
 

VORTICES IN A BEC WITH 

DIPOLE-DIPOLE INTERACTION 

 
Züleyha ÖZTAŞ 

                  PhD Dissertation 

Physics Program 

September-2011 

 



JÜRİ VE ENSTİTÜ ONAYI 

 

Züleyha Öztaş'ın “Vortices in a BEC with Dipole-Dipole Interaction” 

başlıklı Fizik Anabilim Dalındaki Doktora Tezi 25.08.2011 tarihinde, aşağıdaki 

jüri tarafından Anadolu Üniversitesi Lisansüstü Eğitim Öğretim ve Sınav 

Yönetmeliğinin ilgili maddeleri uyarınca değerlendirilerek kabul edilmiştir. 

 

 

 

 

               Adı-Soyadı                                            İmza 

Üye (Tez Danışmanı):Doç. Dr. CEM YÜCE    ……………… 

Üye   :Doç. Dr. HAKAN CEBECİ   ……………… 

Üye    :Doç. Dr. MURAT LİMONCU              ……………… 

Üye    :Yard. Doç. Dr. A. TOLGA  TAŞÇI  ……………… 

Üye    :Yard. Doç. Dr. ABDULKADİR ŞENOL  ……………… 

 

 

 

 

 

 

 

 

 

 

 

 

Anadolu Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu'nun 

……………… tarih ve ………… sayılı kararıyla onaylanmıştır.  

 

    Enstitü Müdürü 



 

 
i 

ABSTRACT 

 

PhD Dissertation 

 

VORTICES IN A BEC WITH DIPOLE-DIPOLE INTERACTION 

 

Züleyha ÖZTAŞ 

 

Anadolu University 

Graduate School of Sciences 

Physics Program 

Supervisor: Assoc. Prof. Dr. Cem YÜCE 

2011,  105 pages 

 

Interparticle interactions have fundamental importance in the study of 

Bose-Einstein condensate (BEC) of dilute gases. In a dipolar BEC, interaction 

potential includes both s-wave and dipole-dipole interaction term. Dipolar 

interactions are radically different from s-wave interaction, and they have 

remarkable consequences for the physics of nonrotating and rotating condensates.  

The rotation of BEC leads to the formation of quantized vortex lines. In 

this thesis, BEC and vortices in BEC are reviewed. Dipolar BEC with a single 

vortex state is investigated in the Thomas-Fermi approximation. The effects of 

dipolar interactions on the rotational angular velocity and shape of a dipolar 

condensate with an off-axis vortex are reported. Vortex dipoles are studied in the 

low and high dipolar interaction regimes. The dependence of the critical velocity 

on the dipolar interaction strength and the vortex separation is examined. 

 

Key Words: Bose-Einstein Condensate, Dipole-Dipole Interaction, Rotating  

Condensate 
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ÖZET 

 

Doktora Tezi 

 

DİPOL-DİPOL ETKİLEŞİMLİ BEC’DA GİRDAPLAR 

 

Züleyha ÖZTAŞ 

 

Anadolu Üniversitesi 

Fen Bilimleri Enstitüsü 

Fizik Anabilim Dalı 

Danışman: Doç. Dr. Cem YÜCE 

2011, 105 sayfa 

 

Atomlar arası etkileşmeler seyreltik gazlardaki Bose-Einstein yoğuşması 

(BEC) çalışmalarında temel bir öneme sahiptir. Dipolar bir BEC da, etkileşme 

potansiyeli s-dalga ve dipole-dipole etkileşme terimlerinin her ikisini de içerir. 

Dipolar etkileşimler s-dalga etkileşimlerinden oldukça farklıdır ve dönen ve 

dönmeyen yoğuşmalar üzerinde önemli etkilere sahiptir. 

 Bose-Einstein yoğuşmasının dönmesi kuantize olmuş girdap çizgilerinin 

oluşmasına neden olur. Bu tezde, BEC ve BEC’da oluşan girdap yapılar gözden 

geçirildi. Tek girdaplı dipolar BEC Thomas-Fermi yaklaşımında incelendi. 

Eksenden ötelenmiş tek girdaba sahip bir dipolar yoğuşmanın dönme açısal hızı 

ve yoğuşma şekli üzerine dipolar etkileşimlerin etkileri bulundu. Girdap çiftleri 

düşük ve yüksek dipolar etkileşme bölgelerinde çalışıldı. Kritik hızın dipolar 

etkileşme kuvvetine ve girdaplar arası uzaklığa bağlılığı incelendi.  

 

Anahtar Sözcükler: Bose-Einstein Yoğuşması, Dipole-Dipole Etkileşme, Dönen 

Yoğuşma 
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1.INTRODUCTION 

 

Bose-Einstein condensation (BEC) was first predicted by Einstein in 1924: 

In a system including particles obeying Bose statistics and whose total number is 

conserved, there should be a temperature below which a finite fraction of all the 

particles condense into the same single-particle state. The condensation fraction of 

the particles in the ground state is macroscopic when the system is cooled below a 

critical temperature. When Einstein made his predictions, quantum theory was not 

fully developed, and the differences between bosons and fermions were not 

revealed. After Einstein, important contributions were made by several scientists 

such as London, Landau, Bogoliubov, Penrose, Onsager, Feynman, Lee, Yang, 

and Pitaevskii. The relationship between BEC and superfluidity in liquid helium 

has been an important issue discussed by London and Landau  [1]. Bogoliubov, 

Griffin and others studies showed that BEC gives the microscopic picture behind 

Landau’s quantum hydrodynamics. BEC also relates to superconductivity due to 

BEC of Cooper pairs. Thus Bose-Einstein condensation is related with several 

macroscopic quantum phenomena. 

Laser techniques, such as laser cooling and magneto-optical trapping, were 

developed to cool and trap atoms in the 1980s. This led to the successfull 

achievement of BEC experimentally. BEC was observed in 1995 experimentally 

on vapours of rubidium [2], sodium [3], and lithium [4].  In these experiments, the 

atoms were confined in magnetic traps and cooled downto extremely low 

temperatures. Carl Wieman, Eric Cornell and Wolfgang Ketterle gained the 2001 

Nobel prize for their studies on this area. Since then, BEC has gained the growing 

interest of both experimentalists and theoreticians. BEC is achieved in vapours of 

hydrogen [5] in 1998, potassium [6] and metastable helium [7] in 2001, and 

cesium [8] and ytterbium [9] in 2003. Most BEC experiments have been 

performed using alkali atoms due to their simple ground state electronic structure. 

For alkali atoms, all electrons except one occupy closed shells and the remaining 

electron is in an s orbital in a higher shell. The optical transitions of these atoms 

can be excited by available lasers and the internal energy-level structure is 

favorable for cooling to very low temperatures. To reach temperatures and 

densities to observe BEC, laser and evaporative cooling techniques are used 
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together [10]. The atoms are expanded by switching off the confining trap and the 

condensate is imaged with optical methods. A sharp peak in the velocity 

distribution below a certain critical temperature is observed. It is a clear signature 

for BEC.  
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2. BOSE EINSTEIN CONDENSATE 

Bose-Einstein condensation is based on the indistinguishability and wave 

nature of particles. Consider a uniform gas of particles with mass m  and number 

density n . The mean thermal energy of the gas is mpTkB 22≈ . The well known 

relation Tλ ~ ph  gives the mean thermal wavelength  

 

 
2

1

2

2 







=

Tmk

h

B

T π
λ        (2.1) 

 

where T  is the temperature. In the classical limit (high temperatures, short 

wavelengths), the thermal de Broglie wavelength is small compared to 31−n . 

Hence quantum effects are negligible in this regime. It is convenient to define the 

dimensionless parameter 3λn , which is phase-space density. This parameter is 

small in the classical limit since 0→Tλ  when ∞→T . When atoms are cooled 

downto the temperature where Tλ  is comparable to the interatomic separation 

31−n , the atomic wavepackets begins to overlap and the indistinguishability of 

particles becomes important. This temperature is called the critical temperature 

CT , which is the onset of BEC. In an ideal gas, all particles occupy the single-

particle ground state at T =0 K. The density of the condensed gas is of the order of 

n ~10
13

-10
14 

cm
−3

. The corresponding critical temperature given by the relation 

mnTk cB

322
h≈  is approximately 10

−6 
K. The typical particle number of BEC is 

between 10
4
 -10

7
. 

 

2.1. Trapping and Cooling of Atoms 

There are several steps in the condensation of atoms experimentally. The 

first step is laser cooling which is achieved by three pairs of laser beams along six 

directions – front and back, left and right, up and down. Subsequently the lasers 

are turned off and the atoms are confined by a magnetic trap described typically 

by a harmonic potential. In this stage, the temperature is approximately 100 µK, 

with 10
9
 atoms. In this trap, the atoms are trapped by the Zeeman interaction of 
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the electron spin with an inhomogeneous magnetic field. If the complications 

caused by the nuclear spin is neglected, an atom with its electron spins parallel to 

the magnetic field are attracted to the minimum of the magnetic field (low-field 

seeking state), while ones with electron spin antiparallel are repelled (high-field 

seeking state). Laser cooling alone is not enough to produce sufficiently high 

densities and low temperatures for condensation. The cloud of atoms is cooled 

further by evaporative cooling which is similar to blowing on coffee to cool it. It 

allows the removal of more energetic atoms, therefore the cloud gets further 

cooling. At the end of this  step, the final temperature is of the order of 100 nK 

and about 10
4
-10

7
 atoms remain.  

 

2.1.1 Laser Created Potentials 

Atoms in a laser field experience a force because of the interaction of the 

laser field with the electric dipole moment induced in the atoms. The force on 

atoms in a laser field is used by different ways in BEC experiments. The detuning 

of the  transition frequency between ground and excited states  is given by [11, 

12] 

 

( )
gelas EE −−≡∆ ωh        (2.2) 

 

It is also convenient to define the saturation intensity 0I  , since the force also 

depends on the intensity. It is given by 

 

22

00 dcI Γ= ε         (2.3) 

 

where 0ε  is the dielectric constant, c  the speed of light, d  an appropriately 

defined dipole matrix element for the transition in question, and τh≡Γ  with the 

lifetime of the excited state τ  [11, 12]. A value of 0I  is typically of order 100 

2/ mW . The change in energy of the atom in the laser field is, in the limit ∆<<Γ  
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( ) ( )
∆
Γ









=∆

2

0I

I
Elaser

r
r        (2.4) 

 

Provided ( )2Γ∆<< , 0II  can be larger than 1. A region of high laser intensity 

supplies an attractive potential for 0<∆  (‘‘red detuning’’) and a repulsive 

potential for 0>∆  (‘‘blue detuning’’). A red-detuned potential is used as an 

optical trap. A blue-detuned potential creates a potential barrier. This barrier 

separates a condensate and an impurity potential. The interference pattern created 

by counter-propagating laser beams is called an optical lattice giving a periodic 

potential for atoms.  

 

2.1.2. Magnetic traps 

Magnetic field configurations with either a local minimum in the 

magnitude of the magnetic field, or a local maximum is constructed by a magnetic 

trap. Various techniques can be used to provide a local minimum. The most 

widely used methods are Time-Orbiting Potential (TOP) and Ioffe-Pritchard traps 

[12]. Magnetic traps used in BEC experiments have axial symmetry and a finite 

offset field. With an appropriate choice of cylindrical polar coordinate system the 

magnitude of the field has the form [11] 

 

( ) 22

0
2

1

2

1
zBB βαρ ++=r       (2.5) 

 

Magnetic trapping of neutral atoms occurs because of the Zeeman effect. The 

energy of an atomic state is dependent on the magnetic field. Thus, an atom in an 

inhomogeneous field experiences a spatially-varying potential. For simplicity, the 

energy of a state can be assumed linear in the magnetic field. This is true 

generally for the doubly polarized states. For other states it is a good 

approximation when the level shifts produced by the magnetic field are either very 

small or very large compared with the hyperfine splitting. Thus the energy of an 

atom in a particular state i may be written as [13] 
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BCE iii µ−=        (2.6) 

 

where iµ  is the magnetic moment of the state and Ci is a constant. Potential 

energy Biµ−  is the contribution to the energy of atom. If the magnetic moment is 

positive, the atom experiences a force driving it to higher field regions. If it is 

negative, the force is towards lower field regions. Therefore, states with a positive 

magnetic moment are called as high-field seekers, and those with a negative 

magnetic moment as low-field seekers. 

 

2.1.3. Hyperfine state 

An atomic BEC have internal degrees of freedom due to the hyperfine spin 

of atoms. A hyperfine-Zeeman sublevel of an atom with total electronic angular 

momentum J and nuclear spin I may be labeled by the projection Fm  of total 

atomic spin F = I + J on the axis of the field B.  The value of total F can take a 

value between |I − J| to |I + J|.  Therefore, the hyperfine coupling is much larger 

than the typical temperature of an ultra-cold atomic system. The hyperfine state is 

shown by FmF ,  with Fm  = −F,−F + 1, · · · , F − 1, F.  

Experiments on BEC have been made typically with states having total 

electronic spin 1/2, and most of them have been made with states having nuclear 

spin I = 3/2 (
87

Rb, 
23

Na, and 
7
Li).  Successful experiments with hydrogen (I = 1/2) 

and 
85

Rb atoms (I = 5/2) have also been carried out.  In the ground-state electronic 

structure of alkali atoms, one electron is in an s orbital in a higher shell while 

other electrons occupy closed shells. The nuclear and electronic spins are coupled 

by the hyperfine interaction. Since the electrons have no orbital angular 

momentum (L = 0), no magnetic field produce at the nucleus. Therefore, the 

coupling arises only due to the magnetic field produced by the electronic spin. 

When there is no external magnetic field the atomic levels are split by the 

hyperfine interaction. The coupling is represented by a term hfH  in the 

Hamiltonian of the form 

 

I.JAH hf =         (2.7) 
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where A is a constant.  

The internal sublevels of the atom can couple when an external field is 

applied. To take into account the effect of this field on the energy levels the 

Zeeman energies are added to Eq.(2.7). Zeeman energies arises from the 

interaction of the magnetic moments of the electron and the nucleus with the 

magnetic field. Taken the magnetic field B in the z direction, the total 

Hamiltonian is thus  

 

zzspin DICJAH ++= I.J        (2.8) 

 

The constants C and D are given by [13] 

 

BgC Bµ=          (2.9) 

 

and 

 

B
I

D
µ

−=         (2.10) 

 

In writing Eq. (2.9) it is assumed that the electronic orbital angular momentum L 

is zero and its spin S is 1/2. Generally, D maybe neglected because  DC ~ 

2000≈ep mm . g factor of the electron maybe put equal to 2.  

  

2.1.4. Detection 

After BEC has been created, time-of-flight (TOF) or in situ techniques can 

be used to probe its properties. The TOF technique is more often used in vortex 

experiments. In the TOF technique the magnetic or optical field is switched off at 

time t = 0 and an image of the BEC is taken a few milliseconds later. When the 

trap is switched off the sample begins to expand. Then the sample is imaged with 

optical methods such as a CCD camera.  
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2.1.5 Evaporative cooling 

The temperatures reached by laser cooling are not low enough to produce 

BEC. The technique of evaporative cooling is employed to achieve a further 

decrease in the temperature of the gas. In this technique atoms with an energy 

higher than the average energy of particles in the system are removed. If one 

makes a hole near high sides of the trap, atoms with an energy at least equal to the 

trap energy at the hole can escape. In practice one can make such a hole by 

applying radio-frequency (rf) radiation. The radio-frequency magnetic field 

changes the electronic spin state of an atom from a low-field seeking one to a 

high-field seeking one.  

 

2.2 Ideal Bose Gas 

The ideal Bose gas is an ideal Boltzmann gas at high temperatures and low 

densities. Thus, the largest deviations in thermodynamic properties occur if the 

condition  

 

 1
2

2

3

2
3 <<








=

Tmk

h

V

N
n

B

T π
λ       (2.11) 

 

is no longer satisfied. 3λn  must not become too large in real systems, since the 

interactions are not negligible. Therefore, the ideal Bose gas is a model system 

which can only approximately describe real systems.  

 For an ideal Bose gas in thermodynamic equilibrium at temperature T, the 

mean occupation number of the v th state is given by the Bose distribution 

 

( ) ( )
1

1

−
=

− Tkv
Bve

f µεε        (2.12) 

 

where vε  is the energy of the single-particle state for the particular trapping 

potential. Since the number of particles is conserved, the chemical potential µ  

which is determined as a function of N  and T  enters the distribution function 
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(2.12). The mean total number of particles and the mean total energy are given by 

[14, 15] 

 

( ) ( )∑=
v

vfTN εµ,        (2.13) 

( ) ( )v

v

v fTE εεµ ∑=,        (2.14) 

 

For ( ) 0→− TkBv µε , the mean occupation number N becomes 

divergent. Since this case is unphysical, the chemical potential of the system has 

to be smaller than the ground state energy of the single particle Hamiltonian with 

the potential trapV .  

