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ABSTRACT 

 

PhD Dissertation 

 

SHORTCUTS TO ADIABATICITY FOR ULTRACOLD GASES 

 

Zalihe ÖZÇAKMAKLI 

 

Anadolu University 

Graduate School of Sciences 

Physics Program 

 

Supervisor: Assoc. Prof. Dr. Cem YÜCE 

2013, 102 pages 

 

In order to manipulate Bose–Einstein condensates for different applications, 

it is important to study and control their response to time-dependent changes of 

the confining fields. A natural approach to avoid undesired excitations is to 

modify the trap adiabatically, i.e. very slowly, so that, if the initial state is in the 

ground state the final state will be the ground state as well. However, this may 

require very long times and become impractical. Thus natural objective is to cut 

down the time to arrive at the same final state, in other words, to find shortcuts to 

adiabaticity, by designing optimal adiabatic pathways. 

In this thesis, fast frictionless expansion for growing Bose–Einstein 

condensates described by the Gross–Pitaevskii gain equation is investigated. It is 

shown that fast frictionless expansion can be generalized to a condensate 

continuously replenished by pumping from the reservoir. Our formalism is 

applied to the harmonically trapped condensate and an optical lattice. 

 

Key Words: Bose–Einstein condensates, harmonically trapped condensate, an 

optical lattice, shortcuts to adiabaticity. 
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ÖZET 

 

Doktora Tezi 

 

ULTRASOĞUK GAZLARDA AD İYABAT İKL İK İÇİN KISAYOLLAR 

 

Zalihe ÖZÇAKMAKLI 

 

Anadolu Üniversitesi 

Fen Bilimleri Enstitüsü 

Fizik Anabilim Dalı 

 

Danısman: Doç. Dr. Cem YÜCE 

2013, 102 sayfa 

 

 Bose-Einstein yoğuşmasının kontrolünde önemli olan yoğuşmanın 

uygulanan tuzaklama alanlarının zamana bağlı değişimine olan tepkisini kontrol 

altına almaktır. İstenmeyen uyarılmalardan kaçınmak için tuzağın adiyabatik 

olarak yani çok yavaş değiştirilmesi doğal bir yaklaşımdır. Böylece eğer sistem 

başlangıçta taban durumunda ise son durumu da taban durumu olacaktır. Ancak 

bu durum çok uzun zaman gerektirebilir ve bu süreç kullanışsız hale gelir. Bu 

nedenle aynı son duruma ulaşmak için zamanı kısaltmak doğal bir amaçtır, bir 

başka deyişle, amaç en uygun adiyabatik geçiş yollarını tasarlayarak 

adiyabatikliğin kısa yolunu bulmaktır. 

 Bu tez de, Gross-Pitaevskii çoğalma denklemi ile tanımlanan içerdiği 

parçacık sayısı artan Bose-Einstein yoğuşması için hızlı sürtünmesiz genleşme 

araştırıldı. Hızlı sürtünmesiz genleşmenin, rezervuardan pompalanan parçacıklarla 

sürekli artması sağlanan yoğuşmaya genelleştirilebileceği gösterildi. Bu 

formülasyonu sırasıyla harmonik olarak tuzaklanmış yoğuşma için ve optik örgü 

için uygulandı. 

Anahtar Sözcükler: Bose–Einstein yoğuşması, harmonik olarak tuzaklanmış 

yoğuşma, optik örgü, adiyabatikliğin kısa yolu 
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Ĵ  : Pseudo-angular momentum operator 

T : Temperature 

)(tγ  : Linear gain term 

L(t) : Expansion of the condensate 

κ  : Ratio of final spacing to the initial spacing 

kL : Optical lattice wave number 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1 

1. INTRODUCTION 

 

It is desirable to control the quantum systems in quantum mechanics. A 

standard operation to control the quantum system consists in changing the 

external parameters of the Hamiltonian. In many cases the optimal 

transformations from an initial to a final parameter configuration are the ones that 

do not induce any transitions [1, 2]. The standard solution to this requirement is to 

perform the changes “adiabatically”. In quantum mechanics, the evolution of a 

system described by a time-dependent Hamiltonian H(t) is adiabatic when the 

transition probabilities between the instantaneous eigenstates of H are negligible. 

This happens when H is time-independent, or when its rate of change is slow 

compared to the typical time-scales involved [3, 4]. 

Even adiabatic techniques are typically slow [5], while experimentalist 

physicists are often constrained by finite lifetimes or coherence times of their 

samples. This motivated the investigation for fast schemes reproducing or 

approaching adiabatic transformations. Some methods use minimization 

techniques to optimize the transition to a target state [6, 7], in contrast other 

methods provide the exact same state that would have been reached after an 

adiabatic transformation [8]. The latter technique called as fast frictionless process 

or shortcut to adiabaticity and many physicists pay attention to this research [9-

31]. Fast frictionless expansion of harmonically trapped ultracold 87Rb atoms was 

experimentally realized [13, 14]. In the experiment [14], a 3D interacting Bose-

Einstein condensate (BEC) confined in an anisotropic harmonic trap is 

decompressed in a time comparable to the final radial trapping period. The 

technique is based on engineering the time dependent parameters of the 

Hamiltonian. Recently, nearly perfect fidelity for a two-level quantum system was 

achieved experimentally [15]. Choi et al. discussed that optimal cooling of an 

atomic species may be obtained by means of sympathetic cooling with another 

species whose trapping frequency is dynamically changed to maintain constancy 

of the Lewis-Riesenfeld adiabatic invariant [16]. Fast frictionless expansion of an 

optical lattice was investigated in [17]. 
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 Shortcut to adiabaticity offer many hopeful research and application ways 

with practical and elementary implications. Actually, shortcut to adiabaticity open 

interesting prospects to improve quantum information and technology operations, 

by implementing new fast and robust transport or expansion approaches, internal 

state manipulations, and cooling protocols. Nuclear magnetic resonance is another 

field where developing ideal pulses may take advantege from shortcut to 

adiabaticity. In this thesis, an overview of recent work on shorcuts to adiabaticity 

covering a broad span of methods and physical systems will be presented and 

shortcut to adiabaticity for growing condensate will be studied. 

 In this thesis, we will investigate the possibility of fast frictionless 

expansion for a condensate with variable number of particles. The condensate 

growth by particle injection was experimentally realized with 23Na [32], 7Li [33] 

and 87Rb [34]. Several methods have been introduced theoretically to account for 

the growth of Bose-Einstein condensate [35–40]. We will use Gross-Pitaevskii 

gain equation to study fast frictionless expansion for both harmonically trapped 

condensate and an optical lattice. We will show that a correct choice of expansion 

trajectory allows us to get a final adiabatic state in a non-adiabatic way for the 

growing condensate. 

 This thesis is divided into four chapters: the first one contains the 

background needed to address the physics of Bose-Einstein condensates of neutral 

atoms, both from the theoretical and experimental point of view. Its first section 

gives a remainder of basic statistical physics. The stress is put on the results 

providing experimental tools. The basic equations useful to the description of 

BECs in various geometries are given. The most important techniques used to 

produce BECs are presented: laser cooling and radio-frequency evaporative 

cooling in a magnetic trap. 

 The second chapter details the study of shortcuts to adiabaticity with both a 

very dilute normal gas, which can be considered ideal, and a dense interacting 

Bose-Einstein condensate. This chapter contains both theoretical and experimental 

information of shortcuts to adiabaticity. Summarizing of the investigations up to 

now on shortcuts to adiabaticity is also given in this chapter. We overview 

different methods which used by researchers to obtain shortcuts to adibaticity. 
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And at the end of this chapter, we will detail experimental procedure of the 

experimental realization of shortcuts to adibaticity. 

 Chapter three contains our study of shortcuts to adiabaticity. Differently 

from the literature we will generalize fast frictionless expansion to growing 

condensates. Firstly, we will obtain the general formalism and then apply it 

specifically to a harmonically trapped condensate and an optical lattice. The 

problem of harmonically trapped condensate is investigated in two cases, first one 

is studied with Thomas-Fermi approximation and in the second one we will look 

for the conditions for the fast frictionless process of the condensate without 

omitting the kinetic energy. 

 The last chapter is concerned with the results of our study. Interpretation of 

calculations is given in this chapter. 
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2. THEORETICAL BASICS  

 

 There are two main purposes of this chapter. Firstly, it gives the 

fundamental theoretical information needed to describe and analyze the objects 

which we are going to work with: trapped cold gases of neutral atoms. Secondly, 

it gives a general review of the main experimental techniques used to produce 

such ultracold gases. 

 

2.1. Bose-Einstein Condensation 

 

 Quantum statistics is governed by the principle of indistinguishability of 

identical particles. The indistinguishability of identical particles, which is the fact 

that the measurable quantities should not change when the positions of any two 

particles are swapped, together with the laws of quantum mechanics lead to the 

striking fact that quantum particles can be divided into two main categories: 

bosons, for which the many-body wave function is unchanged by the exchange of 

two particles, and fermions, for which the wave function changes sign. Bosons 

obey Bose-Einstein statistics in which there is no restriction on the occupation 

number of any single-particle state. Fermions obey Fermi-Dirac statistics in which 

not more than one particle can occupy any single-particle state.  

 The spin-statistics theorem [41] emphasizes that particles with half-integer 

spins are fermions, whereas particles with an integer spin are bosons. 

 Shortly, two identical neutral atoms whose nuclei have an even number of 

neutrons (such that they are bosons) can be put at the same position in space and 

with the same velocity, pointing in the same direction (same state). On the 

contrary, neutral atoms with odd number of neutrons obey Pauli’s exclusion 

principle: they can not be in the same state.  

 Bose-Einstein condensation was first proposed as a theoretical concept in 

the last century. Albert Einstein was impressed by Bose’ s work and extended it to 

a gas of massive, noninteracting particles [42]. Einstein realized that for 

sufficiently low tempratures a large fraction of particles would “condense” into 

the lowest energy state and hence behave all in the same manner. The idea of 
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Bose-Einstein condensation was born and searchs for this phenomenon began. In 

1980s, laser and magnetic based cooling techniques were developed that allowed 

experimentalists to cool dilute gases of neutral atoms down to extremely low 

temperatures [43, 44]. 

 In 1995 Bose-Einstein condensation in dilute alkali gases was achieved for 

the first time in a series of experiments using Rubidium in the group of Eric 

Cornell and Carl Wieman, Lithium in the group of Randall Hulet and Sodium in 

the group of Ketterle [45-47]. 

 

2.2. Theory of the Bose-Einstein Condensates 

 

 In the present subsection we will give general information about the 

structure of the Bose-Einstein condensed state in the presence of interactions. In 

the following we will firstly discuss the Gross-Pitaevskii equation [48], which 

describes the zero-temperature properties of the non-uniform Bose gas when the 

scattering length a is much less than the mean interparticle spacing. Secondly, the 

Thomas-Fermi approximation will be examined. 

 

2.2.1. The Gross-Pitaevskii Equation 

 

 The equation that controls the actions of all the properties of Bose-Einstein 

condensates of dilute atomic gases is the interacting many-body Schrödinger 

equation. The many-body Schrödinger equation is very difficult to solve, even for 

few particles, and approximations are absolutely necessary. 

 Definitely the most popular of these approximative methods is the famous 

Gross-Pitaevskii theory which was developed independently by Gross and 

Pitaevskii in 1961. The Gross-Pitaevskii equation is derived as a special case of a 

more general method to solve the many-body Schrödinger equation [49]. It is 

possible to explore inhomogeneous, interacting condensates in arbitrary trap 

geometries with using Gross-Pitaevskii theory. 

 Now let us overview the Gross-Pitaevskii theory. In coordinate space the 

effective interaction between two particles at low energies corresponds to a 
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contact interaction )(0 rrU ′′′′−−−−δ , a/m4 2
0 hπ====U , where r  and r ′  are the positions 

of the two particles [50]. In the fully condensed state, all bosons are in the same 

single-particle state, )(rφ , and therefore we may write the wave function of the N-

particle system as 

 

 ∏∏∏∏
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====
N

i
iN rrrr

1
21 )(),...,,( φΨ .      (2.1) 

 

The single-particle wave function )(irφ  is normalized as below, 
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After all the effective Hamiltonian can be written as 
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where )(rV  is the external potential. Hence the energy of the state (2.1) is given 

by  
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Let us explain the terms in the parenthesis, the first term is kinetic energy of the 

condensate, the second is the trap energy and the third one is the interaction 

energy. 

 In the following we will consider a uniform Bose gas. In a uniform system 

the interaction energy of a pair of particles is VU /0 , where V  is the volume of 

the system. The energy of state with N bosons all in the same state is this quantity 
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multiplied by the number of possible ways of making pairs of bosons, N(N-1)/2. 

In this approximation, the energy is 

 

 0
2

0 2

1

2

)1(
UVnU

V

NN
E ≈≈≈≈

−−−−==== ,      (2.5) 

 

where VNn /==== . Here we have assumed that N>>1. 

The wave function of the condensed state is defined as 

 

 )()( 2/1 rNr φψ ==== ,       (2.6) 

 

and hence the density of particles is given by 

 

 
2

)()( rrn ψ====         (2.7) 

 

After neglecting the terms of order 1/N, the energy of the system may be written 

as, 
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In order to obtain the optimal form for ψ , we minimize the above energy with 

respect to )(rψ  and its complex conjugate. Here we have a constraint that the 

total number of particles N is conserved 

 

 ∫∫∫∫==== 2)(rdrN ψ .       (2.9) 

 

The constraint is favorably determined by the method of Lagrange multipliers. It 

can be written as 0====−−−− NE µδδ , where the chemical potential µ  is the Lagrange 

multiplier. µ  chemical potential ensures constancy of the particle number and the 

variations of ψ  and *ψ  may thus be taken to be arbitrary. This process is 
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equivalent to minimizing the quantity NE µ−−−−  at fixed µ . Equating to zero the 

variation of NE µ−−−−  with respect to *ψ (r) gives the time-independent Gross-

Pitaevskii equation 

 

 )()()()()()(
2

2

0
2

2

rrrUrrVr
m

µψψψψψ ====++++++++∇∇∇∇−−−−
h

.  (2.10) 

 

 The Gross-Pitaevskii equation is Schrödinger equation in which the potential 

energy is the sum of the external potential and non-linear interacting term. For 

non-interacting particles all in the same state the chemical potential is equal to the 

energy per particle, but for interacting particles it is not. 

 

2.2.2. Thomas-Fermi Approximation 

 

 If the number of particles in a gas is very large, an accurate expression for 

the ground-state energy may be obtained by neglecting the kinetic energy term in 

the Gross-Pitaevskii equation. Let us give an example of the harmonically trap 

condensate [50], when the number of atoms is large and interactions are repulsive, 

the ratio of kinetic to interaction energy is small. Because of the large number of 

atoms the interatomic interaction becomes large. A better approximation for the 

condensate wave function for the large clouds may be obtained by solving the 

Gross-Pitaevskii equation, neglecting the kinetic energy term from the beginning. 

In this manner from Eq. (2.10) one finds 

 

 )()()()()(
2

0 rrrUrrV µψψψψ ====++++ ,     (2.11) 

 

where µ  is the chemical potential. The above simple equation has the solution 

 

 0

2
/)]([)()( UrVrrn −−−−======== µψ      (2.12) 
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in the region where the right hand side is positive, while 0====ψ  outside this 

region. The boundary of the cloud is therefore given by 

 

 µ====)(rV         (2.13) 

 

The physical theme of the above approximation is that the energy to add a particle 

at any point in the cloud is the same everywhere. This energy is given by the sum 

of the external potential )(rV  and an interaction contribution 0)( Urn  which is the 

chemical potential of a uniform gas having density equal to the local density )(rn . 

 In the Thomas-Fermi approximation the extension of the cloud in the three 

directions is given by the three semi-axes iR  obtained by inserting the three 

dimensional harmonic oscillator potential, )(
2

1
),,( 22

3
22

2
22

1 zyxmzyxV ωωω ++++++++====  

into (2.13), 
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The lengths iR  can be calculated in terms of trap parameters once the chemical 

potential has been determined. The normalization condition on ψ , Eq. (2.9), 

provides a relation between the chemical potential µ  and the total number of 

particles N. For a harmonic trap with a potential given above, one finds 
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where ω  is oscillatory frequency, 3/1
321 )( ωωωω ==== . 

Solving Eq. (2.15) for µ  we can find that, the chemical potential proportional 

with N2/5. From the thermodynamic relation NE ∂∂∂∂∂∂∂∂==== /µ , the Thomas-Fermi 

energy for a trapped condensate given as 
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 µ
7

5====
N

E
.        (2.16) 

 

2.3. Trapping and Cooling of Atoms 

 

 The second half of the 20th century has seen the development of incredible 

techniques, in which light is used to control both the internal and external degrees 

of freedom of neutral atoms, ions, molecules, etc. These techniques are based on 

the fact that, just like massive objects, light carries energy, momentum, and 

angular momentum, and can interact strongly with matter. In any process these 

quantities are conserved so that they can be exchanged between the field and the 

matter. In brief, a good control of the light translates into a good control of the 

dynamics of the atoms. 

 The control of the polarization can be easily done with natural materials, 

such as crystals. In the 60’s, the discovery of lasers, which provide intense and 

directional sources of monochromatic light, has made the control of the pulsation 

ω  of the light and therefore, the control of its energy ωh  and its momentum 

c/ωh . 

 In this subsection, some main information is given concerning the 

experimental techniques to control the dynamics of the atoms. We begin with 

magnetic traps and then discuss the laser cooling and trapping. At last we will 

overview the evaporative cooling. 

