _{IR}	I _R
V31	ν NC (21) + ν CC (10) + τ HNCH (31)	1093 w	1093 vw	1135	1109	10,99	11,11
V ₃₂	τ CNCC (46)	1074 vw	-	1099	1074	22,63	1,44
V33	$v \text{ NC} (13) + \delta \text{ HCC} (44)$	1043 w	-	1097	1072	14,37	7,37
V 34	v NC (12)	1027 w	-	1085	1060	11,13	8,56
V35	δ HCC (35) + v CC (21)	1003 w	-	1004	980	11,14	9,00
v_{36}	δ HCC (13) + v CC (51)	956 m	-	976	953	6,91	7,22
V 37	τ HCNH (42)	898 vw	907 vw	915	894	28,18	3,71
v_{38}	$v \text{ NC} (57) + \tau \text{ HCCN} (20)$	885 vw	887 vw	906	886	0,76	4,15
V39	v CC (75)	843 vs	858 vw	869	849	1,82	14,79
V 40	ν NC (18) + τ HCCN (37)	793 vs	795 vw	826	807	194,00	5,83
v_{41}	δ HCC (12) + v CC (32) + v NC (12)	-	-	778	760	3,56	46,36
v_{42}	v NC (56)	-	-	761	744	19,47	14,10
V 43	τ HNCC (63)	620 m	-	643	628	142,34	3,11
v_{44}	δ CCN (62)	501 vw	503 vw	516	504	44,53	2,76
v_{45}	δ CNC (78)	468 w	469 vw	460	450	6,39	7,52
v_{46}	τ HNCH (62)	440 w	440 vw	443	433	0,67	7,60
v_{47}	δ HNC (11) + τ HCNH (12) + τ HCCC (52)	374 vw	375 vw	386	377	6,32	2,57
v_{48}	τ CNCC (11) + τ NCCN (72)	-	311 vw	337	329	5,69	6,00
V 49	δ HNC (10) + τ CNCC (63)	-	-	234	229	9,96	0,67
V 50	τ HCCH (86)	-	-	204	199	0,41	0,84
v_{51}	τ CNCC (80)	-	-	172	168	1,57	4,35

Çizelge E1.12. (Devam) 2mpp molekülünün e-e formunun dimetülsülfoksit içerisindeki titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	De	neysel	Cd-Ni-	2mpp	Cd-Ni-2	mpp-Bz
	PED (≥ %10)	IR	Raman	IR	Raman	IR	Raman
ν ₁	v NH (100)	3221 vw	3230 vw	3201 m	3203 vw	3200 m	3201 w
v_2	v NH (100)	3206 w	3207 vw	3186 w	3189 vw	3182 m	3182 w
v ₃	v CH (95)	2964 w	2968 vw	2964 m	2970 w	2966 m	2966 vw
ν_4	v CH (92)	2952 w	2953 vw	-	-	-	-
V 5	v CH (91)	-	-	-	-	-	-
ν_6	v CH (95)	-	-	-	-	-	-
v_7	v CH (93)	2928 m	2931 vw	2937 vw	2938 w	2939 m	2939 m
ν_8	v CH (95)	-	2885 vw	-	2879 vw	-	2885 vw
v 9	v CH (92)	-	-	-	-	-	-
v_{10}	v CH (95)	2832 w	2824 vw	2868 vw	-	2868 vw	-
v_{11}	v CH (97)	2817 m	2770 vw	-	-	-	-
v_{12}	v CH (96)	2747 vw	2719 vw	2753 vw	-	2750 vw	-
v_{13}	δ HCH (57)	1656 w	-	1617 vw	-	1617 vw	-
v_{14}	δ HCH (78)	1556 vw	-	-	-	1544 vw	-
V15	δ HCH (76)	1511 vw	-	-	-	-	-
v_{16}	δ HCH (83)	1462 m	1461 vw	-	-	-	-
V 17	δ HCH (73)	1452 m	1452 vw	1451 s	1454 vw	1450 m	1455 vw
v_{18}	δ HCH (68)	1443 m	1432 vw	-	1424 vw	-	1430 vw
v_{19}	δ HNC (63)	1410 m	-	1417 s	-	1425 s	-
V20	δ HCN (63) + ν CC (10)	-	1398 vw	-	1381 vw	-	1379 vw
V21	δ HCN (72)	1375 m	-	1389 w	-	1388 w	-
V ₂₂	δ HCC (71)	1364 vw	1364 vw	1375 vw	-	1374 vw	-
V23	δ HCC (65)	1340 vw	1342 vw	1342 vw	1338 vw	1347 vw	1328 vw
V 24	δ HCC (78)	1326 s	1329 vw	1329 vw	-	1329 vw	-
V25	δ HCN (62) + δ HNC (10)	1291 w	1293 w	1299 vw	-	1300 vw	-
v_{26}	δ HCN (61)	1275 s	1278 vw	1279 vw	1277 vw	1282 vw	-
V 27	δ HCN (79)	1246 m	1250 vw	1260 vw	-	1260 vw	-
V28	δ HCN (70)	1193 vw	1191 vw	1205 vw	1201 vw	1203 vw	1203 vw
V29	$v \text{ NC} (45) + \delta \text{ HNC} (12)$	1145 s	1150 vw	-	-		
V 30	$v \text{ NC} (38) + \tau \text{ HNCH} (24)$	1134 s	-	1136 vw	1137 vw	1142 vw	1140 vw