 

2.2.1 Ideal Bose Gas in a Harmonic Trap 

An important property characterizing the magnetic traps is that the 

confining potential can be approximated with the quadratic form 

 

( ) ( )222222

2

1
zyxV zyxtrap ωωω ++=r      (2.15) 

 

where xω , yω  and zω  are trap frequencies. This potential refers to a harmonic 

trap. Neglecting interatomic interactions, the many-body Hamiltonian is the sum 

of single-particle Hamiltonians whose eigenvalues are  

 

 ( ) zzyyxxzyx nnnnnn ωωωε hhh 






 ++






 ++






 +=
2

1

2

1

2

1
,,         (2.16) 

 

Here the numbers in  assume all integers greater than or equal to zero. The ground 

state ( )N1 ,...rrΨ  of non-interacting bosons confined by the trap potential is 

obtained by putting all the particles into the lowest single particle state 
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 ( ) ( )i

i

r,...rr N1 ∏=Ψ 0ϕ       (2.17) 

 

where 

 

 ( ) ( )




 ++−







= 222

43

0
2

exp zyx
mm

zyx

ho ωωω
π
ω

ϕ
hh

r   (2.18) 

 

and hoω is the geometric average of the oscillator frequencies given by 

 

 ( ) 31

zyxho ωωωω =        (2.19) 

 

The density distribution becomes ( ) ( ) 2

0 rr ϕNn = . The size of the cloud does not 

depend on N and is characterised by the harmonic oscillator length: 

 

 
ho

ho
m

a
ω
h

=         (2.20) 

 

This length is also the average width of the Gaussian given by Eq. (2.18). The 

harmonic oscillator length is typically of the order of 1 mµ  in experiments. At 

finite temperature some atoms occupy the ground state while other atoms are 

thermally distributed in the excited states. The size of the thermal cloud is larger 

than the harmonic oscillator length. 

Assuming that the level spacing becomes smaller and smaller when 

∞→N , the summation in Eq.(2.13)-(2.14) can be replaced by an integral and the 

density of states is used. For energies large compared with iωh , in  may be taken 

as continuous variables and the zero-point motion can be neglected. A coordinate 

system defined by three variables iii nωε h=  can be used to find density of states. 

In terms of these variables, a surface of constant energy (2.16) is the plane 

321 εεεε ++=  [13]. The number of states  ( )εG  is proportional to the volume in 

the first octant bounded by this plane [13] 
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( )
zyxzyx

dddG
ωωω

ε
εεε

ωωω
ε

εεεεεε

3

3

0

3

0

2

0

13 6

1 211

hh
== ∫∫∫

−−−

  (2.21) 

 

The density of the states can be found by using the relation ( ) ( ) εεε ddGg =  

 

( )
zyx

g
ωωω

ε
ε

3

2

2h
=        (2.22) 

 

The density of states generally changes with the power of the energy [13] 

 

 ( ) 1−= α
α εε Cg         (2.23) 

 

where αC  is a constant. The coefficient for a three-dimensional harmonic-

oscillator potential with  3=α  is [13] 

 

 
zyx

C
ωωω33

2

1

h
=        (2.24) 

 

2.2.2 The Critical Temperature  

Below a given temperature the population of the lowest state becomes 

macroscopic. It corresponds to the onset of Bose-Einstein condensation. To 

calculate this critical temperature, the condensate fraction, and the other 

thermodynamic quantities, one can start from Eqs. (2.13) and (2.14). If the 

number of particles is sufficiently large, the zero-point energy in Eq.(2.16) can be 

neglected. Therefore, the lowest energy 0ε  is equal to zero. The number of 

particles in excited states is given by 

 

( ) ( )εεε fgdN ex ∫
∞

=
0

       (2.25) 
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The number of particles has its greatest value for 0=µ , and the transition 

temperature cT  is determined by the condition that the total number of particles 

can be accommodated in excited states, that is 

 

 ( ) ( )
1

1
0,

0
−

=== ∫
∞

ckTcex
e

gdTNN εεεµ     (2.26) 

 

Eq. (2.26) can be rewritten using dimensionless variable ckTx ε=  

 

 ( ) ( ) ( )( )α
α

α
α

α αζα cxc kTC
e

x
dxkTCN Γ=

−
=

−∞

∫ 1

1

0

   (2.27) 

 

where ( )αΓ  is the gamma function and ( ) ∑
∞

=

−=
1n

n ααζ  is the Riemann zeta 

function. In Eq. (2.27), the integrand is expanded in powers of xe− , and the 

integral ( )αα Γ=−
∞

−∫ xedxx
0

1  is used. The result is 

 

 ( ) ( )αζα
α

Γ=
−

−∞

∫ 1

1

0

xe

x
dx       (2.28) 

 

From Eq.(2.27) it is found that 

 

 ( ) ( ) ( )[ ]αζαα Γ= CkTN c

3
      (2.29) 

 

Therefore, the transition temperature for Bose-Einstein condensation is obtained 

as ( 3=α ) 

 

( )
31

31

94.0
3

N
N

kT hohoc ω
ζ

ω hh ≈







=      (2.30) 
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where Riemann zeta function is ( ) 212.13 ≈ζ . For temperatures higher than cT  the 

chemical potential is less than the energy of the lowest state and becomes N  

dependent. The result (2.30) maybe written in the useful form [13] 

 

 31

100
5.4 N

Hz

f
Tc 








≈  nK      (2.31) 

 

where  πω 2hof = . 

 The existence of BEC in an harmonic oscillator potential is a result of the 

assumption that the separation of single-particle energy levels is much less than 

kT . For an isotropic harmonic oscillator with frequencies 0ωωωω === zyx , the 

energy quantum 0ωh  should be much less than ckT . It means the condition is 

131 >>N  according to Eq.(2.30). Considering the finiteness of the particle 

number, the transition becomes smooth. N  typically changes from 10
4
-10

6
 in the 

system, so the transition temperature is 20 to 200 times larger than 0ωh . The 

frequency πω 2ho  is between typically from tens to hundreds of Hertz. Thus, 

0ωh  of the order of a few nK. [13, 16] 

 

2.2.3 Condensate fraction 

Below the transition temperature, the number exN  of particles in excited 

states is given by Eq. (2.25) with 0=µ , 

 

 ( ) ( )
1

1

1

1

0

1

0
−

=
−

= ∫∫
∞

−
∞

kTkTex
e

dC
e

gdTN
c ε

α
αε εεεε    (2.32) 

 

For 1>α , Eq. (2.29) may be used to find the result  

 

 

 ( ) ( )( )α
α αζα kTCN ex Γ=       (2.33) 
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This result does not depend on the total number of particles. Using Eq. (2.30) for 

cT , the number of excited states in a three-dimensional harmonic-oscillator 

potential is found as 

 

 

3









=

c

ex
T

T
NN        (2.34) 

 

The number of condensated particle 0N  equals the total number of particles N  

minus the number of particles exN  in excited states: 

 

 ( ) ( )TNNTN ex−=0        (2.35) 

or 

 





















−=

3

0 1
cT

T
NN        (2.36) 

 

2.3 Effects of Interparticle Interactions 

 

Interparticle interactions have fundamental importance in the study of 

BEC of dilute gases. At very low temperatures the de Broglie wavelengths of the 

atoms are very large compared to the range of the interatomic potential. The 

density and energy of the atoms are so low that they are usually away from each 

other. Thus, interatomic interactions are effectively weak and dominated by s-

wave scattering. One can only consider binary collisions in the theoretical model 

neglecting three-body processes. The scattering is characterised by the s-wave 

scattering length, sa . The sign of the scattering length depends on the details of 

the interatomic potential, it is higher than zero for repulsive interactions while 

smaller than zero for attractive interactions. With the conditions above, the 

interaction potential can be approximated by  

 

( )rr ′−= δgU        (2.37) 
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where g  is the interaction strength given by mag s

24 hπ= , and r  and r′  are the 

positions of the two particles, m is atomic mass.  

  

2.3.1 The Gross–Pitaevskii equation 

In a BEC with weakly-interacting atoms, almost all the atoms occupy the 

same quantum state and the condensate may be described very well in terms of 

mean-field theory. To determine the energy of many-body states, a Hartree or 

mean-field approach is used. The wave function is a symmetrized product of 

single-particle wave functions in these approaches. All bosons occupy the same 

single-particle state, ( )rφ , in a completely condensed state. Thus. the wave 

function of the N  particle system can be written as 

 

 ( ) ( )∏
=

=Ψ
N

i

iN

1

rr,.....,r,r 21 φ       (2.38) 

 

The single-particle wave function ( )irφ   is normalized as 

 

( ) 1
2

=∫ rrφd         (2.39) 

 

The effective Hamiltonian of the system maybe written 

 

( ) ( )∑∑
<=

−+







+=

ji

N

i

i
i gV
m

H ji rrr
p

δ
1

2

2
    (2.40) 

 

( )rV  being the external potential. The Hamiltonian of the system of weakly 

interacting bosons confined in a trap potential is 

 

( ) ( ) ( ) ( ) ( ) 






 −
++∇= ∫

422
2

2

1

2
rrrrr φφφ g

N
V

m
dNE trap

h
  (2.41) 
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The first term in the integral Eq (2.41) is the kinetic energy of the condensate, 

kinE  , the second is the harmonic oscillator energy, trapE  , while the last one is the 

mean field interaction energy, intE  .  

Considering a uniform Bose gas, the interaction energy of an atom pair is 

Vg . The energy of a state with N  bosons all in the same state is given by  

 

( )
gVng

V

NN
E 2

2

1

2

1
≈

−
=       (2.42) 

 

where VNn = , and ( ) 21−NN  is the number of possible ways of making pairs 

of bosons. It is assumed that 1>>N  in the last expression. The wave function of 

the condensed state is related with particle number N , 

 

( ) ( )rr φψ 21N=        (2.43) 

 

The density of particles is given by 

 

 ( ) ( ) 2
rr ψ=n         (2.44) 

 

Neglecting the terms which are of order N1 , the energy of the system may be 

written as  

 ( ) ( ) ( ) ( ) ( ) 







++∇= ∫

422
2

2

1

2
rrrrr ψψψψ gV

m
dE trap

h
  (2.45) 

 

In the limit of a nearly ideal Bose gas at 0=T  K, the spatial form of the 

condensate wave function ( )rψ  follows by minimizing the total energy E , with 

the constraint that the total number of particles N  is conserved 

 

 ( ) 2

∫= rrψdN        (2.46) 
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The constraint is conveniently determined by the method of Lagrange multipliers. 

One can write 0=− NE µδδ , where the chemical potential µ  is the Lagrange 

multiplier. The chemical potential ensures constancy of the particle number and 

the variations of ψ  and ∗ψ  may thus be taken to be arbitrary. This is equivalent 

to minimizing the quantity NE µ−  at fixed µ  [17]. By equating to zero, the 

variation of NE µ−  with respect to ( )r∗ψ  gives the time-independent Gross–

Pitaevskii equation 

 

( ) ( ) ( ) ( ) ( ) ( )rrrrrr µψψψψψ =++∇−
22

2

2
gV

m
trap

h
   (2.47) 

 

GP equation is essentially a nonlinear Schrödinger equation that includes a 

nonlinear term ( ) 2
rψg . For non-interacting particles all in the same state the 

chemical potential is equal to the energy per particle, but for interacting particles 

the situation is different. 

  The validity of GP equation is based on the condition that sa  be much 

smaller than the average distance between atoms and that the number of atoms in 

the condensate be much larger than 1. The GP equation can be used, at low 

temperature, to explore the macroscopic behavior of the system. The 

dimensionless parameter controlling the validity of the dilute-gas approximation 

is 
3

san . The scattering length for the atomic species used in the experiments, for 

example, are 75.2=sa  nm for Na23  [17], and 45.1−=sa  nm for Li7  [18]. 

Typical values of density range are between 1310  to 1510  cm
-3

, so that 
3

san  is 

always less than 310− .  

 

2.3.2 The ground state for trapped bosons 

If the atoms in BEC are interacting, the shape of the condensate can 

change significantly with respect to the Gaussian. The central density is lowered 

(raised) by a repulsive (attractive) interaction and the radius of the atomic cloud 
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consequently increases (decreases). This affects both the structure of the ground 

state and the dynamics and thermodynamics of the system [16]. 

Neglecting the anisotropy of the trap potential, consider the potential 

which has the form 222

0 rmV ω= . If the size the cloud is ∼ R , the potential 

energy of a particle confined in the trap is ∼ 222

0 Rmω .  A typical particle density 

is 3RNn ≈ , and the interaction energy of is of order 3RgNng ≈ . The effect of 

an additional contribution to the energy varying as 3−R  shifts the minimum of the 

total energy to larger values of R  for repulsive interactions. Therefore, for 

increasing values of sNa , the kinetic energy term becomes less important. The  

equilibrium size is found by minimizing the sum of the potential and interaction 

energies. By equating the two energies, the equilibrium radius is found as [13] 

 

 R ∼
51










ho

s

ho
a

Na
a        (2.48) 

 

and the energy per particle is 

 

 
N

E
∼

52

0 








ho

s

a

Na
ωh        (2.49) 

 

When 1
3

<<san  the system is said to be dilute or weakly interacting, but the 

smallness of this parameter does not imply necessarily that the interaction effects 

are small. Interaction and kinetic energies have to be compared. The ratio 

hos aNa in Eq. (2.49) is a dimensionless measure of the strength of the 

interaction. This ratio is much larger than unity in most experiments (with 

repulsive interactions) . Hence, the radius R  is somewhat larger than hoa . In 

equilibrium, the trap and interaction energies are both proportional to 2R  while 

the kinetic energy varies with 2−R .  Therefore the ratio between the kinetic 

energy, and the potential or interaction energy is proportional to ( ) 54

sho Naa . It 
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means that the kinetic energy can be neglected for clouds containing a sufficiently 

large number of particles. 

If interatomic forces are attractive ( 0<sa ), the gas tends to increase its 

density in the center of the trap in order to lower the interaction energy. The zero-

point kinetic energy balance the interaction energy and stabilize the system. When 

the central density grows too much, the kinetic energy is no longer able to 

stabilize the system, and the system undergoes to the collapse. The collapse 

occurs when the number of particles in the condensate exceeds a critical value 

crN  , wich is of the order of sho aa   [16]. 

The balance between the kinetic and the interaction energies of the 

condensate fixes a typical length scale which is called the healing length ξ . This 

is the minimum distance over which the order parameter can heal. If the 

condensate density grows from 0 to n within a distance ξ , the kinetic and the 

interaction energies are ∼ ( )22 2 ξmh  and ∼ mnas

24 hπ , respectively. The 

expression for the healing length found by equating these energies is 

 

( ) 21
8

−= snaπξ        (2.50) 

 

In a trapped BEC, the central density, or the average density, can be used to get an 

order of magnitude of the healing length [16].  

Direct integration of the GP equation gives a useful expression for the 

chemical potential 

 

 ( ) NEEE swtrapkin 2++=µ       (2.51) 

 

in terms of the different contributions to the energy. Using the virial theorem 

yields the relation 

 

( ) 0
2

1
22 22 =+− swxx Exmmp ω     (2.52) 
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and similarly for y and z.  Summing over three dimensions yields [13, 16] 

 

0322 =+− swtrapkin EEE       (2.53) 

 

These results are exact within Gross-Pitaevskii theory.  

 

2.3.3 The Thomas–Fermi approximation 

As mentioned in the previous subsection dimensionless parameter 

hos aNa  characterizes the importance of the interaction in a trapped condensate. 

In the usual situation with the particle number 610≈N  , the scattering length is of 

order of a few nm, and harmonic oscillator length is of order of a few µm. Thus, 

the dimensionless parameter hos aNa  is large in this case, and the resulting 

regime is known as the Thomas-Fermi (TF) limit. In TF limit, the repulsive 

interactions dominate and expand the cloud to a mean radius R  that greatly 

exceeds the mean oscillator length approximately by a factor of 10. The radial 

gradient of the density is decreased due to this expansion, and the related kinetic 

energy becomes negligible compared with the trap and the interaction energies. 

From Eq. (2.47) one finds 

 

( ) ( )[ ] ( ) ( )rrrr µψψψ =+
2

gV      (2.54) 

 

where µ  is the chemical potential. This equation can be solved directly for the 

equilibrium density 

 

 ( ) ( ) ( )[ ] gVn trap rrr −== µψ
2

     (2.55) 

 

in the region where the right hand side is positive, while 0=ψ  outside this 

region. The boundary of the cloud is therefore given by 

 

( ) µ=rtrapV          (2.56) 
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The physical meaning of this approximation is that the energy to add a particle at 

any point in the cloud is the same every point. Eq.(2.55) yields a simple 

expression for the case of a quadratic harmonic trap  

 

 ( ) 









−−−=

2

2

2

2

2

2

0 1
zyx R

z

R

y

R

x
nrn      (2.57) 

 

Here gn µ=0 is the central density and 22 2 jj mR ωµ= are the squared 

condensate lengths in the three dimensions. This density has a parabolic form and 

fills the interior of an ellipsoid. From the normalization condition one can find 

158 3

00 RnN π= , where zyx RRRR =3

0  depends on the chemical potential µ . After 

some calculations the central density is valculated as 42

00 8 hosaaRgn πµ == . A 

combination of these results gives an important relation 

 

 
ho

s

ho
a

Na

a

R
15

5

5

0 =         (2.58) 

 

which is large in TF limit. Correspondingly, the TF chemical potential becomes 

 

 
2

2

0
0

2

0

2

0
2

1

2

1

ho

TF
a

R
Rm ωωµ h==      (2.59) 

 

so that 0ωµ h>>TF  in the TF limit. The chemical potential depends on 52N . 

