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ÖZET  
 

HAREKETLİ SENSÖRLERLE PASİF İŞBİRLİKSİZ  

YAYICI KONUMLANDIRMA  
 

Seçkin ULUSKAN 

Elektrik-Elektronik Mühendisliği Anabilim Dalı 

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Mart 2018 

Danışman: Doç. Dr. Tansu FİLİK 

 
Hareketli sensörlerle radyo frekansı (RF) yayıcı konumlandırma; rota planlaması, 

sağlam tahmin sistemleri ve verimli konumlandırma algoritmaları vb. konularını içeren 

çok boyutlu bir sorundur. Bu çalışma, hareketli sensörlerle başarılı bir konumlandırma 

sistemi elde etmek için eksiksiz bir yapı sunmaktadır. Rota planlamasına yönelik olarak 

bu çalışmada, sürekli rotalar boyunca sürekli ölçümler alındığını varsayan Fisher sürekli 

bilgi matrisi (FCIM) adı verilen yeni bir kavram oluşturmuştur. FCIM'ler kullanılarak, 

sınırlı uzunlukta doğrusal bir rota için en iyi doğrultunun, yalnızca toplam hareket 

uzunluğunun yayıcıya başlangıç uzaklığına oranın bir fonksiyonu olduğu kanıtlanmıştır. 

Dahası, alınan sinyal gücü (RSS) tabanlı konumlandırma için, hareket eden sensör 

yayıcıya ulaşabiliyorsa, en iyi rotanın yayıcıya doğru hareket etmek olduğu tespit 

edilmiştir. Sonraki aşamada, RSS tabanlı konumlandırma için yol kayıp katsayısının 

(PLE) ve yayıcının gücünün bilinmediği durumlarda, Üstel Bilinmezlik Doğrultusu 

(DEU) olarak adlandırılan yeni güçlü bir geometrik çözüm önerildi. DEU, yayıcının 

konumunu tahmin etmeden ona doğru hareket etmek için temel oluşturmaktadır. Bu 

nedenle DEU, hareketli sensörler için etkili bir rota planlama aracı ve dahası Cramer 

Rao Alt Sınırını (CRLB) yakalayan ve hesaplama verimlili ğini artıran etkin bir 

konumlandırma sistemi olarak önerilmektedir. Yayıcı konumlandırmada hareket eden 

sensörlerden yararlanılması, kaçınılmaz olarak sensör konumlarına yönelik bilginin 

hatalı olmasına neden olur. Bunun için bu çalışma, yayıcıyı özel bir çember boyunca 

arayarak Maksimum Olabilirlik tahmininin (MLE) genel minimumunu güvenli bir 

şekilde bulan Dairesel Belirsizlik adı verilen yeni bir konum belirleme stratejisi 

önermektedir. Diğer yöntemler kısmen başarısız olurken, Dairesel Belirsizlik yöntemi 

her durum için CRLB'yi yakalayabilmektedir. 

Anahtar Sözcükler: Konumlandırma, İnsansız Hava Aracı (İHA), Rota Planlaması, 
Alınan Sinyal Kuvveti (RSS), Belirsiz Sensör Konumu. 
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ABSTRACT  

 
PASSIVE NONCOOPERATIVE RF EMITTER LOCALIZATION 

VIA MOVING SENSORS 

 

 

Seçkin ULUSKAN 

Department of Electrical and Electronics Engineering 

Anadolu University, Graduate School of Sciences, March 2018 
 

Supervisor: Assoc. Prof. Tansu FİLİK  

 
Localization of radio frequency (RF) emitters with moving sensors is a 

multidimensional problem which requires trajectory planning, robust estimation systems 

and efficient localization algorithms etc. This study provides a complete framework to 

achieve a successful localization system with moving sensors. For trajectory planning, 

this study introduces a new concept called Fisher continuous information matrix 

(FCIM) which assumes continuous observations through continuous trajectories. Using 

FCIMs, this study proves that the best direction of a limited linear trajectory is only a 

function of the ratio between the total travel length and the initial distance to the emitter. 

Moreover, for received signal strength (RSS) based localization, the best trajectory is 

found to move towards the emitter, if the moving sensor is able to reach it. Next, a new 

powerful geometrical solution called Direction of Exponent Uncertainty (DEU) is 

proposed for RSS based localization when path loss exponent (PLE) and transmit power 

are both unknown. DEU is a basis to move towards the emitter without estimating the 

emitter location. Therefore, DEU is proposed as an efficient route planning tool for 

moving sensors and an effective localization scheme which attains Cramer Rao Lower 

Bound (CRLB) with increased computational efficiency. Exploiting moving sensors in 

emitter localization inevitably results in imprecise sensor positions. Therefore, this 

study proposes a new search strategy, namely Circular Uncertainty which safely finds 

the global minimum of Maximum Likelihood estimation (MLE) by searching for the 

emitter along a special circle. Circular Uncertainty attains CRLB, where other 

competing methods partly fail. 

Keywords: Localization, Unmanned Aerial Vehicle (UAV), Trajectory Planning, 
Received Signal Strength (RSS), Imprecise sensor position. 
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1. INTRODUCTION 

Mobile communication devices that communicate in the radio frequency (RF) 

band are getting extensively widespread throughout the world because of the ease of use 

and implementation of wireless communication systems. Localization of these and other 

similar devices is an important requirement in both civil and military areas and has a 

wide range of applications. For several different applications, accurate localization 

systems are created to meet a broad range of needs including smart transportation 

systems to mobile user tracking, rescue activities to defense systems and so on. For this 

reason, positioning different types of RF emitters with various different techniques is an 

important problem which is vigorously studied in the literature of signal processing and 

wireless communications. 

The localization system should be able to cover many different types of emitters 

and a wide range frequency spectrum to able to achieve various tasks. Several issues 

(such as the signals of target RF emitters are weak, the duration of the broadcast is 

short, the signal is distorted due to rural or urban terrain and weather conditions, the 

target RF emitter are moving and so on) make it necessary to mount the localization 

systems on moving platforms (mostly on aerial vehicles). The localization system 

should be able to move towards the coverage area of the target RF emitter and scan the 

relevant area in a short time to effectively localize the target RF emitter. Therefore, all 

these requirements make it inevitable to exploit moving sensors in localization systems. 

The previous studies in this area can be divided into two parts according to the use 

of single or multiple platforms in the localization systems. In multi-platform systems, 

organizing the coordination or synchronization between the platforms and compensating 

time delays between measurements if necessary are complicating the localization 

system. For this reason, it is necessary to develop systems with single or limited number 

of platforms that are less costly than multi-platform systems. Previous studies in this 

area have been carried out with the capabilities of unmanned aerial vehicles (UAVs) in 

military standards (in terms of flight time, altitude, power, equipment etc.). However, 

increasing popularity of wireless devices in civil area requires the use of mini UAVs in 

RF emitter localization systems. Mini UAVs are small, inexpensive, and easily 

accessible mini-sized aerial vehicles which are mostly used for civilian purposes, and 

they have significant restrictions on the amount of useful load they may carry and flight 

time. Therefore, the use of these mini UAVs requires the existing localization 
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algorithms to be made feasible under very important constraints and lower components, 

so it requires new research. 

Wireless localization is the estimation of the location of the emitters (or 

sometimes the receivers) within the frameworks of various receiver-emitter scenarios 

using radio frequency waves. These studies are divided into two main categories in 

terms of the localization scenario: cooperative/collaborative and non-cooperative 

scenarios. In cooperative scenarios, there is a cooperation between the receivers and the 

emitter to achieve determination of the emitter location. On the other hand, when there 

is no co-operation between receivers and emitter, then it is called non-cooperative 

scenario. In these scenarios, the receivers have to accomplish the positioning task by 

themselves. 

The most commonly used parameters in RF source localization are received signal 

strength (RSS), angle of arrival (AOA), time of arrival (TOA), time difference of arrival 

(TDOA) and finally hybrid parameters. TDOA and AOA based systems have been 

attributed to yield more accurate localization systems compared to RSS. While RSS 

based localization systems are criticized not to able to result in robust solutions, 

undoubtedly they are the most affordable solutions among other RF localization 

parameters. Because of their physical constraints, moving platforms bear the necessity 

to use the most efficient hardware and software combination. Therefore, there exists a 

growing attention on RSS based localization systems to take the advantage of their 

affordable and simple structures. 

In Figure 1.1, a moving platform which is designed as a moving sensor is 

illustrated. The UAV shown in Figure 1.1 basically includes a GPS, an RSS sensor (or 

any different type of sensor) and a processing unit. The RSS sensor measures the RSS 

values regarding to the signal incoming from the emitter. The GPS is engaged in order 

to locate the UAV itself, so each RSS measurements can be matched with the 

measurement location. The processing unit can be utilized to make the necessary 

computation to estimate the location of the emitter or to dynamically determine the 

route of the UAV. If such a processing unit is missing, then each RSS value and 

measurement location must be transmitted to a central station which estimates the 

emitter location and controls the movement of the UAV. In this study, advanced 

algorithms for these moving platforms are created in order to allow these platforms to 

estimate the emitter location more effectively. 
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Figure 1.1. Unmanned Aerial Vehicle (UAV) with RSS sensor designed as a moving sensor. 
 

Section 2 provides a literature review which first illustrates the basics of RSS and 

range-only localization. Second, current research areas in RSS based localization are 

discussed and then a broad literature review on Differential RSS (DRSS) is presented. 

Next, the previous studies about joint estimation of path loss exponent and emitter's 

location, and RSS based Localization via UAVs are provided. Then, trajectory 

optimization for emitter localization are discussed and finally, a comprehensive 

literature review on sensor position uncertainty is presented. When a moving sensor 

travels with the aim of estimation the location of the emitter, the first goal must be to 

create an effective route planning strategy which statistically guarantees the best 

possible estimation capability at the end of the travel of the moving sensor. Section 3 

deals with trajectories of the moving sensors and describes the essence of trajectory 

planning with new understandings. It explores the best angular direction given a limited 

length travel for both RSS and range-only based localization.  

After trajectory planning, an effective and efficient localization framework is 

necessary to be able to successfully achieve the main goal i.e. localization of the 

emitter. Path loss model which describes RSS as a function of the distance to the emitter 

is a useful building block for creating RSS based localization systems, however, it is 

possible that most of the parameters in path loss model can be unknown. Therefore, 

Section 4 provides a new localization as well as a route planning strategy called 



 

4 
 

Direction of Exponent Uncertainty [1] in order to deal with the harsh localization 

conditions where both path loss exponent and emitter's signal power are unknown. The 

proposed solution is an efficient geometrical solution which attains Cramer Rao Lower 

Bound (CRLB) i.e. the statistical lower bound given the noise level.  

Finally, when dealing with moving sensors, it is very likely that the measurement 

positions are also uncertain in some extent due to the movement of the platform. 

Therefore, Section 5 creates an advanced localization scheme called Circular 

Uncertainty [2] in which measurement position errors are handled in a smart way to 

achieve the statistically best solution. Section 6 presents the discussions about each 

section and finally Section 7 provides the conclusion of the study. 
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2. LITERATURE REVIEW 

In this section, a comprehensive literature review is provided. First, basics of RSS 

and range-only localization are discussed with illustrative flow diagrams depicting the 

localization process. Second, current research areas in RSS based localization are 

discussed and then a broad literature review on Differential RSS (DRSS) is presented. 

Next, the previous studies about joint estimation of path loss exponent and emitter's 

location, and RSS based Localization via UAVs are provided. Then, trajectory 

optimization for emitter localization are discussed and finally, a comprehensive 

literature review on sensor position uncertainty is presented. 

  

2.1. Basics of Received Signal Strength (RSS) 

Received signal strength can be regarded as the average power of an incoming 

signal received by a sensor. Path loss model formulates the received signal strength 

(RSS) in dB (or dBm) as the following way [3]:  = "#  −  10 � log�#(*/*#) +  ,  (1) 

where "# is the emitter’s power in dB (namely the RSS value at a reference 

distance *#), * is the distance between the sensor and the emitter, and � is the path loss 

exponent. An additive zero mean Gaussian error , with standard deviation - are 

included within the model to represent the measurement error. Because , is a random 

variable,   is also a random variable. Therefore, the mean value of   is a function of  "#, � and finally *. 

In some of the studies in literature, the power of emitter "# and the path loss 

exponent � can be assumed to be known if the characteristics of the emitter and the 

terrain are known. Basically, an RSS value provides a cue for the distance between the 

sensor and the emitter, therefore by means of the knowledge of the distances between 

the multiple measurement points and the emitter, the localization algorithms are trying 

to find the best possible position of the emitter. It is also possible that "# is not a known 

parameter in advance if the characteristics of the emitter can not be guessed. In this 

case, the difference between two RSS values from two different positions is providing a 

cue about the ratio of the distances of the emitter to these two distinct positions. 

Therefore, localization process becomes more complicated and a new feature called 

Differential RSS (DRSS) has been introduced to deal with these situations. 
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Moreover, path loss exponent can be also unknown prior to the localization of the 

emitter. Path loss exponent is a parameter which depends on the medium or the 

environment that the signal is propagating. In the literature for outdoor environments, it 

is recorded that this value can range between 2 and 4. On the other hand for indoor 

environments, it is possible that path loss exponent can even be as high as 5 or 6. It is 

also possible that path loss exponent can be lower than 2, if a corridor of the buildings 

creates a tunnel effect which results in a sustained signal along this corridor. While 

there exists very important uncertainty in path loss exponent in applications, in the 

literature there are only a few studies which take path loss exponent as an unknown 

parameter. This situation reveals an important gap in the literature that needs to be filled 

by advanced studies.  