Çizelge E1.13. 2mpp ligand molekülü ile elde edilen konak ve konak-konuk bileşiklerinin infrared ve Raman titreşim frekansları (cm⁻¹)

Mod	İşaretlemeler	De	eneysel	Cd-N	li-2mpp	Cd-Ni-	2mpp-Bz
	PED (\geq %10)	IR	Raman	IR	Raman	IR	Raman
V31	$v \text{ NC} (21) + v \text{ CC} (10) + \tau \text{ HNCH} (31)$	1093 w	1093 vw	1098 m	1108 vw	1098 m	1112 vw
v ₃₂	τ CNCC (46)	1074 vw	-	1072 m	1073 vw	1073 m	1072 vw
V ₃₃	ν NC (13) + δ HCC (44)	1043 w	-	1038 vs	1040 vw	1038 vs	1037 vw
v_{34}	v NC (12)	1027 w	-	1018 vs	1016 vw	1019 vs	1016 vw
V 35	δ HCC (35) + v CC (21)	1003 w	-	981 s	-	981 s	-
v_{36}	δ HCC (13) + ν CC (51)	956 m	-	959 w	956 vw	956 w	957 vw
V 37	τ HCNH (42)	898 vw	907 vw	889 m	-	885 w	-
V38	ν NC (57) + τ HCCN (20)	885 vw	887 vw	876 vs	872 vw	874 vs	857 vw
V39	v NC (75)	843 vs	858 vw	-	-	-	-
v_{40}	ν NC (18) + τ HCCN (37)	793 vs	795 vw	803 vw	802 vw	797 vw	794 vw
v_{41}	δ HCC (12) + ν CC (32) + ν NC (12)	-	-	-	-	-	-
v_{42}	v NC (56)	-	-	-	-	-	-
V 43	τ HNCC (63)	620 m	-	633 m	631 vw	627 m	607 vw
V 44	δ CCN (62)	501 vw	503 vw	-	541 vw	-	546 vw
v_{45}	δ CNC (78)	468 w	469 vw	481 vw	482 vw	475 vw	473 vw
v_{46}	τ HNCH (62)	440 w	440 vw	-	450 vw	-	446 vw
V 47	δ HNC (11) + τ HCNH (12) + τ HCCC (52)	374 vw	375 vw	-	-	-	-
v_{48}	τ CNCC (11) + τ NCCN (72)	-	311 vw	-	307 vw	-	313 vw
V49	δ HNC (10) + τ CNCC (63)	-	-	-	-	-	-
V 50	τ HCCH (86)	-	-	-	-	-	-
v_{51}	τ CNCC (80)	-	-	-	-	-	-

Çizelge E1.13. (Devam) 2mpp ligand molekülü ile elde edilen konak ve konak-konuk bileşiklerinin infrared ve Raman titreşim frekansları (cm⁻¹)

*v, çok; s, şiddetli; m, orta; w, zayıf. v, gerilme titreşimi; δ , bükülme titreşimi; τ , torsiyon; γ , düzlem dışı açı bükülme titreşimi.

EK-2 DENEYSEL VE TEORİK TİTREŞİM SPEKTRUMLARI

Şekil E2.1. 1 cbpp molekülünün gaz fazında deneysel ve teorik infrared spektrumları

Şekil E2.2. 1cbpp molekülünün gaz fazında deneysel ve teorik Raman spektrumları

Şekil E2.3. 1 cbpp molekülünün kloroform içerisinde deneysel ve teorik infrared spektrumları

Şekil E2.4. *Icbpp molekülünün kloroform içerisinde deneysel ve teorik Raman spektrumları*

Şekil E2.5. *Icbpp molekülünün dimetilsülfoksit içerisinde deneysel ve teorik infrared spektrumları*