From the thermodynamic relation NE ∂∂=µ , the TF energy for a trapped 

condensate reads 

 

NE TFTF µ
7

5
=        (2.60) 
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It is also common to use the central density 0n  to define the healing length in a 

non-uniform trapped condensate, which gives 

 

 
0

2

8

1

nasπ
ξ =         (2.61) 

 

Inserting 0n  in the above equation gives an important result 

 

 
0R

a

a

ho

ho

=
ξ

        (2.62) 

 

Thus the TF oscillator length hoa is the geometric mean of ξ  and 0R , and Eq. 

(2.62) then yields a clear separation of TF length scales, with 0Raho <<<<ξ . 
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3. DIPOLAR BOSE EINSTEIN CONDENSATION 

 

Significant experimental progress was made in recent years in the cooling 

and trapping of dipolar atoms. BEC of chromium atoms was achieved in 2004 

[19]. Chromium atoms possess a large magnetic moment. Thus the effects of 

dipolar interactions can be observed in the BEC of chromium atoms. The relative 

contribution of the dipolar interaction can be also made larger compared with s-

wave interaction using Feshbach resonance. Chromium atoms have an 

extraordinarily large magnetic moment of 6 Bµ . Since the dipolar interaction 

scales with the square of the magnetic moment,  dipolar interaction between two 

chromium atoms is a factor of 36 higher than in alkali BECs. The large magnetic 

moment is due to the unique electronic structure. While the alkali atoms have a 

simple electronic configuration with only one valence electron, chromium has six 

valence electrons. An extraordinary large magnetic moment is not always of 

advantage. The dipole–dipole interaction induces new loss mechanisms. The 

probability of inelastic collisions due to dipolar relaxation [20] leads to very large 

loss rates of magnetically trapped chromium atoms. This excessive dipolar 

relaxation rate causes standard condensation techniques to fail in a magnetic trap.  

Dipolar interactions introduce new physical effects on BEC since they are 

radically different from the contact interaction. The applied magnetic field is 

expected to align the magnetic dipoles of the atoms in BEC and the dipolar 

interactions lead to an anisotropic change of the shape of the gas. This effect may 

be considered as dipole-dipole induced magnetostriction. The stability of the 

condensate is significantly modified by the presence of dipolar interactions. In 

particular, a dipolar BEC is unstable in a spatially homogeneous case like a 

condensate with 0<sa . Such a condensate can be stabilized by confinement in a 

trap. Modifications of the groundstate wavefunction [21, 22] and the stability 

criteria of dipolar condensates in different trap geometries were studied [21, 23, 

24].  

Dipolar BECs are also discussed in the context of spinor condensates [25, 

26]. Large spin and magnetic moment together lead to interesting new effects 

such as the conversion of spin into angular momentum [27]. The influence of 
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dipolar interactions on the formation of vortex lattices in rotating dipolar BECs 

has been studied [28, 29]. The existence of 2D solitons is expected when the 

dipolar interaction is strong enough. Tuning of the dipolar interactions is possible 

by spinning the quantization axis of the atomic dipoles [30] together with the 

Feshbach tuning of the contact interaction. All effects of dipolar and nondipolar 

cases can be investigated by these adjustments. The various physical effects that 

are predicted for dipolar BEC and the growing number of theoretical work on 

these effects make dipolar quantum gases one of the most exciting fields of atom 

optics.  

 

3.1. Dipolar Interaction 

Atoms or molecules having a permanent dipole moment (either magnetic 

or electric) interact via dipolar interaction beside short-range interaction [31]. For 

two particles with dipole moments along the unit vectors 1e  and 2e , and with 

relative position r  (Fig.3.1), the energy due to the dipole-dipole interaction is [32] 

 

( ) ( ) ( )
5

2

2 .).(3.

4 r

rC
U dd

dd

rereee
r 121 −

=
π

    (3.1) 

 

where the coupling constant ddC  is equal to 2

0 µµ  for particles having a 

permanent magnetic dipole moment µ , where 0µ  is the permeability of vacuum, 

and 0

2 / εd  for particles having a permanent electric dipole moment d , where 0ε  

is the permittivity of vacuum. For a polarized gas where all dipoles are directed in 

the z direction  (Fig.3.1),  this expression gives 

 

( )
3

2cos31

4 r

C
U dd

dd

θ
π

−
=r       (3.2) 

 

where θ  is the angle between the direction of polarization and the relative 

position of the particles. From Eq.(3.1) and Eq.(3.2), two main properties of the 

dipole-dipole interaction is understood. First of them is the long range character of 

interaction. Contrast to short-range character of the contact interaction, dipolar 
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interaction is long-range. In systems with short-range interactions, the energy is 

extensive in the thermodynamic limit. On the contrary, in a system of particles 

interacting by long-range interactions, the energy per particle both depend on the 

density and the total number of particles. The necessary condition for obtaining an 

extensive energy is that the integral of the interaction potential )(rU  

 

 rdUU D

r

∫
∞

=
0

)()( rr        (3.3) 

 

where D  is the dimensionality of the system and 0r  some short-distance cut off 

[32]. For interactions decaying at large distances as nr/1 , nD <  is the condition 

for short-range interaction. Hence, the dipolar interaction ( )3=n  is long-range in 

three dimensions, and short range in one and two dimensions [32]. 

 The second property of dipolar interaction is its anisotropic character. The 

dipolar interaction has the angular symmetry of the Legendre polynomial of 

second order ( )θcos2P  [32]. As θ  varies between 0 and 2/π , the factor 

θ2cos31−  varies between −2 and 1. Therefore, the dipolar interaction is 

repulsive for side to side configuration, while it is attractive for head-to-tail 

configuration (Fig.3.1). For a special value of θ  ( ( ) o7.543/1arccos ≅=mθ ), the 

dipole-dipole interaction vanishes. 

It is convenient to use the Fourier transform of the dipolar interaction in 

the study of the elementary excitations. The Fourier transform 

 

 ( ) ( ) rdeUU ri

dddd

3.~ krk −∫=       (3.4) 

 

of Eq.(3.2)  is 

 

( ) ( )31cos
~ 2 −= αdddd CU k       (3.5) 
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where α  is the angle between k and the polarization direction [32]. The Fourier 

transform of the dipolar interaction does not depend on the modulus of the 

wavevector k  in three dimensions. This property is same for contact interaction 

whose Fourier trnsform is g. 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.1 shows the arrangement of dipoles. Dipoles placed side-to side repel 

each other, while dipoles in a head to tail configuration attract. The dipoles in a 

prolate trap (side-to side configuration) causes to a mainly attractive gas, and it 

may exhibit collapse. Locating the dipoles in a oblate trap (head to tail 

configuration) causes to a mainly repulsive gas. It leads to partially stabile system. 

Due to the partial attractiveness of dipolar interaction, a dipolar Bose gas is 

similar to a Bose gas with a short-range interaction with a negative scattering 

length [33]. If the number of particles N  is smaller than a critical value Nc, the 

collapse of the gas can be prevented. The attractive forces compress the gas to a 

smaller volume in order to lower the interaction energy in a confined gas, but the 

zero-point kinetic energy opposes these forces. For a small number of particles 

this can create an energy barrier and leads to a metastable condensate.  

Consider prolate ( )zx ωω ≥  and oblate traps with ( )zx ωω ≤ . There is a 

quantum phase transition as a function of the trap aspect ratio 

( ) 4.0
21 ≅=∗

zx ωωλ  [34].  Above this value the sign of the mean dipolar 

interaction energy changes from positive to increasingly negative, and it remains 

increasingly negative for 1>λ . The condensate becomes more and more prolate, 

Repulsive Attractive 

θ r 

(b) (c) (a) 

Fig.  3.1. Configuration of two dipoles. (a) Notations for the dipolar interaction. (b) Side-to-side 

configuration. (c) Head-to-tail configuration. 
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until it undergoes a collapse. It is similar to BEC with negative scattering length 

in s-wave interaction case. [33] 

For hard oblate traps with ∗< λλ , dipolar interaction grows as 2µN  

increases and the gas is dominantly repulsive [34]. There is no collapse and the 

gas having much larger values of N  is stable. The condensate aspect ratio κ , 

which is equal to zx RR  decreases with 2µN . For zx ωω << , one can distinguish 

two regimes: i) for zddx U ωω hh <<<< , a quasi two dimensional Bose gas with 

repulsive interactions, which has radially a parabolic TF profile is examined. ii) 

for zddU ωh≥ , a three dimensional gas in the TF regime is considered. The gas 

feels the attractive dipolar interactions and subjects to a short wavelength 

instability, which leads to a roton-maxon minimum and then instability in the 

excitations spectrum [34]. 

 

3.2. Tunability 

One of the important properties of dipolar interaction is its tunability. For 

electric dipoles this can be achieved by changing the applied external electric 

field. Even in the case of polar molecules, the presence of an external electric field 

is necessary to create permanent dipole moments of the molecules. The field 

matches the spherically symmetric rotational ground state of the molecule to the 

excited rotational state with different parity. Thus, it creates a non-zero average 

dipole moment. The strength of the external field indicates the degree of 

polarization and the magnitude of the dipole moment. The effective dipolar 

interaction may be tuned by the competition between an orienting electric field 

and the quantum or thermal rotation of the molecule [35]. This method works for 

values of the field up to the saturation limit. At the saturation limit the molecule is 

completely polarized (typically 10
4
 V/cm). The dipole moment still grows at 

higher values of the field, but this is a much smaller effect. 

In general the dipolar interaction ddU  can be tuned by using a time-

dependent field to align the dipoles [36] 

 

( ) ( ) ( )( )( )
yxz eee ttBtB Ω+Ω+= sincossincos ϕϕ    (3.6) 
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where xe  , ye  and ze  are unit vectors defining the x, y and z axis, respectively. 

This field is a combination of a static field along the z-axis and a fast rotating field 

in the xy-plane. The ratio of the amplitudes of the static and rotating fields 

determines the angle ϕ , 20 πϕ <≤  . In this situation, the atoms fell a time-

averaged dipolar interaction [35]. The rotation frequency Ω  of the magnetic field 

around the z-axis has to be chosen such that the magnetic moments can follow the 

rotation adiabatically. Ω  also should be fast enough for the atomic motion on the 

time scale of one rotation to be negligible. This is obtained by the condition 

trapLarmor ωω >>Ω>>  and puts a constraint on the minimum field to be used since 

the Larmor frequency of the atomic precession is hBmLarmor µω =  [36]. Then the 

effective dipolar interaction between atoms is given by 
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where ϕ  is the angle between the magnetic field direction and the z-axis and Θ  is 

the angle between the vector r and the z-axis [36].  Eq.(3.2) differs from Eq.(3.7), 

z Ω 

θ 

ϕ 

r 
d 

Ω 
d 

Fig. 3.2. Tunability of the dipolar interaction. 



 29 

by a factor  ( ) ( ) 21cos3 2 −= ϕϕα . This factor can be changed continuously from 

1 to −1/2 varying the angle ϕ .  

 

3.3. Creation of dipolar gas 

In order to study a quantum gas with significant dipolar interactions, one 

can use particles having either an electric dipole moment d , or a magnetic dipole 

moment µ . The typical order of magnitude of d  for an atomic or molecular 

system is 0aqd e∝ , where eq  is the electron charge and 0a  the Bohr radius. On 

the other hand the magnetic moments are on the order of the Bohr magneton Bµ . 

Using the identitites of 0a  and Bµ  in terms of fundamental constants, the ratio of 

magnetic to electric dipolar coupling constants is 
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ε
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d

       (3.8) 

 

where 1371≅α  is the fine structure constant. The different systems that can be 

used to study experimentally for dipolar condensate are given below [32].  

 

Polar molecules: Polar molecules are good candidates for dipolar condensate 

because of their strong electric dipole moment. Three conditions need to be 

satisfied for a molecule to have a significant dipole moment [32]: 

a) A heteronuclear molecule which have a permanent dipole moment is necessary. 

b)The molecule must be in a low vibrational state in order to have a dipole 

moment . 

c) An external electric field which is on the order of 10
4
 V/cm must be applied to 

orient the molecule. In fact, the ground state J = 0 is rotationally symmetric and 

therefore the average dipole moment is zero. Only by a mixing with higher 

rotational levels, induced by the electric field, the average dipole moment become 

non-zero.  

Heteronuclear molecules in their ground state have a large electric dipole 

moment which is on the order of one Debye (1D ≃ 3.3×10
-30

 C·m). The 
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properties of such a gas is dominated by the dipolar interactions if the scattering 

length is of the order of that of the atoms used in experiments (typically around 

0100a , where 0a  is the Bohr radius). 

 

Rydberg atoms: Rydberg atoms is another system in which large electric dipole 

moments can be attained [31, 32]. They are highly excited atoms which have  

large principal quantum number n  and a dipole moment scaling like 2n . The 

mutual interaction is dependent on the atomic states. With an electric field, states 

with different electron orbital angular momentum can be mixed. Thus, the atoms 

get a dipole moment and can interact to first order by dipolar interaction. Due to 

the very large dipole moments, the dipolar interaction is very strong, and it is felt 

over very long distances such as many tens of microns.  

 

Light-induced dipoles: Atoms in their ground state, which is a parity eigenstate, 

do not have an electric dipole moment. Their electric polarizability is usually very 

small. Hence, extreme electric field strengths are necessary to induce a large 

dipolar interaction [22, 37]. Following G. Kurizki and coworkers, resonant 

excitation of a dipole optical allowed transition to induce an AC dipole moment 

on the order of one atomic unit 0ea  can be used [33]. Since the dipole moment 

also couples to the vacuum modes of the radiation field, the spontaneous light 

forces scale just like the light induced dipolar interactions. The anisotropic nature 

of the dipolar interaction might be used for a proof of principle experiment 

allowing to discriminate the spontaneous light forces from the dipolar forces. This 

kind of interactions have the same form as retarded interactions between two 

dipoles. They include 31 r , 21 r  and radiative r1  terms multiplied by the 

suitable factors oscillating with the spatial period of the laser wavelength. Using 

an order of several laser fields all anisotropic 31 r  terms have been proposed to 

cancel, leaving an effective isotropic, gravity-like r1  potential.  

 

Paramagnetic atoms with large magnetic moments µµµµ: : : : Some atoms like Cr, Eu, 

Dy have a large magnetic moment in their ground state. The only quantum gas to 
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reveal measurable dipolar effects is the chromium, and its condensation was 

obtained in 2004 [19]. The magnetic dipole moment of chromium atom is Bµ6 , 

and its scattering length is about 0100a  ( 0a  is the Bohr radius). These values 

allows to observe a perturbative effect of the dipolar interaction. 

    

3.4. GP Equation for Dipolar BEC 

Consider a BEC with the dipoles aligned in the z direction by an external 

field. The mean-field potential depends on the whole density distribution of a 

condensate because of the long-range character of the dipole–dipole interaction. 

For a density distribution ( )rn , the mean-field potential is [21, 38] 

 

 

 ( ) ( ) ( ) ( ) rdUrdnU dddddd
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rrrrrr ψ   (3.9) 

 

 

With this interaction term, the Gross–Pitaevskii equation (2.47) gets the form 
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and ( )rddΦ is the mean-field potential due to dipole-dipole interactions [39]: 

 

 

)( )( )( 3 rrrr ′′−′≡Φ ∫ nUrd dddd      (3.11) 

 

It is convenient to introduce a dimensionless parameter which characterises the 

relative strength of the dipolar and contact interactions [39],  

 

g

Cdd
dd

3
≡ε         (3.12) 
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The BEC is stable as long as 15.0 <<− ddε , but loses that stability in the TF limit 

when 1>ddε  [40]. In the presence of a strong electric field the s-wave scattering 

length can be modified. Thus, g and ddε  are effective quantities when dealing 

with electrically induced dipoles. For the alkalis used in BEC experiments, the 

value of ddε  is extremely small (for Rb87 , 007.0≅ddε ), hence dipolar 

interactions are negligible. 