 

Magnetic traps 

 

 Magnetic trapping of neutral atoms is due to the Zeeman effect: the energy 

of an atomic state depends on the magnetic field, and consequently an atom in an 

inhomogeneous field experiences a spatially varying potential. The energy of an 

atom in a state i can then be given as 

 

 BCE iii µ−−−−==== ,        (2.17) 
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where iµ  is the magnetic moment of the state and iC  is a constant. It is simply 

seen that the magnetic contribution to the energy thus provides a potential energy 

Biµ−−−−  for the atom. If the magnetic moment is positive, the atom experiences a 

force driving it to higher field regions. If it is negative, the force is towards lower 

field regions. Therefore, states with a positive magnetic moment are called as 

high-field seekers and those with a negative magnetic moment as low-field 

seekers. 

 The energy depth of magnetic traps is determined by the Zeeman energy, 

Biµ . Atomic magnetic moments are of order the Bohr magneton, eB me 2/h====µ , 

which in temperature units is approximately 0.67K/T. Since laboratory magnetic 

fields are generally considerably less than 1 tesla, the depth of magnetic traps is 

much less than a Kelvin, and therefore atoms must be cooled in order to be 

trapped magnetically. 

 A simple magnetic field configuration in which the magnetic field vanishes 

at some point is the standard quadrupole one, in which the magnetic field varies 

linearly with distance in all directions. 

 Bose-Einstein condensation in dilute gases was first achieved in experiments 

using a modified quadrupole trap known as the time-averaged orbiting potential 

(TOP) trap. In this trap one superimposes on the quadrupole field a rotating, 

spatially-uniform, magnetic field [51]. The field used in experiment is given as 

 

 )2,sin,cos( 00 zBtByBtBxBB ′′′′−−−−++++′′′′++++′′′′==== ωω .    (2.18) 

 

 

Laser cooling and trapping 

 

 As we know many techniques for trapping and cooling atoms exploit the 

interaction of atoms with radiation fields, especially those of lasers. 

 The interaction between an atom and the electric field is given in the dipole 

approximation by 
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 ε⋅⋅⋅⋅−−−−====′′′′ dH         (2.19) 

 

where d is the electric dipole moment operator and ε  is the electric field vector. 

 Experiments on clouds of dilute gases exploit the forces on atoms in a laser 

field in a variety of ways. Let us describe the origin of these forces. The energy 

shift of an atom may be regarded as an effective potential V in which the atom 

moves. If the time-averaged electric field varies with position, the shift of the 

energy due to the field gives rise to a force, )(rVFdipole −∇−∇−∇−∇====  on an atom. This is 

often referred to as the dipole force. The quadrupole moment will also give rise to 

forces, but these will usually be much less than the dipole force. 

 In laser beam it is possible to create a radiation field whose intensity has a 

maximum in space. If the frequency of the light is detuned to the red, the energy 

of a ground state atom has a spatial minimum, so that it is possible to trap atoms. 

The depth of the trap is determined by the magnitude of the energy shift. 

 The situation in optical traps is quite different for trapping by magnetic 

fields, since the potential is then strongly dependent on the magnetic substate. 

With magnetic traps it is difficult to investigate the influence of the interaction 

energy on the spin degrees of freedom of an atomic cloud since the energy is 

dominated by the Zeeman term. On the other hand, optical traps are well suited 

for this purpose. 

 The main idea that led to the development of laser cooling may be 

understood by considering an atom subjected to two oppositely directed laser 

beams of the same angular frequency, ω , and the same intensity. 

 

Evaporative cooling 

 

 The process of evaporative cooling was seen as a viable route to reaching 

BEC, and several groups set out to make it work. This approach was spectacularly 

successful, and within a few months of each other in 1995, three groups reached 

the regime of quantum degeneracy required for BEC. The first unambiguous 

demonstration of BEC in an evaporatively cooled atomic gas was reported by the 

NIST/JILA group [45] for doubly spin-polarized 87Rb, followed by evidence of 
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BEC for doubly spin-polarized 7Li by a group at Rice University [46] and then a 

demonstration of BEC at MIT [47] in the F=1, M=-1 lower hyperfine component 

of 23Na. 

Evaporation from a magnetic trap overcomes the density and the temperature 

limits of laser cooling. The important concepts of evaporative cooling of trapped 

atoms were formulated by Hess in 1986, as a method for cooling atomic hydrogen 

pre-cooled by cryogenic methods [52]. Evaporative cooling is performed by 

removing the high-energy component of the thermal distribution of atoms from 

the magnetic trap. The evaporated atoms carry away more than the average, so 

that when the remaining atoms re-thermalise (by undergoing elastic collisions) the 

temperature of the vapour decreases. To continue cooling one must continue to 

remove high-energy atoms. The essential condition for efficient evaporative 

cooling is a long sample lifetime compared to the collisional re-thermalisation 

time. 

 

 

 

Fig. 2.1. Evaporative cooling basics-releasing high-energy atoms from a magnetic trap and 

subsequent re-thermalisation. It is continued cooling by lowering further the rim of the 

trap. 
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For a dilute gas confined in a magnetic potential, decreasing the temperature 

decreases the sample volume. Even though the total number of atoms in the 

sample decreases during the evaporation process, it is possible to increase the 

density of the remaining atoms. When this happens, the decreasing temperature 

leads to an increasing rate of the re-thermalisation, despite the loss of atoms. This 

is called runaway evaporation, because the cooling accelerates during the 

evaporation. 

 Evaporative cooling is simple to implement and relatively efficient, typically 

providing six orders of magnitude increase in phase space density at a cost of a 

factor of 103 reduction in the number of atoms. Outside of the laboratory, 

evaporative cooling is a familiar process- it’ s how we cool coffee in a cup and 

why we feel cold after a swim.  

 

i-) Radio-Frequency (RF) Evaporation 

 

The evaporation could be performed conveniently if the rim of the trap was 

defined by a RF-resonance condition, rather than by the geometry of the magnetic 

field. The idea is to use an RF transition (between mF sub-states) to remove atoms 

from the magnetic trap (i.e. from leak) at a distance from the trap centre defined 

by the Zeeman shift of the transition associated with the trapping field and the 

frequency of the applied RF field. 

 In the RF-induced evaporation, the RF radiation flips the atomic spin. As a 

result, the attractive force provided by the magnetic field becomes repulsive and 

expels the atoms from the trap. This scheme is energy-selective because the 

resonance frequency is proportional to the magnetic field strength, and therefore 

to the potential energy of the atoms. In the case of transitions between magnetic 

sub-levels (i.e. 1====Fm∆ ), the resonance condition for the magnetic field strength 

B is, RFFB hvBg ====µ where Fg  is the Land g-factor and Bµ  is the Bohr magneton. 

For example, the spacing between Fm  sub-states is 0.7 MHz per gauss for 

transitions within the F=2 hyperfine level of 87Rb frequently used to make Bose 

condensates. RF induced evaporation has the very nice feature that the 

evaporation process can be separated from the design of the magnetic trapping 
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potential. In particular, there is no need to weaken the trapping potential in order 

to lower its depth. This makes it easier to reach runaway evaporation. 

  

 

 

Fig. 2.2. Zeeman shift of magnetic sub-levels versus position for a simple quadrupole trap. A leak 

is formed at the top of the trap using a RF field, allowing high energy atoms to escape. 

 

Idealy, RF evaporation spin-flips atoms on a 3-dimensional resonant shell (of 

constant magnitude magnetic field) surrounding the trapped atoms. For a static 

trap, such as an Ioffe-Pritchard style, the shape of the evaporation shell is an 

ellipsoid centred on the atomic sample (if the influence of gravity can be ignored). 

However, for weak confinement gravity will displace the atomic sample from the 

centre of the trap, potentially resulting in (less-efficient) 1D evaporation. For the 

mF=1 

U 

Resonance 
condition 

mF=0 

mF= -1 

z 
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time-averaged orbiting potential (TOP) trap the evaporation geometry is more 

complex (see Fig. 2.3.). 

 

ii-)Evaporation in a TOP trap 

 

 Evaporation in a TOP trap is slightly more complicated than a static trap, 

because of the rotating magnetic field. The spatial distribution of an atomic 

sample confined in a TOP trap is determined by the time-average of the magnetic 

potential (which is harmonic), but to understand evaporation in a TOP trap we 

must consider the instantaneous magnetic field. 

 

 

 

Fig. 2.3. Evaporative cooling in a TOP trap. a-) and b-) are plan and elevation view, respectively. 

 

 The region over which evaporation occurs is an ellipsoid shell with aspect 

ratio of 2:1 (from the quadrupolar potential), displaced from the centre of the 

cloud by the rotating bias field. Atoms are removed from the edge of the trap as 

the evaporation surface rotates about the cloud. The evaporation is essentially 2-

dimensional. 

Atom 
cloud 

B=0 

a-) b-) 
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 With the TOP trap, in addition to RF-induced transitions, one can also 

induce Majorana spin flips [53] using the zero magnetic field point of the rotating 

quadrupole trap. Near the zero magnetic field point of the quadrupole trap the 

Larmor frequency becomes sufficiently small that the magnetic moment of the 

atoms in this region can no-longer remain aligned with the local magnetic field 

direction. In a quadrupole trap ejection occurs at the trap centre. However, as 

shown in Fig. 2.3., in a TOP trap the zero point orbits the edge of the atomic 

sample and the resulting spin-flips can be used for evaporative cooling.  

 The temperatures reached by laser cooling are impressively low, but they are 

not low enough to produce Bose-Einstein condensation in gases at the densities 

that are realizable experimentally. In the experiments, Bose-Einstein condensation 

of alkali gases is achieved by using evaporative cooling after laser cooling. The 

basic physical effect in evaporative cooling is that, if particles escaping from a 

system have an energy higher than the average energy of particles in the system, 

the remaining particles are cooled. In brief, the intent of evaporative cooling is to 

lower the temperature of a trapped gas while simultaneously increasing the phase-

space density of the gas. The efficiency of evaporative cooling is determined by 

the ratio of the elastic collision rate to the rate of inelastic collisions that cause 

number loss and heating. For more extensive account of evaporative cooling we 

refer, [50, 54]. 
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3. SHORTCUTS TO ADIABATICITY FOR TRAPPED ULTRACOLD 

GASES 

 

 In quantum mechanics, when the transition probabilities between the time-

dependent eigenstates of H are negligible, the evolution of a system characterized 

by a time-dependent Hamiltonian H (t) is adiabatic. This happens when H is either 

time-independent, or when its rate of change is slow compared to the typical time-

scales involved [55]. Thinking in terms of instantaneous eigenstates is much 

easier than looking for the solutions of time-dependent problems. 

 Yet adiabatic techniques are typically slow [56], while experimentalists are 

often constrained by finite lifetimes or coherence times of their samples. This 

motivated the search for fast schemes reproducing or approaching adiabatic 

transformations. Some methods use minimization techniques to optimize the 

transition to a target state [6, 7], whereas others yield the exact same state that 

would have been reached after an adiabatic transformation [8, 57, 58]. The latter 

are referred to as shortcuts to adiabaticity. 

 In this chapter, we detail how such methods can be used on the motional 

degrees of freedom of ultracold gases confined in time-dependent harmonic traps 

and overview the validity of the approach of experiments. Methods to realize 

shortcuts to adiabaticity are detailed and overview on the experimental realization 

of these methods is given. 

 

3.1. Quantum adiabatic transformations 

 

 The term adiabatic has different meanings. For this reason, it is a confusing 

one in physics. The word itself has a Greek root and means “not passing through” 

[56]. In the content of thermodynamics, it is the heat that is not passing through 

the walls of the container: this word describes a process in which no heat is 

exchanged. In that sense, thermo-dynamical adiabatic transformations need by no 

means be slow. 

 In quantum mechanics, the meaning is different: a process is adiabatic 

when the probabilities for the system to make transitions between the time-
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dependent (or instantaneous) eigenstates of the Hamiltonian are negligible. Below 

we recall the adiabatic theorem of quantum mechanics. 

 

The adiabatic theorem 

 

 The exact formulation of the adiabatic theorem was first given by Born 

and Fock [3]. Let us consider a varying Hamiltonian H (t) of which };{ tλ  is a 

basis of time-dependent eigenstates. The adiabatic theorem states that if this 

Hamiltonian is slowed down (mathematically, this is achieved by evolving the 

system with the new one )()( tHtH εε ≡≡≡≡  with 1<<<<ε ) then the state t;εΦ  of 

the Schrödinger equation associated to )(tHε  satisfies, 
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where t;ελ  is a basis instantaneous eigenstates of )(tHε  and )(t
ελωh  is its 

spectrum. This means that when the evolution is infinitely slow )0( →→→→ε  the 

instantaneous eigenstates, chosen with this appropriate phase, coincide with the 

solutions of the Schrödinger equation. 

 The adiabatic theorem is not usually relevant to practical problems, because 

it is just valid in the limit )0( →→→→ε . For instance, if one wants to use it in a 

problem involving a two-level atom interacting with a classical field oscillating 

with a pulsation ω , the theorem can only be applied in the limit 0→→→→≡≡≡≡′′′′ εωω , 

which is not very useful since it corresponds to a static field. 

 However, the criteria on the rate of evolution for the transformation to be 

nearly adiabatic can be calculated. If the initial state is 0; ====tλ  and the spectrum 

is discrete, the criteria generally used is given by 

 

1
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where the sum is over all the instantaneous eigenstates other than t;λ . 

Having given the basic information about the adiabatic theorem, shortcuts to 

adiabatcity will be examined in detail in the next subsection. 

 

3.2. Shortcuts to adiabaticity 

 

 The expression “shortcuts to adiabaticity” was recently introduced in Chen 

et al. [8], to describe protocols that speed up a quantum adiabatic process, through 

a non-adiabatic route. 

 In this subsection, the definition of a shortcut to adiabaticity and derivation 

of angular frequency trajectories for both non-interacting gases and interacting 

BECs confined in time-dependent harmonic traps will be given, and then studies 

up to now on this area will also be reviewed. 

 For a system described by a Hamiltonian H (t), a shortcut to adiabaticity is 

realized when another Hamiltonian )(tH ′′′′  can be found, such that the state 

obtained after a finite time of evolution with )(tH ′′′′  is identical to the final state of 

the adiabatic evolution with H (t). Shortcuts to adiabaticity are generally not 

adiabatic; only the final state is identical to that obtained after an adiabatic 

evolution. Shortcuts to adiabaticity can be realized by simply engineering the 

time-dependent parameters of the Hamiltonian (for example, in the case of 

harmonic oscillator, the angular frequency). A practical method to find a class of 

appropriate angular frequency )(tω  was detailed by Chen et al. [8]. Let us 

overview this method. In that case, the Hamiltonian is chosen to be time-

independent (but with different frequencies) outside the time interval ],0[ftt ∈∈∈∈ . 

An invariant is engineered to commute with the Hamiltonian outside this interval. 

This yields a specific )(tω  for which all the eigenstates of H )0( ≤≤≤≤t  are exactly 

mapped to the corresponding ones of H )( ftt ≥≥≥≥  after the evolution for ],0[ ftt ∈∈∈∈ . 

Up to a global phase and a rescaling of the energies and lengths, the final state (at 

time t = tf) is identical to the initial one (t = 0), i.e. if the initial state is 

 



 21 

 ti

n
n

netnct )0(0;0; ωψ −−−−∑∑∑∑ ========≤≤≤≤ ,     (3.3) 

 

where { ∈∈∈∈ntn ,; �} is a basis of instantaneous eigenstates of H (t), with { )(tnωh } 

the corresponding eigenvalues, and 1
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This is true even if the initial state is not an equilibrium state. 

 In the following, firstly we will give fundamental info for frequency 

trajectories for a non-interaction gas and for an interaction BEC.  

 

Frequency trajectory for a non-interacting gas 

 

The Hamiltonian is assumed to have the form 
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1

2
ω .     (3.6) 

 

It is a single particle Hamiltonian for a harmonic trap and a constant force. The 

angular frequency )(tω  is assumed to be constant outside the interval ],0[ftt ∈∈∈∈ . 

During this interval, the problem is to find the appropriate frequency trajectory 
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)(tω , connecting the initial trap of initial frequency )0(ω  to a final trap of 

frequency )( ftω , for the decompression [or compression if )0(ω < )( ftω ] to 

implement a shortcut to adiabaticity. 

 In order to best understand the frequency trajectory for a non-interacting 

gas, let us overview the strategy introduced by Chen et al. [8]. If the invariant 

commutes with the Hamiltonian 

 

 0],[ ====HI         (3.7) 

 

for 0≤≤≤≤t  and ftt ≥≥≥≥ , and provided that the function b is sufficiently continuous, 

the stationary states of )0(≤≤≤≤tH  will be transferred to the corresponding ones of 

)( fttH ≥≥≥≥ . An effectively one dimensional time-dependent harmonic oscillator, 

 

2/ˆ)(2/ˆ 222 qtmmpH ω++++==== ,      (3.8) 

 

with an initial angular frequency 0)0(>>>>ω  at time t=0 and final frequency 

)( ff tωω ==== < )0(ω at time ft  is considered. The main tool to engineer )(tω  and 

the state dynamics will be the solution of the corresponding Schrödinger equation 

based on the existence of invariants of motion of the form 
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where 

 

qbmptb ˆˆ)(ˆ &−−−−====π        (3.10) 

 

plays the role of a momentum conjugate to bq/ˆ , the dots are derivatives with 

respect to time, and 0ω  is in principle an arbitrary constant. The scaling, 

dimensionless function b=b (t) satisfies the condition 
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This is an Ermakov equation where real solutions must be chosen to make I 

Hermitian. An alternative, successful strategy put forward in [8], inspired in 

inverse scattering techniques for complex potential optimization [59], is to leave 

)(tω  undetermined at first and impose properties on b and its derivatives at the 

boundaries, t = 0 and tf , to assure: (i) that any eigenstate of H(0) evolves as a 

single expanding mode and that (ii) this expanding mode becomes, up to a 

position-independent phase factor, equal to the corresponding eigenstate of the 

Hamiltonian H(tf ) of the final trap. This keeps the populations in the 

instantaneous basis equal at the initial and final times. After b(t) and its 

derivatives are fixed at the boundaries, b(t) may be chosen as a real function 

satisfying the boundary conditions, for example as a polynomial or some other 

convenient functional form with enough free parameters. Once b(t) has been 

determined, the physical frequency )(tω  is obtained from the Eq. (3.11). 