 

2.2. Fundamentals of RSS Based and Range-Only Localization  

In this section, RSS based and range-only localization are mathematically 

presented and also visually depicted by means of flow charts. One of most important 

schemes of RSS based localization is depicted in Figure 2.1. As illustrated, RSS 

measurements depend basically on the positions of the sensors and the emitter. RSS 

measurements are also influenced by the level of measurement error which is sometimes 

referred to as "Log-Normal Shadowing". As seen in Figure 2.1, these RSS 

measurements are converted to the information of the distances between the emitter and 

each sensors. Now, the issue is that because of measurement errors, it is not possible to 

find a position for the emitter which satisfies all the distance conditions declared by 

RSS measurements. Therefore, the aim of the localization is to find such an estimation 

for the position of emitter that the mismatch between the measured and the estimated 

distances will be minimum. One of the way of achieving this task is to employ 

Nonlinear Least Squares (NLS) method to find a point which minimizes the mean of 

squared distance error as shown in (2) where (�., �.) is the location of the /th sensor, 

and 0. is the measured distance by /th sensor (or measurement) and 1 is the total 

number of sensors (or measurements): 

(��, ��) =  argmin(7,8) 9 :;(�. − �)� + (�. −  �)� − 0.<�=
.>�  (2) 
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This way of localization is called "lateration". Lateration (or sometimes tri-

lateration) is a general name for the processes which accomplish localization using 

distance (or range) information when distance information are obtained through many 

different ways such as RSS, time of arrival (TOA) and time of flight (TOF) and so on. 

Lateration can be the statistically best solution as long as the error in distance-to-emitter 

measurements is assumed to be Gaussian. As mentioned above for RSS based 

localization, the error is modelled as log-normal shadowing, yet NLS solution can still 

effectively approximate Cramer Rao Lower Bound (CRLB). 

 
Figure 2.1. NLS solution of RSS based localization: RSS based lateration 

 

In Figure 2.2, another RSS based localization scheme is provided again by means 

of a flow diagram. In this figure, the measured RSS values are not converted to distance 

values. On the other hand, by setting a prospective point for the emitter, the distances 

between the emitter and each sensors are determined, and then converted to RSS values. 

In this scheme, the aim of the localization is to find such an estimation for the position 

of the emitter that the mismatch between the measured and estimated RSS values will 

be minimum. This task is achieved by finding a point which minimizes the mean of 

squared RSS error as shown in (3): 

(��, ��) = argmin(7,8) 9 ? . − "# +  10. �. log�# ?�.(�, �)*# AA�=
.>�  (3) 



 

where  . is the RSS value measured at /th sensor to any (�, �� location

�.

Figure 2.2

 

Under the assumption of Log

distributed errors in RSS values, this localization scheme corresponds to Maximum 

Likelihood Estimation (MLE). 

element is the /th RSS error for the

 ���BB
The joint probability density function of 

"� ���BB|�, ��
where D is the covariance matrix of 

becomes a diagonal matrices whose diagonal elements are 

of error. Therefore, (6) can be rewritten as the multiplicatio

in (7):  

8 

is the RSS value measured at /th sensor and �.��, �� location as the following: 

.��, �� 	! 	;��. $ 	��� + ��. $ 	���	
 

2. An important RSS localization scheme: RSS based MLE

Under the assumption of Log-Normal shadowing which 

in RSS values, this localization scheme corresponds to Maximum 

Likelihood Estimation (MLE). Now, let us define an RSS error vector whose 

error for the estimation of the emitter location:

�/� 	! 	 . $ "# + 	10. �. log�#��./*#�	
The joint probability density function of  ���BB can be written as in 

� ! 1;�2F�=|D| exp ?$12 � ���BB�JDK�� ���BB�A
is the covariance matrix of  ���BB. Because  ���L

�/�	's are independent

becomes a diagonal matrices whose diagonal elements are -� i.e. the s

can be rewritten as the multiplication of each 

 

� �� is the distance of 

(4) 

 
cheme: RSS based MLE 

Normal shadowing which proposes normally 

in RSS values, this localization scheme corresponds to Maximum 

Now, let us define an RSS error vector whose /th 

: 

(5) 

in (6):  

� �A	 (6) 

� 's are independent, D 

i.e. the standard deviation 

n of each /th term as shown 
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"� ���BB | �, �� = M 1√2F σ�  exp P− 12σ� ? . −  # +  10. �. log�# ?�.(�, �)*# AA�Q=
.>�  (7) 

If the natural logarithm of (7) is taken, then the following equation is obtained: 

ln :"� ���BB | �, ��< = − 1 ln :;2 F -�< − 12-� 9 ? . − "# +  10. �. log�# ?�.(�, �)*# AA�=
.>�  (8) 

It can be observed that maximizing (8) corresponds to minimization of (3). 

Because of this reason, (3) can be directly called as MLE solution of RSS based 

localization. To sum up, in this section two important schemes of RSS localization have 

been discussed. Figure 2.1 and Figure 2.2 are important pictures of RSS localization, so 

the next sections will mention these pictures again. Therefore, these important pictures 

can be called as "RSS-Localization Flow Charts". 

 

2.3. Current Research Areas in RSS Based Localization 

This section briefly lists and illustrates the trends in current research related to 

RSS based localization. Even though there exists a wide variety of studies, majority of 

the studies falls into one of these topics listed below [3]: 

• Source of Location Error (Shadow Fading, systemic bias etc.) 

• New Statistical Models for RSS (i.e. new path loss models) 

• Statistical modeling of DRSS 

• Geometrical interpretation and solutions: for RSS and DRSS based lateration 

• Least Squares optimization (linearization of  NLS i.e.  NLS to linear least 

squares (LLS) conversion) 

• Probabilistic approaches: Assuming that RSS has a log-normal probability 

density distribution, the position of the emitter is estimated as the most likely location. 

• Statistical supervised learning: The sample distribution of the location 

estimations are obtained through statistical learning.  

• Sensor Array Geometry and Positioning: In this field, the aim is to find the 

optimum sensor array geometry to minimize the overall localization estimation error in 

the area of interest. Path or trajectory planning can be listed in this field. 

• Kernel Based Algorithms: A kernel function is a nonlinear and parameterized 

function of input variables. Model-based algorithms use standard statistical models to 
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provide a relationship between distance and RSS, therefore these algorithms require a 

prior knowledge, and they are not able encapsulate the complex relation with the 

distance and RSS for indoor environments. Oppositely, RSS fingerprinting includes a 

training phase to learn the relation between RSS and distance. Kernel Based Algorithms 

is to mix both model-based and RSS fingerprinting algorithms. 

• RSS fingerprinting: In these methods, machine learning tools are employed to 

map RSS values to the certain locations in x-y domain through a training data. These 

methods are useful especially for indoor localization when the relation between distance 

and RSS is not straightforward due to the complicated structures of building. 

 

2.4. Literature Review on Differential RSS 

The literature of RSS based localization is so spread that different expressions are 

being used for the same concepts by different authors. For this reason, this section is 

providing a rigorous literature review which exhaustively includes all related previous 

studies by unifying the related concepts. RSS difference, differential RSS or RSS ratio 

are all same concepts which refers to RSS difference in dB (or equivalently RSS ratio in 

magnitude) between any two sensors located at different positions. This concept has 

been built to remove the necessity to know the emitter's transmit power within RSS 

based localization algorithms. In one of early studies on this subject, [4] has built a 

method which is primarily based on comparison of relative strength of RSS values on 

different sensors instead of using directly RSS values on each sensor. In [5], authors 

discuss that emitter's transmit power can be considered as an unknown parameter, 

therefore they mention about only considering the differences between RSS values 

measured at pairs of receivers. They emphasize that RSS difference is analogous to 

TDOA, because it removes the necessity to know the actual transmit power. Then, they 

explain that they are utilizing RSS differences between directional antennas within a 

sensor node to be able determine angle of arrival (AOA). 

In [6], in order to discard the dependency on transmit power, magnitude RSS 

values at two sensors are divided each other and then Taylor expansion are applied both 

to nominator and denominator to simplify the equation. They called the ratio of 

magnitude RSS values as energy ratio. In [7], it is first time that the term differential 

received signal strength (DRSS) is used to refer to taking difference between RSS 

values in dB at two sensors. They mentioned that DRSS curves can be represented by 
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circles, just as TDOAs can be represented by hyperbolic functions. By referring to [8], 

they explain that DRSS circle is a different notion than the circles of RSS-based 

lateration. After explaining some geometrical aspects of DRSS, they created a least 

squares estimation method based on DRSS. In [9], they used the term "RSS difference 

(RSSD)" (in decibels) to refer to the same concept. After explaining that this feature is 

suitable for uncooperative scenarios, they explicitly mentioned that a RSSD is defining 

a specific circle, and they formulated the center and the radius of this circle as a 

function of the RSSD value and the locations of two sensors. They also created non-

linear and linear least square solutions to estimate the location of the emitter. In [10], 

they clearly matched the term RSS difference with uncooperative scenarios. In their 

studies [10], they gave a couple of RSSD algorithms for non-cooperative emitters. In 

[11], the ideas related to DRSS in [7] are represented in more detail. In [12], this time 

the authors called DRSS circle as DRSS based lateration.  

In [13], by using one of sensors as the reference, they convert all their RSS values 

to DRSS and then applied Weighted Least Squares (WLS) method for localization. In 

[14], performance of maximum likelihood (ML) location estimators for both received 

signal strength (RSS) and received signal strength difference (RSSD) are shown to be 

equivalent to each other as opposed to the common perception that the RSS-based ML 

location would perform better. In [15], a brief literature review specifically about DRSS 

is provided. [16] and [17] preferred to use "RSS ratio" to refer to DRSS, while [18] used 

both the terms DRSS and RSS ratio in their paper. In [19] as a recent study, Taylor 

series expansion approximations and semidefinite relaxation (similar to [6]) based on 

DRSS are applied. More recently, [20] renamed the concept of DRSS as power 

difference of arrival. 

As can be seen, the terms DRSS, RSSD, RSS ratio and power difference of arrival 

are used interchangeably each other in the previous studies. The authors are also 

sometimes publishing their studies independently, which is also mentioned by [15]. 

Hence, by collecting all these terms, this study removes the barriers of ambiguity in 

terminology and the difficulties to access all these related studies in this area. In order to 

maintain consistency, the term "DRSS" is used in the remaining of this study. 

Even though there exist many different related studies as mentioned above, there 

is an important gap in the literature regarding to the geometrical or analytical details of 

DRSS. Even though some geometrical explanations to DRSS are present, the common 
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point of all of the previous studies on this subject is to create a cost function by means 

of DRSS and try to solve non-convex cost functions or to find linear approximations. 

Although it was explicitly explained that DRSS curves are circles with certain 

parameters, this information has not been utilized in localization problems. On the other 

hand, geometrical properties of DRSS can be effectively exploited to create a very 

efficient algorithm in RF localizations. More recently, intersection of DRSS circles are 

studied in [20]. However, the key point is that DRSS circles are Apollonius circles, 

therefore all of the properties of Apollonius circles also apply to DRSS circles. 

Consequently, this study carefully investigated the analytical and geometrical aspects of 

DRSS circles from a broad perspective to build a geometrical closed form solution 

based on DRSS. 

 

2.5. Joint Estimation of Path Loss Exponent and Emitter's Location 

In Section 2.1, it has been mentioned that path loss exponent can take several 

different values regarding to the environmental factors. Therefore, in some applications, 

it is necessary to jointly estimate both the location of the emitter and the path loss 

exponent. In [21], it is mentioned that if path loss exponent (PLE) is assumed to be 

known a priori for RSS based localization, then it is a significant oversimplification for 

many application scenarios. They illustrated the effect of unknown PLE on the 

localization performance. In [22], they argue that in actual environments, path loss 

exponent for each link between emitter and receivers can be quite unpredictable. They 

obtain a higher localization accuracy via joint estimation of path loss exponent and the 

location compared to the conventional localization method using the same path loss 

exponent for all the links. Below, some other studies on this subject are listed: 

- Mao et al. (2007) "Path loss exponent estimation for wireless sensor network 

localization" [23] 

- Chan et al. (2011) "Received signal strength localization with an unknown path 

loss exponent" [24] 

- Wang et al. (2012) "On received-signal-strength based localization with 

unknown transmit power and path loss exponent" [25] 

- Salman et al. (2012) "On the joint estimation of the RSS-based location and 

path-loss exponent" [26] 
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- Chan et al. (2012) "Estimation of emitter power, location, and path loss 

exponent" [27] 

- Gholami et al. (2013) "RSS-based sensor localization in the presence of 

unknown channel parameters" [28] 

These studies all deal with localization in the case of unknown PLE. However 

unlike these ones, in this study, the problem of unknown PLE will be solved effectively 

by means of new powerful geometrical definitions. 

 

2.6. RSS Based Localization via UAVs 

Passive RF localization with unmanned aerial vehicles (UAV) is one of the 

emerging topic within academic and industrial environments. There exist previous 

studies which created RSS based localization systems with multiple UAVs (e.g. [29]). 

Recently, there are new studies which are building systems specifically based on DRSS 

(rather than RSS) for localization by UAVs. In [30] and [31], to obtain optimal 

trajectories for multiple UAVs during localization of multiple sources, the authors 

directly exploited the concept of DRSS. They built their study based on Kalman filters. 