Şekil E2.6. 1 cbpp molekülünün dimetilsülfoksit içerisinde deneysel ve teorik Raman spektrumları

Şekil E2.7. 1bpp molekülünün gaz fazında deneysel ve teorik infrared spektrumları

Şekil E2.8. 1bpp molekülünün gaz fazında deneysel ve teorik Raman spektrumları

Şekil E2.9. *1bpp molekülünün kloroform içierisinde deneysel ve teorik infrared spektrumları*

Şekil E2.10. *Ibpp molekülünün kloroform içierisinde deneysel ve teorik Raman spektrumları*

Şekil E2.11. *Ibpp molekülünün dimetilsülfoksit içerisinde deneysel ve teorik infrared spektrumları*

Şekil E2.12. *Ibpp molekülünün dimetilsülfoksit içerisinde deneysel ve teorik Raman spektrumları*

Şekil E2.13. 1cppp molekülünün gaz fazında deneysel ve teorik infrared spektrumları

Şekil E2.14. 1cppp molekülünün gaz fazında deneysel ve teorik Raman spektrumları

Şekil E2.15. 1cppp molekülünün kloroform içerisinde deneysel ve teorik infrared spektrumları

Şekil E2.16. 1cppp molekülünün kloroform içerisinde deneysel ve teorik Raman spektrumları

Şekil E2.17. *Icppp molekülünün dimetilsülfoksit içerisinde deneysel ve teorik infrared spektrumları*

Şekil E2.18. *1cppp molekülünün dimetilsülfoksit içerisinde deneysel ve teorik Raman spektrumları*

Şekil E2.19. 2mpp molekülünün gaz fazında deneysel ve teorik infrared spektrumları

Şekil E2.20. 2mpp molekülünün gaz fazında deneysel ve teorik Raman spektrumları

Şekil E2.21. 2mpp molekülünün kloroform içerisinde deneysel ve teorik infrared spektrumları

Şekil E2.22. 2mpp molekülünün kloroform içerisinde deneysel ve teorik Raman spektrumları

Şekil E2.23. 2mpp molekülünün dimetilsülfoksit içerisinde deneysel ve teorik infrared spektrumları

Şekil E2.24. 2mpp molekülünün dimetilsülfoksit içerisinde deneysel ve teorik Raman spektrumları

Şekil E2.25. 2mpp ligand molekülü ile elde edilen konak bileşiğinin infrared spektrumu

Şekil E2.26. 2mpp ligand molekülü ile elde edilen konak bileşiğinin Raman spektrumu

Şekil E2.27. 2mpp ligand molekülü ile elde edilen konak-konuk bileşiğinin infrared spektrumu

Şekil E2.28. 2mpp ligand molekülü ile elde edilen konak-konuk bileşiğinin Raman spektrumu

ÖZGEÇMİŞ

Adı Soyadı	: Özge BAĞLAYAN
Yabancı Dil	: İngilizce
Doğum Yeri ve Yılı	: Eskişehir / 1981
E-Posta	: obaglayan@anadolu.edu.tr

Eğitim ve Mesleki Geçmişi:

- 2000-2005, Anadolu Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, Lisans.
- 2005-2008, Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Yüksek Lisans.
- 2008-2017, Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Doktora.
- 2005-..., Araştırma Görevlisi, Anadolu Üniversitesi, Fen Fakültesi, Fizik Bölümü.

Yayınlar ve Bilimsel Faaliyetler:

Uluslararası Hakemli Dergilerde Yayımlanan Makaleler

- Bağlayan, Ö., Kaya, M.F., Güneş, E., Şenyel. M., (2016). Vibrational spectra, DFT calculations, conformational stabilities and assignments of the fundamentals of the 1-butylpiperazine. *Journal of Molecular Structure*, 1122, 324-330.
- Öz, E., Altın, S., Demirel, S., Bayrı, A., Altın, E., Bağlayan, Ö., Avcı, S. (2016). Electrochemical effects and magnetic properties of B substituted LiCoO2: Improving Li-battery performance. *Journal of Alloys and Compounds*, 657, 835-847.
- Göde, F., Bağlayan, Ö., Güneri, E. (2015). P-Type Nanostructure PbS Thin Films Prepared By The Silar Method. *Chalcogenide Letters*, 12, (10), 519-528.
- Kariper, İ. A., Bağlayan, Ö., Göde, F. (2015). Fabrication and Optical Characterization of CdSe Thin Films Grown by Chemical Bath Deposition. *Acta Physica Polonica A*, 127, B219-B221.
- Bağlayan, Ö., Keşan, G., Parlak, C., Alver, Ö., Şenyel, M. (2014). Vibrational investigation of 1-cyclopentylpiperazine: A combined experimental and theoritical study. *Science China Physics, Mechanics & Astronomy*,57,(9),1654-1661.
- Göde, F., Güneri, E., Bağlayan, Ö. (2014). Effect of tri-sodium citrate concentration on structural, optical andelectrical properties of chemically deposited tin sulfide films. *Applied Surface Science*, 318, 227-233.