 Firstly, the conditions at t=0 are discussed. By choosing 1)0(====b , 0)0( ====b& , 

H(0) and I(0) commute and have common eigenfunctions initially. We set 

)0(0 ωω ====  from now on so that 0)0( ====b&&  must hold as well. These boundary 

conditions imply that any initial eigenstate of H (0) will evolve according to the 

expanding mode for all later times. In general, H (t) and I (t) will not commute 

for, 0>>>>t , so that the expanding mode may have more than one component in the 

“adiabatic basis” of instantaneous eigenstates of H (t). At time tf, we want the 

expanding mode to be proportional to the corresponding eigenstate of the final 

trap. Thus, at time ft , it is secondly imposed that the following conditions 

2/1
0 ]/[)( fftb ωωγ ======== , 0)( ====ftb& , 0)( ====ftb&&  must satisfies. 

 Substituting the simple polynomial ansatz 
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into the six boundary conditions gives six equations that can be solved to provide 

the coefficients, 1)1(10)1(15)1(6)(

345
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 As an example, we will overview the method described in [60]. This 

method is proposed to design the time dependence of the trap frequency and 

achieve in a short time an adiabatic-like (frictionless) evolution of Bose-Einstein 

condensates. In order to manipulate Bose-Einstein condensates for different 

applications, it is important to study and control their response to time-dependent 

changes of the confining fields. A general approach to avoid undesired excitations 

is to modify the trap adiabatically, i.e., very slowly, so that, if the initial state is in 

the ground state the final state will be the ground state as well. However, this may 

require very long times and become impractical. Faster changes are thus a 

desirable objective but they will in general induce excitations and oscillations, so 

that the proportion of the ground state in the final state may be small [61-63]. 

These difficulties has motivated the researchers to find the answer of this 

question: Is it possible to change the trap in a very short time, taking the 

condensate, up to a global phase, to the same state that would be reached after a 

slow (adiabatic) process? This question has been answered recently in the 

affirmative for cooling expansions within the framework of the linear Schrödinger 

equation [8]. The method used to design the time-dependence of the trap 

frequency was based on Lewis-Riesenfeld invariants of motion [64] and simple 

inverse scattering techniques that had been applied for complex potential 

optimization [59]. 

 The starting point is the effective one dimensional Gross-Pitaevskii equation 

for the longitudinal x-direction in an elongated cigar trap, 
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g being the coupling parameter. To solve the problem, let us use the following 

ansatz [60], 
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where time-dependent functions )(tα  and )(tβ  to be determined later. After 

substituting this ansatz into Eq. (3.13), and using the scaling bx/====ρ , we obtain 
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where the dot means derivative with respect to time. Let us now impose that the 

coefficients in square brackets […] of the last two terms vanish. This gives us the 

equation for α  and β  (it is assumed that b is real) 
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bee x ββαα . With the help of the boundary conditions given 

below, 
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b (t) is then interpolated with some functional form, e.g. a polynomial with 

enough coefficients to satisfy all conditions, and finally )(2 tω  is calculated from 

the Ermakow equation. Hence, frictionless trajectories for )(tω  is found. 

In brief, it was shown in [60] that it is possible to take a Bose–Einstein condensate 

in a very short time from an initial harmonic trap to a final one without 

excitations, by choosing the time dependence of the frequency according to the 

Ermakov equation or its modifications after matching the time-dependence of a 

scaling factor to suitable boundary conditions. In [60], it was also shown that in 

1D and 3D traps, this requires either a simultaneous change of the time 

dependence of the coupling, or a Thomas–Fermi type of regime. 2D traps are 

privileged in this respect and do not require either of these conditions. 

 

Shortcut to adiabaticity for an interacting Bose-Einstein condensate 

 

 The rapid shortcut decompression of a 3D interacting BEC confined in an 

anisotropic harmonic trap was investigated in [14]. Here in order to understand 

the system we prefer to follow that study. The system was described by a zero-

temperature BEC plus a thermal cloud, assumed to behave independently. The 

BEC component thus obeys the 3D Gross-Pitaevskii equation 
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where ),( trψ  is the wave function of the condensate, m is the mass, N is the 

number of particles, and U  is the interaction potential. The time-dependent 

trapping potential V has a cylindrical symmetry along the horizontal axis (y) 
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It was emphasized that decreasing the trap frequencies not only decompresses the 

BEC but also translates the harmonic potential minimum vertically by 

)/1/1( 22
0 ⊥⊥⊥⊥⊥⊥⊥⊥ −−−−−−−−==== fgz ωω∆ , where 0ω  is initial angular frequency and fω  is final 

angular frequency. The objective is to engineer a trajectory )(, t⊥⊥⊥⊥ω  connecting the 

equilibrium states in the initial and final potentials. It was stressed that the BEC is 

not at equilibrium at any time during the trajectory, but only at t = 0 and t=tf . 

Thus with using a specifically designed parameter trajectory for the harmonic 

trapping potential, shortcut to adiabaticity transformations on a 3D interacting 

BEC was performed [14]. It is well known that all we have to do is to engineer the 

time-dependent parameter of the Hamiltonian and find the convenient trajectories 

to obtain shortcut to adiabaticity. 

 So far, the main information of shortcuts to adiabaticity for both non-

interacting gas and interacting BEC with harmonic trap are shortly given. After 

giving the main structure of these systems, in the following we will briefly 

mention about the studies on shortcuts to adiabaticity up to now [9-31, 57, 58, 65-

82] and we will overview the methods used in this field. In [8], the Lewis-

Riesenfeld invariants were used to inverse engineer the time dependence of a 

harmonic oscillator frequency between predetermined initial and final values so as 

to avoid final excitations. That paper and its fellow on Bose-Einstein condensates 

[60] have indeed initiated a surge of activity, not only for harmonic expansions 

[13, 14, 18, 20, 23, 25-27, 67, 71, 75,79] but for atom transport [9, 66, 78], optical 

lattice expansions [17, 65], wavepacket splitting [71], internal state control [68, 

73, 74, 77], many-body state engineering [24, 26, 72] and other applications such 

as sympathetic cooling of atomic mixtures [16, 82], or cooling of nanomechanical 

resonators [22]. Actually several works had previously or simultaneously 

considered to speed up adiabatic processes making use of different techniques. 

For example, Masuda and Nakamura [12] developed a fast-forward technique for 

several manipulations on wavepackets such as expansions, transport or splitting of 

Bose-Einstein condensates. 
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Expansion of trapped particles 

 

 Obtaining fast expansions of trapped cold atoms without losing or exciting 

them is important for many applications: for example to reduce velocity 

dispersion and collisional shifts in spectroscopy and atomic clocks, decrease the 

temperature, adjust the density to avoid three body losses. As well as trap 

compressions are also quite common. 

There are several methods used in investigation of shortcuts to adiabaticity. Let us 

mention about most using ones, (i) inverse engineering of the external driving [8, 

9, 11, 13, 14, 60, 70] based on Lewis-Riesenfeldt invariants [64] which has been 

applied in several expansion experiments [13, 14]; (ii) transitionless tracking 

algorithm that adds to the original Hamiltonian extra terms to cancel transitions in 

the adiabatic bases [1, 10, 15], (iii) optimal control methods [6, 18, 78]; (iv) the 

fast-forward approach advocated by Masuda and Nakamura [12, 19]. In [75], the 

connection between fast-forward approach and inverse engineering method based 

on Lewis-Reisenfeld invariants was investigated. The fast-forward approach by 

Masuda and Nakamura [19] generates driving potentials to accelerate slow 

quantum adiabatic dynamics. The objective of the method is to accelerate a 

standard system subjected to a slow variation of external parameters. A 

streamlined version of the formalism that produces the main results was presented 

in a few steps and more general applications exemplified by wave splitting 

processes were also discussed [75]. Firstly, a streamlined construction of local and 

real fast-forward potentials were provided. The starting point is the 3D time-

dependent Gross-Pitaevskii equation where the Hamiltonian H is the sum of the 

kinetic energy T, the external potential V(t), and the mean field potential G(t). It 

was assumed that an external local potential, where local means here 

)(),()( xxtxVxtVx ′′′′−−−−====′′′′ δ . Then, by solving 3D time-dependent Gross-

Pitaevskii equation in coordinate space, V (x, t) may be written as 
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with ),()( txtx ψψ ==== . The kinetic and mean field terms in the coordinate 

representation have the usual forms 
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g being the coupling constant of the BEC. By introducing the ansatsz into Eq. 

(3.20)  
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gives us the below equation where r is the modulus and φ  is the phase, 
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where the dot means time derivative. The real and imaginer parts are 
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The purpose now is to design a local and real potential such that an initial 

eigenstate of the initial Hamiltonian, typically the ground state but it could be 

otherwise, evolves in a time tf into the corresponding eigenstate of the final 

Hamiltonian. It was assumed that the full Hamiltonian and the corresponding 

eigenstates are known at the boundary times. If we impose that Im[V (x, t)] = 0, 

i.e. 
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then a local and real potential have been obtained. 

In the inversion protocol, firstly r(x, t) is designed, then solved for φ  in Eq. 

(3.26), and finally the potential V is obtained from Eq. (3.24). If at the boundary 

times, 0====r&  is imposed, Eq. (3.26) has solutions ),( txφ  fulfilling that ),( txφ  is 

independent of x at t = 0 and t = tf . Using this in Eq. (3.51) at t = 0, and 

multiplying by )0(φie , we get 
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The initial state is thus an eigenstate of the stationary Gross-Pitaevskii equation at 

t = 0, and )0()0( E====−−−− φ&h  is the energy of the eigenstate )0,(xψ . Note that the 

above solution of φ  (with 0====r& at boundary times) admits the addition of an 

arbitrary function that depends only on time and modifies the zero of energy. A 

similar result is found at tf . After giving the basic information, let us mention 

about the connection with the fast-forward approach and the connection with the 

invariant based inverse engineering approach. Firstly, the above results are 

reformulated to connect them with the fast-forward approach [12]. And after some 

algebra, fast-forward potential is determined as, 
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where )(tR  is in general function of its argument, ε  is small parameter and α  is 

magnification factor. Secondly, inverse engineering approach was examined. In 

the inverse approach based on quadratic-in-momentum invariants, the 
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Hamiltonian is assumed to have the form given in Eq. (3.29), at all times and in 

particular at initial and final instants. 
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where )(tω , )(tF  and )(th are arbitrary functions of time and )(σU  is an 

arbitrary function of its argument ρασσ /)()( −−−−======== xt . The time-dependent 

functions )(tρ  and )(tα  must satisfy the auxiliary equations  
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with 0ω  an arbitrary constant. Up to now, we have mentioned about the general 

content of the study given in [75]. Let us continue with the results and future 

works related with that problem. Briefly, we can say that the inverse engineering 

approach and fast-forward approach are connected via the simple inversion 

method [75]. An example of a 3D harmonic expansion produced with the inverse 

engineering approach based on invariants and with the fast forward technique 

were also discussed to illustrate the links between the two methods (see [75] for 

more details). Consequently, it was shown that the connection between fast-

forward approach and inverse engineering based on Lewis-Riesenfeld invariants. 

In [75], they identified in this manner applications in which the engineered 

potential does not depend on the initial state. Firstly, from the imposing set of 

equations of the fast-forward formalism as originally presented a streamlined 

version was extracted. And the second aim was to relate it to other inverse 

engineering methods. In a previous publication, the inverse-engineering method 

based on invariants, was related to the transitionless tracking algorithm, and the 

potential equivalence was demonstrated [77]. Similarly, in [75] the connection 

between the fast-forward method and the invariant-based method was established 
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for quadratic-in-momentum invariants. It was stated that these relations do not 

imply the full identity of the methods but their overlap and equivalence in a 

common domain. They are still useful heuristically as separate approaches since 

they are formulated in rather different terms [19, 77]. Moreover, they facilitate 

extensions beyond their common domain, as exemplified by the wave-splitting 

processes discussed in the content of [75]. It was pointed out that further 

extensions are left for separate analysis: for example the possibility to transfer an 

excited state into the ground state or adversely, or combining the fast-forward 

approach with optimal control theory without including the final fidelity in the 

cost function as in [6]. As a future work, it was stated that it is interesting to 

consider complex potentials, either as solutions to the shortcut dynamics, as in the 

quantum brachistochrone [83], or as an effective description of the system 

dynamics to be accelerated [11]. 

As a part of shortcut to adiabaticity with expansion of trapped particles, let us 

continue with the study of transitionless quantum drivings for the harmonic 

oscillator given in [79]. Muga et al. [79] compared and distinguished two different 

methods: a transitionless-tracking algorithm, and an inverse-invariant method, to 

achieve transitionless dynamics for a fast frequency change of a quantum 

harmonic oscillator. The first method, a transitionless-tracking algorithm, makes 

use of a generalized harmonic oscillator and a non-local potential. The second 

method, based on engineering an invariant of motion, only modifies the harmonic 

frequency in time, keeping the potential local at all times. To achieving 

transitionless dynamics for a fast frequency change of a quantum harmonic 

oscillator different driving Hamiltonians were implied. The one in the inverse-

invariant method can be implemented for ultracold atoms or ions in the laboratory 

by varying the trap frequency in time along a certain trajectory, and a 

generalization to Bose Einstein condensates was worked out [60], but its 

extension to other potentials or systems may be difficult and remains an open 

question. By contrast, Muga et al. [79] found some difficulties to realize the 

transitionless-tracking Hamiltonian for the harmonic oscillator, but the 

transitionless-tracking method has the advantage of being, at least formally, more 

generally applicable. The feasibility of the actual realization is quite another 
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matter and has to be studied in each case. An example of application was provided 

in [1] for two-level systems. 

Researchers are so much concern with a surge of interest to shorten the time it 

takes to change the state of a quantum system adiabatically. One of the studies on 

this area is related about the transient energy excitation in shortcuts to 

adiabaticity. Chen and Muga [70] dealt with this problem and studied the transient 

energy excitation in time-dependent quantum harmonic oscillators engineered so 

that the level populations at a final time are the same as the initial populations. 

Implications for the limits imposed to the process times and for the principle of 

unattainability of the absolute zero, in a single expansion or in quantum 

refrigerator cycles, were drawn. Simple processes in which the only external 

manipulation consists in shaping angular frequency ω(t) were considered. The 

populations of the instantaneous levels at intermediate times are, however, not 

preserved, so the transient excitation should be understood and possibly 

controlled. Bounds were obtained and examples can be found in [70]. In a realistic 

application, the oscillator will not be perfectly harmonic and it is natural to set 

some maximum value to the allowed excitation. Then the minimal time required 

for a fast expansion scales with the final frequency as 2/1−−−−∝∝∝∝ fft ω , where ft  is 

the total time. The results presented in [70] provide strong support for the validity 

of this conjecture within the set of processes defined exclusively by time-

dependent frequencies. It was also stated that these results call for further studies 

[70]. 

The discussion mentioned previously is limited to 1D but real traps are three-

dimensional and at most effectively 1D. Torrontegui et al. [67] found out the 

theory and performed numerical simulations of fast expansions of cold atoms in a 

three-dimensional Gaussian-beam optical trap. Specifically, a simple physical 

realization based on an elongated cigar-shaped optical dipole trap with cylindrical 

symmetry was modeled. This trap is formed by a single laser which is red detuned 

with respect to an atomic transition to make the potential attractive, and is 

characterized in the harmonic approximation by longitudinal and radial 

frequencies. While magnetic traps allow for an independent control of 

longitudinal and radial frequencies [13], this is not the case for a simple laser trap 
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that therefore requires a special study. It was assumed that the time-dependence of 

the longitudinal frequency is engineered to avoid final excitations with a simple 

1D harmonic theory and the final fidelity in the actual trap was analyzed. Even 

though for full 3D-results a purely numerical calculation was also performed. An 

understanding of the effects involved was achieved first by analyzing separately 

longitudinal and radial motions. Let us overview the model of the system given in 

[67]. The intensity profile of a Gaussian laser beam in the paraxial approximation 

is given by 
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where r and z are the radial and longitudinal coordinates respectively, and the 

variation of the spot size ω  with z is given by 
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where λπω /2
0====Rz  is the Rayleigh range, 0ω  is the waist, and λ  is the laser 

wave length. Thus cold atoms in optical Gaussian beam traps are exposed to the 

potential of the form 

 

 )(
/1

1
)(),,( 022

)(/2
0

22

tV
zz

etVtzrV
R

zr ++++
++++

−−−−==== −−−− ω ,   (3.34) 

 

where 
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Saturation intensity is given by )3/( 3τλπhcIsat ==== , and δ  is the detuning, the 

inverse of the lifetime of the excited state is given by 1−−−−==== τΓ . In the following the 
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aim is to solve the time-dependent Schrödinger equation associated with the 

potential given in Eq. (3.34). The Schrödinger equation can be solved with 

standard separation of variables method in the cylindrical coordinates [67]. In 

[67], three different methods to avoid final motional excitation were compared: 

inverse engineering using Lewis-Riesenfeld invariant, which provides the best 

overall performance, a bang-bang approach, and a fast adiabatic approach. 

Transitionless expansion was analyzed, taking into account anharmonicities, 

radial-longitudinal couplings and the radial-longitudinal frequency mismatch. It 

was concluded that the transitionless expansions in optical traps are feasible under 

realistic conditions. Despite the relation between the longitudinal and transversal 

trapping frequencies through the intensity, the different timescales enable them to 

design fast expansions with high fidelities with respect to the ideal results using 

the invariant-based inverse engineering method, which is particularly suitable 

compared to the two other approaches examined. Detailed analysis of radial and 

longitudinal motions reveals the weakest points of each approach: for the inverse 

engineering, the main perturbation is due to the possible adiabaticity failure in the 

radial direction, which can be suppressed or mitigated by increasing the laser 

waist. This waist increase would also reduce smaller perturbing effects due to 

longitudinal anharmonicity or radial-longitudinal coupling. The simple bang-bang 

approach fails because the time for the radial expansion is badly mismatched with 

respect to the ideal time, and the fast adiabatic method fails at short times because 

of the adiabaticity failure in the longitudinal direction. In [67], complications such 

as perturbations due to different noise types, and consideration of condensates, 

gravity effects, or the transient realization of imaginary trap frequencies were left 

for separate works. 