In [32], a GPS jammer localization system with a single UAV is created by means of a 

DRSS geolocation approach. Below, some other studies which are related to RSS based 

or range-only localization via UAVs are listed: 

- Uluskan, S. et al. (2017) "RSS based localization of an emitter using a single 

mini UAV" [33] 

- Wagle & Frew et al. (2010) "A particle filter approach to wifi target 

localization" [34] 

- Carvalho (2014) "Unmanned Air Vehicle Based Localization and Range 

Estimation of Wi-Fi Nodes" [35] 

- Ibrahim & Sharawi (2014) "Real Time RSS Based Adaptive Beam Steering 

Algorithm for Autonomous Vehicles" [36] 

- Ullah et al. (2013) "An Experimental Study on the Behavior of Received Signal 

Strength in Indoor Environment (Small UAV)" [37] 

- Cheng et al. (2012) "An indoor localization strategy for a mini-UAV in the 

presence of obstacles" [38] 

- Walter et al. (2012) "Localization of RF emitters using compressed sensing with 

multiple cooperative sensors (Small UAV)" [39] 
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In this study, by means of a geometrical approach, a building block (i.e. DEU) is 

proposed which is a significant contribution for DRSS based localization and target 

tracking with moving sensors. 

 

2.7. Trajectory Optimization for Emitter Localization 

Radio frequency (RF) source localization with moving platforms is a challenging 

research area which deals with both trajectory optimization and target localization at the 

same time. While authors previously used to use the terms such as observer trajectory or 

receiver trajectory optimization to name their studies [40], with the dramatic increase in 

the availability of small UAVs, the authors shifted from these terms directly to UAV 

trajectory optimization [41]. Even though RF localization with UAVs has a great 

potential for many applications such as search and rescue activities etc., because of the 

physical constraints of UAVs, the need for very efficient solutions has emerged in terms 

of both hardware and software [29]. 

Many different UAV path planning systems have been discussed which are based 

on different sensors such as angle of arrival (AOA), time difference of arrival (TDOA), 

scan-based (SC) and finally received signal strength (RSS) [42]. Among these, RSS 

based systems have a special place because they require less complex hardware and 

software combinations [29]. Because of this reason, since the earlier studies about UAV 

based RF localization [43], RSS sensors are frequently included in UAV trajectory 

planning. RSS or differential RSS based UAV trajectory planning recently obtained 

significant attention by the researchers [30, 31, 44, 45]. 

The common point of the previous studies is to model the motion of the UAVs as 

a set of discrete waypoints. Moreover, to decrease the computational complexity, the 

space of movement of the UAVs is also quantized [44]. In order to optimize the 

trajectories of UAVs, the waypoints are updated dynamically throughout the motion of 

the UAVs. Trajectory planning (or namely trajectory optimization) problem can be 

viewed as a special extension of sensor placement problem. Fisher information matrix 

(FIM) is a significant basis to obtain a trajectory control objective function. For optimal 

trajectories, there are many criteria which are based on FIM. In D-optimality criterion, 

the determinant of FIM is maximized to minimize the area of error ellipse [41]. 

However, motions of UAVs are more than just discrete measurement states. First, 

UAVs can continue to take measurements between two waypoints. Therefore, assuming 
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that measurements are only taken at specific points can lead to loss of some important 

portion of data. Previously in [46], continuous measurements along continuous 

trajectories are discussed within the context of weather forecasting. Therefore, building 

a model for continuous measurements along the trajectories of UAVs can be an 

inspiring solution for the systems in which the measurements can be taken so frequently 

(such as RSS based trajectory planning). Second, instead of discrete waypoints, 

modeling UAV trajectories as continuous paths can bring a stronger basis for trajectory 

optimization. Finally, modeling continuous trajectories together with continuous 

measurements can create a new understanding which results in significant convenience 

for  optimal trajectory planning. 

 

2.8. Literature Review on Sensor Position Uncertainty 

This study provides an effective new method to solve the localization problem 

with distance-to-target measurements in the presence of sensor positions errors. Source 

localization with imprecise sensor positions is an old research area which has been 

subject of many different applications since the late 1970s. The uncertainty in sensor 

positions first discussed for the large towed array of hydrophones in the field of 

underwater acoustic research. The distortion in the shape of the array of hydrophones 

due to the movement of the tow ship was mentioned as a reason of positional 

uncertainty in the receiving hydrophones [47, 48, 49]. This type of arrays are then 

regarded as randomly perturbed arrays and the initial Cramer Rao lower bound (CLRB) 

derivations are obtained for range and bearing estimation [50]. In [51], it is mentioned 

that overall localization accuracy can be dominated by the uncertainty in the sensor 

positions. Therefore, they mentioned about calibrations of sensor array geometries for 

better localization of a single far-field source. In [52], the issue of uncertainty in the 

sensor positions is listed under additional topics of the sensor array processing. 

In [53], it is mentioned that error in sensor locations can emerge when the sensors 

are randomly deployed in an ad hoc network or when sensors move to different 

positions in time. In [54], it has been discussed that in modern localization applications, 

the receivers can be airplanes or unmanned aerial vehicles (UAVs) therefore their 

positions as well as velocities can not be precisely known. Therefore, they explicitly 

mentioned that deployment of UAVs as moving receivers brings the issue of uncertainty 

in receiver position. As a result, the new trend of using UAVs as moving sensors has 
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increased the importance of localization with imprecise sensor positions. Therefore, 

localization with imprecise sensor positions via time difference of arrival (TDOA) or 

frequency difference of arrival (FDOA) have remained as an interesting research area 

until today. In [55], for TDOA based localization, a calibration emitter is proposed to 

calibrate the location of the sensors to compensate sensor position errors. In [56, 57], 

they give a significant emphasis to TDOA based source localization with random sensor 

position errors by dividing their study into two parts for specifically static sensors and 

then mobile sensors with imprecise positions. In [58], the authors deal with TDOA and 

FDOA based localization and in [59], a TDOA based localization with inaccurate sensor 

positions is discussed and so on. 

Imprecise sensor positions are also specifically discussed for source localization 

with distance-to-target (or range-only) measurements. In [60] and [61], they introduced 

distance based localization schemes in wireless sensor networks when both the locations 

of the nodes and the anchors are unknown or imprecise. They built semi-definite and 

second order cone programming to address this issue. In [62], the focus is directly on 

source localization by means of time of arrival (TOA) in the presence of sensor position 

errors. They build CRLB for range based localization of a source with imprecise sensor 

positions. They emphasized that the source localization is highly sensitive to the 

inaccuracy in sensor positions. Finally, they built a Weighted Least Square (WLS) 

solution for sensor position errors which are quite small. In [63], TOA and TDOA based 

localization with sensor position errors were discussed in terms of again WLS solutions 

but this time for larger sensor position error levels compared to [62]. Maximum 

likelihood estimation (MLE) solution is also mentioned to attain CRLB without 

explicitly presenting MLE solution in their paper. In [64], TOA based localization with 

sensor position errors is solved by a two-stage algorithm where an initial estimate for 

the location of source at the first stage is further improved at the second stage. 
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3. PATH PLANING: BEST DIRECTION GIVEN A LIMITED TRAJEC TORY 

When a moving sensor travels with the aim of estimating the location of the 

emitter, the first goal must be to create an effective route planning strategy which 

statistically guarantees the best possible estimation capability at the end of the travel of 

the moving sensor. This section deals with trajectories of the moving sensors and 

describes the essence of trajectory planning through a new perspective namely Fisher 

Continuous Information Matrix. It explores the best angular direction given a limited 

length of travel for both RSS and range-only based localization. 

 

3.1. Fisher Information Matrix and D-Optimality Criterio n 

Range only measurements are the measurements which give us cues about the 

distance between the source (or target) and the sensor. Therefore, a range only 

measurement R. can be modeled as the following: R. = ;(� − �.)� + (� − �.)� +  ,  ~  1(0, -) (9) 

where (�., �.) is the position of the /th sensor, (�, �) is the position of the target 

and , is a zero mean Gaussian noise with a standard deviation -. Fisher information 

matrix (FIM) for estimating the parameters (�, �) given the range only measurements 

from 1 spatially distinct points can be written as the following [65]: 

TBUVW�(�, �) = 1-�  
XYY
YYZ9 (� − �.)�(� − �.)� + (� − �.)�=

.>� 9 (� − �.)(� − �.)(� − �.)� + (� − �.)�=
.>�9 (� − �.)(� − �.)(� − �.)� + (� − �.)�=

.>� 9 (� − �.)�(� − �.)� + (� − �.)�=
.>� [\\

\\] (10) 

Received signal strength (RSS) is a function of the distance between the target 

and the measurement point, so each RSS measurement indirectly provides us with a 

range information. In accordance with path loss model, an RSS measurement provides 

us with the information of logarithm of distance between the sensor and the source. 

When the RSS sensor measurement errors are assumed to be zero-mean Gaussian, each 

RSS measurement can be expressed as the following: 

.̂ =  # −  10. � log�# _:;(� − �.)� + (� − �.)�< /*#` +  ,  ~  1(0, -) (11) 
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where  # is the emitter’s power in dB (at a reference distance *#), � is the path 

loss exponent. With this measurement model, Fisher information matrix for the RSS 

measurements from 1 spatially distinct points can be expressed as the following [66]: 

Tabb(�, �) =  c
XYY
YYZ9 (� − �.)�d(� − �.)� + (� − �.)�e�=

.>� 9 (� − �.). (� − �.)d(� − �.)� + (� − �.)�e�=
.>�  9 (� − �.). (� − �.)d(� − �.)� + (� − �.)�e�=

.>� 9 (� − �.)�d(� − �.)� + (� − �.)�e�=
.>� [\\

\\] (12) 

where c is a constant such that: 

c =  1-�  f 10 . � ln(10)g� (13) 

Because of RSS measurements are related to the logarithm of the distance, the 

accuracy of the range information reduces as the distance between the source and the 

target increases. This is the main distinction between the range-only and RSS based 

localization. 

For the vector d��, ��eJ which contains unbiased estimators for the x and y positions 

of the target, the inverse of the Fisher Information Matrix is the lower bound for the 

covariance matrix of this estimation vector [67]: D�h(��, ��) ≥ T(�, �)K� = ∑(�, �) (14) 

In accordance with the principle component analysis, the orientations of two 

dimensional error distribution for the estimation are the eigenvectors (i.e. k��� and k���) of TK�(�, �). Moreover, the variances along these orientations are eigenvalues (i.e. l� and l�) of TK�(�, �) [68]. The error distribution of estimation can be represented by means 

of an ellipse within two dimensional space. As the number measurement increases, the 

error ellipse is supposed to diminish around the exact target location as illustrated in 

Figure 3.1.a and Figure 3.1.b. 
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(a) (b) 

Figure 3.1. The size of error ellipse decreases as the number of measurements increases while moving 

sensor moves along its path 

The size of error ellipse can be considered to be proportional to the determinant of TK�(�, �) which is equal to the product of the eigenvalues l� and l�. ^/mL �n o

�
 opp/"
L ∼ det(TK�) =  l� · l� (15) 

Trajectory optimization which is a special version of optimal sensor placement is 

to manage the motion of moving sensor in order to obtain the highest possible 

estimation capability in the vicinity of the target. In order to minimize the error ellipse, 

the determinant of inverse FIM matrix must be minimized, or oppositely the 

determinant of FIM must be maximized. This criterion which is commonly used in 

trajectory optimization is called D-optimality criterion [41]. 

 

3.2. Optimal Sensor Placement 

In the last section, it has been mentioned that trajectory optimization is a special 

case of optimal sensor placement, therefore it is necessary to first understand the basics 

of optimal sensor placement. In order to simplify the overall task, in the studies about 

optimal sensor placement, the target is assumed to be located at the origin (i.e. � = 0 

and � = 0), so the FIM in (10) for range only localization can be rewritten as the 

following: 
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Tua = 1-�  
XYY
YYZ9 �.��.� + �.�

=
.>� 9 �. �.�.� + �.�

=
.>�9 �.  �.�.� + �.�

=
.>� 9 (� − �.)��.� + �.�

=
.>� [\\

\\] (16) 

Moreover, if the location of the /th measurement point is expressed as polar 

coordinates (
., �.), then FIM can be written as: 

Tua =  1-� XYY
YYZ 9 cos�(�.)=

.>� 9 sin(�.) cos(�.)=
.>�  9 sin(�.) cos(�.)=

.>� 9 sin�(�.)=
.>� [\\

\\] (17) 

The interesting point in (17) is that the radial coordinates (i.e. 
. 's) of 

measurement points do not appear within FIM. In other words, only the angular 

coordinates are important, so the radial coordinates can be simply neglected during 

optimal sensor placement. Therefore, not the exact points of the sensors but their radial 

projections onto the unit circle can be taken into account in order to emphasize the 

importance of the angular position during optimization of sensor positions for range-

only localization. 