In the presence of the nonlocal dipolar mean-field potential ( )rddΦ , TF 

equation is give by an integral equation 

 

( ) ( )rr ddzx gnzm Φ+++= )(
2

1 2222 ωρωµ     (3.13) 

 

It is straightforward to show that this equation gets an inverted parabola as a self-

consistent solution. The dipolar interaction can be analysied by using the 

mathematical identity 
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It can be written 
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with 

( ) ( )
∫ ′−

′′
=

rr

r
r

nrd 3

4

1

π
φ        (3.16) 

 

The problem reduces to an analogy with electrostatics, and the potential ( )rφ  

arising from the static charge distribution ( )rn  needs to be calculated. ( )rφ  given 

by Eq. (3.16) must obey Poisson’s equation ( )rn−=∇ φ2  [39]. Proceeding from 
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the TF Eq. (3.13), an exact solution for the density ( )rn  of a condensate with 

dipolar interactions was calculated in [38] for cylindrically symmetric trap with 

yx ωω = . O’Dell et al have shown in [38] that even under the influence of the 

dipolar mean-field potential  ( )rddΦ  , the wavefunction has the shape of an 

inverted parabola in the TF limit: 
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with radii yx RR =  and zR  and where 222 yx +=ρ , and the central density 0n  is 

constrained by normalization to be 
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Then Poisson’s equation is satisfied by an electrostatic potential of the form 

 

 ( ) 22
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4

4
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10 zazaazaaa ρρρφ +++++=r    (3.19) 

 

Hence the TF equation contains only parabolic and constant terms in the presence 

of dipolar interactions a parabolic density profile is also an exact solution of the 

TF problem in a harmonic trap. However, this time it is expected that the 

condensate aspect ratio differs from that of the trap. It is difficult to calculate the 

integral (3.16) for a density of the form (3.17), because the domain of integration 

is bounded by and has the symmetry of a spheroid or an ellipsoid. Evaluating this 

integral is possible taking explicit account of this symmetry [38]. One way of 

calculating the integral is to transform it into spheroidal coordinates and to use 

Green’s function of Poisson’s equation in these coordinates [41]. Finally, The 

results are transformed back into Cartesian coordinates  [39].  
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3.4.1. Green’s Function in Spheroidal Coordinates 

For prolate spheroidal coordinates ( )ϕηξ ,, , trasformation between 

between cartesian and prolate spheroidal coordinates are 

( )( ) ϕηξ cos11 22 −−= qx  ( )( ) ϕηξ sin11 22 −−= qy , ξηqz = . Surfaces of 

constant ξ  are confocal spheroids, and their eccentricityis is ξ1 . ξ  is between 1 

and ∞ . Surfaces of constant η  are confocal two-sheet hyperboloids of revolution. 

η  changes from −1 and 1. For xz RR >  the boundary of the density profile (3.17) 

is a prolate spheroid and its semimajor axis is zR , semiminor axis is xR , and 

eccentricity is 221 zx RR− . To make the spheroidal coordinate system confocal 

to that boundary the scaling constant 22

xz RRq −=  must be chosen. Then using 

the Green’s function in prolate spheroidal coordinates [41] to find the potential 

(3.16) as 

 

 

 

     

(3.20) 

 

where 
l

P , are Legendre functions of the first and 
l

Q , of the second kind. 

Performing the η ′  integration first it can be seen that the only contributing , l  are 

0, 2, and 4. To transform the result for ( )ϕηξφ ,,  in Cartesian coordinates one 

need to make the substitutions ( ) qrr 221 +=ξ and  ( ) qrr 221 −=η  with 

( )[ ]2

1
222

1 qzyxr +++=  and ( )[ ]2

1
222

2 qzyxr −++= . The potential of the form 

predicted by Eq. (3.19) is calculated as follows 
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where zx RR≡κ  is the aspect ratio of the BEC and 
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For zx RR > , then the boundary of the density profile (3.17) is an oblate spheroid, 

and oblate spheroidal coordinates ( )( ) ϕηξ cos11 22 −+= qx  , 

( )( ) ϕηξ sin11 22 −+= qy , ξηqz =  are used. Surfaces of constant ξ  are 

confocal spheroids with eccentricity  11 +ξ , and ξ  is between 0 and  ∞ . 

22

zx RRq −=   is choosen to make the coordinate system confocal to the 

boundary of ( )rn . Using the Green’s function in oblate spheroidal coordinates 

[41]  the potential is found as 
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To return to Cartesian coordinates one need to make the substitutions 
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( ) ( )iqiqzyxiqzyx 2)( 222222 




 −++−+++=η . Then it is found  that the 

result for the potential is the same as in Eq. (3.20) but with 
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3.4.2. Solution of the Thomas-Fermi Equation 

Taking the external field to be along the z axis and using  Eq.(3.15) and 

(3.20), the parabolic dipolar potential is found as 
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where ( )κf  is: 
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( )κf  is a monotonically decreasing function of κ  and vanishes for 1=κ . It 

means that for an isotropic density distribution the dipole-dipole mean-field 

potential averages to zero [32]. ( )κf  has values in the range ( ) 21 −≥≥ κf . 

Substituting ( )rddΦ  into the Thomas-Fermi equation and comparing the 

coefficients of  2ρ  , 2z , and 1 yields three equations [39]. The first equation, 

related with the constant terms, gives the chemical potential 

 

( )[ ]κεµ fgn dd−= 10        (3.27) 

 

It is understood from this equation that the effect of dipole-dipol interactions is to 

lower the chemical potential of a prolate ( )1<κ  condensate, while raising that of 
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an oblate ( )1>κ  condensate. The radii ( )
yx RR =  and zR  of the exact parabolic 

solution are obtained from the coefficients of 2ρ  and 2z  as follows 
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and κxz RR = . The aspect ratio κ  is evaluated by solving a transcendental 

equation 
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where  xz ωωγ =  is the ratio of the harmonic trapping frequencies. The effect of 

dipolar forces polarized along the z axis is to make the condensate more oblate 

along z axis. If ( )( ) ( )2125 22 +−= γγε dd , the condensate becomes exactly 

spherical for an oblate trap ( )1>γ . 

In order to illustrate the static properties of the Thomas-Fermi solution for 

a dipolar BEC, an experiment has a large number of atoms and a particular aspect 

ratio g is imagined, and the value of ddε  is adiabatically increased from zero [39]. 

For electrically induced dipoles this would involve increasing the electric field. 

For magnetic dipoles this can be done by either rotate the external magnetic field, 

gradually changing the angle of rotation [30], or reduce the s-wave scattering 

length using a Feshbach resonance. In the absence of the external field, the 

condensate aspect ratio matches the trap aspect ratio, γκ = . When the dipole-

dipole interactions are switched on the condensate becomes more prolate than the 

trap so that one always has γκ < . As long as 10 ≤≤ ddε , the equation (3.29) has 

a single solution κ  for any value of trap γ . 
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4.VORTICES IN A BEC 

 

 

One of the most fascinating properties of BEC is its behaviour under 

rotation. Like superfluid helium, BEC does not rotate in the manner of an ordinary 

fluid which undergoes rigid body rotation. When an ordinary fluid is put into a 

rotating container, the steady state corresponds to a rotation of the fluid as a whole 

together with the container. The velocity of an ordinary fluid is the same as the 

velocity of a rigid rotating body rΩv ×= . [42] The superfluid is not joined by 

the walls of the rotating bucket for a low enough rotation frequency so it stays at 

rest in the laboratory frame. In this state, rotational motion does not occur. The 

condensate phase is constant over the whole volume. However above a critical 

frequency CΩ , a vortex line appears. The condensate density drops to zero on the 

vortex line. In this case, the phase of the condensate wave function is given by 

( ) θ=rS , and θ  is the azimuthal angle around the vortex axis (along z axis). For 

frequencies considerably higher than CΩ , a single vortex line with a quantum 

number q larger than 1 would appear ( )( )θqS =r . Nevertheless this state is 

unstable, and it fragments into q vortices each having a unit circulation [42]. 

  The rotation of a superfluid leads to the formation of quantized vortex 

lines. Fritz London suggested the connection between the superfluidity of liquid 

4
He and BEC in 1938 [43]. Superfluid liquid 

4
He plays an important role in the 

development of physical concepts since it is the first example of BEC.  Onsager is 

the first scientist who proposed that quantized vortex lines were related with 

superfluid liquid 
4
He [44]. Feynman independently proposed quantization of 

circulation in liquid 
4
He. He investigated its consequences for flow experiments 

[45]. Madison et al. succeeded in observing a vortex and a vortex lattice in a 

trapped BEC [42]. They used a similar method that used in the observation of 

superfluid helium in a rotating bucket  [46]. 

While classical vortices can take any value of circulation, superfluids are 

irrotational, and vortices are formed with quantized circulation. Quantized 

vortices have been observed in several forms such as single vortices [47, 48], 

vortex lattices [42, 49-51] and vortex pairs and rings [52-54] in BEC.  
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These phenomenon are similar to observed in liquid helium, but the atomic 

Bose-Einstein condensates differ fundamentally from the helium BEC in some 

ways. A dilute Bose gas is a dilute system where the interactions are characterized 

by s-wave scattering length.  Superfluid He4  has relatively high density and 

strong repulsive interactions are present in the system. Atomic BEC have a 

nonuniform density because of the confining potential contrary to uniform helium. 

Measurements of the momentum distribution showed that low-temperature 

condensate fraction is ∼0.1 in bulk superfluid He4  [55-57]. However, in the low-

temperature atomic condensates all atoms participates in BEC.   

 

4.1. Quantized vortices 

Quantized vortices represent phase defects in the topology of the 

superfluid systems. When a superfluid is subjected to rotational motion, vortices 

will be formed in it. This situation is true for dilute BEC. A conventional fluid 

rotating with angular frequency Ω  has the velocity field of rigid body rotation 

rΩv ×=  as mentioned above. Hence the “vorticity” of the flow is uniform 

2Ωv =×∇ . However, Onsager and Feynman noted that superfluid helium could 

not rotate as a conventional fluid. In the presence of the vortex along the z-axis, 

the condensate wavefunction ( )t,rΨ  can be expressed in terms of a fluid density 

( )tn ,r  and a macroscopic phase ( )tS ,r  via 

 

 ( ) ( ) ( )[ ]tiStnt ,exp,, rrr =Ψ      (4.1) 

 

Then the superfluid velocity becomes 

 

S
m

v ∇=
h

        (4.2) 

 

Note that the flow of the condensate is irrotational wherever S is not singular. It 

means that the condensate can be rotated only by the generation of vortices such 

that the condensate density vanishes at the vortex cores. The vorticity apparently 

vanishes: 



 40 

0=∇×∇=×∇ S
m

v
h

       (4.3) 

 

Since the wave function is single-valued, the change in phase around any closed 

contour C  must be an integer multiple of π2 , 

 

qdS
C

π2. =∇∫ l ,        (4.4) 

 

where q  is an integer. From Eq.(4.2) and Eq.(4.4), it is found that the circulation 

of the velocity flow around a closed contour which encircles the vortex is 

quantized in units of ( )mh , 
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The velocity of the superfluid is given by 

 

 φv q
mr

h
=         (4.6) 

 

The velocity diverges as ∞→r . The angular momentum along z is qNLz h= . 

As the angular velocity increases, one can create vortex states with q values 2, 3,... 

In a harmonically-confined condensate, the configuration of singly-charged 

vortices is energytically favorable compared to the multiply-charged vortex with 

1>q . A q-fold vortex with  θiqe∝Ψ  satisfies the GP equation, but the 

corresponding energy increases like 2q . As a result, a multiply quantized vortex 

is expected to be unstable compared to the formation of singly quantized vortices. 

Thus a 1>q  vortex can decay into singly-quantized vortices via dynamical 

instability. A rotating BEC generally consists of an array of singly charged 

vortices in the form of a triangular Abrikosov lattice.  
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Each quantized vortex line in rotating superfluid He4  has a uniform 

localized vorticity. Although the flow is strictly irrotational away from the cores,  

Feyman argued that a uniform array of vortices can mimic solid-body rotation on 

average [45]. The integral of the vorticity of a uniformly rotating body over an 

area A is vA2 , where vA  is the area enclosed by the contour C . Thus the 

circulation should be vAΩ=Γ 2 .  The areal vortex density in a rotating superfluid 

becomes 
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n

v

v

v
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==
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      (4.7)  

 

The area per vortex, Ω= 21 qnv ,  decreases with increasing rotation speed.  

 

4.2. Vortex Generation 

Vortices can be formed by different ways such as rotation, a moving 

obstacle, or phase imprinting methods [58]. These ways are explained brifley 

below. 

 

Rotation: Vortices can be nucleated only when the stirring frequency Ω  of the 

container is higher than a critical value CΩ . Experiments related with the vortex 

formation usually have used a smooth rotating potential created by a laser or 

magnetic field which allows a small transverse anisotropy to rotate the 

condensate. This rotating potential causes a low-energy collective oscillation or 

shape deformation of the condensate. A vortex may be detected by the imaging of 

the density profile of the condensate since the density vanishes at the vortex core. 

The stirring potential is turned off in an adiabatic way and the condensate density 

along the rotating axis is imaged to detect the presence of a vortex. The healing 

length is so small that it cannot be observed optically in the experiments. The 

vortices approach the surface of the condensate as the rotation frequency 

increases. 
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The energetic criterion for vortex formation is a necessary, but not 

sufficient, condition. There must also be a dynamic condition for vorticity to be 

introduced into the condensate.  

The generation of vortices in rotating trapped condensate seems to be 

related with the instabilities of collective excitations. Instability can be induced 

resonantly exciting a surface mode by addition of a rotating deformation to the 

trap potential. For small perturbations, this resonance occurs near to a rotation 

frequency  l
l

ω=Ω , where 
l

ω  is the frequency of a surface mode with 

multipolarity l . The surface modes satisfy the relation rωω l
l

= , where rω  is 

radial trap frequency [59] for TF approximation. So lrω=Ω . A similar way 

to vortex nucleation is revealed by considering stationary states of the BEC in a 

rotating elliptical trap, which excites the 2=l  quadrupole mode.  Thus, it 

generates vortices when stirred at 2rω≈Ω . This value is in agrrement with 

experiments [42, 50, 60] and numerical simulations [61, 62]. For low rotation 

frequencies, only one solution is found.  For higher rotations ( )2rω>Ω  a 

bifurcation occurs and up to three solutions are exist. Above the bifurcation point 

one or more of the solutions become dynamically unstable. This leads to vortex 

formation.  

Surface mode instabilities can also be observed at finite temperature by a 

rotating noncondensed thermal cloud. If l
l

ω>Ω  condition is satisfied for the 

thermal cloud such instabilities occur [63]. All modes can be excited in this way. 

Hence, the criterion for vortex nucleation is ( )l
l

ωmin>ΩC , similar to the 

Landau criterion. Such a minimum exists at 0>ΩC  since the exactness of the TF 

result rωω l
l

=  decreases for high l  [64].  

 

Nucleation by a moving object: In trapped BEC vortices can also be nucleated 

through the optical dipole force from a laser, providing a localized repulsive 

Gaussian potential. This laser beam repels atoms from its focus generating a 

moving macroscopic hole in the condensate. When the potential is subjected to a 
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linear motion, vortex pair formation occurs providing that the potential is moved 

at a velocity above a critical value.  

An alternative way to vortex formation is to move the laser beam potential 

in a circular path around the trap center. One or more vortices can be generated by 

stirring the condensate in this way. Vortices can be experimentally generated even 

at low stirring frequencies by this technique Ref. [65]. 

 

Other mechanisms and structures: Other ways of vortex formation have been 

also proposed in several studies. Williams and Holland [66] offered a combination 

of rotation and coupling between two hyperfine levels to generate a condensate 

with two components. One of these state is a vortex state. The non-vortex state 

can be retained or removed with a resonant laser pulse. Phase imprinting method 

also has been used to experimentally generate multiply-quantized vortices [67]. 

Vortex rings which are the decay product of dynamically unstable dark solitary 

waves in 3D geometries have also been the subject of interest [68, 69]. 

 

4.3. Theoretical Background 

The solution of the GP equation in the rotating frame is used to determine 

the rotation frequency of vortex formation. Consider a single vortex in a 

condensate trapped by an axisymmetric trap with frequencies zω  and 

yx ωωω ==⊥ , and the trap aspect ratio 
⊥

=
ω
ω

γ z . Radial and axial lengths are 

equal to each other for this trap: ⊥== RRR yx . The axisymmetric harmonic 

potential is ( ) ( )222
2

2
, z

m
zrVtrap γρ

ω
+= ⊥ .  When the system rotates, it is 

convenient to consider the corresponding rotating frame.  Supposing the rotation 

is about z-axis, the integrand of the GP with the additional term ΨΩΨ− ∗
zL , 

where ( )
xyxyz yxiypxpL ∂−∂−=−= h  is the z-component of the angular 

momentum operator, is given by [12] 
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The variables in the integrand are those in the rotating frame. The corresponding 

GP equation becomes 
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Eq. (4.9) gives the structure of the vortex. In many cases, Eq. (4.9) is an accurate 

microscopic description of an atomic BEC, because of the small condensate 

depletion 1
3

<<san . In the TF limit 1>>hos aNa , the repulsive interactions 

significantly expand the condensate, thus the kinetic energy related with the 

density variation becomes negligible compared to the trap and interaction 

energies.  Then, the density can be obtained approximately as 
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where gn µ=0  is the centeral density of the non-vortex condensate. The TF 

radiuses are 22 2 ⊥⊥ = ωµ mR  and 22 2 zz mR ωµ=  and the healing length is 

( ) ( ) 21

0

21

0

2 82
−== namgn sπξ h . The healing length is an important quantitiy for 

a superfluid. The healing length ξ  characterizes the vortex core size, and is very 

small ( ( ) 1152
52 <<== −

⊥⊥ hos aNaR µωξ h ) in the TF limit [12]. The core 

radius increases away from the trap center. The healing length is typically of order 

0.5 µm for an atomic condensate, and is large compared to the typical particle 

separation. For the case of superfluid helium in which interactions are strong, the 

healing length is very short. Thus, the vortex core size is of order the inter-particle 

spacing . 
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Increasing the quantum number q widens the core radius because of the 

centrifugal effects.  For a 1=q  vortex at the center of an axially-symmetric 

potential, each particle carries h  of angular momentum. However, if the vortex is 

off-center, the angular momentum per particle becomes a function of position. 