- Takcı, T.K., Şenadım Tüzemen, E., Kara, K., Yılmaz, S., Esen, R., Bağlayan, Ö. (2014). Influence of Al concentration on structural and optical properties of Al-doped ZnO thin films. *Journal of Materials Science: Materials in Electronics*, 25, (5), 2078-2085.
- Bağlayan, Ö., Kaya, M. F., Parlak, C., Şenyel, M. (2012). DFT, FT-Raman and FT-IR investigations of 1-cyclobutylpiperazine. *Spectrochimica Acta A*, 90, 109-117.
- Keşan, G., Bağlayan, Ö., Parlak, C., Alver, Ö., Şenyel, M. (2012). FT-IR and Raman spectroscopic and quantum chemical investigations of some metal halide complexes of 1-phenylpiperazine. *Spectrochimica Acta A*,88, 144-155.
- Parlak, C., Alver, Ö., Bağlayan, Ö. and Şenyel, M. (2008). Molecular structure, NMR analyses, density functional theory and ab initio Hartree-Fock calculations of 4,4'-diaminooctafluorobiphenyl. *Journal of Molecular Structure*, 891,(1-3), 151-156.

<u>Uluslararası Bilimsel Toplantılarda Sunulan ve Bildiri Kitabında Basılan (Proceedings)</u> <u>Bildiriler</u>

- Bağlayan, Ö., Güneş, E., Kaya, M.F., Şenyel, M., Conformation Stability, Halogen and Solvent Effects on C=O Stretching of 4-Halogenothiophene-2-Carbaldehyde, 2nd International Turkic World Conference on Chemical Sciences and Technologies, 26-30 October 2016, Skopje, Macedonia, 30/10/2016
- Bağlayan, Ö., Güneş, E., Kaya, M. F., Şenyel, M., Conformation Stability, Halogen and Solvent Effects on C=O Stretching of 3-Halogenothiophene-2-Carbaldehyde, 32. Uluslararası Fizik Kongresi, 6-9 Eylül 2016, Bodrum, Türkiye.
- Altın, S., Demirel, S., Öz, E., Bağlayan, Ö., Bayrı, A., Avcı, S., *Structural and magnetic properties of nano-sized SrCoO2.5*, 12th International Nanoscience and Nanotechnology Conference, 3-5 June 2016, Kocaeli, TURKEY, 05/06/2016
- Bağlayan, Ö., Çolak, N., Süzen, Y., Şenyel, M., DFT, FT-IR, and Raman Investigation of Schiff Base Derived From 2-amino-5,5,7,7tetrahydrobenzol[b]thiophene-3-carbonitrile, 4 th. Chemistry, Chemical Engineering and Chemical Process (CCECP 2016), 18 - 19 Ocak 2016, Singapur, 19/01/2016

- Bağlayan, Ö., Şenyel, M., *Therotical and Experimental Vibrational Investigation* of N,N Dimethylformamide, 16 th. International Conference on Density Functional Theory and its Applications, 31 Ağustos- 4 Eylül 2015, Debrecen, Macaristan, 03/09/2015
- Güneş, E., Bağlayan, Ö., Parlak, C., Şenyel, M., Halogen Effect Investigations on Molecular Stucture of 5X-Thiphene-2-Carbaldhyde (X = H, F, Cl, Br or I), 9th International Physics Conference of the Balkan Physical Union – BPU9, 24-27 Ağustos 2015, Istanbul Üniversitesi, Istanbul, Türkiye, 27/08/2015.
- Şenadım Tüzemen, E., Kara, K., Elagöz, S., Esen, R., Bağlayan, Ö., Influence of doping concentration on structural and optical properties of nitrogen doped ZnO thin films, Turkish Physical Society 30. International Physics Congress, 2-5 Eylül 2013, İstanbul, Türkiye, 05/09/2013
- Bağlayan, Ö., Güneş, E., Kaya, M. F., Parlak, C., Şenyel, M., DFT, FT-IR and Raman Investigation of 1-butylpiperazine, XIIth International Conference on Molecular Spectroscopy,8-12 Eylül 2013, Krakow, Poland, 08/09/2012
- Göde, F., Güneri, E., Bağlayan, Ö., XRD, SEM, AFM, Raman Scattering and some optical properties of Tin Sulphide films, Turkish Physical Society 29. International Physics Congress, 4-8 Eylül 2012, Bodrum, Türkiye, 06/09/2012
- Bağlayan, Ö., Keşan, G., Parlak, C., Şenyel, M., DFT study of solvent effects on conformational equilibria and vibrational spectra of 4-(1-Pyrrolidinyl)piperazine, 67th Ohio State University (OSU) International Symposium on Molecular Spectroscopy, 18 22 Haziran 2012, FB09, Columbus Ohio, USA., 22/06/2012
- Bağlayan, Ö., Kaya, M.F., Parlak, C., Alver, Ö., Şenyel, M. DFT, FT-RAMAN and FT-IR investigations of 1-cyclopentylpiperazine, 67th Ohio State University (OSU) International Symposium on Molecular Spectroscopy, 18 – 22 Haziran 2012, FB10, P 254, Columbus – Ohio, USA., 22/06/2012
- Keşan, G., Bağlayan, Ö., Parlak, C., Alver Ö., Şenyel, M., FT-IR and Raman spectroscopic and quantum chemical investigations of some metal halide complexes of 1-phenylpiperazine, Biopolymers: Structure and Dynamics, A Biophysical Workshop (Proceedings), Page 27, 21-24 Ekim 2011, Nove Hrady, Czech Republic., 24/10/2011