When � and � coordinates of the radial projections of the 1 measurements points 

onto the unit circle are expressed as separate vectors i.e. �� and ��� as shown below, �� = dcos(��) , cos(��) , cos(�x) … cos(�=) e (18) 

��� = dsin(��) , sin(��) , sin(�x) … sin(�=) e (19) 

then FIM in (17) can be expressed as the following: 

Tua =  1-� z�� ·  �� �� ·  ���  �� ·  ��� ��� ·  ���{ =  1-� | }��}� }��}  }���} cos(~)  }��}  }���} cos(~) }���}� � (20) 

where ~ is angle between �� and  ��� within 1 dimensional space. In accordance 

with the D-optimality criterion, the vectors �� and  ��� must be specifically chosen so that det (Tua) given below is maximized: 
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det (Tua) = 1-�  }��}�  }���}� d1 − cos(~)�e (21) 

given the constraint [65]: }��}� + }���}� = 1 (22) 

Consequently, this maximization process declares that the vectors �� and ��� must 

be in same size and perpendicular to each other within 1 dimensional space [65]. In x-y 

domain, this corresponds that sensors must be placed as apart as possible to each other. 

If it is assumed that sensors are only allowed to be placed along the unit circle, then 

they must be equally separated to obtain the highest estimation capability around the 

origin. Figure 3.2.a illustrates an optimal sensor placement around the origin for three 

sensors, and Figure 3.2.b shows the corresponding �� and ��� vectors within 1 

dimensional space. As seen, �� and ��� are perpendicular to each other and in the same 

size (i.e. on the same sphere) for this optimal sensor placement. 

 
 

(a) (b) 

Figure 3.2. (a) An optimal sensor placement around the origin for three sensors, (b) �� and ��� (i.e. the 

vectors of x and y positions of the sensors respectively) must be perpendicular to each other 

and in the same size (i.e. on the same sphere) for optimal sensor placement.  

To sum up, for optimal sensor placement, the radial projections of measurement 

points must be uniformly distributed along the unit circle. Therefore for the optimal 

trajectories, it can be intuitively argued that the projection of the trajectory (i.e. the 

projection of the measurement points along the trajectory) must correspond to the 

largest arc along the unit circle. Moreover, the projections of measurement points along 

the unit circle must be aligned as uniformly as possible. 



 

22 
 

When the target is located at the origin and the location of the /th measurement 

point is expressed as polar coordinates (
., �.), then FIM in (12) can be rewritten as: 

Tub =  c
XYY
YYZ 9 cos�(�.)
.�=

.>� 9 sin(�.) . cos(�.)
.�=
.>�  9 sin(�.) . cos(�.)
.�=

.>� 9 sin�(�.)
.�=
.>� [\\

\\] (23) 

Please note a difference exists between this FIM with the one in (17). Unlike (17), 

the radial coordinates of the measurement points are also important in Fisher 

Information Matrix and consequently in sensor placement or trajectory optimization. 

The measurement points which are close to the target are more valuable because they 

provide us with a more accurate range information because of log-normal shadowing. 

Therefore, in addition to the objectives mentioned above (i.e. the longest projected arc 

on unit the circle and the most possible uniform distribution of the projected sensor 

positions), the moving sensor must also try get closer to target while planning its 

trajectory in RSS based localization. 

 

3.3. Continuous Trajectories: Fisher Continuous Information Matrix 

The common point of trajectory optimization studies is to model the motion of the 

sensor as a set of discrete waypoints together with discrete measurements. However, the 

motion of moving sensors is in fact a continuous path, therefore when measurements are 

frequent enough, they can be regarded as continuous time stochastic processes. The 

summation operators within FIM can be appropriately converted to line integrals [69]. 

To provide a detailed insight into trajectory optimization for range-only and RSS-based 

localization, this study shifts the scope of Fisher Information Matrix (FIM) from 

discrete measurement geometries to continuous measurement curves. 

In order to differentiate continuous curve FIMs from usual FIMs, the FIMs 

associated with continuous trajectories will be called as Fisher Continuous Information 

Matrices (FCIM) in the remaining of this study. Now, FCIMs for continuous curves of 

range-only and RSS measurements will be defined. For a continuous curve �, the 

summation operators within the FIM matrices in (17) and in (23) are converted to line 

integrals as in the following: 
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T�a = 1-� XYYY
Z � ��
�(�) 

�  *
 � 
/�(�) . ��
(�) 
�  *
  � 
/�(�) . ��
(�) 

�  *
 � 
/��(�) 
�  *
 [\\\

] =  1-� z	��a 	��a  	��a 	��a { (24) 

T�b = c
XYY
YYZ � cos�(�)
� 

�  *
 � sin(�) . cos(�)
� 
�  *
  � sin(�) . cos(�)
� 

�  *
 � sin�(�)
� 
�  *
 [\\

\\] =  c z	��b 	��b  	��b 	��b { (25) 

FCIM can be regarded as an overall FIM which is characteristically related to the 

continuous curve �. Therefore, FCIM is a measure of the capability of the overall curve � to estimate the location of the emitter. FCIM is independent of measurement 

frequency along the curve. FIMs of the discrete measurements which are frequently 

taken throughout the curve � can be approximated as the following: Tua  =�   n.  T�a (26) 

Tub  =�   n.  T�b (27) 

where n is the rate of the measurement per unit length. As n increases, Tua and Tub 

can be better approximated by the right sides of (26) and (27) respectively. Figure 3.3 

illustrates the new proposed definition namely FCIM for a continuous curve of 

measurement. FCIM shifts the scope of FIM from discrete measurement geometries to 

continuous curves.  
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Figure 3.3. Fisher continuous information matrix of a continuous curve of measurement. 

 

3.4. Calculation of Line Integrals for Linear Trajectori es 

In this section, calculation of line integrals in FCIMs for linear trajectories will be 

discussed. In order to calculate the line integrals in FCIMs, lines must be represented in 

terms of polar coordinates as shown in Figure 3.4. 

 
Figure 3.4. The geometry of the linear trajectory and its parameters. 
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The equation of the line passing from the initial point of movement (i.e. the point � in Figure 3.4) can be written in terms of polar coordinates as the following: 


(�) =  �/ ?cos(�) + sin(�)tan(�)A  = � sin(�)sin(� + �)  (28) 

where � is the distance between the point A and the emitter, and the � is the angle 

between the curve � and x-axis. In this equation, the radial coordinate 
 is expressed as 

a function angular coordinate �. The upper limit �� for the angular coordinate which 

makes the length of the curve be equal to |�| can be written as: 

��  =  	
���� f �|�| 1
/�(�)   − cot(�)g (29) 

The line element *
 can be calculated as the following [70]: 

*
 =  �
� + f*
*�g� *� = 
sin(� + �)  *� (30) 

After these calculations, the integrals in (24) and (25) can be calculated with 

respect to �. Let us reorganize the integrals within the elements  of T�a: 

	��a = � cos�(�) ��
#   *
 =  � cos�(�)  
(�)sin(� + �) ��

#  *� =  � sin(�) � cos�(�)sin�(� + �) ��
#  *� (31) 

	��a = � sin�(�) ��
#  *
 =  � sin�(�)  
(�)sin(� + �) ��

#  *� =  � sin(�) � sin�(�)sin�(� + �) ��
#  *� (32) 

	��a = 	��a = � sin(�) cos(�) ��
#  *
 =   � sin(�) � sin(�) cos(�)sin�(� + �) ��

#  *� (33) 

Similarly, the integrals within the elements of  T�b can be rewritten as: 

	��b = � cos�(�)
�(�) ��
#  *
 =  � cos�(�)
(�) sin(� + �) ��

#  *� = 1� sin(�) � cos�(�) ��
#  *� (34) 
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	��b = � sin�(�)
�(�) ��
#  *
 =  � sin�(�)
(�) sin(� + �) ��

#  *� = 1� sin(�) � sin�(�) ��
#  *� (35) 

	��b = 	��a = � sin(�) cos(�)
�(�) ��
#  *
 =   1� sin(�) � sin(�) cos(�) ��

#  *� (36) 

As seen, the indefinite integrals of T�b can be easily obtained in order to calculate 

determinant of the matrix in the closed form. However, the indefinite integrals of T�a are 

not too straightforward, so numerical calculation of integrals can be utilized for T�a for 

the next sections. 

 

3.5. Best Orientation is only a function of |�|/�   
In this section, it will be proved that the best orientation for a linear trajectory in 

terms of estimation capability is only a function of the ratio between total length of 

travel and the initial distance to target (i.e. |�|/�). Based on (31-33) and (34-36), 

determinants of T�a and T�b can be expressed as: 

det(T�a) = �� sin�(�)-�  �(�, ��) (37) 

det(T�b) = c��� sin�(�)  ℎ(�, ��) (38) 

where �(�, ��) and ℎ(�, ��) are the functions which can be determined after 

calculating the integrals in (31-33) and (34-36). If the ratio |�|/� is designated as �, 

then �� which has been defined in (29) is a function of only � and �. Therefore 

determinant of T�a and T�b can be rewritten as: 

det(T�a) = ��-�  �′(�, �) (39) 

det(T�b) = c���  ℎ′(�, �) (40) 

where �′(�, �) and ℎ′(�, �) are the functions which represent the parts of the 

determinants which depend on � and �. To find the best directions i.e. ��′
 which 
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maximize the determinants, the partial derivative of determinants with respect to � must 

be taken and then the roots of these equations must be found: � (det(T�a ))� � = 0 (41) 

� (det(T�b ))� � = 0 (42) 

The terms ��/-� and c�/�� disappear while taking partial derivative, so the best 

directions i.e. ��′
 which maximize the determinants T�a and T�b are found to be 

functions of only � i.e. |�|/�. Next section, the relation between � and �� will be 

explored for both range-only and RSS-based localization. 

 

3.6. Best Possible Orientation given a limited length of travel 

Moving sensors can be carried by many different moving platforms such 

unmanned aerial vehicles etc. Mini UAVs can have a couple of physical constraints 

including maximum flight time, maximum weight of useful load etc. All these 

constraints can lead to a limited range of travel for small UAVs. Moreover, the 

emergency of the localization mission may imply time constraints which also result in 

limited total lengths of travel. Therefore, the best possible estimation capability can be 

desired given a limited length of travel which is shorter than initial distance to emitter. 

In this section, the best orientations of the linear trajectories will be discussed by the 

means of FCIMs. 

In Figure 3.5.a, the determinants of the FIMs for linear discrete measurements are 

illustrated for various possible orientations of the trajectory. To obtain the best 

capability of estimation, this study sets three distinct criteria: (1) the radial projection of 

the trajectory onto unit circle must correspond to the longest possible arc, (2) the 

projections of the measurements along trajectory must be uniformly distributed as much 

as possible, and for RSS based localization (3) the measurements must be as close as 

possible to the target. In some extent, all these three criteria contradict each other. 

Considering the RSS based localization, based on the first criterion, moving along the x-

axis appears as the best way because it yields the closest measurements to the target. 

However, this trajectory strictly violates first and second criteria because the radial 

projection of it has no arc length. It will be also shown that first and second criteria also 
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contradict each other. Therefore, best orientation must take all the tradeoffs between 

these criteria into account. Consequently, the direction marked with the ellipse in Figure 

3.5.a is the best orientation which maximizes the determinant of FIM under a certain 

constraint on the total length of travel. Figure 3.5.b depicts the continuous trajectory 

version of this maximization process. As seen, the best directions correspond to each to 

other for discrete and continuous trajectories. In this section, the best direction will be 

demonstrated with respect to |�|/� by means of FCIMs. 

 

  
(a) (b) 

Figure 3.5. The best direction for best estimation capability around the origin given a constraint on the 

length of total travel: (a) maximizing the determinant of the FIM for linear discrete 

measurements, (b) maximizing the determinant of the FCIM for linear continuous 

trajectories. 

Figure 3.6 shows a trajectory and its radial projection on unit circle. For 

simplicity, � is assigned to be 1, so the initial point of movement of moving sensor is 

set to be (1,0). The constraint on the total length is represented by means of circle 

centered at (1,0) with radius is |�|. As seen, the first criterion (i.e. obtaining longest 

projected arc length) can be achieved when � is equal to 	
���
�|�|/�). It has been 

mentioned the third criterion is only for RSS based localization, so it is not relevant to 

range only localization. Therefore, it can be assumed that the best direction for range 

only localization can be simply formulated as 	
���
(|�|/�) in accordance with the 

first criterion. However, first and second criteria also contradict each other, which 

causes the best direction deviate from  	
���
(|�|/�). 
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Figure 3.6. The first criterion (i.e. obtaining longest projected arc length) can be achieved when � is 

equal to 	
���
(|�|/�) 

Figure 3.7.a shows the case that � is set to 	
���
(|�|/�), therefore trajectory has 

the longest projected arc length. In this case, it can be observed that the radial 

projections of the measurement points close to the initial point are positioned near to 

each other compared to those in the end of trajectory. This structure violates the second 

criteria which requires radial projections to be uniformly distributed as much as 

possible. Figure 3.7.b shows the case in which the radial projections of measurements 

are uniformly distributed as much as possible along the unit circle. 

 

  

(a) (b) 

Figure 3.7. (a) The first criterion contradicts the second criterion (i.e. the radial projections of 

measurements must be uniformly distributed as much as possible), (b) one of the best case 

for second criterion. 
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Figure 3.8 shows the plots of the best angular orientation for range only and RSS 

based localization with respect to |�|/�. As can be seen, for range only localization, the 

best angular orientation mostly matches the arccosine function for small values of |�|/�. However, for large values |�|/�, the best angular orientation deviates from the 

arccosine function because the second criterion (i.e. the need for uniform distribution of 

projected measurements along unit circle) starts to be important compared to first 

criterion (i.e. the need for longest projected arc). For RSS based localization, the best 

angular orientation always stays below arccosine because third criterion is now valid for 

RSS based localization. The important point regarding to RSS based localization is that 

the best angular direction is 0 degree when |�|/� is 1. In other words, if the moving 

sensor is able to reach to target, than it must be directed towards the target for the best 

possible estimation capability. In the next section, a new method called Direction of 

Exponent Uncertainty is introduced which aims to create a direction towards the emitter 

for any time of the travel. 