The vortex affects the density only in the neighborhood of the vortex core. The 

chemical potential of vortex state  µ  differs from that of nonvortex state 0µ  in 

TF limit by small fractional corrections of order ( ) ( )hoho aRInRa 0

4

0 , where 

( ) 31

0 zyx RRRR = [55].  

A vortex created at the centre of a stationary trap is not thermodynamically 

stable. The vortex state corresponds to a maximum of the energy functional and 

will tend to spiral out of the trap in a finite time. The instability of the vortex 

solution is also seen in the excitation spectrum, which shows modes of positive 

norm and negative frequency corresponding to a precession of the vortex line 

around the centre of the trap . The vortex state can be stabilized by setting the trap 

into rotation, when it becomes a minimum of the energy functional. A mechanism 

to transfer angular momentum to the vortex state is also needed. It can be 

achieved by a rotating non-axisymmetric perturbation. 

  The energy associated with a single vortex line determines the stability of 

the vortex state. The kinetic energy of the superfluid provides a dominant 

contribution to this energy. This energy is  
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where we assume the spatially uniform density n . Since Eq. (4.9) is directly 

proportional to 2q , vortices with 1>q  are energetically not favorable.  

Experiments in rotating trapped BEC generally occur in the TF regime. 

The mean condensate radius R  is large relative to the mean oscillator length hoa  

because of dominant repulsive interactions. The vortex core size is smaller than 

hoa with the ratio 0Raho . Hence, the presence of a few vortices does not 
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significantly affect the density.  In most cases, the condensates are axisymmetric 

with radial and axial trap frequencies ⊥ω  and zω , so that the nonrotating TF 

density depends only on 22 yx +=ρ and z .  

The trap with different radial and axial radiuses ( )
yx RR ≠  is a 

nonaxisymmetric trap. When a singly quantized vortex is formed along the z-axis 

of a nonaxisymmetric trap  the condensate wave function is not an eigenfunction 

of the angular momentum operator zL . The phase of the condensate wave  

function near the trap centre has the form [32] 
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in the TF approximation and the condensate velocity is 
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where ( )22222 2 yxyx RRRRR +=⊥ . The condensate wave function and the condensate 

velocity possess cylindrical symmetry in the vicinity of the vortex core. This 

situation is different far from the vortex core where the condensate velocity 

adjusts to the anisotropy of the trap and becomes asymmetric [55]. 

 

4.4. Critical Rotational Velocity 

The energy of a nonvortex state ( )Ω′
0E  in the rotating frame is numerically 

equal to the energy 0E  in the laboratory frame since the corresponding angular 

momentum vanishes. The corresponding energy of the system with the angular 

momentum zL  is ( ) Ω−=Ω′ hNEE 11 . The difference between these two energies 

is the excess energy given by  
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( ) ( ) ( ) Ω−−=Ω′−Ω′=Ω′∆ hNEEEEE 0101      (4.14) 

 

In the laboratory frame, 1E  is higher than 0E  because of the kinetic energy of the 

circulating flow. If the condensate is in equilibrium in the rotating frame, the 

excess energy of the vortex vanishes at a thermodynamic critical angular velocity 

CΩ  determined by ( ) 0=Ω′∆ CE . Thus, the critical rotation frequency CΩ  above 

which the vortex state is energytically favorable is given by 

 

 
hN

EE
C

01 −
=Ω        (4.15) 

 

in terms of the energy of the vortex and non-vortex states evaluated in the 

laboratory frame. The ground state energy is equivalent to the minimum of the 

thermodynamic free energy. Therefore, the rotation frequency is also called the 

thermodynamic frequency of vortex nucleation since it is evaluated by minimizing 

the thermodynamic free energy.  

For a noninteracting trapped gas, the difference ⊥=− ωhNEE 01  follows 

immediately from the excitation energy for the singly quantized vortex relative to 

the stationary ground state. In the noninteracting gas, the critical angular velocity 

is equal to the radial trap frequency. This critical angular velocity is also valid for 

a q-fold vortex in a noninteracting condensate, due to the special form of the 

noninteracting excitation energy ⊥=− ωhNqEEq 0  and the corresponding angular 

momentum hNq . Hence, the noninteracting condensate becomes degenerate as 

⊥→Ω ω  [32]. This degeneracy states the cancellation between the centrifugal 

potential 22

2

1
⊥Ω− rM   and the radial trap potential 22

2

1
⊥− rMω  as ⊥→Ω ω  [55]. 

For small and middle values of hos aNa , ⊥Ω ωC  decreases with 

increasing particle numbers [55]. For a weakly interacting system, this ratio is 

( )( )zsC dNaπω 2211−≈Ω ⊥  for small values of the interaction parameter 

hos aNa [34].  In the strongly interacting TF limit, ( )NE1  can be found by the 
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equation NE ∂∂= 11µ , where the chemical potential ( )N1µ  for a condensate 

containing a singly quantized vortex can be evaluated with Eq. (4.14). With the 

corresponding expressions of the vortex-free condensate gives the approximate 

expression [70, 71] 
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The total angular momentum of the trap gas with nonuniform density  is 

lower than the that of a uniform fluid. This expression exceeds the usual estimate 

( ) ( )ξ⊥⊥≈Ω RInMRC 46.12
h  for uniform superfluid in a rotating cylinder of 

radius ⊥R  because. Eq. (4.16) is equivalent to 
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where ⊥d  is the harmonic oscillator length of the trap along the radial direction 

Since 122 <<∝ ⊥⊥⊥ RRd ξ , this ratio is small in the TF limit. For an 

axisymmetric condensate, Eq. (4.17) depends on N  and γ  because of the TF 

relation ( ) 5222 15 γsNadRd ⊥⊥⊥ =  .The critical angular frequency decreases as the 

number of atoms in the trap increases. 

Nearly the same functional relationship is true for the thermodynamic 

critical frequency CΩ  and the number of atoms in the condensate 0N   for nonzero 

temperatures. The difference between these relationships is that the number of 

atoms in the condensate depends on temperature: 
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where CT  is the critical temperature of condensate. The distribution function of 

the thermal atoms changes because of the centrifugal force in a rotating trap. The 

critical temperature decreases as  
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where 0

CT  is the critical temperature without rotation. The critical temperature 

( )ΩCT , below which the vortex corresponds to a thermodynamically stable 

configuration in a trap rotating with frequency Ω  is calculated with Equations 

(4.17)–(4.19). The gas shows Bose–Einstein condensation for temperatures below 

( )ΩCT . The critical temperature for the creation of stable vortices exhibits a 

maximum as a function of  Ω . 

 

4.5 Vortex in an Attractively Interacting BEC 

Attractive interactions in BEC are characterized by a negative s-wave 

scattering length 0<sa . Vortices in such a condensate have also received 

theoretical interest. A homogenous BEC with 0<sa  is not stable because of 

collapse. However, an inhomogeneous BEC is stable as long as the number of 

condensed atoms N is smaller than a critical value. A central vortex state 

decreases the peak density so it may help stabilization of a trapped condensate 

with 0<sa . For ⊥<Ω ω  excitation of a vortex in a harmonically trapped BEC 

with 0<sa  is prohibited by the center-of-mass motion, which is the lowest 

energy state for a given angular momentum [72].  

The critical angular velocity of BEC with attractive interactions is larger 

than that with noninteracting particles. For repulsive interaction, the situation is 

opposite. The generation of a vortex in a trapped BEC with repulsive interactions 

is more energetically favorable than for attractive interactions since more internal 

potential energy is needed to lower the average density for attractive interactions. 
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The vortex state is more stable than the state without vortex. More atoms can be 

put into the rotating gas before attaining the critical density for the collapse.  

 

4.6 Precession of a Vortex 

Precession of a off-axis vortex in a condensate is a simple example of 

vortex motion. A vortex may be formed slightly away from the centre instead of 

the centre of the condensate. In this situation a lateral force arising from the 

density gradient in the condensate affects the vortex. This lateral force induces a 

Magnus force effect which may be thought of as a sort of effective buoyancy. The 

total buoyancy force is usually towards the condensate surface and the result is a 

precession of the core around the condensate axis due to the Magnus effect. 

Besides the vortex may be subjected to a damping force which causes radial drag. 

The vortex spirals core towards the condensate surface due to energy dissipation 

and damping processes. 

Consider a vortex line with a single quantum circulation in a condensate 

confined by a cylindrical container whose cross section is a circle of radius R. The 

density is constant everywhere except a small region in the core of the vortex. The 

angular momentum per unit length about the axis of the cylinder is  

 

 ρϕρρ∫= vddnmL        (4.20) 

 

If the vortex is at a distance b from the axis of the cylinder, the angular 

momentum per unit length is given by [13] 
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The vortex and its image vortex interact each other. The azimuthal angle of their 

positions changes, but their radial coordinates remains constant. The angular 

velocity can be determined by the equation [13] 
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Since the energy and the angular momentum both depend parametrically on b, the 

frequency also depends on b. The velocity at which the vortex advances is 

precisely the flow velocity of the fluid at the position of the vortex. It is in 

agreement with Kelvin’s theorem. 

 

4.7 Hydrodynamic Theory of the Condensate 

The hydrodynamic equations of BEC defines the time evolution of the 

density and the velocity of the condensate. Vortex nucleation is a dynamic process 

in a trapped gas. In TF limit these hydrodynamic equations are the same as the 

Euler equations of the classical hydrodynamics. A linear stability analysis of the 

hydrodynamic equations gives a description of the collective excitations. One 

actually gets an analytical description of this collective excitations using this 

classical hydrodynamic theory. There is a relation between hydrodynamic theory 

and the Bogoliubov theory which also describes the collective excitations. It was 

shown by Sinha [73]  that the dispersion law [74] for the collective excitations 

obtained under classical hydrodynamic approximation can be derived by applying 

the TF approximation directly to the Bogoliubov equations [75]. The 

hydrodynamic theory of the condensate has been discussed in several papers and 

reviewed in [13, 76, 77].  

To enable the construction of a hydrodynamic theory of the condensate, 

the wavefunction  ( )rΨ  can be split into a modulus and a phase 

( ) ( ) ( )r
rr

iSetn ,=Ψ  where ( ) ( ) 2
,, ttn rr Ψ=  is the particle density. The 

corresponding current density is 
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The hydrodynamic equation vJ n=  identifies the local velocity as 
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( ) ( )tt ,, rrv Φ∇=        (4.24) 

 

where mSh=Φ  is the velocity potential which was proposed proposed by 

Feynman (1955) about the vortices in superfluid Helium. Substituting the wave 

function into the time-dependent GP equation and seperating its imaginary and 

real parts one can find the following continuity and Bernoulli equations, 

respectively [75] 
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Equations (4.25) and (4.26) exhibit all the hydrodynamic behaviour found for 

classical irrotational compressible isentropic flow. Taking the gradient of both 

sides of the equation (4.26),  the time derivative of the velocity field is obtained as 
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where the chemical potential is given by 
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For a uniform condensate in which 0=trapV  at T = 0, the chemical potential 

0gn=µ  and the pressure 2
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pressure after replacing 0n  by n , Eq. (4.27) can be rewritten in the form 
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Eq. (4.29)  is very similar to the Euler equation  
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where ( )vv.∇=
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 The last term in Eq.(4.29) drops in TF limit. In TF approximation, 

neglecting the term 
n

n
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∇h
 in Eq. (4.29), one can get the classical 

hydrodynamic equation 
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and the chemical potential µ  becomes TFµ . In the case of rotation, the 

hydrodynamic equations in TF limit take the form 
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where Ω  is the angular velocity. Since the only degrees of freedom are those of 

the condensate wave function, which has a magnitude and a phase, motions of the 

condensate maybe specified in terms of a local density and a local velocity. 

Ordinary liquids and gases have many more degrees of freedom. Therefore, it is 
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usually necessary to use a microscopic description, such as the distribution 

function for the particles. However, a hydrodynamic description is possible for 

ordinary fluids in which collisions between particles are sufficiently frequent so 

that thermodynamic equilibrium is established locally. The state of the liquid or 

gas may then be given completely in terms of the local particle density, the local 

velocity, and the local temperature. The temperature is not a related variable at 

zero temperature, and the motion may be described in terms of the local density 

and the local velocity like a condensate. The equations of motion for a condensate 

and for a perfect fluid are similar. They are expressions of the conservation laws 

for particle number and for total momentum. However, the physical reasons for a 

description in terms of a local density and a local velocity are considerably 

different for the two cases. 

 

4.8. Elementary Excitations 

Elementary excitations maybe examined by taking into account small 

deviations of the state of the gas from equilibrium and finding periodic solutions 

of the time-dependent GP equation. Using the hydrodynamic equations is an 

equivalent approach. The density can be written as nnn eq δ+= , where eqn  is the 

equilibrium density and nδ  the deviation of the density from its equilibrium 

value. Linearizing Eqs. (4.25), (4.27), and (4.28) by treating the velocity v  and 

nδ  as small quantities, one finds [13] 
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where δµ  is found by linearizing Eq.(4.28). Taking the time derivative of 

Eq.(4.23) and eliminating the velocity by means of (4.24) one finds the equation 

of motion describing the excitations of a Bose gas [13] 
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eqn  is the density of the condensate neglecting the zero-temperature depletion of 

the condensate. In the undisturbed state, the density n is the same everywhere in a 

uniform gas and therefore may be taken outside the spatial derivatives. From Eq. 

(4.28) the change in µ~  is equal to [13] 
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The equation of motion becomes 
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Non-vanishing solutions of Eq.(4.38) are possible if the frequency is given by  

hqεω ±= , where qε  is the energy of an excitation 

 

 ( )2002 qqq ng εεε +=        (4.39) 

 

and 0

qε  is the free particle energy. The zero-temperature excitation spectrum was 

first derived by Bogoliubov from microscopic theory [78]. For small q , qε  is a 

linear function of q , 

 

 qcq h≈ε         (4.40) 

 

Phonons are the linear part of this excitation spectrum. The sound velocity c  is 

given by 
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mngc =         (4.41) 

 

The Bogoliubov theory is valid as long as the wavelength of the excitation is 

much greater than the s-wave scattering length. The repulsive interaction has 

turned the energy spectrum linear in q at long wavelengths. At short wavelengths 

the leading contributions to the spectrum are the free-particle spectrum and a 

mean-field contribution 

 

 ngqq +≈ 0εε         (4.42) 

 

The transition between the linear spectrum and the quadratic one occurs when the 

kinetic energy, becomes large compared with the potential energyof a particle. 

This occurs at a wave number ( ) h2

1

2mgn≈ . It is the inverse of the coherence 

length. The relation between the coherence length and the sound velocity is 

mc2h=ξ . Atoms behave like free particles on length scales longer than the 

healing length. The spectrum of elementary excitations in superfluid He4 is 

different from that of a dilute gas due to the strong short-range correlations.  

Eq.(4.38) does not precisely apply to a parabolic trap, since the density is 

not homogeneous. However, the form of ( )qω  is very similar to that of  Eq.(4.38). 

The speed of sound, and therefore the excitation spectrum Eq.(4.38), can be 

defined at each point r  in the local density approximation, where ( ) mgnc r=  

[79]. This approximation is true when TF radius of the condensate in the q  

direction is much larger than the wavelength of the excitation. The central density 

varies with the square of the condensate radius in the TF limit. Thus, the speed of 

sound in a trapped condensate increases linearly with TF radius.  

 

4.9 Elliptical Trap 

 One way of rotating the condensate is to use a rotating elliptical harmonic 

trap. In an elliptical trap, the presence of vortices predicted to create with rotation 

angular velocities above ⊥≈Ω ω3.0  [80]. However, experimentally vortices are 
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generated at much higher velocities since only at higher velocities a dynamical 

route to vortex nucleation appears [50, 81]. In ENS group experiments a harmonic 

rotating potential with adjustable anisotropy λ  and rotation frequency Ω  is 

created [82]. A striking result of the ENS experiments is that, for a very weak 

anisotropy λ , nucleation of vortices occur in the interval of rotation frequencies 

around ⊥ω7.0 .  

In the rotating frame, the static solutions in an elliptical trap are 

quadrupole solutions with elliptical density profiles. These solutions, and their  

stability characters, are examined by the classical hydrodynamic equation in the 

rotating frame [83, 84]. Experimentally, these solutions can be achieved by two 

procedures. Procedure I involves increasing the rotation frequency from zero for a 

fixed elliptical trap. Procedure II involves increasing the trap ellipticity from zero 

while rotating at a fixed frequency. If these procedures are employed 

adiabatically, the condensate have the stationary states in the rotating frame.  This 

has been observed experimentally [50, 85]. The onset of the instability has been 

examined theoretically based on classical hydrodynamics [83, 84] and is in 

excellent agreement with experimental results [50, 85]. If the rotating elliptical 

trap is introduced non-adiabatically, the condensate undergoes shape oscillations 

which can be unstable and lead to vortex lattice formation. These non-adiabatic 

dynamics have been also observed experimentally [85] and explained theoretically 

[86, 87].  