In the following, we will continue with the discussion of the possibility of 

realizing shortcut to adiabaticity in a harmonically trapped Bose-Einstein 

condensate using a scaling ansatz. One of the studies can be found in [25]. The 

conditions for quantum phase fluctuations to be negligible for shortcut to 

adiabaticity were discussed in that study. In [25] fast frictionless dynamics was 

exploited as a tool-box to manipulate and control low-dimensional quantum gases. 

Implementing a fast frictionless dynamics in a low-dimensional Bose-Einstein 
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condensate by engineering the time dependence of the transverse confining 

potential in a highly anisotropic trap a method was proposed in [25]. This method 

tunes the non-linearity of the effective low-dimensional (1D and 2D) dynamics of 

an anisotropic Bose-Einstein condensate by engineering the time-modulation of 

the transverse confinement. The purpose of that study is to find a 1D effective 

non-linear Schrödinger equation or Gross-Pitaevskii equation for a BEC in an 

elongated trap in which the transverse confinement is modulated in time. The 

corresponding potential used in [25] is similar with Eq. (3.19) and given as 
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where xω  and yω  are the frequencies along x and y direction, respectively. Here 

differently from Eq. (3.19) there is no trap due to gravity. The starting point is 3D 

time-dependent GPE given in Eq. (3.18) which governs the dynamics of the order 

parameter. It was stated that dimensional reduction of the 3D Gross-Pitaevskii 

equation is possible. After some algebra, the 3D Gross-Pitaevskii equation 

becomes a linear Schrödinger equation for the radial degrees of freedom and after 

dimensional reduction, the following effective 1D Gross-Pitaevskii equation with 

a time-dependent non-linearity is derived as 
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and the term )(tα  
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can be removed with a unitary transformation. Formerly, we have mentioned in 

detail about the scaling factor b=b (t) which is the solution of the Ermakov 

differential equation. As we have indicated before control of low dimensional 

quantum gases studied in [25], for that purpose inducing fast frictionless dynamics 

in quasi-1D BEC and quasi-2D BEC were investigated and finally the trajectories 

were found as  
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respectively. The trajectory given for the quasi-1D BEC induces a frictionless 

dynamics in the transverse direction, which modulates the three-dimensional 

density, and ultimately the effective axial non-linearity in the required way 

)(/)0()( 11 tbgtg zDD ====  for the axial dynamics to be self-similar. It was shown that 

a modulation of the transverse trapping frequency can be used to tune the axial 

effective coupling constant without the need to use a Feschbach resonance [25]. 

Briefly, a scheme to implement a fast frictionless dynamics of a low-dimensional 

Bose-Einstein condensate was presented, in which spurious excitations are 

avoided without the need to fulfill adiabaticity constraints. Exploiting the self-

similar dynamics in the strongly confined degrees of freedom, it was shown that 

this can be achieved by engineering the modulation of the transverse confinement 

of the cloud in an elongated trap. As a result, it is possible to tune the amplitude of 
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non-linear interactions in these systems. The method to preserve short-range 

correlations in time of flight, assist shortcuts to adiabatic expansions in quasi-1D 

interacting BEC, and implement nearly sudden interaction quenches were also 

applied. More generally, it was discussed that inverting the equations associated 

with self-similar scaling laws allows to determine the trajectory of the control 

parameter for different processes, and constitute a powerful toolbox for the 

manipulation of ultracold atoms. 

An important simplification occurs in the Thomas-Fermi regime, where the mean-

field energy dominates over the kinetic part. In the Thomas-Fermi regime, it is 

possible to engineer a shortcut exactly, while keeping the coupling strength gD 

constant [60]. Optimal control theory has been recently applied in this regime to 

find optimal protocols with a restriction on the allowed frequencies [80]. 

Studies mentioned up to now were focused on single-particle systems and a 

meanfield description of Bose-Einstein condensates. It has been obviously seen 

that the inversion of scaling laws is a powerful technique to design shortcut to 

adiabaticity in those processes where the dynamics is self-similar, e.g. expansions, 

or transport. In the following, we shall mention about the engineering of shortcut 

to adiabaticity in strongly correlated quantum fluids of relevance to ultracold 

gases experiments. For example, in [24] a method was proposed to spatially scale 

up a trapped ultracold gas while conserving the quantum correlations of the initial 

many-body state. A fairly general model in dimension D consisting of N 

indistinguishable particles with coordinates xi ∈ �D, trapped in a time-dependent 

isotropic harmonic potential of frequency ω(t) and interacting with each other 

through a two-body potential V(xi − xj) was considered. The many-body 

Hamiltonian describing this system reads [24]  
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where i∆  is the D-dimensional Laplacian operator for the xi variable, and )(tεε ====  

is a dimensionless time-dependent coupling strength satisfying 1)0(====ε  (for more 

detail see [24]). In brief, the possibility of scaling up the system while preserving 
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quantum correlations constitutes a new type of microscopy of quantum 

correlations in quantum fluids was studied in [24, 26]. In [26], ultracold gas 

trapped in a box potential was studied. del Campo and Boshier [26] recently 

presented a method to drive an ultrafast dynamics in a time-dependent box trap 

which reproduces the adiabatic result at the end of the evolution. As illustrative 

examples, the ultrafast expansion of a Tonk-Girardeau gas and of BECs in 

different dimensions, where the method exhibits an excellent robustness against 

different regimes of interactions and the features of an experimentally realizable 

box potential were considered. The method is assisted by an auxiliary external 

harmonic potential which provides the speed-up. This method is also applicable to 

a large family of many-body systems supporting dynamical scaling laws, where it 

not only leads to a robust expansion of the density but also preserves the non-local 

correlation functions of the initial state, up to an expansion factor. This method is 

applicable to realistic box potentials and can be implemented in the laboratory 

with well-established technology. Its applications range over all scenarios 

requiring a shortcut to adiabaticity, i.e., probing strongly correlated phases, 

preventing decoherence, the effect of perturbations and atomic losses. It was 

stated that the method could be directly applied as well to ultrafast population-

preserving cooling methods and quantum heat engines and refrigerators [26]. 

Finally, it was shown that shortcut to adiabaticity is robust in the presence of 

interactions and experimental imperfections. 

The time-dependent frequency of a harmonic trap expansion based on invariants 

can be optimized with respect to time or to transient excitation energy, restricting 

the allowed transient frequencies [18, 23]. The efficient cooling of trapped atoms 

has an important place in modern quantum technology, since it has created the 

ultimate physical systems so far precision spectroscopy, frequency standards, and 

even tests of fundamental physics. In [23], a time-optimal control problem related 

to the frictionless cooling of atoms in a time-dependent harmonic potential was 

studied. It is well known that frictionless atom cooling in a harmonic trapping 

potential is defined as the problem of changing the harmonic frequency of the trap 

to some lower final value, while keeping the populations of the initial and final 

levels invariant, thus without generating friction and heating. Traditionally, an 
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adiabatic process is used where the frequency is changed slowly and the system 

follows the instantaneous eigenvalues and eigenstates of the time-dependent 

Hamiltonian. It has been mentioned before that the obstacle of this method is the 

necessary of longer times which may make it impractical. A way to bypass this 

problem is to use the theory of the time-dependent quantum harmonic oscillator 

[64] to prepare the same final states and energies as with the adiabatic process at a 

given final time, without necessarily following the instantaneous eigenstates at 

each moment. Achieving this goal in minimum time has many important potential 

applications. For example, it can be used to reach extremely low temperatures 

inaccessible by standard cooling techniques [84], to reduce the velocity dispersion 

and collisional shifts for spectroscopy and atomic clocks [85], and in adiabatic 

quantum computation [86]. It is also closely related to the problem of moving in 

minimum time a system between two thermal states [87]. It was initially proved 

that minimum transfer time for the previously mentioned problem can be achieved 

with “bang-bang” real frequency controls [87]. Later, it was shown that when the 

restriction for real frequencies is relaxed, allowing the trap to become an 

expulsive parabolic potential at some time intervals, shorter transfer times can be 

obtained, leading to a shortcut to adiabaticity [8]. In Stefanatos et al.’ s work [18], 

frictionless atom cooling was formulated as a minimum-time optimal control 

problem, permitting the frequency to take real and imaginary values in specified 

ranges. It was shown that the optimal solution has again a “bang-bang” form and 

this fact was used to obtain estimates of the minimum transfer times for various 

numbers of switching. In [23], solution of the corresponding time-optimal control 

problem was found and the optimal syntheses were obtained. A time-optimal 

control problem related to the frictionless cooling of atoms trapped in a time-

dependent harmonic potential was studied. It was stated that the results presented 

in the article [23] can be immediately extended to the frictionless cooling of a 

two-dimensional Bose-Einstein condensate confined in a parabolic trapping 

potential [60] and even to the implementation of a quantum dynamical 

microscope, an engineered controlled expansion that allows to scale up an initial 

many-body state of an ultracold gas by a desired factor while preserving the 

quantum correlations of the initial state [24]. The techniques given above are not 
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restricted to atom cooling but are applicable to areas as diverse as adiabatic 

quantum computing and finite time thermodynamic processes. 

Kosloff and coworkers [31] have applied optimal control theory to minimize the 

expansion time with frictionless conditions, i.e., taking an initial thermal 

equilibrium at one temperature into thermal equilibrium at another temperature in 

a cooling cycle, using real or imaginary bang-bang intermediate trap frequencies, 

see e.g. [31, 87]. 

Inverse engineering expansions using invariant theory or scaling laws have been 

applied in several contexts. For example, Choi et al. [16] discussed the possibility 

of achieving deep degeneracy of Fermi gases via sympathetic cooling by changing 

the trapping frequency of another species to keep constant the Lewis-Riesenfeld 

invariant. The defined advantages are the maximal heat capacity retained by the 

coolant due to the conservation of the number of atoms, and the preservation of its 

phase-space density in the nondegenerate regime. The limits of the approach are 

set by the transient excitation that should be kept below some allowed threshold, 

and by the spreading of the cooling cloud which reduces the spatial overlap with 

the Fermionic cloud. The method is found to be quite robust with respect to 

broadband noise in the trapping frequency [82]. The squeezing and robustness of 

frictionless cooling strategies studied in that study. Choi et al. have rephrased the 

cooling features in terms of a peculiar squeezing effect and used it to parameterize 

the robustness of frictionless cooling techniques with respect to noise-induced 

deviations from the ideal time-dependent trajectory for the trapping frequency 

[82]. Qualitative issues for the experimental implementation of this scheme were 

also discussed using bichromatic optical traps and lattices, which seem especially 

suitable for cooling Fermi-Bose mixtures and for investigating equilibration of 

negative temperature states, respectively. It was stated that a scheme using a 

single-frequency optical dipole trap with a continuously tunable laser is not 

feasible due to the large atom losses expected in crossing the dominant atomic 

transition from the red-detuned to the blue-detuned side to achieve antitrapping 

[82]. However, this issue may be circumvented through the use of two laser 

beams at constant frequencies, opposite detunings, and a variable power ratio, 

such as the bichromatic optical dipole traps proposed in [88] to allow optimal heat 
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capacity matching between Bose and Fermi gases [89, 90]. The presence of noise 

related to power fluctuations and beam-pointing stability for both laser beams in 

this configuration makes the discussion presented in [82] quite relevant for 

implementing frictionless cooling in bichromatic optical dipole traps. Bichromatic 

trapping has been recently implemented at the magneto-optical trap stage for a 

single species [91], and two-species selective trapping and cooling have been 

demonstrated with hybrid traps involving magnetic and optical confinement [92, 

93]. Therefore experiments involving trapping and cooling of two species in a 

bichromatic trap should be within reach in the near-future. It was claimed that this 

study should also be relevant to the case of frictionless cooling in optical lattices, 

as recently discussed [17]. Dynamically variable spacing (the so-called accordion 

lattice) allows for a continuous increase in lattice periodicity, as experimentally 

demonstrated in [94-96], without the need to change the laser frequency. In that 

case an additional source of noise during the trap expansion is due to the presence 

of acousto-optic deflectors, adding up to the beam-pointing stability of the lasers. 

Implementing frictionless cooling with a negative square frequency stage via a 

bichromatic optical lattice could also be of great relevance to investigate 

fundamental issues of statistical mechanics as the approach to equilibrium in 

atomic systems at negative temperatures [97-99]. It was found that the robustness 

of the frictionless cooling method to noise can be analyzed by characterizing the 

final quantum state in terms of the amount of squeezing as well as a variant of the 

usual fidelity [82]. Another result is about the robustness, it was found that the 

method is quite robust to the presence of broadband noise in the trapping 

frequency, and further analysis involving monochromatic sinusoidal modulation 

has allowed us to resolve its response. The dependence of the squeezing and 

fidelity were studied on the deviation from the expected Ermakov trajectory and 

identified the role of measures such as the temporal density of states and 

characteristic angular frequency. Numerical simulations indicate that, despite the 

perception that a short ft  could mean less time for noise to interfere with the 

system, too short a ft  is best avoided in practice. Additively, a way to reduce the 

maximum temperature and hence atom losses was found by adding a high 
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frequency sinusoidal modulation, which helps to mitigate one of the limitations of 

this scheme. 

In [22], a scheme to cool down a mechanical resonator in a three-mirror cavity 

optomechanical system was proposed. The dynamics of the mechanical resonator 

and cavities is reduced to that of a time-dependent harmonic oscillator, whose 

effective frequency can be controlled through the optical driving fields. 

Most of the investigations so far have been based on ultracold atoms in a 

harmonic trap. Differently from the literature the case of frictionless cooling in 

optical lattices is firstly studied in [17]. It was shown that a correct choice of 

expansion trajectory allows us to get a final adiabatic state in a non-adiabatic way. 

The method of obtaining fast adiabatic transformation is to use a lattice with 

dynamically variable spacing (accordion lattice). The conditions for fast 

frictionless expansion for an accordion lattice were given. Such accordion lattices 

are useful since the final lattice spacing can be made large enough to be resolved 

in an experiment. It was assumed that the transverse motion of the atoms is frozen 

(i.e., a 1-D problem). The description of a condensate in 1-D is based on the 

Hamiltonian  
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where m is the atomic mass, V(t) is the lattice depth, kL is the optical lattice wave 

number, ω(t) is the time-dependent angular frequency and Λ(t) is the scale 

parameter describing the expansion of the lattice. To find the time evolution of the 

state for the Hamilton given above, a transformation on the wave function is 

introduced as 
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with a subsequent transformation on the coordinate  
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where g(t) is a time-dependent function to be determined later. After these 

transformations let us choose g(t) as 
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then the corresponding Hamiltonian takes form as 
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where 2Ω  is given by 
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The effects of lattice spacing are equivalent to the effective time-dependent mass 

and the effective parabolic potential in the stationary frame. The first term in the 

right-hand side of the above equation is due to the external one while the second 

one is induced due to the variation of the lattice spacing. In the following, the 

convenient trajectories will be investigated. In [17], it was found that the fast 

frictionless expansion can be achieved by engineering the potential depth as 
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As can be obviously seen from the above equation, the potential depth decreases 

as the system expands. On the other hand, the time-dependent angular frequency 

was chosen as 
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The Eq. (3.47) is reduced with the help of Eq. (3.49) and (3.50), and the 

Schrödinger equation with constant potential depth is obtained. Finally, three 

different solutions of )(tΛ  were examined, and the corresponding external 

frequency 2ω  was plotted [17]. For a harmonically trapped system, the harmonic 

potential is needed to achieve the expansion of the system. However, expansion 

for an optical lattice can be achieved either by changing the wavelength of the 

laser or the relative angle between the two laser beams. The external parabolic 

potential is necessary for an optical lattice to cancel the induced parabolic 

potential, which pushes the atoms out of the condensate since it becomes 

expulsive for certain time intervals. Shortly, it was shown that the non-adiabatic 

expansion of an optical lattice in few milliseconds may lead to adiabatic final 

states provided that the expansion trajectory satisfies the boundary conditions and 

the external parabolic potential is applied to the system. It was claimed in [17] 

that this prediction can be tested through experiments similar to the one described 

in [96]. Since the non-adiabatic protocol preserves the initial state after expansion, 

it allows straightforward imaging of the optical lattice. The effect of additional 

forces and harmonic trapping was also discussed. It was also argued that fast 

frictionless expansion is possible even in the presence of nonlinear interaction 

provided that the scattering length is decreased proportionally to lattice scaling 2Λ  

via Feshbach resonance [17]. 

Due to the need to control and implement quantum resources, there has been an 

increasing interest in developing fast protocols to shortcut adiabatic following [8, 

9, 72, 77]. In [72], methods for fast production of highly coherent-spin-squeezed 

many-body states in bosonic Josephson junctions were described. The starting 

point is the known mapping of the two-site Bose-Hubbard Hamiltonian to that of 

a single effective particle evolving according to a Schrödinger-like equation in 

Fock space. Since, for repulsive interactions, the effective potential in Fock space 

is nearly parabolic, recently derived protocols for shortcuts to adiabatic evolution 

in harmonic potentials to the many-body Bose-Hubbard Hamiltonian were 
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extended in [72]. As we mentioned before, the key purpose to obtain the shortcuts 

to adiabaticity is to engineer procedures to drive, in a finite time, a system from 

some initial state to a final state that could be reached with an adiabatic, slow 

process. It should be noted that, in general, the initial and final states are not 

necessarily required to be the ground states of the system. In [72], however, in 

transitions between ground states corresponding to different values of the model 

parameters which can be controlled externally were concentrated. The proposed 

method was designed so that the desired final state is produced as a stationary 

eigenstate of the Hamiltonian, with no need to stop or freeze the dynamics. 