 
Figure 3.8. The best angular orientation for range only and RSS based localization with respect to |�|/� 
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4. A NEW ROUTE PLANNING AND LOCALIZATION METHOD: 

DIRECTION OF EXPONENT UNCERTAINTY 

In Section 3.6, it has been shown that if the moving sensor is able to reach to 

target, than it must be directed towards the target for the best possible estimation 

capability. In this study, a new powerful geometrical closed-form solution called as 

Direction of Exponent Uncertainty (DEU) [1] is proposed for received signal strength 

(RSS) based far-field localization when path loss exponent (PLE) and transmit power 

are both unknown. The uncertainty in the PLE due to environmental factors is a 

significant challenge for RSS based localization. DEU is built after careful investigation 

of geometrical behaviors of differential received signal strength (DRSS) circles, i.e. the 

locus of possible location of the emitter when transmit power is unknown. It is shown 

that the uncertainty in the PLE corresponds to a linear uncertainty for the location of the 

emitter in two dimensional space. This critical observation creates a basis for the sensor 

to move towards the emitter without estimating the emitter location after only three 

measurements. Furthermore, with only four different measurements, it is possible to 

effectively estimate the location of the emitter as well as the PLE by means of 

intersection of DEUs. Intersection of DEUs attains Cramer Rao Lower Bound (CRLB) 

with a dramatically reduced execution time compared to nonlinear least squares (NLS) 

estimator. DEU is also proposed as an efficient route planning tool for moving sensors 

such as unmanned aerial vehicles (UAVs). 

 

4.1. Feedback Domains of RSS Based Localization 

In Section 2.2, two important schemes of RSS based localization was introduced. 

Now, in this chapter, the advantages and disadvantages of these schemes will be 

discussed to come up with new ideas of solution for localization. Figure 4.1 shows the 

flow chart of the information-flow during RSS based localization. This flow chart is 

distinctively divided into three domains, namely RSS domain, distance domain and (�, �) domain. In Section 2.2, it was discussed that in RSS-MLE solution, the feedback 

for the goodness of the estimation of the emitter location is provided from RSS domain. 

The mismatch between measured and the estimated RSS values are used to evaluate the 

goodness of the estimation. On the other hand, in RSS based lateration, the feedback for 

the goodness of the estimation of the emitter location is provided from distance domain. 

As depicted in Figure 4.1, as the feedback domain approaches to left, the statistical 
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meaning of the localization becomes higher. Oppositely, as the feedback domain shifts 

to right, the localization process obtains a higher level of geometrical meaning. 

 

 
Figure 4.1. Flowchart of RSS based Localization 

As discussed in Section 2.2, when RSS domain is used as the feedback domain, 

the localization scheme corresponds to MLE solution. Therefore, RSS domain based 

localization schemes have a high level of statistical meaning. It is easy to statistically 

explain the validity of this estimation structure. On the other hand, this localization 

schemes lacks geometrical point of view. Furthermore, the localization feedback is 

relatively far from the (�, �) domain. In other words, the mismatch in RSS domain 

provides a difficult cue about how to adjust the estimation of emitter position. This 

situation results in a complicated cost function to be minimized: 

(��, ��) = argmin(7,8) 9 P . − "# +  10. �. log�# P;(�. −  �)� + (�. −  �)�*# QQ�
.>�

� (43)

Figure 4.2.a and Figure 4.2.b show respectively the surface of the cost functions 

when the emitter is located somewhere at the middle of the sensors and when the 

emitter is located far from the sensors. In both cases, there exist irregularities, saddle 

points and local minima which may trick the minimum point search algorithm. 

Furthermore, especially at Figure 4.2.b, the minimum point is not located at the bottom 

of a good convex structure. In other words, the minimum point is visually not apparent. 
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This situation will yield a more difficult task including large number of iterations during 

search for the minimum point. 

 
(a) 

 
 (b) 

Figure 4.2. Example Structures of Cost Functions of MLE (RSS domain feedback)  

To sum up, when RSS-domain used as the feedback domain, the following 

situations are arising [71]: 

• NLS equation corresponds to MLE solution 

• It is easy to statistically explain the validity of the estimation 

• The estimation lacks geometrical meaning 

• Feedback is relatively far from the (�, �) domain (i.e. complicated cost function) 

When distance domain used as the feedback domain, the localization scheme do 

not have a high level of statistical meaning. It is not very easy to statistically explain the 

validity of this estimation structure. Minimizing the squared error in distance can be 

only regarded as an approximation of MLE function. On the other hand, this 

localization schemes has a geometrical point of view so that this localization schemes 

are called as lateration. Some of the resources (e.g. [8]) have directly classified 

lateration based localization under geometrical solutions. Furthermore, the localization 

feedback is relatively closer to the (�, �) domain, in other words, the mismatch in RSS 

domain provides a simpler cue about how to adjust the estimation of emitter position. 

This situation results in an efficient cost function to be minimized: 

(��, ��) =  argmin(7,8) 9 :;(�. − �)� + (�. −  �)� − *.<��
.>�  (44) 

Figure 4.3.a and Figure 4.3.b show respectively the surface of the cost functions 

when the emitter is located somewhere at the middle of the sensors and when the 
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emitter is located far from the sensors. In both cases, there exist smooth regular surfaces 

which may help the global minimum searching algorithm. Furthermore, the minimum 

points are located at the bottom of good convex structures. The minimum points are 

even visually apparent. This situation will yield simpler tasks including smaller number 

of iterations during search for the minimum point. 

(a)  (b) 

Figure 4.3. Example Structures of Cost Functions of RSS based lateration (Distance domain feedback)  

To sum up, when distance-domain used as the feedback domain, the following 

situations are arising [71]: 

• NLS equation corresponds to RSS-based lateration 

• It is not easy to statistically explain the validity of the estimation 

• The estimation has a geometrical point of view 

• Feedback is relatively closer to the (�, �) domain (i.e. simple cost function) 

 

4.2. A New Geometrical Solution: Direction of Exponent Uncertainty 

Based on the following sections, a new discussion can be initiated about 

performing localization directly within (�, �) domain. As it has been discussed in 

previous sections, as the path of feedback for localization error becomes longer, it is 

difficult to handle with the localization algorithm. Therefore, this study will focus on 

localization systems directly operating in (�, �) domain as shown in Figure 4.4. In order 

to achieve this task, RSS measurements must be first converted to some geometrical 

definitions within (�, �) domain. Next sections will introduce Direction of Exponent 

Uncertainty which is a powerful geometrical tool for trajectory planning and 

localization. 
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Figure 4.4. Localization directly within (�, �) domain: geometrical tools 

 

By using RSS parameters, some major techniques are employed to obtain 

solutions to localization problem [3]: mapping (fingerprinting) which is based on 

building a learner which maps the specific RSS values to the related locations, statistical 

techniques which are providing theoretical frameworks to overcome difficulties in the 

presence of noise, range-based solutions such as trilateration and finally geometrical 

solutions. RSS fingerprinting is criticized for requiring a large initial data to train the 

system, but it is found useful for indoor localization when the relation between distance 

and RSS values are complicated. Based on a predefined model, statistical methods are 

criticized for not being able encapsulate the complex relations between the distance and 

RSS values [72]. Even though geometrical solutions provide very simple approaches, it 

is not always possible to explain the optimum solution in case of noisy or imperfect 

environments by means of geometrical concepts. 

Recently new applications have gain importance which mount sensor systems on 

moving platforms such as unmanned aerial vehicles (UAV). Because of the physical 

constraints of moving platforms, these applications bear the necessity to use the most 

efficient hardware and software combination. With this motivation, RSS based systems 

emerge as significant tools for affordable solutions. Moreover, building a geometrical 

solution for RSS based localization will provide a very efficient localization system 

which also exploits the simplicity of geometrical approaches. In this study, a new 

powerful geometrical solution called as Direction of Exponent Uncertainty (DEU) is 

introduced which shows that the uncertainty in the location of the emitter can be 
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modeled as a special line when path loss exponent is unknown. It is shown that  

intersection of DEUs attains Cramer Rao Lower Bound (CRLB) with a dramatically 

reduced execution time compared to nonlinear least squares (NLS) estimator. 

Furthermore, since DEU proposes a closed-form solution, the algorithm does not have a 

divergence issue. The new method is constituted of only mathematical and 

trigonometric equations. On the other hand, NLS solution requires a difficult nonconvex 

optimization and the localization algorithm can fail. DEU is also proposed as an 

efficient route planning tool for moving sensors such as unmanned aerial vehicles 

(UAVs), because it helps the sensor move efficiently towards the target. 

 

4.3. Problem Formulation 

This part carefully sheds a light to the geometrical behaviors of DRSS circles with 

an emphasis how they can be exploited in RF localization. As proved by many previous 

studies [12], path loss model can be formulated as a log-distance equation as described 

in (1). The path loss exponent � in (1) determines the rate of change in RSS values with 

respect to log-distance. Path loss exponent � can vary due to different environmental 

conditions. It can take a value between the range 2 and 4 for outside, while it can also 

drop below 2 or exceed 4 for some special situations [27] as described in Section 2.1. 

Therefore, uncertainties in path loss exponent create a significant challenge in RSS 

based localization. 

 

4.3.1. DRSS Problem Formulation 

In accordance with the path loss model, it can be shown that DRSS locus of two 

different measurements must satisfy the following equation: 

*�*� =  �R^^�d�	�eR^^�d�	�e�/�   (45) 

where *� and *� are distances of RF emitter to the first and second sensors, and R^^�d�	�e and R^^�d�	�e are RSS values in magnitude in first and second sensors 

respectively. Geometrically, the set of all points satisfying (45) can be shown to be a 

circle called DRSS circle [7]. In essence, DRSS circle is an Apollonius Circle [73] 

defined as the points with constant ratio of distances to two fixed points. Even though 



 

previous studies did not explain

successfully defined the center of the DRSS as the following 

���V��B = 	 ��
where ���, ��� and 

is defined as, 

It can be also shown that th

R	*/k
	 ! 	�c��. ���� 	+
As an Apollonius circle, DRSS circle ha

center of DRSS circle must be located along the line which passes through the sensors' 

locations. Second, DRSS circles must pass between two 

the structure of an DRSS circle.

Figure 4.5. Illustration of DRSS circle which is a special type of Apollonius Circle
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previous studies did not explain DRSS circle through Apollonius circle, they 

successfully defined the center of the DRSS as the following [9], ��� 	$ 	c��. ����1 $ c��� 		 , 		���V��B !	 ��� 	$ 	c��. ����1 $ c��� 	
and ���, ��� are the location of the first and second sensor and 

c�� !	 �R^^�d�	�eR^^�d�	�e�/� 	
It can be also shown that the radius of DRSS circles is [20]: 

+	���� 	$	��� 	$	��� 	+ 	��� 	$ 	c��. �����1 $ c��� +	��� 	$�1�1 $ c���
As an Apollonius circle, DRSS circle has two important properties. First, the 

center of DRSS circle must be located along the line which passes through the sensors' 

locations. Second, DRSS circles must pass between two sensors. Figure 

the structure of an DRSS circle. 

Illustration of DRSS circle which is a special type of Apollonius Circle

 

DRSS circle through Apollonius circle, they 

�� 	 (46) 

are the location of the first and second sensor and c�� 
(47) 

� $	c��. ����1 $ c��� 	 (48) 

two important properties. First, the 

center of DRSS circle must be located along the line which passes through the sensors' 

Figure 4.5 illustrates 

 
Illustration of DRSS circle which is a special type of Apollonius Circle 



 

38 
 

4.3.2. DRSS based Cost Function and Localization 

The DRSS based cost function for location estimation is defined as [9], 

�(�, �, �) = 9 �0R^^��d*�e − 5. � . log�# � (� − ��)� + (� − ��)�(� − ��)� + (� − ��)������
� (49) 

where 0R^^��d*�e is the difference of RSS values in dB between ��� and p�� 

sensors, (��, ��) and (�� , ��) is the location of ��� and p�� sensors respectively, and 

finally (�, �) is the possible location of the emitter. To obtain a nonlinear least squares 

(NLS) solution, the estimator needs to jointly find the (�, �) location and the � value 

which will minimize the cost function �(�, �, �). This study finds a very effective 

geometrical closed form solution which perfectly approximates NLS solution and 

attains CRLB with very low computational requirements compared to the NLS solution. 

 

4.3.3. Circle-Circle Intersection 

It is possible to estimate the location of the emitter by intersecting the DRSS 

circles [9]. In Figure 4.6, intersection of two circles are depicted. Let us designate the 

center points of the circles as (��,��) and (��,��) and the radii of the circles as 
� and 
� 

respectively for first and second circles. There will be two intersection points namely  � 

and  �. Let us call the line which passes through the circles' centers as p�, the distance 

between the centers of two circles as *, the angle between the p� and x-axis as   and 

finally the angle between p� and the line which connects (��,��) and  � as �, then the 

location of  � and  � can be formulated as the following,  * =  ;(�� −  ��)� +  (�� −  ��)� (50) 

  = arctan ?(�� −  ��)(�� −  ��)A (51) 

� = arccos ?− 
�� − 
�� − *�2. 
�. * A (52) 

�� =    + �    	�*   �� =     − � (53) 

 � = (  �� + 
�. cos(��)  ,   �� + 
�. sin(��)) (54) 



 

 � = (	

4.3.4. Intersection of DRSS circles

In Figure 4.7, three RSS

order to estimate the location of the emitter. It has been discussed that

measurements from two different locations enables us to draw a DRSS circle. 