For large systems, the equations of motion are described by the 

hydrodynamic theory of superfluids in TF limit. If the trapping potential rotates 

with angular velocity Ω , it is convenient to write these equations in the rotating 

frame: 
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These equations are studied by Recati et. al. in the case of a dilute BEC in a 

rotating harmonic trap with the frequencies xω , yω , zω  [83]. The oscillator 

potential is ( ) ( )2222222 zyxmV zyxtrap ωωω ++=r , where yx ωω > . The trap is 

almost elliptical in the rotating xy plane in the experiments [50, 85]. Therefore, an 

ellipticity parameter λ  defines the x, y trap frequencies to be ⊥−= ωλω 1x  and 

⊥+= ωλω 1y , where ( ) 2222

yx ωωω +=⊥  is the geometric mean of the 

frequencies. ( )rtrapV  does not depend on time in the rotating frame. The x and y 

axes rotate at the frequency Ω  around the z axis. The wavefunction is given by 
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The elliptical trap causes to excite a quadrupolar mode in the condensate while 

rotating. The irrotational quadrupolar flow in the condensate defined by the 

velocity field [88], 

 

 ( )xy∇= αv         (4.46) 

 

where α  is the velocity field amplitude and proportional to the ellipticity of the 

condensate density profile. Substituting expression (4.46) into Eq. (4.44), the 

density is given by the parabolic shape 

 

 ( ) ( )






 ++−= 222222 ~~

2

~1
zyx

m

g
n zyx ωωωµr     (4.47) 

 

in the presence of the rotation. The effective oscillator frequencies are [83] 

 

 Ω−+= ααωω 2~ 222
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Ω−+= ααωω 2~ 222

yy        (4.49) 
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which fix the average square radii of the atomic cloud through the relationships 

[83] 

 

 
m

zyx zyx
7

~2~~ 222222 µ
ωωω ===      (4.50) 

 

where 

 

 

52

~
15

2

~
~









=

ho

ho

a

Naω
µ

h
       (4.51) 

 

is the chemical potential in the rotating frame. This chemical potential provides 

the proper normalization of the density (4.47). The rotation of the trap with α 

which is different from zero causes a modification in the shape of the density 

profile due to the change of the effective frequencies xω~  and yω~ .  

 The equation of continuity (4.43) takes the form ( ) 0. =∇×− nrΩv  at 

equilibrium, and gives  the expression for α  [83]: 
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From (4.50) and (4.52) , the expectation value of the angular momentum is found 

to be 

 

 ( ) ( ) ΩΘ≡×= ∫ rrvr dnmL
z

z      (4.53) 

 

where 22
2

22 yxyxNm +−=Θ  of the moment of inertia. The ratio between 

Θ and the classical rigid value 22 yxNmrig +=Θ  takes the expression [83] 
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Θ  and rigΘ  depend on the value of Ω  since 2x  and 2y  are modified by the 

rotation. By inserting Eqs. (4.48) and (4.49) into Eq.(4.52) the following equation 

for α  [83] is found  

  

 ( ) ( ) 042 222223 =−Ω+Ω−++ yxyx ωωωωαα     (4.55) 

 

which defines the stationary condensate solutions in a harmonic trap with 

ellipticity λ  rotating at frequency Ω . Depending on the value of  Ω  and 

ellipticity 
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of the trap, either 1 or 3 solutions can be derived in analytic form. The physical 

solutions should satisfy the conditions 0~ 2 >xω  and 0~ 2 >yω . These conditions 

provides the normalizability of the density and except some of the solutions of 

(4.55). 

 Eq. (4.55) defines static solutions, but they are not necessarily stable 

solutions. Small perturbations in density nδ  and phase δϕ  to the static solutions 

are considered to examine their dynamical stability [84, 89]. Taking the 

variational derivatives of Eqs. (4.43) and (4.44) yields the time-evolution 

equations 
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where rΩvv ×−=c  is the velocity field in the rotating frame. A polynomial 

ansatz which consists of terms of the form ji yx , where 0, ≥ji  and 7≤+ ji , is 

taken for the perturbations nδ  and δϕ , and inserted into Eq.(4.57). If the 

eigenvalues of Eq.(4.57) are purely imaginary or have a negative real part, the 
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perturbations are stable oscillations which decay over time. If they have a real 

positive component, the perturbations grows exponentially. These solutions are 

dynamically unstable. Thus, they lead to vortex lattice formation [84, 89]. 
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5. VORTICES IN DIPOLAR BEC 

 

Dipolar interaction has remarkable consequences for the physics of 

rotating dipolar gases in TF limit. The principal effect of dipolar interactions on 

the equilibrium properties of a condensate is to cause distortion of its aspect ratio 

so that it is elongated along the direction of the dipoles. This feature affects the 

stability of a vortex in a dipolar BEC. The stability of vortices in dipolar 

condensates has been recently addressed. The theoretical investigations have 

shown that the stability of dipolar gases depends on the trap geometry [23, 90].  In 

Ref. [91], the authors have studied the stability and excitations of singly and 

doubly quantized vortices in dipolar BECs, while in Ref. [92] a phase transition 

has been predicted between straight and twisted vortex lines. Also, the transverse 

instability of vortex lines has been studied in Ref. [93].  

It has been shown that the critical angular frequency for vortex creation 

may be significantly affected by the dipolar interaction [94]. In an axially 

symmetric traps with the axis along the dipole orientation, the critical angular 

velocity, above which a vortex is energetically favorable, is decreased in oblate 

traps due to the dipolar interaction [94, 95]. The effect of the dipole-dipole 

interaction is the lowered precession velocity of an off-center straight vortex line 

in an oblate trap [96]. In addition, dipolar gases under fast rotation develop vortex 

lattices, which due to the dipolar interaction may be severely distorted [97], and 

even may change their configuration from the usual triangular Abrikosov lattice 

into other arrangements [28, 29]. The experimental way towards unstable 

dynamics which may lead to vortex lattice formation was examined in [40] . 

In the Thomas–Fermi (TF) limit, the dipolar interactions change the 

possibility of vortex lattice formation for a rotating dipolar BEC in an elliptical 

trap [40]. Rotating BEC with dipolar interactions was analyzed theoretically in 

elliptical traps and discussed the regimes of stability and instability [38, 98]. 
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5.1 Dipolar Condensate in an Elliptical Trap 

Hydrodynamic equations in the dipolar BEC are obtained by adding 

dipolar interaction to Eqs. (4.32) and (4.33)  
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The dipolar potential with an inverted parabola density is found to be [40] 
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where the coefficients ijkβ  are [40] 
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where i, j, and k are integers. For the cylindrically symmetric case with  

κκκ == yx , the integrals ijkβ  are 
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where 12 F  denotes the Gauss hypergeometric function [40]. Therefore, 

rearranging Eq. (5.3) gives an expression for the density 

profile
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Comparing the 2x , 2y , and 2z  terms in Eqs. (5.3) and (5.7), three equations 

which define the size and the shape of the condensate are found [40] 
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where ( )( )
0022911 βκκεζ yxdd −−= . Furthermore, by inserting Eq.(5.7) into Eq. 

(5.1)  we find that stationary solutions satisfy the condition [40] 
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Eq. (5.11) can be solved for velocity field amplitude α  for a given ddε ,  and trap 

geometry [40]. For 0=ddε , α  does not depend on the s-wave interaction strength 

and the trap ratio. However, α  becomes dependent on both g and γ  for 0≠ddε . 

For fixed ddε  and trap geometry, Eq. (5.11) leads to branches of α . These 
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branches are significantly different between circular traps ( )0=λ  or elliptical 

traps ( )0>λ  in the x-y plane [40]. 

 

0=λ  case: 

For this case, only one solution exists corresponding to 0=α  up to a critical 

rotation frequency. Two more solutions with 0>α  and 0<α  exist at this critical 

frequency.  This frequency at which the solution bifurcates is called bifurcation 

frequency bΩ .  For nondipolar condensate the bifurcation point is 2⊥=Ω ωb . 

In this case, the system becomes energetically unstable to the spontaneous 

excitation of quadrupole modes for 2⊥≥Ω ω . For bΩ>Ω , solutions are given 

by ⊥⊥−Ω±= ωωα 222  [13, 20]. In the TF regime, a general surface excitation 

with angular momentum Rq
l

hhl =  obeys the classical dispersion relation 

( ) trapRVmq ∇=
ll

2ω  Ref [13] . Consequently, for the nonrotating and nondipolar 

BEC, ⊥= ωω l
l

. The mode frequency is shifted by Ω− l  due to rotation. Thus, 

the frequency of the 2=l  quadrupole surface excitation becomes 

( ) Ω−=Ω ⊥ 222 ωω  in the rotating frame [13] The bifurcation frequency thus 

coincides with the vanishing of the energy of the quadrupolar mode in the rotating 

frame.  Two more solutions derive from excitation of the quadrupole mode for 

2⊥≥Ω ω . bΩ  does not depend on the interactions for nondipolar condensate 

since the mode frequencies 
l

ω  themselves are independent of g . 

For dipolar condensate the potential ddΦ   gives nonlocal contributions and 

breaks the dependence of the force V∇−  on R  [38, 40]. Therefore, the resonant 

condition for exciting the quadrupolar mode changes with ddε . The solutions 

change in the presence of dipolar interactions and the bifurcation point bΩ  moves 

to lower (higher) frequencies for 0>ddε  ( )0<ddε  [40].  

0=α  solutions have zero ellipticity in the x-y plane. 0>α  solutions 

have an elliptical density profile. The condensate is elongated in x direction for 

0>α   and it is elongated in y direction for 0<α .  
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The bifurcation point can be calculated analytically. For 0=α  the 

condensate is cylindrically symmetric with κκκ == yx . For small +→ 0α , the 

first-order corrections to xκ  and yκ  with respect to κ  can be calculated from 

Eqs. (5.8) and (5.9). Using bΩ→Ω  when 0→α  and inserting these aspect 

ratios in Eq. (5.11) , one can find [40] 

 








 −−

−
+=

Ω

⊥
002

2

101201

2
22

2

9
11

4

3

2

1

βκε

ββκ
γεκ

ω
dd

dd
b    (5.12) 

 

It is found in Ref [40] that for nondipolar condensate the bifurcation point remains 

unaltered at 2xb ω=Ω  as γ  is changed [83, 84]. As dipolar interactions are 

increased the shape of the condensate changes from oblate to prolate. For a fixed 

γ  they found that as ddε   increases the bifurcation frequency decreases 

monotonically [40]. 

 

0>λ : 

The solutions for 0>λ  have an upper branch of 0>α  solutions which exists 

over the whole range of Ω  and a lower branch of 0<α  solutions which back-

bends and is double valued for a weak ellipticity of  025.0=λ . The frequency at 

which the lower branch back-bends is called the back-bending frequency bΩ . No 

0=α  solution exists with 0≠Ω . The backbending frequency  bΩ  increases with 

increasing trap ellipticity in nondipolar condensates. The presence of dipolar 

interactions reduces bΩ  for 0>ddε , and increases bΩ  for 0<ddε  [20]. The 

back-bending of the lower branch can show an instability. 

 For  0≠λ , with increasing ddε  the BEC becomes more prolate like zero 

ellipticity case. This deformation is due to the anisotropic character of dipolar 

interactions. The dipolar interactions are isotropic in the yx −  plane. Thus, they 

increase the deformation of the BEC in that plane. 
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The solutions derived in the previous subsections are static solutions in the 

rotating frame, but they are not necessarily stable. To analys their dynamical 

instabilities consider small perturbations in the BEC density and phase of the form 

δρρρ += 0  and SSS δ+= 0  . By linearizing the Eqs.(5.1) and (5.2), the 

dynamics of these perturbations can be described as [40] 
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where rΩvvC ×−= and the integral operator K is defined as [40] 
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The integral in the above expression is carried out over the domain where 00 >ρ . 

Eigenfunctions and eigenvalues of operator (5.13) are determined to investigate 

the stability of the BEC. The imaginary eigenvalues of Eq.(5.13) are related with 

the stable collective modes of the system [40] while the real eigenvalues shows 

that the instability grows. A polynomial ansatz for the perturbations in the 

coordinates x, y, and z of total degree N is considered to find imaginary 

eigenfunctions [84, 98]. The operator K  can be determined for a general 

polynomial density perturbation rqp zyx=δρ , with p , q , and r  being non-

negative integers and Nrqp ≤++  [40]. Thus, the perturbation evolution 

operator Eq.(5.13) can be written as a scalar matrix operator, acting on vectors of 

polynomial coefficients. 

 

5.2 Dipolar BEC with a Single Vortex 

5.2.1 Dipolar BEC with a Centered Vortex 

Interparticle interaction potential in dipolar gases includes both van der 

Waals and dipole–dipole term. Because of the long-range character of the dipole–

dipole interaction, scattering properties at low energies are significantly changed. 

In the case of a short-range interaction, only the s-wave scattering is important at 
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low energies. However, in the case of a long-range interaction, all partial waves 

contribute to scattering. Within the mean-field description of the condensate, the 

interaction potential is well described by the following model potential 
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 The results are equally valid for electric dipoles. 

Consider a dipolar BEC of N  particles with mass m and magnetic dipole 

moment µ  oriented in the z-direction by a sufficiently large external field. At 

sufficiently low temperatures, the description of the ground state of the 

condensate is provided by the solution of the Gross-Pitaevskii (GP) equation 
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where TV  is the trap potential )(
2

2222 z
m

V xT γρω += , and 222 yx +=ρ . The 

equation (5.16) is an integro-differential equation since it has both integrals and 

derivatives of an unknown wave function. This equation can be solved 

analytically if the zero-point kinetic energy associated with the density variation is 

assumed to be negligible in comparison to both the trap energy and the interaction 

energy between atoms. The wave function is given by [99] 
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In TF regime, the variational ansatz for the density profile of a condensate with a 

single vortex is [94] 
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                              ( ) ( )rr vn+= bgn         (5.19) 

 

This ansatz can be written as the sum of two terms: the background Thomas-

Fermi parabolic profile ( )rbgn  which is given in Eq. (2.57) and the vortex profile 
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The variational ansatz (5.20) has the correct l2ρ  dependence on the density as 

0→ρ  (with 1=l ).  This is necessary to satisfy the GP equation for a vortex of 

l  circulation quanta [13]. It has also the correct asymptotic form that the solution 

must have for ∞→ρ . 0n  is the central density and is found by normalization to 

be 
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 where 
xR

β
β ≡ . The total energy for a dipolar gas can be written as 
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where kinE  is the kinetic energy calculated by 
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In the Thomas-Fermi approximation the kinetic energy due to the slowly varying 

condensate 22221 zx RzR −− ρ  is neglected [94]. The terms arising from the 

gradient of the vortex part of the wave function ( )2221 βρβ +−  which varies 
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rapidly in the ρê  direction must be taken into account. With these 

approximations, the kinetic energy is calculated to be [94] 
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The second term trapE  in Eq.(5.22) is the trap energy due to the harmonic trap 
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This energy is evaluated to be 
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with the wave function given in Eq.(5.17).  

swE  is the energy due to the short range interaction
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Finally, the last term ddE  in Eq.(5.22) is the energy due to the dipolar interaction 
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where ( )rddΦ  is the dipolar mean field potential given in Sec.3.  

The energies kinE , trapE  and swE  can be calculated analytically in a 

straightforward manner. To evaluate the dipolar energy, one can begin from 

substituting the density (5.17) in Eq. (5.29) 
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(5.30) 

 

Two cross terms between the vortex and background densities are identical so that 

the integral is invariant under exchange of the coordinates r  and r′ . Thus, the 

dipolar energy functional can be written 
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In these derivations it is assumed that the size of the vortex core is much smaller 

than the radius of the condensate. This is consistent with Thomas-Fermi 

approximation for the background parabolic density. The vortex-vortex part of the 

dipolar energy can be omitted since this has an extra factor of 2β  in comparison 

to the cross term. The remaining two terms can be written as [94] 
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The first term is the dipolar energy of the non-vortex condensate, while the second 

term is the dipolar interaction between the vortex and the background density 

profile. These terms have been reduced to single integrals of their own density 
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profiles. ( )zbg

dd ,ρΦ  is the same potential as given by Eq. (3.25). The integrals are 

evaluated explicitly 
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and 
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The total energy ddswtrap EEE ++  associated with the vortex-free Thomas-Fermi 

solution is given by [30] 
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0E  is the ground state energy. totE  is minimized with three variational parameters 

xR , zR  and β . Eberlein at. al. studied Cr52  condensate with a single centered 

vortex case in Ref [94]. They found that in an oblate trap the dipolar interactions 

which are prodominantly repulsive raises the energy relative to the s-wave case. 

The dipolar interactions increases xR  and β sligthly above the pure s-wave value. 