Analytical formulas to perform this type of processes exist for the harmonic 

oscillator [8]. It was shown that they can be extended to many-body states 

described by the Bose-Hubbard Hamiltonian. That allows to computing the 

dependence of the attainable coherent spin squeezing in the system on the number 

of atoms, N, the atom-atom interactions, U, and the linear coupling J. To do so, 

the explicit mapping was used, in the large N limit, between the two-site Bose-

Hubbard model and an effective single particle system described by a 

Schrödinger-like equation. The dynamics of a bosonic Josephson junction can be 

well described by a quantized two-mode model [100]. For the external bosonic 

Josephson junctions case [100], or by construction in the internal bosonic 

Josephson junctions case, the system of ultra-cold bosons is well modeled by the 

Bose-Hubbard Hamiltonian  
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and †ˆ ja  creates a boson in site j, jiji aa ,
† ]ˆ,ˆ[ δ==== , J is the hopping strength, taken 

positive, and U is the non-linear coupling strength proportional to the atom-atom 

s-wave scattering lenhtg. In [72], repulsive interactions were considered, U>0. 

Time-dependent U (t) was used, keeping J and N fixed during the time evolution. 

The method used in that article for fast adiabatic-like preparation of a given 

ground state requires control of the atom-atom interaction at time scales of 

fractions of the Rabi time. So we can conclude that protocols for fast generation 

of very coherent-spin-squeezed states in bosonic Josephson junctions were 

proposed [72]. The attained squeezing is the one corresponding to the ordinary 

adiabatic evolution in the case of repulsive atom-atom interactions, but requires 

much shorter preparation times. Thus, practical methods of fast-adiabatic driving 

have important advantages for any future implementation of bosonic Josephson 

junctions where they are used as resources of entanglement/spin squeezing. The 

best scaling of the squeezing parameter for large number of atoms N is NS /12 ≈≈≈≈ξ  

[for more detail see 72]. Procedures, given in [72], require a good control of the 

time variation of the atom-atom scattering length during the desired period, from 

now on a possibility at hand in that experimental setups for internal bosonic 

Josephson junctions. In [72], the methods were obtained by extending recently 

developed protocols for fast-adiabatic evolution in the case of a single particle 

evolving in a time-dependent Harmonic oscillator potential, to the Bose-Hubbard 

Hamiltonian. It was claimed that if confirmed experimentally, the proposal 

presented in [72] represents a useful step forward in the fast-adiabatic preparation 

of many-body entangled quantum resources. 

As we know, adiabatic methods are ubiquitous in cold atoms and atomic physics 

laboratories to control and prepare atomic states in a robust way. An explicit 

obstacle is that the times required may be too long for practical applications. 

Furthermore the ideal robustness may be damage by the accumulation of 

perturbations and decoherence due to noise and undesired interactions. Studies 

and experiments to speed up adiabatic processes have been realized for wave 

splitting [71], transport [9, 66], expansions and compressions [13, 14, 18, 8, 60, 

79], or internal state control [1, 77]. These researches have been performed for 

Hermitian Hamiltonians, but many systems admit an effective non-Hermitian 
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definition. Shortcuts to adiabaticity techniques for non-Hermitian Hamiltonian 

systems were generalized and provided application examples in [11]. Specifically, 

the inverse engineering method proposed by Berry [1] and the one based on 

dynamical invariants [8] were generalized. A two-level decaying atom and the 

motion of a classical particle in a harmonic oscillator with time-dependent 

frequency were discussed. In order to understand the system, we will continue 

with the revision of the methods given in [11]. Fisrtly, the non-Hermitian 

Hamiltonian was defined. Non-Hermitian Hamiltonians typically describe sub-

systems of a larger system. It was assumed that a non-Hermitian time-dependent 

Hamiltonian )(0 tH  with N non-degenerate right eigenstates })({ tn , 

Nn ...,2,1==== , 
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where the star means complex conjugate and the dagger denotes the adjoint 

operator. The time-dependent Schrödinger equations for a generic state )(tΨ  

and for its biorthogonal partner )(ˆ tΨ  satisfying 1)()(ˆ ====tt ΨΨ  are 
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After obtaining the main equations, the methods mentioned above are generalized 

to the system. M. V. Berry proposed a method to design a Hermitian Hamiltonian 

H (t) for which the approximate adiabatic dynamics driven by the Hermitian 

Hamiltonian H0 (t) becomes exact [1]. This method was generalized for non-

Hermitian Hamiltonians, too. In this instance the adiabatic approximation when 
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H0 (t) is non-Hermitian is needed [101]. Lewis and Riesenfeld [64] proposed the 

use of dynamical invariants of a quantum mechanical system to perform 

expansions of arbitrary time-dependent wave functions by superposition of 

eigenstates of the invariant. Inverse engineering techniques rely on designing the 

invariant eigenvectors and phase factors first, possibly taking into account partial 

information on the structure of the Hamiltonian, and then deducing the 

Hamiltonian from them. To understanding shortcut to adiabaticity for non-

Hermitian Hamiltonian systems, the inverse engineering method proposed by 

Berry [1] and the one based on dynamical invariants [8] were used. While these 

methods are intimately connected as shown in [77] and may in fact be considered 

potentially equivalent, they are used in different ways in standard applications. 

These methods provide different answers so they are separately considered (for 

more detail see [11]). 

There is a plenty of methods to preserve the initial state populations in a fast 

harmonic trap expansion. Some of them were examined and compared in the 

review articles given in [57, 69]. The design of the time dependence of the 

frequency using inverse techniques presents advantages over the slow adiabatic 

approach, band-bang methods, or the non-local transitionless tracking algorithm. 

The inverse-invariant method was compared with adiabatic and bang-bang 

techniques [69]. This method was also applied to Bose-Einstein condensates 

governed by the Gross-Pitaevskii (GP) equation. The other examined method is 

the transitionless tracking method [69]. It was shown that the inverse-invariant 

method is able to cool down atoms in a harmonic trap without phase-space 

compression as in a perfectly slow adiabatic expansion but in a much shorter time 

by a special design of the time dependence of the frequency. For very short total 

expansion times, this may require that the harmonic trap becomes temporarily an 

expulsive parabolic potential. There is a possibility to take a Bose-Einstein 

condensate in a very short time from an initial harmonic trap to a final one 

without excitations, by the same technique. In [57], different theoretical 

techniques proposed to engineer the shortcuts, the experimental results and the 

prospects were reviewed. 
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Transport 

 

 The efficient transport of atoms and ions by moving the confining trap is a 

necessary fundamental requirement for many applications. The transport should 

ideally be lossless and fast, i.e. the final state should be equal to the initial one 

apart from the translation and possibly phase factors. Many different experimental 

approaches have been implemented. Neutral atoms have been transported 

individually, as thermal atomic clouds, or condensates, using optical or magnetic 

traps. Usually, a way to avoid spilling or excitation of the atoms is to perform a 

sufficiently slow (adiabatic) transport. But for many applications the total 

processing time is limited due to decoherence and an adiabatic transport may turn 

out to be too long. As a part of quantum information processing, transport could 

occupy most of the operation time of realistic algorithms, so transport times need 

to be minimized. In short, we have significant reasons to reduce the transport 

time, and varied theoretical and experimental works have studied ways to make 

fast transport [7, 9, 12, 66, 78]. As well as expansions, shortcut techniques can be 

applied to perform fast atomic transport without final vibrational heating by 

combining dynamical invariants and inverse engineering. Two basics scenarios 

can be dealed in this way: first one is shortcuts for the transport of a harmonic trap 

and the other is shortcuts for the transport of an arbitrary trap. 

In [78], optimal harmonic-trap trajectories were designed to transport cold atoms 

without final excitation, combining an inverse engineering technique based on 

Lewis-Riesenfeld invariants with optimal control theory. Optimal trajectories with 

bang-bang and bang-off-bang forms were respectively obtained for time 

minimization and displacement-minimization with constrained displacement 

between the trap center and the center of mass of the particle density. The 

transient energies for bounded and unbounded displacement were also minimized 

in [78]. In the time-optimal problem, the minimal time corresponds to a fixed 

constraint δ . Consistently with this, no solutions were found for displacement 

and energy minimization problems for transport times shorter than the minimal 

time, i.e. for δω /)/2( 0 dt f <<<< , where 0ω  is the constant harmonic frequency 

and d is the final position of the center of the harmonic trap. To achieve fast and 
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faithful transport in shorter times, an energy price must be paid by increasing δ  

which, in real traps, will also produce errors because of anharmonicities. The 

relation between the minimal (time-averaged) energy and the transport time ft  

obtained in [78] is not at all trivial, in particular they are not simply inversely 

proportional, see e.g. Eqs. (56) or (70) in [78], as one might naively expect from 

the form of time-energy uncertainty relations. The scaling laws found are also 

peculiar of transport. In a previous work on invariants and transport [9], the 

energy bound for the time-averaged potential energy pE  was found using the 

Euler-Lagrange equation. In [78], it was shown that how to realize this bound by 

allowing the discontinuous acceleration of the trap at t = 0 and t = ft  in the 

unbounded control optimization. As a principle these and other discontinuities 

found could be avoided by imposing appropriate bounds and using a powerful 

pseudospectral numerical optimization method [18] to address the corresponding 

more complex optimal control problem. Anharmonicity could be dealt with in a 

completely different way using the protocols for anharmonic transport described 

in [9], which require a compensation of inertial forces in the frame of the trap. It 

was suggested in [77] that, the results may be extended to Bose-Einstein 

condensates which can be found in [66]. 

Now let us overview the study of [66] which concentrate with the adiabatic 

transport of a Bose Einstein condensate. An inverse method to accelerate without 

final excitation of the Bose-Einstein condensate was proposed in [66]. The 

method, applicable to arbitrary potential traps, is based on a partial extension of 

the Lewis-Riesenfeld invariants, and provides transport protocols that satisfy 

exactly the no-excitation conditions without constraints or approximations. 

Inverse method, used in [66], was complemented by optimizing the trap trajectory 

with respect to different physical criteria and by studying the effect of noise. The 

effect of noise in harmonic transport was also investigated in [66]. It was assumed 

that the center of physical trap is randomly perturbated. For the shifted trap center, 

the equation for trajectory was solved (for more detail see Ref. [66]). The inverse 

method was also applied to anharmonic transport. For an arbitrary trap and a final 

time tf =20ms, the maximal compensating acceleration found as 23.1m/s2. The 
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results were given as a graphic and the average fidelity of harmonic transport 

versus noise amplitude was plotted in [66]. The inverse method can also be 

applied to anharmonic transport of condensates by means of a compensating force 

[9]. In either scheme this method does not require that tf satisfies any 

discretization condition, as it occurs with other approaches [66], and tf can in 

principle be made as small as desired. In practice there are of course technical and 

fundamental limitations[9]. Smaller values of tf increase the distance from the 

condensate to the trap center, and the effect of anharmonicity. 

 

Internal State engineering 

 

 Directing the internal state of a quantum system with time-dependent 

interacting fields is the basis of quantum information processing and many other 

fields. In those studies, we need an accurate control of pulse phase and intensity. 

Adiabatic passage is robust towards parameter variations but slow. It is moreover 

leaning to decoherence because of the effect of noise over the long times required. 

This motivates the investigation for fast and robust shortcuts, with respect to 

parameter variations and noise. Several methods to find shortcut to adiabaticity 

have been proponed for two- and three-level atomic systems. Among them, 

methods that we have mentioned previously above, like the transitionless driving, 

invariant-based engineering, or optimal control theory. 

Adiabatic passage techniques in two-level and three-level atoms were also studied 

with different ways in [10, 68, 76]. A method to speed up adiabatic passage 

techniques in two-level and three-level atoms extending to the short-time domain 

their robustness with respect to parameter variations was proposed in [10]. The 

method used in [10], substitutes the standard laser beam setups with auxiliary 

pulses that steer the system along the adiabatic path. Compared to other strategies, 

such as composite pulses or the original adiabatic techniques, it provides a fast 

and robust approach to population control. 

Manipulating the state of a quantum system with time-dependent interacting fields 

is a fundamental operation in atomic and molecular physics. Shortcut to 

adiabaticity in two-level systems can be also found making use of Lewis-
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Riesenfeld invariants [27, 68]. For two-level systems there are several approaches 

proposed to attain a complete population transfer, for example, π  pulses, 

composite pulses, adiabatic passage and its variants. A robust option is in 

principle adiabatic passage, which is however leaning to decoherence because of 

the effect of noise over the long times required. As we have mentioned before, a 

compromise is to use speeded-up shortcuts to adiabaticity, which may be 

obviously defined as the processes that lead to the same final populations than the 

adiabatic approach in a shorter time. In that sense, population inversion in two-

level quantum systems has been recently studied in [68]. A key aspect to choose 

among the many possible shortcuts is their stability or robustness towards 

different perturbations. The stability versus different types of perturbations of 

recently proposed shortcuts to adiabaticity to speed up the population inversion of 

a two-level quantum system was examined [68]. Optimally robust processes using 

invariant based engineering of the Hamiltonian were found. The main aim of that 

study is to find optimal protocols with respect to systematic errors. The optimality 

was determined by minimizing properly defined sensitivities. It turns out that the 

perturbations due to noise and systematic errors require different optimal 

protocols, and invariant-based inverse engineering was used to find them. 

Hamiltonian for the two-level system is given as 
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where )()()( titt IR ΩΩΩ ++++====  is the complex Rabi frequency (where RΩ  and IΩ  

are the real and imaginary parts, respectively) and ∆  is the time-dependent 

detuning between laser and transition frequencies. Firstly, the definition of the 

Hamiltonian for two level system was given, and then different schemes to 

achieve a population inversion were reviewed. For example, a simple scheme to 

achieve population inversion is a π  pulse. Secondly, different types of possible 

error sources were discussed. The stability of different fast protocols was 

examined for exciting a two-level system with respect to amplitude-noise error 

and systematic errors. First the noise error alone was studied and noise sensitivity 
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introduced. It was shown that a special type of π  pulse is the optimal protocol 

with minimal noise sensitivity. Then the systematic error alone was studied and 

systematic error sensitivity was introduced. It was shown that there are protocols 

for which this sensitivity is exactly zero. Finally, the general case with noise and 

systematic errors together were investigated. And at the end of that study, it was 

also mentioned about future work. Future work will involve extending the present 

results to different types of noise and perturbations. The existence of a set of 

optimal solutions for systematic errors also opens the way to further optimization 

with respect to other variables of physical interest. 

The transitionless driving for stimulated rapid adiabatic passage from level 1 to 

level 3 in a lambda configuration with an intermediate state 2 making use of a 

pumping and a Stokes laser was studied in [10]. The fast-driving field connects 

levels 1  and 3 . This implies in general a weak magnetic dipole transition, 

which limits the ability of the field to shorten the times. Invariant- based 

engineering solves the problem by providing alternative shortcuts that do not 

couple directly levels 1  and 3  [76], as discussed below. 

Our investigation continue with the study of Chen and Muga which is about fast 

and robust population transfers in three-level systems [76]. They have designed 

resonant laser pulses to perform fast population transfers in three-level systems by 

invariant-based inverse engineering. In a three-level system as the one depicted in 

Fig. 3.1, stimulated Raman adiabatic passage allows to transfer the population 

adiabatically from the initial state 1 to the target state 3 . To speed up the 

process, a fast-driving counterdiabatic field connecting levels 1  and 3 may be 

used [10]. In general, though, this implies a weak magnetic dipole transition, 

which limits the ability of the counterdiabatic field to shorten the times [10]. This 

can be solved by invariant-based engineering, which provides alternative shortcuts 

without coupling directly levels 1  and 3 . Let us overview the results of [76]. 

The laser intensities to improve the fidelity or to achieve a perfect transfer were 

examined for different protocols. Two different single-mode protocols were 

applied first in which the fidelity is linked to the laser intensity. Shortening the 

time also implies an energy cost. Interestingly, to achieve the same fidelity, it was 
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found that less intensity is required when the intermediate level 2  is populated. 

A variant of the first protocol in which the initial state is simply the bare state 1  

and the dynamics is driven by a multi-mode wave-function provides a stable and 

less costly shortcut. 

 

 

 

Fig. 3.1. Level scheme of stimulated Raman adiabatic passage for a Λ  level configuration. pΩ  

and sΩ  are the Rabi frequencies for the interactions with the pump and Stokes fields 

respectively, and p∆  and 3∆ are the detunings from the resonances. 

 

In [76], it was stated that further exploration of the multi-mode approach in this 

and other systems is left for a separate study. The population of the intermediate 

level is usually problematic when its time decay scale is smaller than the process 

time. While this may be a serious drawback for an adiabatic slow process, it need 

not be for a fast shortcut. Protocols that populate level 2 may thus be considered 

as useful alternatives for sufficiently short process times. It is widely known that, 

different techniques to find shortcuts to adiabaticity are strongly related, or even 

equivalent. Lastly, the invariant-based inverse method presented in [76] was 
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compared to the optimal control approach used in [102]. In the optimal control 

method [102], the system of control differential equations are the same in the 

invariant method. The ultimate reason is that these equations are in fact equivalent 

to the Schrödinger equation for a given wave-function parameterization. The 

invariant dynamics provide thus a complementary understanding of the optimal 

control approach, whereas optimal-control techniques also help to optimize the 

results given by the invariant-based inverse engineering. 

Now let us overview another interesting investigation of shortcuts to adiabaticity. 