Therefore, taking three measurements provides us with three distinct DRSS circles for 

each of three pairs of measurements. Here, it is important to emphasize that these three 

circles are confined to intersect always at only two points (even under noise)

While any three circles can normally intersect at six distinct points, three Apollonius 

circles of three fixed points can o

these circles are enough for localization, one of these circles can be discarded. 

Furthermore, because DRSS circles must pass between the associated measurement 

points as mentioned in Section 

measurement points and the other one is located at a distant position. 

assumes that the emitter is located far from the measurement locations (or the starting 

point where the sensor begins its motion), therefore 

to the measurement points

three measurements are enough to detect the location of the emitter when the path loss 

exponent is known. 
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�		�� + 
�. cos����	 , 		�� + 
�. sin�����	
 

Figure 4.6. Illustration of circle-circle intersection 

Intersection of DRSS circles 

, three RSS measurements are taken from three different positions in 

order to estimate the location of the emitter. It has been discussed that

measurements from two different locations enables us to draw a DRSS circle. 

Therefore, taking three measurements provides us with three distinct DRSS circles for 

each of three pairs of measurements. Here, it is important to emphasize that these three 

circles are confined to intersect always at only two points (even under noise)

While any three circles can normally intersect at six distinct points, three Apollonius 

circles of three fixed points can only intersect at two points [73]. Because any two of 

enough for localization, one of these circles can be discarded. 

Furthermore, because DRSS circles must pass between the associated measurement 

ints as mentioned in Section 4.3.1, one of the intersection points must stay close to 

measurement points and the other one is located at a distant position. 

that the emitter is located far from the measurement locations (or the starting 

point where the sensor begins its motion), therefore the intersection point which is close 

to the measurement points will be neglected. Consequently, for the scope of this stu

three measurements are enough to detect the location of the emitter when the path loss 

 

(55) 

 

measurements are taken from three different positions in 

order to estimate the location of the emitter. It has been discussed that two 

measurements from two different locations enables us to draw a DRSS circle. 

Therefore, taking three measurements provides us with three distinct DRSS circles for 

each of three pairs of measurements. Here, it is important to emphasize that these three 

circles are confined to intersect always at only two points (even under noise) [73]. 

While any three circles can normally intersect at six distinct points, three Apollonius 

. Because any two of 

enough for localization, one of these circles can be discarded. 

Furthermore, because DRSS circles must pass between the associated measurement 

, one of the intersection points must stay close to 

measurement points and the other one is located at a distant position. This study 

that the emitter is located far from the measurement locations (or the starting 

the intersection point which is close 

. Consequently, for the scope of this study, 

three measurements are enough to detect the location of the emitter when the path loss 
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Figure 4.7. Intersection of DRSS circles 

4.4. Direction of Exponent Uncertainty: A New Localization Method 

In Section 4.3.4, it has been discussed that taking three measurements is enough to 

locate the RF emitter when path loss exponent (�) is known. However, as it has been 

discussed in Section 2.1, it is very common that � can be unpredictable due to 

environmental or some other factors. Therefore, detection of the exact location of the 

emitter by means of three measurements is not possible. However, in this study, it will 

be proved that having no knowledge about the value of � is not an obstacle for the 

moving sensor to be directed towards the emitter. It will be shown that with three 

measurements, a direction which passes through the emitter can be determined which 

yields an effective localization system. 

 

4.4.1. Direction of Exponent Uncertainty: Definition 

Figure 4.8 shows the intersections of DRSS circles when path loss exponent values 

are accepted as 2, 3 and 4 where the real � value is 3. As shown, when the accepted 

values of path loss exponent (denoted as ������) increases, DRSS circles grow and the 

intersection point of the circles (possible location of the emitter) changes. It can be 

observed that only when ������ is equal to exact �, the guess point coincides with the 

correct location of the emitter. 
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Figure 4.8. Intersection of DRSS circles for different ������ values 

 

The main idea of this study is that the possible locations of the emitter 

corresponding to different values of � constitute a line in two dimensional space. 

Furthermore, the coordinates of these points can be modeled as a linear function of the 

values of path loss exponent. This phenomenon can be better observed in Figure 4.9. 

The guess points for different �W���� values have a perfect tendency to align linearly 

(even for values of � which are not physically meaningful). The uncertainty in the � 

values creates a linear uncertainty in the location of emitter. This study calls this 

phenomenon as Direction of Exponent Uncertainty (DEU). 

Consequently, when there are three measurements as shown in Figure 4.9, the 

localization system can determine a line which passes through the location of the 

emitter. It is also possible to use this important observation to move to the location of 

the emitter with a moving sensor at the smallest possible duration when the value of � is 

unknown. After three measurements, if the moving sensor settles its motion along the 

DEU, then it catches a linear path which goes to the emitter.  

 



 

Figure 4.9. Illustration of the new phenomenon: Direction of Exponent Uncertainty (DEU)

The linear structure of DEU 

geometry. Section 4.5.3 

 

4.4.2. Proof of DEU 

Now, the existence of DEU (i.e. linearity of guess points with respect to different � values) will be proved. In 

measurements is labeled as DRSS Circle

and three measurements is labeled as DRSS Circle

4.3.4, the � component of the guess point of the emitter 

following equation: �W����
where 
��(�) and 

center of DRSS Circle-

passes through the center of DRSS Circle��� and 
�� both depend on the 

measurements. In addition to these parameters, 

third measurement. Now, � is a constant term, or at least converges to a constant term very quickly even for very 
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Illustration of the new phenomenon: Direction of Exponent Uncertainty (DEU)

The linear structure of DEU is valid when there exists a non-linear measurement 

 presents the case when there are three linear measurements.

Now, the existence of DEU (i.e. linearity of guess points with respect to different 

values) will be proved. In Figure 4.10, the DRSS circle based on the first and second 

measurements is labeled as DRSS Circle-12 and the DRSS circle based on the second 

asurements is labeled as DRSS Circle-23. As explained 

component of the guess point of the emitter can be expressed 

W����(�) = ���(�) + 	 
�����	. cos������	
and ������ are respectively the radius and the �

-12, and ���� is the angle between � axis and 

passes through the center of DRSS Circle-12 and the intersection of the DRSS circles. 

both depend on the � value and the RSS values of first and second 

measurements. In addition to these parameters, ���� also depends on the RSS value of 

third measurement. Now, if it is proved that the derivative of �W����
is a constant term, or at least converges to a constant term very quickly even for very 

 

 
Illustration of the new phenomenon: Direction of Exponent Uncertainty (DEU) 

linear measurement 

presents the case when there are three linear measurements. 

Now, the existence of DEU (i.e. linearity of guess points with respect to different 

the DRSS circle based on the first and second 

12 and the DRSS circle based on the second 

As explained in the Section 

can be expressed as in the 

(56) 

� component of the 

axis and the line which 

12 and the intersection of the DRSS circles. 

value and the RSS values of first and second 

also depends on the RSS value of 

W������� with respect to 

is a constant term, or at least converges to a constant term very quickly even for very 



 

small values of �, then the proof wi

respect to � can be expressed as the following:*	�W�������*	� ! *	����*	�
In accordance with 

 

Figure 

 

Now, after inserting 

respect to � can be obtain*	������*	� ! �
*	
�����*	� !
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, then the proof will be complete. The derivative of 

can be expressed as the following: ��� + *	
�����*	� 	. cos������ +	
�����	. *	 cos�*	
In accordance with (47), let us drop the label d�	�e and define 

c����� ! 	 ;R^^�	/		R^^��/� 	

Figure 4.10. Formulation of the guess point with respect to 

Now, after inserting c����� into (46) and (48), the following the derivatives with 

obtained: 

��¡� $ �¡��	.		ln fR^^�R^^�g 2	. c��������	c����� $ 	1��	
� 	 *¡��	.		ln fR^^�R^^�g;c������c����� 	+ 	1����	c����� $ 	1�� 	

 

The derivative of �W������� with 

������	� 	 (57) 

and define c����� such that: 

(58) 

 
Formulation of the guess point with respect to � 

the following the derivatives with 

� 	 (59) 

� (60) 
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where �¡� and �¡� are respectively the � components of the first and second 

measurement points, and *¡�� is the distance between these two points. After these, the 

limit values of these functions as � approaches to infinity can be found as, 

limV→£ * ���(�)* � = (�¡� − �¡�)/2 ln :R^^�R^^�<  (61) 

limV→£ * 
��(�)* � = *¡��/2ln :R^^�R^^�< (62) 

Taking limit of �(�) as � approaches to infinity is not straightforward, however, it 

can be numerically shown that �(�) also converges a limit value ��.¡. Now, it will be 

investigated how quickly these functions reach their limit values. In Figure 4.11, it can 

be observed that all three functions demonstrate very short transition periods and reach 

their limit values very quickly. After the � value that DRSS Circle-12 and DRSS Circle-

23 start to intersect (the vertical dashed lines at the left in Figure 4.11), all three 

functions have great tendency to catch their limit values. When � is equal to 2 

(physically the lower bound for path loss exponent for most of the environments), they 

are almost settled to their limit values. 

 
Figure 4.11. The plots of �(�) and the derivative of ���(�) and 
��(�) with respect to � 
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Finally, the derivative of �W����(�) in (56) can be rewritten as the following, * �W����(�)* � = (�¡� − �¡�)/2 ln :R^^�R^^�<   + *¡��/2ln :R^^�R^^�< .  cos(��.¡)  + 
��(�) . 0 (63) 

Therefore, taking the integral of the above function yields the following equation: 

�W����(�) = (�¡� − �¡�) + *¡��. cos(��.¡)2 ln :R^^�R^^�<  � + D� = � � + D� (64) 

A similar equation regarding to the � component of the guess point of the emitter 

can be written as in the following, 

�W����(�) = (�¡� − �¡�) + *¡��. sin(��.¡)2 ln :R^^�R^^�<  � + D� = � � + D� (65) 

which finalizes the proof of DEU. 

 

4.4.3. Parameters of DEU 

To speak roughly, the parameters of DEU depends strictly on the measurement 

geometry. As an example, when the measurement geometry is a right triangle whose 

legs are aligned with � and � axes (as shown in Figure 4.9), the slope of the DEU can 

be written as: 

�¤¥¦ = *¡�x*¡��  ln :R^^�R^^�<ln :R^^xR^^�< = *¡�x*¡��  ln(R^^�) −  ln(R^^�)ln(R^^x) −  ln(R^^�) (66) 

where R^ .̂ denotes RSS values in magnitude of the /th measurement, *¡�� is the 

distance between first and second measurement locations and *¡�x is the distance 

between second and third measurement locations. If the measurement geometry is 

further isosceles right triangle, the slope can be written as: 

�¤¥¦ = ln :R^^�R^^�<ln :R^^xR^^�< = ln(R^^�) −  ln(R^^�)ln(R^^x) −  ln(R^^�) (67) 

Another important parameter regarding to DEU is the ratio of the emitter distance 

to �, namely ��¡.���B. This parameter represents the distance between two successive 
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guess points when the guess value of � is incremented by 1. The equation of the ��¡.���B for isosceles right triangle is as the following, 

��¡.���B = 1/ §̈
©p� fR^^2R^^1g . p� fR^^3R^^2g . «p� :R^^2R^^1<�  +  p� :R^^3R^^2<�

p� :R^^2R^^1<� . p� :R^^3R^^2<� ¬­
® (68) 

This parameter allows us to quickly estimate the value of � after the location of 

the emitter is determined. Finally, at least a point is required through which the DEU 

passes to be able to completely define the DEU. With this motivation, it is investigated 

if there exists a common point through which all possible DEUs for all different 

bearings pass. Figure 4.12 shows that one third of the all DEUs shares a common point, 

while other one third of them shares another common point etc. Therefore, there are 

three common points corresponding to three different groups of all possible DEUs. The 

observations suggest that these common points constitute a equilateral triangle, however 

the size and the location of this equilateral triangle strictly depends on measurement 

geometry. 

 
Figure 4.12. Common points for DEUs for different directions 
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Consequently, in order to avoid complex formulation, a simple way to obtain 

parameters of DEU for all measurement geometries is established: use the analytic 

equations in Section 4.3.3 only twice to obtain intersection points for �� = 2 and �� = 4 

as shown in Figure 4.8. The line which passes through both of these two intersection 

points corresponds to DEU. The value of ��¡.���B can be also calculated by dividing the 

distance between these intersection points to the value of (�� −  ��). 

 

4.5. Simulations and Results 

In this section, the performance of DEU which is a powerful geometrical tool for 

RSS based localization is presented for the scenarios when both the path loss exponent 

and the source signal power are unknown. 