But for large scattering lengths xR  and β  of dipolar condensate get closer to the 

those of s-wave condensate since short range interactions are dominant. The 

aspect ratio of the condensate, κ , is reduced in the present of dipolar interactions 

because of magnetostriction effect.  
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5.2.2 Dipolar BEC with an Off-Axis Vortex 

Consider a single straight vortex line at a position 0ρ  along the z-axis. In 

this case, the wave function, normalized to the total number of atoms 

Nrdr =Ψ∫ 3
2

)( , is given by 
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where ( ) ( ) 2
rrn ψ=  is the density. The expression of the phase ( )0, ρρS  

characterizing the circulating flow around the vortex line is given by [15] 
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where 2

0

2

0

2

0 yx +=ρ . The corresponding irrotational flow velocity is given by 
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There is a singularity on the vortex line, 0ρρ = , where the velocity diverges. 

However, the particle current density, vJ n= , vanishes as 0ρρ → . When a 

quantized vortex is present at the position 0ρ , the density drops to zero at the 

center of the vortex core whose size is determined by the parameter β . For a 

centered vortex in a BEC without dipole-dipole interaction, the parameter β  is 

given by 
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where ⊥⊥ = ωmd h  is the mean oscillator strength. The TF limit holds when xR  

is large compared to ⊥d . The TF length scale reads xRd <<<< ⊥β . The vortex 

core size increases with 0ρ . The parameter ( )0ρβ sw  characterizing the small 

vortex core at the position 0ρ  in a BEC without the dipole dipole interaction is 

[100] 
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Having written the expression of the phase, for a straight off-center vortex, the 

density ( )rn  can be found. The repulsive interactions and the repulsive dipolar 

interaction (for oblate case) significantly expand the condensate, so that the 

kinetic energy associated with the density variation becomes negligible compared 

to the trap energy and interaction energies. In the TF regime, the density profile of 

a condensate with a straight off-axis vortex line at 0ρ  is given by [101] 
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where ( ) 0=rn  when the right hand side is negative and β , xR , and zR  are 

variational parameters that describe the size of the vortex core, and the radial and 

the axial sizes, respectively. Note that the density function (5.41) behaves like 

22

0 βρρ − when βρ <<  and like ( )22221 LzR −− ρ   when βρ >> . These 

parameters will be calculated by minimizing the energy functional. The central 

density 0n  can be found using the normalization condition 

 

5

2

0

222

0
32

2
2394

2
342560

x

xx

R

InInRRN

n
π

β
ρ

β
βκ






































−+








−








+

=          (5.42) 



 75 

An image vortex is not included because the form of the TF condensate density 

ensures that the particle current density vanishes at the surface.  

Let the total angular momentum for a singly quantized vortex line along 

the trap axis at the position 0ρ  be zL  ( )( )∫= rdrrvnmLz

3  . Then the 

corresponding energy of the system in the rotating frame is zLEE Ω−=′ , where 

E  is the energy in the non-rotating frame. By denoting the energy of the BEC in 

its ground state without a vortex by 0E  and the extra energy needed to generate a 

vortex by E∆ , then EEE ∆+= 0 . The energy of the vortex state in the rotating 

frame can be written as 

 

zv LEEE Ω−+=′
0        (5.43) 

 

The critical rotational velocity is given by 

 

 
hN

Ev
c =Ω         (5.44) 

 

It should be noted that a vortex lattice starts to appear when the rotation frequency 

is further increased. 

 The total energy can be minimized with respect to the three variational 

parameters,  xR ,  zR  and  β . The kinetic, trap, s-wave and dipole-dipole 

interactions energies are calculated separately for the density Eq.(5.42). Since β  

is small, the terms of order 3β  and higher can be neglected. The energy integral 

can be evaluated analytically up to the second order of 0ρ . Below the analytical 

energy expressions for small 0ρ  are given. When 00 =ρ , the results given in the 

previous section are found. Therefore, only the energy terms which depend on 

vortex displacement 0ρ  are given below. In the following section, numerical 

calculations for large 0ρ  will be performed in the TF limit. The kinetic energy 

due to the vortex displacement is 
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where 
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Using the Eq.(5.25), the trapping energy is straightforwardly evaluated to be  
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In the similar way, the formula (5.27) yields the s-wave interaction energy 
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The dipole-dipole interaction energy is calculated using Eq. (5.29). The density of 

an off axis vortex state is 
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Hence, the extra dipolar interaction energy with the second term of Eq. (5.29) 

becomes  
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The energy expressions are obtained up to the second order of fractional vortex 

displacement, 0ρ . Note that the central density 0n  in these expressions also 

includes  2

0ρ  (5.42).  Up to the order of 2β , they agree with the results [94] in the 

limit 00 →ρ . 

As can be seen, the kinetic energy decreases with 0ρ . The kinetic energy 

goes to zero as R→0ρ  since TF density vanishes at the surface. Note that the 

description of a vortex close to the boundary is outside the scope of the present 

approach, since TF approach doesn’t work close to the surface. The dipole-dipole 

interaction increases with 0ρ  for an oblate trap while decreases with 0ρ  for a 

prolate trap. The kinetic energy depends on 2

0ρ  while the dipolar, trap and the s-

wave interaction energies depend on 2

0

2 ρβ . 

Before embarking on a specific example, the energy expressions should be 

studied qualitatively for an oblate trap. Firstly, it is investigated roughly how the 

total energy is distributed among kinetic, dipolar, trap and s-wave interaction 

energies. The ratio between the kinetic energy and the trap energy is of order 2β ; 

trapkin EE 2β≈ . The trap and the s-wave interaction energies are comparable to 

each other; trapsw EE ≈ . The ratio between dipolar and the s-wave interaction 

energies is of order ddε ;  swdddd EE ε≈ .  

To investigate how the excess energy E∆  needed to generate a vortex is 

distributed consider first a central vortex, 00 =ρ . The excess energy for the trap, 

dipolar and s-wave interaction energies vary as 2β . However the excess kinetic 

energy is of order the kinetic energy, trapkinkin EEE 2β≈≈∆ . Hence,  

trapkin EE ∆≈∆ . The excess energy for dipole-dipole and s-wave interaction 

energies are negative. Hence, the effect of increasing dipole moment and 

scattering length is to decrease the critical angular velocity  CΩ . The relations 

between the excess energies for dipolar, trap and s-wave terms are given by 

swdddd EE ∆≈∆ ε  and swtrap EE ∆−≈∆ . 
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The energy changes with the position of an off-axis vortex, 0ρ . The 

kinetic energy and the trap energy decrease with 0ρ while the dipole-dipole and 

the s-wave interaction energies increase. Furthermore, the total energy decreases 

with 0ρ .  

If vortex bending effect is neglected, one can use the above energy 

expressions for a prolate trap with a straight vortex line. In this case, the dipolar 

interaction energy is negative. However, the excess energy for the dipolar 

interaction is positive. Hence, the effect of increasing dipole moment for a prolate 

trap is to increase the critical angular velocity  CΩ . Finally, the dipole-dipole 

interaction energy decreases with increasing 0ρ . As a result, the effect of dipolar 

interaction is to repel an off axis vortex away from the trap center for a prolate 

trap while attract it to the trap center for an oblate trap. 

In what follows, an explicit example for a straight off-axis vortex for an 

oblate trap will be given. 

 

5.2.3 Results 

In this section, a dipolar BEC with a single vortex in an oblate trap 

including 150000 Cr52  atoms is examined. The numerical values are taken from 

the reference [94] to compare the off-center vortex to the central vortex. The trap 

frequencies are 2002 ×=⊥ πω rad/s and 10002πω =z  rad/s for  5=γ . The 

harmonic oscillator length of the trap along the radial direction is md µ986.0=⊥ . 

The magnitude of the magnetic dipole interaction for Cr52  is  ( )2

0 6 BddC µµ= . 

For small values of 0ρ , the analytical results obtained in the previous section is 

used. For large values 0ρ , numerical computation within the TF limit will be 

performed. 

Three variational parameters, β , κ  and xR  are analyzed firstly. The 

density of the condensate drops to zero at the center of the vortex core whose size 

is equal to β . It is very small compared to the radial size of the condensate. The 

smallness of β  ensures that the vortex affects the density only the immediate 
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vicinity of the core. Fig.5.1 depicts the fractional vortex core size, xRββ = , 

versus the scattering length. The solid curve corresponds to a central vortex, while 

the dashed curve to an off-center vortex with xR4.00 =ρ . The parameter β  is 

bigger in the presence of an off-axis vortex. As can be seen from the figure, the 

fractional vortex core size decreases with increasing scattering length. This can be 

understood as follows. The radial size increases as scattering length is enlarged. 

The vortex core size is inversely proportional to radial size. So, it is concluded 

that β  decreases with sa . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, Fig.5.2 and Fig.5.3 show the aspect ratio κ  and the radial size 

(right) of the condensate xR  versus the scattering length, respectively for 00 =ρ  

and xR4.00 =ρ . Contrary to the case of vortex core size β , the parameters κ  and 

xR  don’t change appreciably with 0ρ  when 050aas > , where 0a  is Bohr radius. 

Hence, the curves lie on top of each other in figures. 

Figures 5.4 and 5.5 show the total energy as a function of vortex position 

for fixed 0100aas =  and scattering length for fixed 2.00 =ρ  in a non-rotating 

oblate trap ( )0=Ω , respectively. The solid curve corresponds to a condensate 

with s-wave plus dipolar interactions while the dashed line corresponds to a  

Fig. 5.1. The fractional vortex core size for cental ( )00 =ρ  and off-axis ( )4.00 =ρ  vortices versus 

the scattering length for a dipolar BEC. The scattering length is measured in units of Bohr 

radius, 0a , and γ = 5. 
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condensate with pure s-wave interaction. The total energy is bigger when 0≠ddε . 

This is because the dipole-dipole interaction energy is positive in an oblate trap. 

The total energy of the system attains a maximum when 00 =ρ  for both cases. As 

the off-axis vortex moves to the edge of the condensate, the total energy 

decreases. More specifically, the kinetic and trap energies decrease with 0ρ  while 

Fig. 5.3. The radial size of a dipolar BEC with a vortex in an oblate trap for 00 =ρ  and 4.00 =ρ  

as a function of the scattering length. Rx is measured in units of d and the scattering length is 

measured in units of Bohr radius, 0a , and  γ = 5. 

 

Fig. 5.2. For 00 =ρ and 4.00 =ρ , the aspect ratio of a condensate with a vortex in an oblate trap 

as a function of the scattering length. The scattering length is measured in units of Bohr 

radius, 0a , and  γ = 5. 
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the dipolar and s-wave interaction energies increase with 0ρ . In fact, higher than a 

specific value of ddε , dipolar interaction becomes more dominant, so total energy 

increases with 0ρ . We calculate that this happens when 1>ddε . As mentioned in 

[94], however, the condensate enters an instability region when 1>ddε . As can be 

seen from the Fig.5.5, the energy differences between the two cases decreases 

when the scattering length is increased. This is because ddε  is decreased with 

increasing scattering length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the investigation of the vortex generation, not the total energy but the 

excess energy E∆  associated with the presence of an off-axis straight vortex is 

more important. Fig.5.6 compares the excess energy of the condensates with 

15.0=ddε  (solid curves) and 0=ddε  (dashed curves) as a function of a fractional 

vortex displacement. Different curves represent different fixed values of the 

external angular velocity Ω . The top solid and dashed curves correspond to  

0=Ω , where increases as one moves towards the lowest curve with  ⊥=Ω ω08.0  

and  ⊥=Ω ω14.0 . Note that the critical rotation frequency is ⊥=Ω ω124.0C   

 

Fig. 5.4. The total energy of a non-rotating dipolar BEC with a vortex in an oblate trap as a 

function of vortex displacement.  5=γ  and the scattering length is 
0100aas = . The 

solid curve indicates the s-wave interaction.  
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( )⊥=Ω ω119.0C  when 0=ddε ( )15.0=ddε . As can be seen from the figure, the 

dipolar interaction lowers E∆  compared to the pure contact interaction. It is of 

great importance to note that although dipolar interaction is positive for an oblate 

trap, the excess dipolar energy is negative. As 0ρ  is increased, the curves for 

15.0=ddε  and 0=ddε  start to coincide. The top two curves show that the excess 

energy E∆  decreases monotonically with increasing 0ρ , with negative curvature 

at 00 =ρ . So, a central vortex is unstable to infinitesimal displacements. The 

presence of dissipation will move an off-axis vortex toward the edge of the 

condensate. If the trap is rotated with angular velocity, Ω , then the energy of a 

vortex decreases. Inspection of Fig.5.6 reveals that with increasing rotation speed, 

the function E∆  flattens. At a special value of rotation frequency, mΩ , curvature 

of the function E∆  becomes zero at 00 =ρ . Hence, above an angular velocity 

mΩ , the vortex attains a local minimum. The central position is not globally stable 

but locally stable. One of the results of this paper is that the presence of dipolar 

interaction lowers mΩ  for an oblate trap. Consider the lowest curves in Fig.5.6. In 

this case, appearance of a vortex becomes energetically favorable since 0<∆E . 

The central vortex is both locally and globally stable relative to the vortex-free 

Fig. 5.5. The total energy of a non-rotating dipolar BEC with a vortex with 2.00 =ρ  as a function 

of the scattering length. The solid (dashed) curve is for the condensate with both dipolar 

and s-wave interactions (only s-wave interaction), and 5=γ  . 
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state. A vortex initially placed off-center will follow a path of constant energy 

under the action of the Magnus force, which is proportional to the gradient of the 

energy in the radial direction. The precession velocity of a displaced vortex of a 

nonrotating trap increases with the vortex displacement. Hence, a vortex near the 

surface precesses more rapidly than one near the center. Another result of this 

study is that the precession velocity of a displaced vortex is lowered in the 

presence of the dipolar interaction in an oblate trap. On the contrary, it is raised in 

a prolate trap (ignoring vortex bending effect). Note that the precession velocity 

around the center for a nonrotating trap, ω , can be calculated using 

0

0

ρ
ρ

ω
∂∂

∂∂
=

∂
∂

=
L

E

L

E
, where E  is the energy and L  is the angular momentum [15, 

105]. For a condensate in rotational equilibrium at angular velocity, the original 

precession frequency is altered to Ω−→ ωω   [15]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6. The increased energy E∆  in units of ⊥ωhN  in the rotating frame as a function of a 

fractional vortex displacement in an oblate trap. The solid (dashed) curves correspond to 

15.0=ddε  ( )0=ddε . Different curves represent different fixed values of the external 

angular velocity Ω . The top solid and dashed curves corresponds to 0=Ω , where Ω  

increases as one moves towards the lowest curve with ⊥=Ω ω08.0 ,  ⊥=Ω ω14.0 . 
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Fig.5.7 shows the critical angular velocity of the condensate for  5=γ  and  

10=γ . The critical angular velocity above which a vortex state is energetically 

favorable depends on γ  . As can be seen, CΩ  increases with decreasing γ . For 

stirring frequencies below CΩ , no vortex can be nucleated. The presence of 

dipole dipole interaction decreases CΩ  for an oblate trap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is found that CΩ , mΩ  and precession velocity decrease (increase) in an 

oblate (a prolate) trap. This can be understood simply as follows. The dipolar 

mean field potential has a parabolic profile 

( ) ( )222
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0 83.104.021.1
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, zR
R

Cn
z z

z

ddbg

dd −−=Φ ρρ  when 15.0=ddε  and  5=γ  [102]. 

This potential has the same inverted parabola shape as in the case of contact 

interactions. So, we conclude that there is a similarity between dipolar and non-

dipolar BEC in the TF regime. The difference is in the expressions for the radial 

and axial size. It is well known that the contact interaction with positive scattering 

length decreases the critical angular frequency CΩ  ( ⊥=Ω ωC  for a noninteracting 

trapped gas). In the similar way, ⊥Ω ωm  and precession velocity decrease with 

increasing scattering length. So, the inclusion of dipolar interaction in an oblate 

trap reduces mC ΩΩ , , and precession velocity in the TF regime. Furthermore, if  

Fig. 5.7.  The critical angular velocity of a condensate with a vortex for 5=γ  and 10=γ  as a function of  

the scattering length. 
cΩ  is measured in units of ⊥ω . 
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vortex bending effect is ignored, the mean field dipolar potential for a prolate trap 

has the same form as the mean field contact potential with negative scattering 

length. In contrast to the case for repulsive interactions, mC ΩΩ ,  and precession 

velocity increase in the presence of attractive contact interactions.  

 

5.3 Vortex Dipole 

A vortex dipole is a pair of vortices of equal and opposite circulation 

situated symmetrically about the origin. Under linear motion of a localized 

repulsive Gaussian potential, a vortex pair formation with opposite circulation is 

possible if the potential is moved at a velocity above a critical value [103]. In the 

experiments [104, 105], a laser beam focused on the center of the cloud was 

scanned back and forth along the axial dimension of the cigar shaped condensate. 