Coherent spin manipulation in quantum dots is the key element in the state-of-the-

art technology of spintronics. Ban et al. proposed another all-electrical technique 

to flip spin with high fidelity via shortcuts to adiabaticity, in a much shorter than 

any decoherence time [74]. A fast and robust method to flip electron spin in a 

quantum dot with spin-orbit coupling and weak perpendicular magnetic field was 

proposed. An invariant-based inverse engineering method was applied to control 

by time-dependent electric fields electron spin dynamics in a quantum dot with 

spin-orbit coupling in a weak magnetic field. The invariant-based inverse 

engineering approach was chosen, because Ban et al. claimed that it is better 

suited than the transitionless driving to be produced by the desired all-electrical 

means. Let us shortly give the definition of the model used in [74]. Consider the 

electric control of electron spin in a quantum dot formed in the x-y plane of a two-

dimensional electron gas confined in the z-direction by the coordinate-dependent 

material composition, under a weak magnetic field zB0 , as shown in [74]. The 

total Hamiltonian H of the electron interacting with the external electric field E(t) 

= −∂A/c∂t is int0 HHHH so ++++++++==== , with [103] 
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where m is the electron effective mass and σi (i = x, y, z) are the Pauli matrices. H0 

represents the kinetic energy, the potential U(x, y), and the Zeeman 0Bg Bz µ====∆ , 

where Bµ  is the Bohr magneton, and g is the Land´e factor. The eigenfunctions of 

H0 are σψ ),( yxj , where 1±±±±====σ  is the eigenstate of zσ , and the spectrum is 

given by 2/zjE ∆±±±± , where Ej are the orbital eigenenergies in the confinement 

potential. The spin-orbit coupling is the sum of structure-related Rashba (α) and 

bulk-originated Dresselhaus (β) terms for growth axis. The vector potential A (t) is 

in the (x, y)-plane and corresponding spin-dependent velocity operators are 

 

 yzxx mpv ασβσ −−−−++++==== / , 

 xyy mpv ασ++++==== / .       (3.58) 

 

The designed electric fields provide a shortcut to adiabatic processes that flips the 

spin rapidly, thus avoiding decoherence effects. It was shown that this approach, 

being robust with respect to the device-dependent noise, can open new 

possibilities for the spin-based quantum information processing. 

Multiple Schrödinger pictures and dynamics in shortcuts to adiabaticity were also 

discussed in [73]. Ibáñez et al., proposed schemes for which different interaction 

and Schrödinger picture dynamical equations represent different physical 

processes and interactions [73]. These schemes were later combined and 

exemplified to produce better, realizable shortcuts to adiabaticity for population 

inversion protocols, and for expansions and compressions. As it is widely known, 

the Schrödinger equation may be transformed by unitary operators into dynamical 

equations in different interaction pictures which share with it a common physical 

frame, i.e., the same underlying interactions, processes and dynamics. In contrast 

to this standard scenario, other relations are also possible, such as a common 

interaction-picture dynamical equation corresponding to several Schrödinger 

equations that represent different physics. This enabled to design alternative and 

feasible experimental routes for operations that are a priori difficult or impossible 

to perform. The power of this concept was exemplified by engineering 

Hamiltonians that improve the performance or make realizable several shortcuts 
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to adiabaticity. It was stated that, similar manipulations may be applied as well to 

facilitate or improve shortcuts to adiabaticity for other operations such as 

controlled atomic transport [9]. In fact, the idea of designing the pictures to 

generate alternative, easier to handle physics, is applicable to a fullness of 

quantum systems, especially, in the fields of quantum simulations, quantum 

control, or quantum information, where developing techniques to externally drive 

the systems for specific goals is a central objective. 

While keeping on investigation of the studies on shortcuts to adiabaticity, we will 

examine the study of [77] which pointed out the connection between Lewis-

Riesenfeld invariants and transitionless tracking algorithm. Different methods 

have been recently put forward and implemented experimentally to inverse 

engineer the time-dependent Hamiltonian of a quantum system and accelerate 

slow adiabatic processes via non-adiabatic shortcuts. In the transitionless tracking 

algorithm proposed by Berry, shortcuts Hamiltonians are designed so that the 

system follows exactly, in an arbitrarily short time, the approximate adiabatic path 

defined by a reference Hamiltonian. A different approach is based on designing 

first a Lewis-Riesenfeld invariant to carry the eigenstates of a Hamiltonian from 

specified initial to final configurations, again in an arbitrary time, and then 

constructing from the invariant the transient Hamiltonian connecting these 

boundary configurations. It was shown in [77] that the two approaches, apparently 

quite different in form and so far in results, are in fact strongly related and 

potentially equivalent, so that the inverse-engineering operations in one of them 

can be reinterpreted and understood in terms of the concepts and operations of the 

other one. As explicit examples the expansions of time-dependent harmonic traps 

and state preparation of two level systems were studied. In short, the study in [77] 

provides a significant step towards a deeper understanding of shortcut-to-

adiabaticity methods that will help to choose the most adequate approach in 

atomic transport, quantum gates, and generally atomic manipulation and control 

applications. 

 

Wavepacket Splitting 
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 Splitting a wavefunction without excitation is important in matter wave 

interferometry. For linear waves, described by the Schrödinger equation, it is a 

peculiar operation, as adiabatic following is not robust but unstable with respect to 

a small external potential asymmetry [71]. The ground-state wavefunction 

collapses into the slightly lower well so that a very slow trap potential bifurcation 

fails to split the wave except for perfectly symmetrical potentials. A fast 

bifurcation with a rapidly growing separating potential succeeds to split the wave 

but at the price of a strong excitation. Shortcuts to adiabaticity that speed up the 

adiabatic process along a non-adiabatic route overcome these problems [71]. 

Numerical modeling shows that the wave splitting via shortcuts is significantly 

more stable than the adiabatic following with respect to asymmetric perturbations 

and avoids the final excitation. Specifically, Torrontegui et al. [71] use the 

streamlined version [75] of the fast-forward technique of Masuda and Nakamura 

[12], which applied to Gross-Pitaevskii or Schrödinger equations after having 

found some obstacles to apply the invariants-based method and the transitionless-

driving algorithm. The following discussion refers to the Schrödinger equation 

except for a final comment on the Gross-Pitaevskii equation. 

We will continue with the engineering fast and stable splitting of matter waves. 

Shortcut to adiabaticity is engineered to speed up the adiabatic process through 

non-adiabatic transients, provide instead quiet and robust fast splitting. 

Torrontegui et al. have been recently discussed the wave splitting via shortcuts to 

adiabaticity in [71]. The wave splitting via shortcuts avoids the final excitation 

and turns out to be significantly more stable than the adiabatic following with 

respect to the asymmetric perturbation. For that purpose, a simple inversion 

method was specifically used: a streamlined version of the fast-forward technique 

of Masuda and Nakamura [12] applied to Gross-Pitaievski or Schrödinger 

equations. Let us shortly mention about the fast-forward approach. The fast-

forward method [12] may be used to generate external potentials to drive the 

matter wave from the initial single well to a final symmetric double well. The 

starting point of the streamlined version is the 3D time-dependent GP equation 
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where T is the kinetic energy, V is the external potential and the G is the mean 

field potential. Here it is assumed that V is local, )(),()( xxtxVxtVx ′′′′−−−−====′′′′ δ . 

Based on this approach simple Y-shaped potentials have been generated. Simple 

Y-shaped (position and time dependent) potential trap bifurcations was designed 

to split matter waves rapidly without final excitation, avoiding the intrinsic 

instability of the adiabatic approach with respect to slight asymmetries. By the 

way, it also avoided or mitigated in this manner the decoherence effects that affect 

slow adiabatic following. The bifurcation may be experimentally implemented by 

means of spatial light modulators. It was stated that a simpler approximate 

approach would involve the combination of Gaussian beams. Further standard 

manipulations may be combined with the proposed technique, in particular a 

differential phase among the two final parts may be imprinted by illuminating one 

of them with a detuned laser. 

 Recently, there is a very much surge of interest to cut down the time it takes 

to change the state of a quantum system adiabatically. Up to now we have focused 

on theoretical studies on shortcut to adiabticity and the methods used in this area, 

in the following we will continue with experimental realization of shortcuts to 

adiabaticity. Researchers pay attention to the experimental studies [13-15, 20] as 

well as theoretical studies. In the following, we will overview the experimental 

realization of shortcuts to adiabaticity for a non-interacting and an interacting cold 

atoms. 

 

3.3. Experimental realization of shortcuts to adiabaticity 

 

 In this subsection, firstly we will describe the experimental schemes and 

then investigate how the decompression is controlled and monitored. 

 

Control of the trapping frequencies 
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 In [81], the trap was well approximated by a 3D harmonic potential for 

sufficiently low temperatures. This temperature was approximately 100 µK for 

typical bias of 1.5 G. In the initial compressed trap, the frequencies were 

measured to be Hzx 1.2282/)0( ====πω , Hzy 2.222/)0( ====πω , 

Hzz 8.2352/)0( ====πω . 

 Obtaining shortcuts to adiabaticity requires a precise control of the trapping 

frequencies, in a dynamical fashion. In [81] quadrupole-Ioffe-configuration trap 

(QUIC) was used, this can be achieved by varying the current Qi  running through 

the three coils, and the current 
0Bi  running through an additional pair of 

Helmholtz coils positioned along the axial dimension of the trap (compensation 

coils). The resulting potential is 
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where GMHzh /4.1/ ====µ  for atoms in 2,2,5 2/1
2 ++++======== FmFS , B′′′′  is the radial 

magnetic field gradient while B ′′′′′′′′  corresponds to its curvature along y. The radial 

and axial angular frequencies are recalled as, 
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These expressions show that the radial and axial frequencies can be controlled 

independently to some extent. The experimental realization of the shortcut 

trajectories requires a careful preliminary calibration of the frequencies versus 

currents, which was achieved by monitoring the cloud’s center-of-mass 

oscillations after a small excitation. 
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Shortcut to adiabaticity for a non-interacting gas 

 

 In order to produce an ultracold thermal cloud sufficiently dilute for 

collisions to be negligible, the loading time of second magneto-optical trap 

(MOT2) was reduced [81]. Then an evaporation ramp similar to the one used to 

obtain BECs was applied. This produced a dilute thermal gas, with a low elastic 

collision rate. It contained 510≅≅≅≅N  atoms at a temperature of KT µ6.10 ==== . This 

corresponds to an average elastic collision rate per particle of Hzel 8≅≅≅≅γ , and a 

collision time of 125 ms. This is 30 times the oscillation period, and more than 3 

times the decompression time, which justifies the non-interacting approximation. 

The three dimensions of the trap are thus not coupled and the system is equivalent 

to N simultaneous realizations of three independent harmonic oscillators. 

 In theory, starting from a gas at equilibrium and temperature 0T  in the 

compressed trap, a shortcut to adiabaticity should lead to an equilibrium state in 

the final trap, with a temperature )0(/)(0 ωω ff tTT ==== . This corresponds to a 

situation where entropy is not increased. On the contrary, for a non-optimal 

decompression, one expects to observe oscillations of the cloud’s size and center 

of mass in the decompressed trap, once the decompression is completed. To 

evaluate the efficiency of shortcut, Schaff et al. [20] thus performed the fast 

decompression, and hold the cloud in the decompressed trap for a variable amount 

of time. The trap was then abruptly switched off, and an absorption image was 

taken after a constant time of free expansion (6 ms). The amplitude of the dipole 

(oscillation of the center of mass) and breathing modes (oscillation of the size) 

give access to the excess energy provided to the cloud, as compared to an 

adiabatic modification of the potential. If the cloud is reasonably at equilibrium 

after decompression, one can also directly measure the final temperature by 

measuring the evolution of the size during a free expansion (see [20] for detailed 

experimental results). 

In the following, we will overview four decompression trajectories which were 

compared in [81]: 

 i-) The shortcut (given in Figs. 3.2d and 3.6 in [81]), 
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 ii-) A linear decompression of the same duration (35 ms), 

 iii-) An abrupt decompression, which, somehow, corresponds to a worst case 

scenario (in practice, the decompression time is 0.1ms and )(tω  is not 

controlled, and is imposed by the response of the magnetic trap control 

electronics), 

 iv-) A 6-s-long linear decompression, which can be considered nearly 

adiabatic. 

In [81], linear decompression was referred to condition corresponds to both 

control currents being varied linearly with time. The corresponding frequency 

trajectory is not linear. 

In the case of the 6-s-long linear ramp, very little residual excitation was observed 

(although the residual dipole mode is still measurable), and the temperature 

directly measured by time of flight was found close to the expected value for an 

adiabatic decompression. More detailed experimental results were summarized on 

Fig. 3.9 in [81]. In the shortcut case, clear oscillations of the cloud width and 

center-of-mass position were seen, but they were much reduced compared to the 

fast linear ramp and abrupt decompression. 

Compared to the linear decompression in 35 ms, the shortcut reduces the 

amplitude of the dipole mode by a factor of 7.2 and the amplitude of the breathing 

mode by a factor of 3. The excess energy, which was dominated by the center-of-

mass energy, was thus reduced by a factor of ≈≈≈≈ 52. In the case of the 6-s-long 

ramp, a final temperature of the cloud of 130 nK was measured, a factor 12.5 

below the initial one. This is consistent with the expected value of 15. The small 

difference may arise from a small heating rate due to the fluctuations of the 

magnetic trap. 

The fact that the shortcut decompression still produces sizeable excitations is due 

to experimental imperfections. Several possible causes can be called. Since the 

shortcut trajectory was designed only for the radial dimensions, the resulting axial 

breathing mode is of the same magnitude as for the linear decompression. 

The results of the shortcut decompression to linear ramps of various durations 

were compared. Fulfilling the adiabaticity criterion was found easier for the 

breathing mode (size oscillation) than for the dipole mode (center-of-mass 
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oscillation): the oscillation amplitude was reduced by a factor of 2 for tf =20 ms 

for the earlier, and for tf ≈≈≈≈ 150 ms for the latter. Using the amplitude of the dipole 

mode as a criterion to compare the linear and shortcut schemes, one sees that the 

decompression time was reduced by a factor of 37. 

 

Shortcut to adiabaticity for an interacting condensate 

 

 For best understanding the experimental procedure of the shortcut to 

adiabaticity for an interacting condensate, let us examine the experiment of [20]. 

In that experiment, Schaff et al. study with the scheme which the radial frequency 

was decreased by a factor of 9, while the axial frequency was adjusted to maintain 

the axial size of the BEC fixed during the whole trajectory. Accordingly, the axial 

frequency was decreased by a factor of 3. In [20], the starting point is an initial 

BEC containing 1.3×105 atoms in the condensed fraction, and 7 × 104 non-

condensed atoms at a temperature of 130 nK. The experimental scheme is similar 

to that employed for the thermal cloud. A longer time of flight of 28 ms was used 

to characterize the various excitations generated by rapid decompressions. Three 

decompression schemes were compared in [81]: 

 i-) The shortcut to adiabaticity in 30 ms, 

 ii-) The linear decompression in 30 ms, 

 iii-) An abrupt decompression. 

The BEC can not be held for more than 150 ms in the compressed magnetic trap 

because of a relatively high heating rate. Thus, comparison of the scheme given in 

[81] to the adiabatic limit corresponding to a slow linear decompression can not 

be done in this case. The absorption images were taken in the (y, z) plane, after a 

certain holding time in the decompressed trap plus a 28-ms-long time of flight. In 

the linear case the BEC undergoes large deformations and oscillations of its aspect 

ratio, whereas in the shortcut case it remains nearly perfectly stationary. 

Surprisingly, it was found that in the case of the linear decompression the BEC 

also oscillates angularly. This was attributed to an uncontrolled tilt of the trap axes 

during the decompression. It was shown that, the nearly isotropic aspect of the 

BEC after the shortcut decompression is due to the value of the time of flight, 
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which is close to the critical time of inversion of the aspect ratio. The thermal 

component surrounding the BEC was also visible. All measurements were 

performed after a 28 ms time of flight. As in the case of the non-interacting cloud, 

the shortcut scheme reduces the amplitude of the dipole mode compared to a 

standard linear decompression, in interacting condensate case by a factor of 4.3. 

For relatively long time of flight, the measured positions reflect the atomic 

velocities. Thus, using the shortcut scheme reduces the kinetic energy associated 

with the dipole mode by a factor of 18.5 compared to the linear one (and 36 

compared to the abrupt decompression). The residual energy after the shortcut 

decompression is 580 nK. Both non-optimal schemes induce very large 

oscillations of the BEC’s aspect ratio, with a rather complicated dynamics. A 

Fourier analysis reveals a main oscillation frequency of 47 Hz, consistent with a 

radial breathing mode at ⊥⊥⊥⊥ω2 . A smaller contribution at 12.5 Hz corresponds to 

the axial breathing mode at ııω2/5 . The shortcut scheme suppresses strikingly 

these breathing oscillations, yielding a BEC close to the targeted equilibrium 

state. 

After comparing the decompression schemes we will continue with the results of 

the experiment in [20]. A fast decompression and displacement of both a non-

interacting gas and an interacting Bose-Einstein condensate which were initially at 

equilibrium were especially demonstrated experimentally. The decompression 

parameters were engineered such that the final state is identical to that obtained 

after a perfectly adiabatic transformation despite the fact that the fast 

decompression is performed in the strongly non-adiabatic regime. During the 

transfer the atomic sample goes through strongly out-of-equilibrium states while 

the external confinement is modified until the system reaches the desired 

stationary state. The transfer was achieved by engineering specific trajectories of 

the external trapping frequencies. This scheme was successfully applied to both a 

thermal gas with negligible interactions and an interacting Bose-Einstein 

condensate. The scheme used is flexible enough to be adapted to both situations 

even though, in the thermal gas, interactions do not play a significant role while 

the Bose-Einstein condensate is strongly affected by the s-wave repulsion between 

atoms. Theoretically, the design of the transfer process was based on the invariant 
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of motion and scaling equations techniques which turned out to be possible thanks 

to the harmonic shape of the external potential violate the criteria for adiabaticity. 