 

4.5.1. Intersection of DEUs 

In Section 4.3.2, the DRSS based NLS cost function which is a nonconvex 

optimization problem was provided. When path loss exponent is known and there are 

only three measurements in 2-D space, the intersections of DRSS circles are the NLS 

solution for the location of the emitter, (��, ��) = argmin(¯,°)  �(�, � ; R^^�, R^^�, R^^x) (69) 

Furthermore, the intersection points of DRSS circles are the points where not only 

the cost function is minimized but also the cost function is equal to zero, �(��, ��) = 0 (70) 

Similarly, in the case that path loss exponent is unknown, the intersection points 

of DRSS circles are the points where the cost function is minimized for a certain �W���� 

value, (��, ��) = argmin(¯,°)  ���, � ; R^^�, R^^�, R^^x, �W����� (71) 

Therefore, DEU can be defined as the collection of NLS estimation points for 

different guess values of �. In other words, for three RSS measurements case, two 

statements below which relate � to � are equivalent to each other: ���, � ; R^^�, R^^�, R^^x, �W����� = 0    ⇔     � = �¤¥¦ . � + p¤¥¦ (72) 
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where �¤¥¦ and p¤¥¦ are the parameters of the associated DEU. When there are 

more than three measurements denoted as the vector R^^��������, different DEUs can be 

derived for each different nonlinear triple combinations of measurement locations. For 

example, in case of four measurements, there are four different DEUs. The intersection 

of these DEUs is an effective approximation for the NLS solution: (�, �, �)¤¥¦ =� argmin(¯,°,V)  �� �, �, � ;  R^^��������� (73) 

Intersection of DEUs can be handled by the best intersection point of the lines 

[74]. In Figure 4.13, in a noisy environment, both NLS and intersection of DEUs make 

an erroneous guess for the location of the emitter. However, the important thing is that 

they point exactly the same wrong location. This is because intersection of DEUs is an 

effective approximation of NLS solution. To keep in mind, even though the guess is 

wrong, this can be considered as the best guess under noise. 

 
Figure 4.13. Illustration of intersection of DEUs 

 

Figure 4.14 shows the results of Monte Carlo Simulations to compare the 

performance of NLS with the intersection of DEUs method for different additive error 

levels in dB. Monte Carlo simulation is designed such that four sensors are located 

around origin at (1,1), (-1,1), (1,-1) and (-1,-1) where the emitter location is allowed to 

randomly be anywhere within the range of [-10,10] along both x and y axis. However, 

because of the assumption that emitter is located at a distant position which is already 
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mentioned in Section 4.3.4, the emitter is not allowed to stay close to the origin less 

than 4 units. For each noise level, Monte Carlo simulation is conducted by 1000 

iterations. Consequently, the new method, namely intersection of DEUs, achieved 

equivalent or even superior performance compared to DRSS based NLS by also 

performing very close to Cramer Rao Lower Bound (CRLB) [75, 76, 27] for different 

noise levels. As shown in Figure 4.15, similar results are obtained with 8 sensors which 

are circularly located around origin. 

 
Figure 4.14. Comparison of the performance of NLS and intersection of DEUs via Monte Carlo 

Simulation (4 sensors) 

  

 
Figure 4.15. Comparison of the performance of NLS and intersection of DEUs via Monte Carlo 

Simulation (8 sensors) 
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While it is possible to obtain similar accuracy by intersection of DEUs, it can 

approximately perform 20 times faster than DRSS based NLS algorithm. Same 

experiments are conducted to compare the speeds of the algorithms. In Figure 4.16, the 

average execution times of localization algorithms are provided for NLS and 

intersection of DEUs for different number of sensors when these algorithms are 

performed on an ordinary desktop computer with Intel Core(TM) i7-3630QM 

CPU@2.40 GHz Processor and 16 GB RAM by means of MATLAB [77]. As can be 

seen, intersection of DEUs always performs significantly faster than NLS regardless of 

the number of sensors involved in localization. The struggle to simplify the localization 

process via geometrical observations, discovering the linear nature of DEU and finally 

skillfully exploiting this discovery in RSS based localization lead to a very effective 

solution compared to NLS. As discussed in Section 4.3.2, NLS must conduct a search 

within a three dimensional space namely (�, �, �) to come up with the solution. NLS 

also requires an initial point to start the search for the minimum point and its 

performance is highly sensitive to the location of this initial point. Unlike NLS, 

intersection of DEUs requires no initial point. 

  

Figure 4.16. The average time of execution of NLS and intersection of DEUs for different number of 

sensors 
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4.5.2. Moving Towards Emitter: DEU is a Route Planning Tool 

In this section, an illustrative simulation for tracking scenario is presented to be 

able to briefly discuss the benefit of DEU as a dynamic route planning tool. A simple 

tracking rule is established for a moving sensors based on the concept of DEU: firstly 

derive DEU by using the last three measurements and, secondly move along DEU until 

the next measurement. A rival tracking method is established as the following: firstly 

estimate the location of the emitter by using the last four measurements, and secondly 

move towards this point until the next measurement. This rival method has to engage 

the last four measurements because at least four measurements are necessary to make a 

localization as explained in Section 4.5.1. The flowchart of the tracking algorithms can 

be found in Figure 4.17. 

 
Figure 4.17. Tracking Algorithms' Flowcharts 

 

The speed of the moving sensor is assigned as 3 unit/sec and the emitter starts a 

random motion 100 units apart from the moving sensor. In Table 4.1, the total length 

that the moving sensor travels on average until it reaches to emitter is presented for 

different RSS measurement error levels and different speed levels of emitter. Both high 

level of RSS measurement error and high level of speed of emitter are tricking the 

tracking method. Therefore, the average length travelled by the moving sensor increases 

from upper left corner to lower right corner in Table 4.1. 



 

Table 4.1. Comparison of average travel lengths and failure rates of emitter tracking methods.
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By taking shorter paths before reaching the emitter, the tracking algorithm based 

on DEU performs better compared to DRSS based NLS. Moreover, in this simulation, 

not being able to catch the emitter even after taking 200 units is defined as "failure 

the task". As seen in Table 

A descriptive video about DEU based tracking is

https://youtu.be/nGyzCvXR8SM

Moreover, an illustrative sample video about the

the permanent link https://youtu.be/NF26

Figure 4.19. 

Figure 4.18.
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Comparison of average travel lengths and failure rates of emitter tracking methods.
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113.37 %0 112.08 %0 
112.05 %0 110.13 %0 
133.15 %1 131.00 %5 
121.14 %0 120.83 %2 

By taking shorter paths before reaching the emitter, the tracking algorithm based 

on DEU performs better compared to DRSS based NLS. Moreover, in this simulation, 

not being able to catch the emitter even after taking 200 units is defined as "failure 

Table 4.1, DEU displays a lower rate of failure compared to NLS. 

descriptive video about DEU based tracking is presented in the permanent 

https://youtu.be/nGyzCvXR8SM whose screen captures are shown in

tive sample video about the tracking simulations can be found 

https://youtu.be/NF26-Y6C_q4 whose screen captures are shown in 

. Screen captures of the descriptive video about DEU based tracking

 

Comparison of average travel lengths and failure rates of emitter tracking methods. 
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By taking shorter paths before reaching the emitter, the tracking algorithm based 

on DEU performs better compared to DRSS based NLS. Moreover, in this simulation, 

not being able to catch the emitter even after taking 200 units is defined as "failure of 

displays a lower rate of failure compared to NLS. 

in the permanent link 

whose screen captures are shown in Figure 4.18. 

tracking simulations can be found in 

whose screen captures are shown in 

descriptive video about DEU based tracking 
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Figure 4.19. Screen captures of the illustrative sample video about the emitter tracking simulations 

 

4.5.3. Limitation about DEU 

In this section, it will be mentioned that the guess points with respect to different �W���� values lose their ability to align linearly for linear measurement patterns. Linear 

measurement patterns which are not preferable because of bringing the issue of mirror 

effect in localization are also problematic in yielding linear DEU structures as shown in 

Figure 4.20.a. However, the DEUs can quickly recover their linear patterns for even 

very small angular deviation from linear measurement. Figure 4.20.b illustrates how 

DEUs are perfectly reconstructed for only 30 degrees deviation from linear 

measurement. Therefore, a sensor moving along a linear path can make a small 

deviation from the line of motion, if it wants to check its direction by means of DEU. 
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Figure 4.20. (a) Linear measurement patterns brings the problem of non-linear DEUs as well as mirror 

DEUs (b) A small deviation from linear measurement is enough to recover linear DEUs 

back 
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5. CIRCULAR UNCERTAINTY METHOD FOR RANGE-ONLY 
LOCALIZATION WITH IMPRECISE SENSOR POSITIONS 

Emitter or source localization is a field of sensor array processing, which attempts 

to find the location of different of type of sources through the information from various 

sensors especially in noisy environments. There can be several types of error within the 

information utilized in source localization such as the error at measurements or the error 

at measurement positions etc. In the literature, it is mentioned that if the sensors are 

moving, then it is very likely that the measurement positions are imprecise. Moreover, 

the uncertainties in the measurement positions can dominate the localization error of the 

systems. Therefore, the uncertainties in the measurement positions must be carefully 

handled when dealing with the moving sensors. This chapter is dedicated to build a 

robust localization scheme when the sensor positions are imprecise. 

 

5.1. Introduction to Circular Uncertainty 

This chapter provides an effective new method called Circular Uncertainty to 

solve the range-only localization in the presence of sensor position errors. In practice, 

the sensors can stay only within a limited region whereas the target can be far from 

there. To increase the estimation capability, some peripheral measurements with moving 

sensors can be obtained which results in the issue of imprecise sensor positions. In these 

situations, sensor positions also become unknown parameters which need to be jointly 

estimated together with the target location. Because of the large number of unknown 

parameters, reaching the global minimum becomes a significant challenge. This chapter 

is dedicated to build a robust localization scheme for these scenarios. A new search 

strategy namely Circular Uncertainty is proposed which allows the localization system 

to safely find the global minimum of Maximum Likelihood cost function in case of 

imprecise sensor positions. Circular uncertainty not only makes it possible to reach 

Maximum Likelihood estimation, but also significantly simplifies this task. 

In the rest of this chapter, firstly CRLB for localization error is explicitly obtained 

for the case of imprecise sensor positions. Next, the basis of the new proposed method 

namely Circular Uncertainty is presented by visually displaying the cost surfaces of 

localization of targets. Then, a formal proof for Circular Uncertainty is provided. 

Circular Uncertainty significantly reduces the size of the search spaces of the 

minimization processes. It conveniently finds the global minimum of the MLE surface 
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which gets quite complicated together with the uncertainties in the sensor positions. The 

performance of the new proposed method is tested by simulations for different 

scenarios, and also compared with the WLS solution of [63] which is specifically 

designed to attain CRLB in the presence of sensor position uncertainties. The proposed 

solution, which takes the advantage of obtaining MLE in a robust way, attains CRLB 

regardless of the noise level whereas other solutions partly fail to achieve this 

performance. 

 

5.2. The Basis for The Research 

In this part, CRLB for the range-only localization with imprecise sensor positions 

is obtained, and then, MLE solution for this localization scheme is described.  

 

5.2.1. CRLB for Localization with Imprecise Sensor Locations 

This part will formulate CRLB for localization with imprecise sensor positions. 

When there are 1 independent distance observations from 1 different sensor locations, 

the Fisher information matrix is as the following [67], 

T(�, �) =  1-¤�   
XYY
YYZ9 (� − �.)�(� − �.)� + (� − �.)�=

.>� 9 (� − �.). (� − �.)(� − �.)� + (� − �.)�=
.>�  9 (� − �.). (� − �.)(� − �.)� + (� − �.)�=

.>� 9 (� − �.)�(� − �.)� + (� − �.)�=
.>�

  
[\\
\\] (74) 

where (�, �) is the target location and (�., �.)'s are the sensor positions where 

distance-to-target measurements are taken for / = 1, . . , 1. Distance measurements are 

obtained with the standard deviation -¤. This Fisher Information Matrix is only for 

localization with precise information for sensor positions. Therefore, the Fisher 

information has to be obtained for the case of imprecise sensor positions. Now, let us 

define the whole measurement model when sensor positions are imprecise, 0. =  ;(� − �. )� + (� − �.)� +  ,.  ~ 1(0, -¤) (75) 

�. =  �.  + ³.  ~ 1(0, -´) (76) �. =  �.  + µ. ~ 1(0, -¶) (77) 
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where 0. is distance measurement at the sensor position (�., �.). The sensors are 

physically in their exact positions (�.,�.). But, the localization system does not have the 

precise information for the sensor positions. However, this does not affect 0. 
measurements. Therefore, the position of sensors must be modeled as imprecise 

information. Consequently, in addition to 0. namely distance to target measurement, 

(�., �.) is also included within model as the observation of /th sensor position i.e. (�., �.). In this model, ,., ³. and µ. represent the zero-mean normal distributed error terms 

within 0., �. and �. respectively. The standard deviations of 0., �. and �. are -¤, -´ and -¶ respectively.  