Vortices were not observed directly, but the strong heating only above a critical 

velocity was measured. It was shown that the measurement of significantly 

enhanced heating is due to energy transfer via vortex formation [106]. Recently, 

experimental observations of singly and multiply charged quantized vortex 

dipoles in a highly oblate BEC with Rb87  were reported by Neely et al. [107]. In 

the experiment, vortex dipoles were created by forcing superfluid around a 

repulsive Gaussian obstacle using a focused blue-detuned laser beam. The beam 

was initially located on the left of the trap center and the harmonic potential was 

translated at a constant velocity until the obstacle ends up on the right of the trap 

center. At the same time, the height of the obstacle is linearly ramped to zero, 

leading to the generation of a vortex dipole that is unaffected by the presence of 

an obstacle or by heating due to moving the obstacle through the edges of the 

BEC where the local speed of sound is small. Vortex dipoles were observed to 

survive for many seconds in the condensate without self-annihilation. The 

experiment also provided evidence for the formation of multiply charged vortex 

dipoles. The authors in [107] noted that the theoretical predictions of critical 

velocity for vortex pair formation in [108] are in good agreement with the 

experimental results. The critical velocity is given by the minimum of the ratio of 

the energy to the momentum of the vortex dipole 
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where E(I) is the energy of an elementary excitation with linear momentum (or 

impulse) I [109]. When the object moves at a velocity above a critical value, the 

superfluid flow becomes unstable against the formation of quantized vortices, 

which give rise to a new dissipative regime [68, 110, 111]. Pairs of vortices with 

opposite circulation are generated at opposite sides of the object. The vortex and 

antivortex (vortex dipole) propel each other in a direction perpendicular to the line 

joining them [112, 113]. For vortex dipole in a trap, mutually driven or 

inhomogeneity-driven motion can dominate depending on the distance between 

the vortices. This causes to the fact that a vortex dipole with the same dipole 

direction can propagate in one of the two opposite directions, depending on the 

vortex separation [114]. Recently, instead of removing the trapping potential and 

expanding the condensate to make the vortex cores optically resolvable, Freilich 

et al. experimentally observed the real-time dynamics of vortex dipoles by 

repeatedly imaging the vortex cores [115]. Other vortex cluster configurations 

which are stationary in nonrotating BEC, such as vortex tripole and quadrupole, 

have been predicted in [116-118]. Vortex tripoles have also been observed 

experimentally [119]. Several theoretical investigations have been reported for the 

generation [120-128], stability [129, 130], and stationary configurations of vortex 

dipoles [116, 131]. In Ref. [126], vortex dipole dynamics in the weak interaction 

region has been studied and conditions under which a vortex pair annihilates and 

is created again have been reported. In addition, fully analytic expressions of the 

angular momentum and energy of a vortex dipole in a trapped two dimensional 

BEC were obtained [132]. 

GP equation can be written in scaled harmonic oscillator units (h.o.u.) for 

simplicity. In this system, the units of length, time, and energy are 
⊥ωm2

h
, 

⊥ωm2

1
 and  ⊥ωh  respectively. Hence the GP equation in h.o.u reads [108] 
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where ⊥=′ ωµµ h , and the dimensionless interaction parameter g ′  is given by 
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The normalization of  ( )rψ ′  chosen here is 1)( 3
2

=′∫ rdrψ . For large g ′  the 

solution to the GP equation without vortices is well approximated by the TF limit. 

In TF limit, the wave function in h.o.u. is given by 
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Substituting the wave function ϕψ ien )()( rr =  into the GP equation and equating 

imaginary and real terms leads to the following hydrodynamics equations in 

h.o.u.: 
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 0.22 =∇∇−∇− ϕϕ nn       (5.56) 

 

In TF approximation, firstly the continuity equation Eq. (5.56) is solved for ( )rϕ , 

and then using that solution in Eq. (5.55) ( )rn  is determined, neglecting the 

( )rn2∇  term. The energy function of the condensate is 
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The total expression of impulse using the momentum of the condensate 
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The critical velocity for vortex pair creation using the Landau criterion is defined 

as [108] 

 

1
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−
=         (5.59) 

 

Here 1E  and 1I  are the energy and impulse of vortex state whereas 0E  is the 

energy of non-vortex state. 

 

5.3.1 The Critical Velocity in Nondipolar BEC 

Analytical evaluation of these energy, impulse and critical velocity 

functions were performed by Crescimanno et al. in two dimensions for a 

nondipolar condensate [108]. They adopted the ansatz that the two vortices are far 

enough from each other, but near enough to the trap center. The total phase 

advance about the vortex pair is the sum of the phase advances of each vortices. 

This ansatz is equivalent to the condition µ
µ

′<<
′

21
d  in h.o.u, where d is the 

distance between the vortex cores. The phase function ( )rϕ  satisfies ( ) 0=rϕ  

everywhere outside the vortex cores, which implies from the continuity 

expression Eq.(5.56) that ϕ∇∇ .n  must be zero in this region. ( )rn  should 

satisfy the continuity equation near the vortex cores and far away from the 

vortices, because radial gradients of the phase vanish as 21 R . In addition, the 

spatial integral of the continuity equation vanishes identically. The ansatz for the 

phase wave function of the vortex pair is [108] 
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where l  is the vorticity. The condensate velocity is given by )()( rr ϕ∇=
m

h
v . The 

condensate wave function envelope is found to be [108] 
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The last term in this equation is the kinetic energy contribution. Excluding the 

vortex core regions from the domain complicates the analytic evaluation of energy 

and impulse precisely where the TF approximation fails. To prevent this 

difficulty, 
µ

η
′

=
22dl

 is added to the denominator of Eq.(5.61) [108]. Thus, ( )rn  is 

written as 
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This regulated expression is confirmed by the observation that for vortex pair not 

too far from the trap center ( )µ ′<2d , the contribution to ( )rn  from the kinetic 

energy term 
2

ϕ∇  is never larger than µ ′ [108].  

 The normalization of Eq. (5.54) for non-vortex case in two dimensions 

gives 
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The integration is performed to the maximum radius µ2=TFR . Inserting Eq. 

(5.63) into normalization expression gives 
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where the spatial integration is performed out to the Thomas-Fermi condensate 

edge, which for large  g ′  is ( ) ...162 2522 +−= µµ dlRTF . For the energy of 

non-vortex state, Eq.(5.54) is inserted into Eq.(5.57) and found 
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To find the vortex pair energy, the Eq. (5.61)-(5.63) are substituted into energy 

equation. The result is 
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To find the impulse of the system Eq.(5.61) and the gradient of  phase function 

Eq. (5.60) is inserted into Eq. (5.57) for large g ′  
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It is found in Ref [108] that the largest contribution to the spatial impulse integral 

comes at large R, and is thus dependent on the condensate size  as well as the 

vortex pair charge magnitude and separation. The impulse for vortex pair creation 

vanishes in the small d limit like energy, and is proportional to the vortex charge. 

The results for the energy and impulse gives the critical velocity cv of the vortex 

pair 
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Crescimanno et al. [108] showed that the critical velocity expression given above 

was in good agrement with the experimental results of Ketterle et al. [104, 105]. 

 

5.3.2 The Critical Velocity in Nondipolar BEC 

 For dipolar condensate, dipolar interaction energy should be added to GP 

equation in h.o.u:  

 

 ( ) )()()(
22

rrr ψµψψ ′′=′Φ′+′′+′+∇− ddT gV    (5.69) 

 

 

where ( )ggdddd
′→Φ=Φ′ . In h.o.u, the dipolar mean-field potential inside the 

condensate in the TF approximation is given by [39] 
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where gn ′′= µ0  and the scaled lengths xx RmR h⊥=′ ω2  and 

yy RmR h⊥=′ ω2  are the radial and axial sizes of the condensate in h.o.u., 

respectively. The solution of this integro-differential equation was presented by 

Eberlein et al. in TF regime [39] and a parabolic density is an exact solution for 

GP equation as discussed in the Section [4.4].  

The hydrodynamic equation in dipolar condensates are written as 
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where the continuity equation is the same as nondipolar condensate. The phase 

function is also same function given by Eq.(5.60). It is reasonable to approximate 

the TF density in h.o.u. by 
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The expression of total energy of the condensate in h.o.u is given by 
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In the following subsection,  the critical velocity of a dipolar condensate in an 

oblate trap is calculated. As the resulting equations for cv  are complicated due to 

dipoar term, it is necessary to obtain them numerically for given as, ddε , κ . A 

comparision the critical velocities of dipolar and non-dipolar condensates is made. 

 

5.3.3 Results 

In this section, within the TF regime we numerically calculate the critical 

velocity for a vortex pair formation in a dipolar BEC. A dipolar gas containing 

150000 Cr52  atoms is examined in an oblate trap with trap frequencies 

2002 ×=⊥ πω  rad/s, 10002 ×= πω z  rad/s, so the trap aspect ratio is 5=γ . The 

magnitude of the scattering length for Cr52  is Ba105  ( Ba  is the Bohr magneton). 

Hence the dipolar interaction strength for Cr52  atoms is 15.0≈ddε . The vortex 

separation d  satisfies the condition µ
µ

′<<
′

21
d , where the scaled chemical 

potential, µ ′ , decreases very sligthly with d. The scaled chemical potential 

depends alson on ddε . For example, it is 38, 42 in h.o.u. for 0=ddε  

and 15.0=ddε , respectively. Hence, d is taken within the range between 0.5 and 

6, 65.0 << d , for both dipolar and non-dipolar condensates. The dipole-dipole 

interaction decreases the chemical potential. Below, the numerical integrations of 
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energy and impulse functional (5.57, 5.58) is performed to find the critical 

velocity of vortex pair formation (5.59). 

It is well known that condensate aspect ratio, κ , decreases with increasing 

ddε  in an oblate trap [38]. Minimizing the energy functional of the dipolar 

condensate, it is found that κ  increases slightly with d. For example, κ  is 

between 4.73 and 4.76 when d is between 0.5 and 6, respectively for 15.0=ddε . 

Before embarking on a specific example, it is convenient to study the 

energy expressions qualitatively for an oblate trap. The trap and the s-wave 

interaction energies are comparable to each other; trapsw EE ≈ . The ratio between 

dipolar and the s-wave interaction energies is of order ddε ; swdddd EE ε≈ . 

Secondly, consider the distribution of the excess energy 0EEE l −=∆  needed to 

generate a vortex. For fixed l, the main contribution to the excess energy comes 

from the kinetic energy due to the phase variation. The excess kinetic energy, 

E∆ , is of order the kinetic energy since 0E  is zero in TF limit. The first two 

terms in (5.57) are the kinetic energy due to the density variation and the phase 

variation. The first term is neglected in TF approximation while the second term 

changes significantly with vortex separation d. The other terms in the energy 

expression change slightly with d since the correction to the density is very small. 

To find the critical velocity cv , the ratio of excess energy to the impulse is 

needed. The impulse of vortex state I depends strongly on d and ddε  since it 

scales as 2Rd  (5.58). It decrease with ddε , since the dipolar interaction 

decreases d and stretches the cloud radially in an oblate trap.  

The critical velocity cv  decreases with increasing separation d for a non-

dipolar condensate [108]. This is because the TF density is a maximum at the trap 

center and reduces with the distance away from the trap center. The critical 

velocity is expected decreases also with d for a dipolar BEC since parabolic form 

of density retains in the case of dipolar interaction. Fig.5.8 plots the critical 

velocity cv  as a function of vortex separation for 0=ddε  (solid curve) and for 

15.0=ddε  (dashed curve). The critical velocity is between 2.15-1.25 mm/s for 

15.0=ddε , and 2.24-1.27 mm/s  for 0=ddε in the range 0.5 < d < 6. 
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Fig. 5.9 shows the critical velocity as a function of ddε  for fixed d = 1. The 

solid curve shows singly quantized vortex dipole while the dashed curve shows 

doubly quantized vortex dipole. The effect that cv  is decreased with increasing 

ddε  in an oblate trap is the first main result of this study. It is energetically less 

expensive to nucleate a vortex in an oblate dipolar Bose-Einstein condensate than 

in a condensate with only contact interactions. At first sight, this might seem 

counterintuitive since the dipole-dipole interaction energy is positive in an oblate 

trap. It is remarkable to note that although dipolar interaction is positive for an 

oblate trap, the excess dipolar energy is negative. This situation is similar to 

thermodynamical critical angular velocity, cΩ , for the onset of a vortex. Even 

though the interaction is positive for 0>sa , cΩ decreases with sa . Qualitatively, 

increasing sa  and ddε  increases the radial dimension R and the corresponding 

interaction energies decreases since they vary as 3−R . 

The nucleation of multiply charged vortex dipoles was observed for trap 

translation velocities well above cv  in the experiment [107]. Furthermore, it was 

observed that the vortices exhibit periodic orbital motion and vortex dipoles may 

exhibit lifetimes of many seconds, much longer than a single orbital period [107].  

Fig.5.9 compares the critical velocity for singly and doubly quantized vortex 

dipole. As expected, cv  is bigger for doubly quantized vortices.  

Fig. 5.8. The critical velocity, cv  (mm/s), for 0=ddε  (solid) and 15.0=ddε  (dashed) as a 

function of d  in units of h.o.u. for an oblate trap with 5=γ  
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On the investigation of a vortex dipole, not only cv , but also the ratio cvc  

is of importance. Here c  is the speed of sound [133] 
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where α  is the angle between directions of the wave vector and the dipoles. This 

relation can be derived using 
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pressure and E  is the total energy [134]. Suppose the direction of the phonon 

wave vector is perpendicular to the orientation of the dipoles ( )2πα = . In this 

case, the speed of sound becomes ( )ddg
m

n
c ε−= 10 . Remarkably, both cv  and c  

decrease with ddε . However, the ratio cvc  increases with ddε . As ddε  goes to 

one, the critical velocity approaches to the speed of sound. In Fig.5.10,  

cvc versus ddε  is plotted for singly (solid curve) and doubly quantized vortex 

Fig. 5.9. The critical velocity, cv  (mm/s), for d = 1 in units of h.o.u. as a function of ddε  for an 

oblate trap. The solid (dashed) curve is for singly (doubly) quantized vortex dipole, and 

5=γ . 
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dipoles (dashed curves) for fixed 1=d . The effect that cvc  is increased with 

increasing ddε  in an oblate trap is the second main result of this study. The ratio 

cvc  for singly quantized vortices are found to be between 0.16−0.31 for dipolar 

condensate with 15.0=ddε  and 0.15−0.28 for non-dipolar condensate in the 

range 5.06 >> d .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.10. The ratio of critical velocity to the speed of sound, cvc
 , for d = 1 in units of  h.o.u. as a 

function of 
ddε  for an oblate trap with  5=γ . The solid (dashed) curve is for singly 

(doubly) quantized vortex dipole. 
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6. CONCLUSIONS 

In this thesis, the propeties of dipolar interactions have been examined and 

the different effects of dipolar and s-wave interactions on BEC have been 

discussed. The main effect of the dipolar interactions on the ground state of the 

system is the deformation of the condensate. The anisotropic character of dipolar 

interactions leads to this deformation, and it depends on the specific trap that is 

considered. Cr atoms are very proper for studying dipolar condensates since they 

have very large magnetic dipole moments. Thus, the condensate of 
52

Cr atoms has 

been considered in this study. 

To investigate the effect of the dipolar interactions on the vortex properties 

dipolar condensate with a single has been studied. The critical angular velocity is 

dependent of the interaction parameters, such as scattering length and dipole 

moment, the number of atoms and the trap geometry. In the presence of dipolar 

interactions, cΩ  changes depending on the trap shape. In an oblate trap, the 

maximum density reduces with respect to the s-wave condensate, and it is eaiser 

to nucleate vortex. Therefore, cΩ decreases in an oblate trap, while it increases in 

a prolate trap. mΩ  also decreases in a dipolar oblate trap. The critical angular 

velocity also depends on the trap aspect ratio, γ . cΩ  increaes with decreases γ . 

For an off-centered vortex, energy changes with the distance between the 

vortex and trap center, 0ρ . The kinetic energy and the trap energy decreases with 

0ρ , while the dipolar and s-wave energies increase. The total energy of the 

condensate decreases as the vortex moves to the edge of the condensate. In an 

oblate trap, the total energy of the dipolar condensate is higher than the s-wave 

case since dipolar energy is positive. In a prolate trap, the negative dipolar energy 

causes a smaller total energy compared with s-wave condensate. s-wave 

interaction is dominant for high scattering lengths. Therefore, as the scattering 

length increases, the total energies of dipolar and nondipolar cases close each 

other.  

The parameters condensate aspect ratio, κ , and the radial size, xR , do not 

appreciably change with 0ρ . The ratio is bigger in the presence of an off-axis 

vortex since the radial size increases with the scattering length. An other result of 
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this study that the precession velocity of a displaced vortex is lowered (raised) by 

dipolar interaction in an oblate (prolate) trap.  

Dipolar interactions also effect the superfluid properties of BEC. In Sec.5, 

the critical velocity of vortex pair formation has been calculated in an oblate trap. 

The dependence of the crirical velocity on the dipolar interaction strength and 

vortex separation has been considered. It has been found that the critical velocity 

decreases both with increasing ddε  and vortex seperation d. However, the ratio 

between the critical velocity and sound velocity increases in a dipolar BEC.  

As a result, the effects of dipolar and s-wave interactions on rotating BEC 

have been compared. This study can be extended for different types of trap 

potentials such as optical lattices and different kinds of atoms. 
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