In the scheme [20] the invariant of motion technique (for non-interacting 

particles) and the scaling equations technique (valid for both the non-interacting 

and the interacting gas) are tightly connected. The invariant of motion used in [20] 

is a time-independent harmonic oscillator Hamiltonian that can be obtained by a 

time-dependent canonical transformation of the initial Hamiltonian. In the scaling 

equations technique, a transformation involving both a scaling and a displacement 

of the coordinates that allowed the equations of motion of the system to be time-

independent was investigated. In experiments with ultracold gases, samples are 

often prepared by transferring atoms from some confinement to another, e.g., 

from a magneto-optical trap to a magnetic quadrupole, from a quadrupole trap to a 

Ioffe-Pritchard trap, from a harmonic confinement to an optical lattice, etc. the 

major limitation being that, for short transfer times, parasitic excitations may 

show up. The main application of the scheme is thus to guide this transfer in order 

to prepare a very cold sample in a very short time with the desired geometry and 

without undesired excitations. It was stated that the shortcut-to-adiabaticity 

scheme proposed in [20] could be applied to non-interacting particles such as cold 

gases or ultracold spin-polarized fermions, to normal or superfluid (bosonic or 

fermionic as well) gases in the hydrodynamic regimes, and to strongly correlated 

systems such as the Tonks gas. 

 In order to understand the experimental procedure of the shortcuts to 

adiabaticity, above we prefer to examine the study of [20] which is reviewed form 

of [13, 14]. After detailed investigation of [20] which depicted the experimental 

realization of shortcuts to adiabaticity very well, we will continue with the other 

experimental articles studied in this area [13-15]. In [13], the first experimental 

realization of the faster-than-adiabatic displacement and cooling of an ensemble 

of magnetically trapped ultracold atoms were presented using an optimal 

decompression sequence based on invariants of motion. Using this formalism, 

optimal trap frequency trajectories were derived in the case of a time-dependent 

harmonic potential plus a time-independent linear term accounting for gravity. 

The solution also applies to the simpler case of a purely harmonic potential such 
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as that treated in Ref. [8]. The validity of the scheme by applying a fast (35ms) 

15-fold frequency decompression to the trap in the vertical dimension was also 

demonstrated, yielding a residual center-of-mass oscillation of the cloud 

equivalent to that of 1.3-s-long linear decompression (a reduction by a factor of 

37). It was claimed that as a future prospect, one could apply this technique to 

more isotropic traps (such as crossed dipole traps) to obtain a faster and efficient 

cooling in 3D and produce very low temperatures. Optimal trajectories could also 

be searched for in other situations such as the moving quadrupole magnetic traps 

often used to transport cold atoms [104]. This method can also be readily applied 

to Bose-Einstein condensates with some restrictions on the dimensionality due to 

the scaling of the interaction term [60]. More generally, these optimal faster-than-

adiabatic schemes could be adapted to many areas of physics where time-

dependent Hamiltonians are employed. The method, which was studied in [13], is 

experimentally applied to the fast decompression of an ultracold cloud of 87Rb 

atoms held in a harmonic magnetic trap in the presence of gravity. Let us briefly 

mention about the experimental procedure used in [13]. To experimentally 

investigate the shortcuts to adiabaticity, a sample of ultracold 87Rb atoms held in a 

magnetic Ioffe-Pritchard trap were employed. This popular type of trap is 

harmonic (for cold enough atoms) and anisotropic with a typical ratio of 10 

between the oscillation frequencies in the radial dimensions zx,ω  and the axial one 

yω  (see Fig. 3.2.) yielding the well known cigar-shaped aspect of the trapped 

cloud. For shallow traps, gravity significantly affects the potential in the vertical 

dimension, yielding a displacement of the trap minimum 2/ zg ω−−−−  compared to a 

tight trap. 

The magnetic trap used in [13] is of the quadrupole-Ioffe-configuration type 

(QUIC trap) introduced in [105], the three-coils setup sketched in Fig. 3.2. For 

sufficiently cold atoms )( 0BTkB µ<<<<<<<< the magnetic potential is harmonic of the 

form [106], 
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where GMHzh /4.1/ ≈≈≈≈µ  for the atoms in 2,2 ++++======== FmF . B′′′′  is the radial 

gradient of the magnetic field while B ′′′′′′′′  represents its curvature along y. 0B  is the 

minimum of the magnetic field at the trap center, which can be adjusted using two 

independent parameters: the current Qi  running in the three QUIC coils or the 

current 
0Bi  in a pair of compensation coils providing a uniform field along y (see 

Fig. 3.2). 

 

 

 

Fig. 3.2. Trapping geometry (figure in the horizontal plane). Ultracold 87Rb atoms are trapped in 

an Ioffe-Pritchard-type magnetic trap created by current iQ running through the three 

QUIC coils 1, 2, and 3. An additional pair of coils (i and ii ) produces a homogeneous 

field along y,which allows an independent tuning of the trapminimum field B0 via the 

current 
0Bi . 
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The initial sample was a small (N = 105 atoms) and cold (T0 = 1.63 µK) atomic 

cloud. The low temperature guarantees that the potential seen by the atoms 

remains harmonic even for large decompression factors. The small number of 

atoms was chosen to reduce the density and thus the elastic collision rate 

responsible for the energy transfer between dimensions and thermalization. In the 

compressed trap with the previously mentioned parameters, the typical time 

between two elastic collisions is ≈28 ms, quite larger than the radial oscillation 

period of 4 ms. It was illustrated that the efficiency of the shortcut method by 

realizing a fast (tf =35ms) trap decompression optimized for the vertical 

dimension z, where gravity strongly affects the cloud’s motion. The employed 

solution for the vertical trap frequency νz(t ) was shown. Because of the finite time 

response of the trap electronic circuit, the measured trap field profile was found 

different from the computed one. Thus νz was monitored by interrupting the 

sequence at different times and adjusted the compensation field to obtain a 

measured νz(t) close to the theoretical one (deviation <5%). The time evolution of 

the cloud’s center-of-mass position zcm was also plotted once the decompression 

sequence was completed, and that of the cloud’s size σz   (for more detail see 

[13]). 

Schaff et al. have another experimental study on shortcut to adiabaticity, in 

connection with an interacting Bose-Einstein condensate [14]. In that study, a 

method was presented to perform shortcut to adiabaticity transformations on a 3D 

interacting BEC, using a specifically designed parameter trajectory for the 

harmonic trapping potential [14]. A large trap decompression and displacement 

within a time comparable to the final radial trapping period were experimentally 

performed. By simultaneously monitoring the BEC and the non-condensed 

fraction, it was demonstrated that the specific trap trajectory is valid both for a 

quantum interacting many-body system and a classical ensemble of non-

interacting particles. The rapid shortcut decompression of a 3D interacting BEC 

confined in an anisotropic harmonic trap was performed in [14]. The trap 

frequencies were decreased by a factor of 9 (radially) and 3 (axially) in a time 

comparable to the final radial trapping period, using a trajectory based on the 

scaling properties of the time-dependent Gross-Pitaevskii equation in the Thomas-
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Fermi limit [61]. This shortcut trajectory leads to a final state identical (in theory) 

to the equilibrium state obtained via a perfectly adiabatic process. Experimentally, 

it was demonstrated that the collective excitations [107, 108] associated with the 

rapid trap decompression were strongly reduced by the shortcut scheme (see fig. 1 

in [14]), the residual excitation being due to experimental imperfections. 

Additionally, it was showed that the trajectory is also valid for a classical 

ensemble of non-interacting particles, as demonstrated by monitoring the non-

condensed fraction of the finite-temperature BEC. The system was described by a 

zero-temperature BEC plus a thermal cloud, assumed to behave independently. 

The ultracold 87Rb atoms were trapped in a quadrupole-Ioffe-configuration 

magnetic trap [105]. In its compressed initial state this trap is anisotropic with 

radial and axial frequencies 
⊥⊥⊥⊥0ω /2π =235.8 Hz and 0ω /2π =22.2 Hz, 

respectively. In that experiment, firstly a BEC by RF (radio frequency) 

evaporation in the compressed trap was produced. The condensed fraction 

(N=1.3×105) represents 60% of the total number of atoms. The initial temperature, 

inferred from the size of the non-condensed fraction after time of flight, is T0 

=130 nK. Then a decompression sequence was applied, hold the ultracold cloud 

for a certain time th in the decompressed trap, then released it and monitored the 

cloud’s parameters after a 28 ms time of flight via absorption imaging. This time 

of flight is close to the critical time (≈30 ms) where the aspect ratio of the 

decompressed BEC inverts, which explains its isotropic aspect. By varying th, the 

magnitude of the various modes excited by the decompression process were 

characterized. To extract quantitative estimates, the 2D column density profiles 

were fitted by a two-component distribution allowing for different angles for the 

BEC (Thomas-Fermi profile) and thermal fraction (Gaussian profile). The fit 

results were averaged over three different images taken in the same conditions. 

Throughout [14], three different decompression schemes were compared: an 

abrupt jump from the initial to final frequencies, a linear ramp of duration 30 ms, 

and the 30ms shortcut trajectory depicted. The abrupt decompression was used as 

a worst case to measure the magnitude of excitations associated with a strongly 

non-adiabatic transformation [14]. It was claimed that, the performances could be 

further improved using better-controlled potentials such as in optical traps or 
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lattices, where time-dependent manipulations are also easier and faster. Very short 

transition times could in principle be achieved by transiently applying negative 

(i.e. expelling) curvatures [8]. It was stated that the further work may include the 

direct comparison with other methods such as bang bang [87] or optimal control 

techniques. It was claimed that, more general shortcut solutions will also be 

searched for, and applied to other dimensionalities or non-harmonic potentials 

[109]. These fast-transition methods are not restricted to cold-atom manipulation, 

and can be readily adapted to topics as diverse as, e.g., macroscopic resonator 

cooling [22], temporal [10] and spatial [110] coherent population transfer, or 

quantum computation [111]. 

Completely controlling a quantum system is a basic requirement in quantum 

information processing and the coherent manipulation of molecular systems. The 

main goal in quantum control is to prepare a desired state with the highest fidelity 

allowed by the available resources and the experimental constraints. In [15], two 

optimal high-fidelity control protocols using a two-level quantum system 

comprising Bose–Einstein condensates in optical lattices was experimentally 

implemented. The first one is a shortcut protocol that reaches the maximum 

quantum-transformation speed compatible with the Heisenberg uncertainty 

principle. In the opposite limit, the recently proposed transitionless superadiabatic 

protocols were realized in which the system follows the instantaneous adiabatic 

ground state nearly perfect. It was demonstrated that superadiabatic protocols are 

extremely robust against control parameter variations, making them useful for 

practical applications. The evolution of a two-level system in a time T, as 

illustrated in Fig. 1a in [15], was investigated. Two states 0  and 1 , the diabatic 

levels, are coupled via a time-dependent Landau-Zener Hamiltonian of the form 

 

 xzH στωστ )()( ++++==== Γ       (3.63) 

 

( xz,σ  being the Pauli operators with 10 ====xσ ) characterized by the 

instantaneous adiabatic levels of the system )(τψ , where ω  is the coupling 

between the diabatic levels. The energy spectrum of the system for a constant ω  
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and a linear dependence of )(τΓ  on the rescaled time ]1,0[/ ∈∈∈∈==== Ttτ  with 

)0()1( ΓΓ −−−−====  was shown in [15], which features an avoided crossing of the 

adiabatic levels )(τψ  at 0)( ====τΓ  with an energy gap of ω2 . In the experiment, 

)(τΓ  and )(τω  can be controlled through the quasimomentum q and the depth V0 

of the optical lattice, respectively (for details see [15]). The system was initially 

prepared in the lowest energy band of the lattice with q=0 (corresponding to 

initialψ ), and the target state is to reach finalψ  after an evolution duration T. 

The starting point is to consider a protocol with constant ω  which, in principle, 

drives the system from initialψ  to finalψ  with fidelity 

1)1(
2

======== groundfinalF ψψ  in the shortest possible time Tmin. By analogy with the 

equivalent classical case this kind of protocol has been called the “quantum 

brachistochrone”. Imposing only the constraint that ω  be constant (otherwise 

Tmin 0→→→→  as ∞∞∞∞→→→→ω ), it was found that the protocol shown in Fig. 2c in [15] 

minimizes T. Different protocols were studied and fidelities for these protocols 

were also determined [15]. Finally, the speed of the superadiabatic tangent 

protocol with the composite pulse protocol as a function of ω ′′′′ , was compared. 

Where for the superadiabatic tangent protocol ω ′′′′  is given as  

 

 
2

2

)(

)
2

arctan(
1

ω
ωωω

T
++++====′′′′ ,      (3.64) 

 

and for the composite pulse protocol given as ωω ====′′′′ . Solving Eq. (3.63) for T 

gives a total time for the superadiabatic tangent protocol that depends on both ω  

and ω ′′′′  (with ωω >>>>′′′′ ). It is, therefore, possible to minimize T for a given ω ′′′′  by 

choosing an appropriate value for ω . The detailed result of this minimization can 

be found in [15]. Let us summarize the results of the study given in [15]. It was 

shown that the superadiabatic transformations make it possible to readily 

implement protocols ensuring near-perfect adiabatic following in a variety of 

existing applications. In practice, of course, the choice of protocol will depend on 
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the boundary conditions and physical limitations of the system under 

consideration. It was stated that if both Γ  and ω  can be controlled, the 

superadiabatic protocols provide the possibility of state preparation with close to 

100% fidelity, with high stability against parameter variations. That stability, in 

particular, should prove useful for improving existing adiabatic control protocols 

that already achieve high fidelities [112]. 

 We have presented an overview of recent works on shorcuts to 

adiabaticity. Shortcuts to adiabaticity offer many promissing research and 

application avenues with practical and fundamental implications. In the next 

section, we will introduce our problem. In this thesis, we investigate fast 

frictionless expansion for growing Bose Einstein condensates described by the 

Gross-Pitaevskii gain equation [65]. Here we will use the method which is 

proposed to design the time-dependence of the trap frequency and achieve in a 

short time a frictionless evolution of Bose-Einstein condensates governed by the 

Gross-Pitaevskii equation [60]. 
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4. SHORTCUTS TO ADIABATICITY FOR GROWING CONDENSATES 

 

 At first view, the fast adiabatic expansion in a short finite time looks like 

having the opposite meaning. However, in quantum mechanics, an adiabatic 

process is a slow process where the system follows at all times the instantaneous 

eigenvalues and eigenstates of the time-dependent Hamiltonian. This is in a sense 

maximally efficient as the populations do not change, i.e. there is no heating or 

friction, but the negative side is that the long times needed may make the process 

useless or even impossible to implement. Thus, a highly desirable goal is to 

prepare the same final states and energies of the adiabatic process in a given finite 

time ft , without necessarily following the instantaneous eigenstates along the 

way. This has motivated researchers to find a way to speed up the process to reach 

the same final state as the state obtained by an adiabatic process. As we 

mentioned before, a new technique called fast frictionless process or shortcut to 

adiabaticity has been introduced [8, 10] and has attracted a lot of attention. In 

addition, fast frictionless expansion of harmonically trapped ultracold 87Rb atoms 

was experimentally realized [13, 14]. 

 Up to now, all studies on the subject of shortcut to adiabaticity have 

concentrate on condensates with fixed number of particles. So that, differently 

from the litterateur in this thesis, we will explore the answer of the following 

question: Is fast frictionless expansion possible for growing condensates? We will 

investigate the possibility of fast frictionless expansion for a condensate with 

variable number of atoms in this thesis. Several methods have been introduced 

theoretically to account for the growth of BEC [35–40]. In [40], an asymptotic 

analytic solution for the generic atom-laser system with gain in a D-dimensional 

trap is given and it is shown that this has a non-Thomas-Fermi behavior. The 

description of BEC growth [113-115] has become important for the physics of 

atom lasers [116]. These recently developed devices that emit coherent wavelike 

beams of atoms promise a new generation of precision measurements, 

applications in nanotechnology, and novel tests of fundamental concepts in 

quantum theory. In [40], an analytic asymptotic solution to the Gross-Pitaevskii 

equation describing the early stages of condensate growth in a trap is given. The 
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physical insight they obtain from this is that a growing non-equilibrium 

condensate has a non-uniform momentum distribution across the condensed 

region. 

 Let us roughly overview the Gross-Pitaevskii gain model [40]. We start by 

considering a commonly used model of a one-component trapped Bose-Einstein 

condensate—the Gross-Pitaevskii equation [48] modified by a linear gain term 

)(tγ  [117] , of the form 
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Here ),( txψ  is the mean-field amplitude (so that 2),( txψ  is the particle number 

density), m is the atomic mass, and U is the effective interaction potential. In the 

treatment of D equal to one, two, or three space dimensions, g is given by 

mag D /4 32 −−−−==== Λhπ , where a is the scattering length and Λ  is the confinement 

length. The potential term V(x) is due to an optical or magnetic trap, which is 

assumed harmonic. In the simplest rotationally symmetric case, the trap potential 

is given by 2/)( 22xmxV ω==== , where ω  is the trap oscillation frequency. In [40], 

the field in terms of the amplitude and phase was expanded as, 

getxAtx txi /),(),( ),(φψ −−−−==== . And after some algebra, the coupled equations are 

obtained (for details see [40]). Next, the aim is to investigate the possible 

asymptotic solutions for long times, i.e., steadily growing solutions, valid some 

time after initial nucleation of the condensate, yet before any gain saturation has 

occurred. In brief, they have found an asymptotic solution to the Gross-Pitaevskii 

equation with gain, which has the advantage of yielding an explicit analytic result 

of great physical transparency. The solution shows that the nonequilibrium 

behavior of a growing Bose-Einstein condensate generally includes an outward 

momentum component and spatial oscillations. 

 The condensate growth by particle injection was experimentally realized 

with 23Na [32], 7Li [33] and 87Rb [34]. By continuous evaporative cooling, Köhl et 

al. [34] directly control the thermal cloud from which the condensate grows. They 
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compare the experimental data with the results of a theoretical model based on 

quantum kinetic theory. Quantitative agreement with theory for the situation of 

strong cooling is found, whereas in the weak cooling regime a distinctly different 

behavior is found in the experiment.  