- Bağlayan, Ö., Parlak, C., Şenyel, M., DFT Study of Solvent Effects on Conformational Equilibria and Vibrational Spectra of 1-Cyclobutylpiperazine, Ninth Triennial Congress of the World Association of Theoretical and Computational Chemists (WATOC 2011), Santiago de Compostela, Spain,17-22 Temmuz 2011, 22/07/2011
- Bağlayan, Ö., Aytekin Aydın, M.T., Şenyel, M., Vibrational Spectroscopic Studies on the Hofmann-Type Clathrates: M(CBA)2Pd(CN)4.2G(M=Ni,Cd or Co;G=Benzene), 30. Europan Congress of Molecular Spectroscopy (EUCMOS 2010), Florence,Italy,29 Ağustos-3 Eylül 2010,PS-45,p 169, 03/09/2010

Ulusal Bilimsel Toplantılarda Sunulan ve Bildiri Kitabında Basılan Bildiriler

- Göde, F., Bağlayan, Ö., Güneri, E., Çelik, S., Preparation and characterization of crystalline lead sulfide thin films produced by SILAR method:Influence of PH in the cationic precursor, 10th Nanoscience and Nanotechnology Conference (NANOTR 10), 17-21 Haziran 2014, İstanbul, TURKEY, 20/06/2014
- Göde, F., Bağlayan, Ö., Güneri, E., YS3: SILAR yöntemi kullanılarak elde edilen PbS ince filmler: XRD, Raman Spektroskopi, SEM ve UV-Vis Spektroskopi, Adım Fizik Günleri-III, 17-18 Nisan 2014, Süleyman Demirel Üniversitesi, Isparta, 18/04/2014
- Göde, F., Güneri, E., Bağlayan, Ö., Çelik, S., *Effect of tri-sodium citrate on some physical properties of chemically deposited Tin Sulfide films*, 9th Nanoscience and Nanotechnology Conference (NANOTR-9), 24-28 Haziran 2013, Erzurum, TURKEY, 27/06/2013

Projeler

- Şenyel, M. (Prj. Yürütücüsü), Bağlayan, Ö. Bazı Tiyofen Türevlerinin Konformasyonları ve Titreşim Spektrumları Üzerine Çözücü ve Halojen Etkisinin İncelenmesi, AÜBAP Projesi, 1503F103, 2015-
- Şenyel, M. (Prj. Yürütücüsü), Bağlayan, Ö. Bazı 2-Hidroksi-5-Metoksibenzoik Asit Türevli Bileşiklerin Yapılarının Spektroskopik ve Teorik Yöntemlerle İncelenmesi, A.Ü. Yayın Teşvik Projesi Projesi, 1306F170, 2013-2014.
- Şenyel, M. (Prj. Yürütücüsü), Bağlayan, Ö. 1-Heptanamin Molekülünün Konformasyonlarına Çözücü ve Halojen Etkisi İle NH Gerilme Titreşimlerine

Halojen Etkisinin Deneysel ve Teorik Olarak İncelenmesi, A.Ü. Yayın Teşvik Projesi, 1403F083, 2014-2015.

Ödüller:

• Anadolu Üniversitesi Bilim ve Teknoloji Teşvik Ödülü, 2016.