 In the following, we will use Gross-Pitaevskii gain equation to study fast 

frictionless expansion for both harmonically trapped condensate and an optical 

lattice. We will show that a correct choice of expansion trajectory allows us to get 

a final adiabatic state in a non-adiabatic way for the growing condensate 

 

Gross-Pitaevskii Gain Equation 

 

 The Gross-Pitaevskii equation, also called the non-linear Schrödinger 

equation, describes zero-temperature Bose-Einstein condensates for which the 

scattering length between atoms, a, is smaller than the spacing between atoms. It 

defines the ground state of a quantum system of identical bosons using the 

Hartree–Fock approximation and the pseudopotential interaction model. It takes 

into account the trapping and the interactions in the atomic gas and also allows the 

study of the relationship between BEC and superfluidity. As well as the mean-

field dynamics of the BEC can also be well described by the Gross-Pitaevskii 

equation. To account for the mechanism of loading atoms into the BEC by 

optically pumping them from the external cold source, a linear gain/loss term is 

phenomenologically added to the GP equation. In other words, the correction of 

ground state energy of one-dimensional Gross-Pitaevskii equation is done by 

adding a gain-loss term as a time-dependent external potential. The interesting 

purpose of this term is that it can be used to explain the experimental results. The 

GP equation with the complex linear gain or loss term, often called as GP gain 

equation, was used to model the dynamics of growing BEC. In this thesis, we start 

by considering GP equation modified by a complex term. The reduced 1-D GP 

gain equation for cigar-shaped traps reads 
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where m is the atomic mass, V (x, t) is the trap potential, g(t) is the nonlinear 

interaction strength and )(tγ  is the gain/loss coefficient. The interaction strength 

can be varied by tuning of the s-wave scattering length due to the Feshbach 

resonance. With this experimental degree of freedom, it is possible to study the 

dynamics of BEC with variable particle number. The complex linear term with 

positive )(tγ  accounts for particle pumping. For the negative values of )(tγ , the 

above equation describes a BEC that is continuously depleted by loss. Note that 

the number of particles changes according to 
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where N0 is the initial number of particles. It is very difficult to obtain closed form 

solution to the GP gain Eq. (4.2). However, we can obtain conditions for fast 

frictionless expansion without getting the exact analytic solution. Suppose the 

system is initially in the ground state. To find the time evolution of the state, we 

introduce a transformation on the wave function as 
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where the unknown time-dependent functions A(t) and B(t) will be defined below. 

Adding particles into the system and time-dependent potential cause the 

condensate to expand. Hence, let us now introduce a scale transformation on the 

coordinate 
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where the time-dependent dimensionless function L(t) accounts for the expansion 

of the condensate. Substituting Eq. (4.4) into Eq. (4.2) and using the scaling 

giving in Eq. (4.5) and redefined wavefunction ),(),( txtq ΦΦ ==== , we get 
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where the dot means derivative with respect to time. Let us now impose that the 

coefficients in square brackets [· · ·] of the last two terms vanish. Hence 
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L(t) is to be defined below. The functional form of L(t) depends on the time 

dependent parameters in the Hamiltonian. Here we are interested in some special 

forms of L(t). To avoid vibrational excitation at the final time, we demand that 

some conditions on the scale function L(t) are imposed. Suppose first that A(t) in 

(4.4) vanishes at both initial and final times, A(t = 0) = A(t = tf ) = 0. Furthermore 

the acceleration, L&& , is set to zero at initial and final times. Hence, the conditions 

on L(t) read 
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There are infinitely many different solutions to (4.8). Here we are interested in 

two of them [1, 10]. The first one is given by 
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and the second one is given by 
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where n is an an integer and the constant κ  is the ratio of final spacing to the 

initial spacing. Although eliminating the phase-factor 
2iAxe  at initial and final 

times from (4.4) is necessary, it is not sufficient for frictionless expansion. To get 

the sufficient conditions, let us substitute the Eq. (4.7) into Eq. (4.6). Then we get 

the following time-dependent equation, 
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where we express the resulting wave equation in terms of a new scaled time, 

 

 ∫∫∫∫ ′′′′′′′′==== tdtt )(2)( γΓ .       (4.12) 

 

 The transformations (4.4) and (4.5) allow us to understand the dynamics of 

the expanding system. The first term in Eq. (4.11) is the kinetic energy term and it 

changes with 2/1 L . This is reasonable since kinetic energy scales as the inverse 

square of length. The second term is the trap potential in scaled coordinate. The 

next term tells us that variation of the lattice spacing induces an effective 

harmonic potential. Note that the induced effective potential vanishes at both 

initial and final times. Finally, it can be seen from the last term that the effective 

non-linear interaction strength changes with the gain/loss term γ  and L. This is 

simply because the number of particles in the system increases with Γe  while the 

density decreases with L/1  as the system expands.  

 After obtaining the general formalism, in the following subsections let us 

apply it specifically to harmonically trapped condensate and optical lattice. For 

this purpose we will use the Gross-Pitaevskii gain equation and we will show that 
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a correct choice of expansion trajectory allows us to obtain a final adiabatic state 

in a non-adiabatic way for the growing condensate. 

 

4.1. Fast Frictionless expansion for the harmonic trap 

 

 In this subsection, we will look for the correct choice of expansion trajectory 

to get a final adiabatic state in a non-adiabatic way for the harmonically trap 

growing condensate. 

 Suppose first that the atoms are trapped by harmonic potential, 

 

 2
2

2

)(
),( x

tm
txV

ω==== ,       (4.13) 

 

where )(tω  is the time-dependent angular frequency. 

In this case Eq. (4.11) becomes, 
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The harmonic potential is composed of external and induced ones. Now our aim is 

to find out the conditions for the fast transitionless expansion of the harmonically 

trapped condensate. Below we will consider two cases. First one is Thomas-Fermi 

approximation and the other is the exact treatment of the system. The latter case 

will be studied with no approximations, we will look for the conditions for the fast 

frictionless process of the harmonically trapped condensate without omitting the 

kinetic energy. 

 

a-) Thomas-Fermi (TF) Approximation 

 

The Eq. (4.14) can be solved analytically if we assume that the zero-point kinetic 

energy associated with the density variation becomes negligible in comparison to 

both the trap energy and the nonlinear interaction energy. If we use the TF 
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approximation, in which the kinetic energy operator is neglected in the equation 

(4.14), we obtain 
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Suppose that the following relation is satisfied by the control parameters )(tω , 

)(tg  and )(tγ  
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where the constants 0ω  and 0g  are the initial trap frequency and interaction 

strength. Let us substitute (4.16) into (4.15). Then we get 
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This equation is expressed in terms of a new scaled time, 
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Now we are left with the equation which has time-independent coefficients. We 

conclude that undesired excitations can be avoided if the trajectories of the control 

parameters, )(tω , )(tg  and )(tγ , are designed in such a way that the Eq. (4.16) 

holds. It is interesting to observe that fast frictionless expansion is in principle 

possible even if both the trap frequency and interaction strength are constants, 

0)( ωω ====t , 0)( gtg ==== . In that case, the trajectory for )(tγ  must be designed 

according to the Eq. (4.16). In other words, the condensate can be expanded by 

adding particles to the system while the trap frequency and interaction strength are 
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left unchanged. Changing the gain parameter )(tγ  is not the only way to achieve 

frictionless expansion. One can also either change )(tω  or )(tg . 

 

 

Fig. 4.1. 2
0

2 /)( ωω t  versus t/tf  for L1(t) with 4====κ  in the TF regime. The solid, dotted and 

dashed curves are for 04.0 ωγ ==== , 03.0 ωγ ==== 0====γ , respectively. 

 

In Fig.4.1, we plot the trajectory of 2
0

2 /)( ωω t  for L1(t), where Hz10020 πω ====  

and g(t) = g0. The condensate is assumed to be decompressed by a factor of 4 in 5 

milliseconds. This time is too short for an adiabatical expansion. However, the 

designed trajectory leads to the same final state, up to a global phase, as the state 

obtained by a slow adiabatic process for such an expansion. In the figure, the 

solid, dotted and dashed curves are for 04.0 ωγ ==== , 03.0 ωγ ====  and 0====γ , 

respectively. For the system with constant particle number, 0====γ , 2ω  takes 

negative values on some interval and one may conclude that this accelerates the 

spreading. As can be seen from the solid curve, frictionless expansion is possible 

even if 2ω  is positive all the time. It is also surprising to see that the final trap 

frequency is bigger than the initial one for the solid curve, fω > 0ω . By inspecting 

the Eq. (4.16) it can be seen that the final and initial trap frequencies are equal to 

each other, fω = 0ω , at a critical value )ln(3 κγ ====c . This can be explained as 
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follows. The extension of the cloud in the TF regime depends strongly on the 

interaction strength. Adding particles into the system increase the effective 

interaction strength. This leads to the expansion of the condensate. For γ > cγ , the 

ratio of final spacing to the initial one due to the nonlinear interaction is bigger 

than κ . So, ω  must be increased to compensate the change. 

Having studied the conditions, let us now get the analytical solution in the 

TF regime. It is given by,  

 

 )(),( / qetq i ΦΦ hµτ−−−−====        (4.19) 
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ωµΦ  and µ  is a constant. Note that µ  does not 

coincide in general with the chemical potential since the parameters are time 

dependent for the original Hamiltonian. The particle density in terms of the 

original variables is given by 
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The normalization condition yields a relation between the constant µ  and the 

total number of particles N0, 
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So far we have only investigated the problem in one dimension. It is 

straightforward to generalize our formalism to two and three dimensional traps 

with trap frequencies )(tiω , where i = 1, 2, 3. Then the conditions (4.16) are 

modified 
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where g is the corresponding interaction strength, i,0ω  are constant angular 

frequencies in each directions and D is the dimension of the space. 

 

b-) Exact Treatment 

 

 In this subsection, we will look for the conditions for fast frictionless 

process of the harmonically trapped condensate without omitting the kinetic 

energy term. 

It is easy to see that fast transitionless expansion is possible if parabolic potential 

and nonlinear interaction terms in Eq. (4.14) scale as 1/L2, 

 

 
2

2
022

L
LLL

ωω ====++++ && , 

 
2
0

L

g

L

e
g ====

Γ

,        (4.23) 

 
where 0ω  and g0 are constant. 

Substitute these conditions into Eq. (4.14) and use the new scaled time,  

 

 tdtL ′′′′′′′′==== ∫∫∫∫ −−−− )(2τ .        (4.24) 

 

Then we obtain, 
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We are now left with a new time-independent Hamiltonian,  
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The final state of H′ at tf can be made identical up to a global phase factor to the 

final state of the adiabatic evolution with  
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Note that at intermediate times the solution does not coincide with the 

instantaneous eigenstates. 

 

 

 

Fig. 4.2. 2
0

2 /)( ωω t  versus t/tf . The system is decompressed by a factor of 4. The dashed (solid) 

curve is for L1(t) (L2(t) with n = 3). 

 

The Eq. (4.23) are the conditions to avoid the undesired excitations. Compare 

them to the one in the TF limit (4.16). As opposed to the TF limit, the trajectory of 

)(tω  does not depend on )(tγ  and g(t). In other words, shortcut to adiabacity is 

not possible without designing )(tω . The parameters )(tγ  and g(t) can to be used 
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singly to design frictionless expansion as in TF regime. Adding particle into the 

system modulates interaction strength. To avoid undesired excitations, the 

interaction strength must be changed to oppose the change due to the atom 

injection. In Fig.4.2, we plot the trajectory of 2
0

2 /)( ωω t  (4.18) for L1(t) (dashed 

curves) and L2(t) (solid curves), respectively, where Hz10020 πω ==== . The 

condensate is assumed to be decompresses by a factor of 4 in 10 milliseconds. 

The final frequency is smaller than the initial one as expected. 

 Finally, let us write down the general conditions in two and three 

dimensional traps, 
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where D is the dimension of the space. Atom injection into the expanding system 

leads to modulation of interaction strength. In two and three dimensions, 

interaction strength must be decreased according to Γ−−−−==== egtg 0)(  and 

Γ−−−−==== Legtg 0)( , respectively as atoms are injected into the system. 

 After examining fast frictionless expansion for the harmonically trapped 

growing condensate, let us investigate the frequency trajectories for an optical 

lattice. 

 

4.2. Fast Frictionless expansion for an optical lattice  

 

 In this section, we will explore fast frictionless expansion for an optical 

lattice continuously replenished by pumping from the reservoir. 

 The physics of fast frictionless expansion for an optical lattice was explored 

in [17]. An expansion trajectory that yields a final state identical to the initial state 

up to an irrelevant phase factor was designed. Discussion of the effect of 

additional force and nonlinear interaction on the fast frictionless expansion were 
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also given. Their method of obtaining fast adiabatic transformation is to use a 

lattice with dynamically variable spacing (accordion lattice). 

In an optical lattice, potential depth and lattice spacing can be changed 

experimentally by changing the power of the laser and the wavelength of the laser, 

respectively [81]. 

 Consider ultracold atoms in an optical lattice with variable spacing and 

potential depth, 
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where V (t) is the time-dependent lattice depth, kL is the optical lattice wave 

number, )(tω  is the time-dependent angular frequency and L(t) is the scale 

parameter describing the expansion of the accordion lattice. 

 Initially, only the periodic potential is present in the system, 0)0( ========tω . 

The external parabolic potential is applied just as the system starts to expand. The 

combined presence of the periodic and parabolic potentials enables us to get fast 

frictionless expansion. Finally, the parabolic potential is turned off at t = tf such 

that 0)( ======== fttω . To obtain frictionless expansion, we demand that no effective 

harmonic potential acts on the system. In other words, we choose )(2 tω  in such a 

way that it cancels the effective parabolic potential so that there is only periodic 

potential in the system from t = 0 to t = tf . Secondly, we demand that effective 

nonlinear interaction strength and potential depth scale as 1/L2. Hence, we choose 
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This choice of the control parameters guarantees the fast frictionless expansion. 

The above conditions reduce the equation (4.11) for the potential (4.29) to the 

following one 
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In the last step, we made another transformation on time,  

 

 tdtL ′′′′′′′′==== ∫∫∫∫ −−−− )(2τ .        (4.32) 

 

Compare (4.30) to the condition (4.23) for the harmonically trapped condensate. 

The right hand side of the first condition in (4.30) is equal to zero. This is because 

changing the wavelength of the laser is responsible for the expansion of the 

optical lattice. However, expansion is achieved by changing the trap frequency for 

the harmonically trapped system. 

 

 

 

Fig. 4.3. 2
0

2 /)( ωω t  versus t/tf . The system is decompressed by a factor of 4. The dashed (solid) 

curve is for L1(t) (L2(t) with n = 3). 
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In Fig.4.3, we plot 2
0

2 /)( ωω t  for L1(t) (dashed) and L2(t) (solid), respectively. The 

external frequency oscillates in positive and negative region. In fact there are 

infinitely many other solution for L(t). All the trajectories oscillates since the 

initial and final accelerations, L&& , are zero and the acceleration takes both negative 

and positive values at intermediate times. Note that the trajectories of )(tω  are the 

same for linear and non-linear optical lattice. For non-linear lattice, interaction 

strength must satisfy the second condition in (4.30). 
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5. CONCLUSION 

 

 In this dissertation, fast frictionless expansion for growing Bose Einstein 

condensates described by the Gross-Pitaevskii gain equation has been 

investigated. So far, all the investigations have been focused on condensates with 

fixed number of particles. This dissertation has presented investigation of the 

possibility of fast frictionless expansion for a condensate with variable number of 

atoms. Gross-Pitaevskii gain equation has been used to study fast frictionless 

expansion for both harmonically trapped condensate and an optical lattice. It has 

been shown that a correct choice of expansion trajectory allows us to get a final 

adiabatic state in a non-adiabatic way for the growing condensate. 

 Firstly, our aim is to find out the conditions for the fast transitionless 

expansion of the harmonically trapped condensate. Two cases have been 

considered; Thomas-Fermi approximation and exact treatment. 

 For the Thomas-Fermi regim, the trajectory of 2
0

2 /)( ωω t  for L1(t), where 

Hz10020 πω ====  and g(t)=g0 has been plotted in Fig.4.1. The condensate has been 

assumed to be decompresses by a factor of 4 in 5 milliseconds. This time is too 

short for an adiabatical expansion. However, the designed trajectory leads to the 

same final state, up to a global phase, as the state obtained by a slow adiabatic 

process for such an expansion. 

 In the exact treatment, the conditions for fast frictionless process of the 

harmonically trapped condensate without omitting the kinetic energy have been 

explored. Differently from the TF limit, the trajectory of )(tω  does not depend on 

)(tγ  and g(t). In other words, shortcut to adiabacity is not possible without 

designing )(tω . The parameters )(tγ  and g(t) can be used singly to design 

frictionless expansion as in TF regime. The trajectory of 2
0

2 /)( ωω t  (4.18) for 

L1(t) (dashed curves) and L2(t) (solid curves), respectively, where Hz10020 πω ====  

has been plotted in Fig. 4.2. Here, the condensate is assumed to be decompresses 

by a factor of 4 in 10 milliseconds. 

 Secondly, fast frictionless expansion for an optical lattice continuously 

replenished by pumping from the reservoir has been investigated. Ultracold atoms 
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in an optical lattice with variable spacing and potential depth have been 

considered. The trajectory of the 2
0

2 /)( ωω t  for L1(t) (dashed) and L2(t) (solid), 

respectively has been plotted in Fig. 4.3. 

 As a result, it has been shown that fast frictionless expansion can be 

generalized to growing condensates. Our formalism has been applied to a 

harmonically trapped condensate and an optical lattice. It has been found that fast 

frictionless expansion is possible in the TF limit by changing the gain parameter 

while trap frequency and nonlinear interaction strength are left unchanged. It has 

been shown that the interaction strength must be changed to oppose the change 

due to the atom injection to avoid undesired excitation in an accordion optical 

lattice. 

 Finally, it has been shown that fast transitionless expansion is possible for 

harmonically trapped condensates and an optical lattice continuously replenished 

by pumping from the reservoir [65]. 
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