Now, based on the addition rule of Fisher Matrix, the Fisher information for the 

measurement model that has been just defined above can be written as the following, 

T(·�) = 9 T¤¸(·�)=
.>� +  9 T́ ¸(·�)=

.>� +  9 T¶¸(·�)=
.>� = T¤(·�) +  T́ (·�) +  T¶(·�) (78) 

where ·� is parameter set, which defines the location of the target and all sensors, ·� = d� , �, �� , ��, … , �= , �=e (79) 

If a 2x2 matrix is defined such that, 

�.  =  XYY
YZ (� − �.)�(� − �.)� + (� − �.)� (� − �.). (� − �.)(� − �.)� + (� − �.)�  (� − �.). (� − �.)(� − �.)� + (� − �.)� (� − �.)�(� − �.)� + (� − �.)�[\\

\]
 (80) 

The information matrix for a single distance-to-target measurement 0. becomes, 

T¤¸(·�) = 1-¤� XYY
YYZ
�. 00 0 ⋯ �.      ⋮  �.  ⋱   �.             0   0[\\

\\] (81) 

where 0 is the 2x2 zero matrix. Therefore, FIM for all distance measurements is, 
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T¤(·�) = 1-¤�
XYY
YYY
YZ9 �.=

.>� ��   �� ��
⋯ �.  ⋯ �=       ⋮     �.  0 ⋱   �.      ⋮   �=      ⋱ 0 0 �= [\\

\\\
\]
 (82) 

FIM for measurements of x positions of all sensor is, 

T́ (�) = 1-´�
XYY
YYY
Z0   0   1   0  

 1   0   ⋱   ⋱[\\
\\\
]
 (83) 

and FIM for measurements of y positions of all sensors is, 

T¶(�) = 1-¶�
XYY
YYY
Z0   0   0   1  

 0   1   ⋱   ⋱[\\
\\\
]
 (84) 

If the standard deviations of sensor position errors are equal in x and y-axis 

namely, -b = -´ =  -¶ (85) 

then, FIM of measurements of positions of all sensors can be written as, 

Tb(·�) = 1-b�
XYY
YYY
Z0   0   1   1  

 1   1   ⋱   ⋱[\\
\\\
]
 (86) 

Finally, the total FIM is as the following: T(·�) =  T¤(·�) +  Tb(·�) (87) 
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The lower bound for the mean squared distance error of any localization scheme 

can be calculated by summing the first two diagonal elements of the inverse of the total 

FIM, i.e. TK�(·�). The overall effect of having some level of uncertainty in the sensor 

positions is to levitate the CRLB for all levels of distance error.  

 

5.2.2. Maximum Likelihood Solution for Target Localization  with Imprecise 

Sensor Positions 

The ordinary NLS solution for range-only target localization can be written as the 

following [3]: 

(��, ��) =  argmin(¯,°) 9 :;(� − �.)� +  (� − �.)� −  0.<�=
.>�  (88) 

where (�., �.) is the observed position of /th sensor and 0. is the distance 

measurement at this sensor. Dedicated to minimize only the overall error in distance 

measurements, this solution neglects if the sensor positions are imprecise, however still 

it can be a convenient way to solve the localization problem with imprecise sensor 

positions. Therefore, ordinary distance NLS will be always included during the 

simulations as a baseline solution. The ordinary distance NLS can be MLE solution 

when sensor positions are precise. However, for imprecise sensor positions, the cost of 

estimation must be a complete equation which includes two different parts for both 

distance-to-target measurement errors and sensor position errors. Therefore, to obtain 

MLE cost function, let us write the log likelihood of all parameters in ·� as the 

following: 

ln "�0���, ��, ���; ·�� = − 12(-¤)� 9 :;(� − �.)� +  (� − �.)� −  0.<�=
.>�  

− 12 (-b)�  9d(�. − �.)� + (�. − �.)�e=
.>� + c 

(89) 

where is c is a constant such that, c = − 1 ln :;2 F (-¤)�< − 2 1 ln :;2 F (-b)�< (90) 
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From this point of view, a maximum likelihood estimation (MLE) for all 

parameters of the parameter set ·� can be proposed as the following: 

(��, ��, ���, ��� … ��= , ��=) = argmin(¯,°,¯¼,°¼…¯½,°½) §̈
©̈ 1(-¤)� 9 :;(� − �.)� + (� − �.)� −  0.<�=

.>�+  1(-b)�  9(�. − �.)� +  (�. − �.)�=
.>� ¬­

­®   (91) 

 This MLE function allows us to take into account the error in sensor positions to 

better estimate the target positions. To obtain the MLE solution, the global minimum of 

the MLE cost has to be found in a (21 + 2) dimensional space of the parameters 

included within ·�. Estimating jointly all these parameters, i.e. the location of target and 

all of the sensor positions at the same time, is a quite difficult joint estimation problem. 

Therefore, this study has built a new concept, namely Circular Uncertainty, in order to 

conveniently search for the global minimum of the MLE function. 

 

5.3. Methodology 

In this part, first the new method i.e. Circular Uncertainty is introduced via some 

illustrative examples of cost surfaces, and then Circular Uncertainty is formally proved. 

Next, NLS and MLE solutions by means of Circular Uncertainty are described. 

 

5.3.1. A New Concept in Range-Only Localization: Circular Uncertainty 

With the motivation to solve maximum likelihood localization problem when 

sensor positions are imprecise, this study proposes a new search strategy, which is 

called as Circular Uncertainty. Circular uncertainty roughly means that once "a base 

cost surface" is established by means of a couple of central measurements which are 

confined to a limited area, in case of some new measurements are received which 

disturb the initial estimation, the disturbed new estimation has a tendency to move along 

a particular circle or arc. This study calls this special circle as Circular Uncertainty of 

the base central measurements. Let us start to introduce this concept by demonstrating 

examples of NLS cost surfaces obtained via some central measurements with precise 

positions. 

In Figure 5.1.a, the sensors are circularly located around the origin, and noisy 

distance measurements are obtained in accordance with the distance measurement 
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model in (75). Based on these distance measurements, the value of distance NLS cost 

function shown in (88) is obtained for all the (�, �) points, so the distance NLS cost 

surface is obtained. In Figure 5.1.a, this NLS cost surface is depicted as a contour plot. 

As seen, the global minimum of NLS cost surface naturally occurs around the target. 

However, the interesting point is that this NLS cost function have a tendency to stretch 

along a special circle, so it has a croissant-like shape surrounding the origin. 

The croissant-like shape of contour of NLS surface is due to the fact that there 

exist a few central distance-to-target measurements and the target is located far from the 

measurement points. As a result, the angular position error of the target dominates the 

overall error of the NLS solution. In other words, NLS solution for this scenario has a 

limited capability for estimating the angular position of the target compared to its radial 

position. When the NLS surface with respect to polar coordinates is plotted as shown in 

Figure 5.1.b, it can be seen that NLS surface has a neat appearance which resembles a 

bivariate normal distribution with a diagonal covariance matrix. Of course, while the 

distribution can be an ordinary normal distribution along radial coordinate, it must be a 

circular normal distribution (i.e. von Mises distribution) along angular coordinate 

because of the periodicity of the angular coordinate. It can be observed that the variance 

along the angular coordinate is quite larger than the variance along the radial coordinate. 

In this sense, because this distribution is a bivariate normal distribution in polar 

coordinates as seen Figure 5.1.b, then its Cartesian counterpart shown in Figure 5.1.a 

can be viewed as a circularly wrapped bivariate normal distribution around the origin of 

Cartesian plane. Consequently, this explains the croissant-like shape of NLS surface in 

Figure 5.1.a. 
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(a)                                                          (b) 

 

    
(c)                                                           (d) 

 

       
  

(e)                                                          (f) 

Figure 5.1. Circular Uncertainty demonstration by means of examples of NLS cost surfaces 
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The sensor geometry in Figure 5.1.a is a special one, so it may be wondered if this 

type of behavior exists for random sensor geometries. In Figure 5.1.c for a random 

measurement geometry located roughly around the origin, it can be again observed that 

NLS surface stretches along a special circle i.e. not along some other type of closed 

curve. For this case, the croissant shape is not symmetric around the global minimum, 

but it still perfectly stretches along a circle. Consequently, this study will name this 

circle as "the Circular Uncertainty" of the particular cost surface. Intuitively, the 

parameters of the circular uncertainty are defined as: 

(�¾¦ , �¾¦) = P11 9 �.=
.>�  , 11 9 �.=

.>�   Q (92) 


¾¦ = 11 9 0.=
.>�  (93) 

where (�¾¦ , �¾¦) is the center and 
¾¦ is the radius of the Circular Uncertainty. 

The center of Circular Uncertainty is defined as the centroid of measurement points, and 

the radius of the Circular Uncertainty is defined as the average distance measurements. 

The important property of Circular Uncertainty is that global minimum of cost surface 

occurs along the Circular Uncertainty. In Figure 5.1.a and Figure 5.1.c, it can be 

observed that the global minimum is located along the Circular Uncertainty. In Figure 

5.1.d, another interesting point can be observed that when NLS cost surface has a local 

minimum, this local minimum also occurs along the Circular Uncertainty. 

Next, it may be wondered if Circular Uncertainty starts to occur only after some 

specific number of measurements. In Figure 5.1.e, the NLS cost surface of only two 

measurements are shown where there must be two global minima. Surprisingly, in spite 

of the existence of only two measurements (and consequently two global minima), NLS 

surface still tends to stretch along the Circular Uncertainty. The Circular Uncertainty of 

this surface is quite visible in 3D plot of the NLS surface shown in Figure 5.1.f. If it is 

considered that a single distance measurement is also basically a circular uncertainty, 

then it can be argued that the defined Circular Uncertainty always occurs regardless of 

the number of measurements. 

At the beginning of this section, it is mentioned that once "a base cost surface" is 

established by means of a couple of central measurements, in case of receiving some 
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new measurements which disturb the initial estimation, the disturbed new estimation 

has a tendency to move along the Circular Uncertainty trajectory. This situation occurs 

because of the croissant shape of the NLS surface along the Circular Uncertainty. 

Circular Uncertainty is basically "a circular valley" within the surface of NLS cost 

function as demonstrated in Figure 5.1.f. When new measurements are received which 

disturbs the initial estimation, the new disturbed estimation will move along this 

"circular valley" instead of climbing the hillsides. 

This phenomenon is depicted in Figure 5.2 where there are two base 

measurements creating a circular uncertainty. In addition to these base measurements, a 

third measurement with a sensor position error is obtained. Finally, based on these three 

measurements, the location of the target is estimated and then plotted as a small circular 

point in Figure 5.2. When a random error is repeatedly added to the position of third 

measurement, and then NLS localization is forced to locate the target as a Monte Carlo 

simulation, a set of disturbed NLS solutions can be obtained. Due to the above 

explanations, the disturbed solutions are accumulated along the Circular Uncertainty. A 

similar picture can be observed in literature (see Fig.9 in [78]), yet the authors did not 

pay attention to the above defined Circular Uncertainty phenomenon. 

 
Figure 5.2. The distribution of disturbed NLS solutions along the Circular Uncertainty 
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Eventually, this study lists "the properties of Circular Uncertainty" which helps to 

create a new understanding in range-only localization of targets: 

1) Global minimum occurs along the Circular Uncertainty trajectory (possibly with 

a small deviation). 

2) Local minima (if any) have a tendency to occur along the Circular Uncertainty. 

3) When the initial estimation is disturbed with new measurements, the disturbed 

estimation moves along the Circular Uncertainty trajectory, which is the circular 

valley of the cost surface. 

Property 1 will allow us to conveniently find the global minimum of the cost 

surface of localization when sensor positions are precise. Property 3 will further allow 

us to handle the issue of imprecise sensor positions via Circular Uncertainty. The 

overall idea of Circular Uncertainty is visually demonstrated in a movie to give more 

tangible understanding of this concept (https://youtu.be/sj5CUsZs8W8). 

 

5.3.2. Proof of Circular Uncertainty 

In this section, the new proposed concept i.e., circular uncertainty which has just 

introduced in the previous section will be proved by formulating the polar equation of 

the NLS solution. The 
 value which minimizes the NLS cost for a specific the direction � can be expressed as the following: 


̂(�) =  argminB 9 :;(
 cos (�) − �.)� +  (
 sin (�) − �.)� − 0.<�=
.>�  (94) 

Therefore, the 
 value minimizing the NLS cost shown in (94) must satisfy the 

following condition: �� 
 9 :;(
 cos (�) − �.)� + (
 sin (�) − �.)� −  0.<�=
.>� =  0 (95) 

When the derivate in (95) is accomplished, the following equation is obtained: 

9 �2 �0.  −   0À.(
) � cos(�) (
 cos (�) − �.) + sin(�) (
 sin (�) − �.)0À.(
) � = 0=
.>�  (96) 

where 0À.(
) represents the distance between the point (
 cos(�) , 
 sin(�)) and 

the position of /th sensor (�., �.) as shown in Figure 5.3. 0. is the distance-to-target 
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measurement obtained by the /th sensor. As seen in Figure 5.3, the line which passes 

through the origin with the angle � with respect to x-axis is labeled as ��. It can be 

observed that the nominator of the division at right in (96) is the projection of the line 

segment with the length 0À. onto the line ��. Therefore, (96) can be rewritten as: 

9 ��0.  −   0À.� 0À. cos(�.)0À. � = 0=
.>�  (97) 

where �. is the angle between �� and the line segment connecting the points 

(
 cos(�) , 
 sin(�)) and (�., �.). After canceling the common terms, the following 

expression is obtained: 

9Á0. cos(�.)  −   0À.  cos(�.)Â = 0=
.>�  (98) 

 
Figure 5.3. The proof for Circular Uncertainty and its parameters 

 

Then, 0À. cos(�.) can be replaced by �
 − .̂Ã�, so the following expression 

appears: 

9Á0. cos(�.)  −   �
 −  .̂Ã�Â = 0=
.>�  (99) 

where ̂ .Ã is the projection of the line segment connecting the origin to the position 

of /th sensor (�. , �.) onto the line �� as shown in Figure 5.3. Obviously, .̂Ã is a 
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function of �, while �. is a function of both � and 
, consequently (99) can be rewritten 

as the following: 

9� .̂Ã(�) +  0. cosd �.(�, 
) e  −   
�=
.>� =  0 (100) 

The difficult point is that �. is a function of 
, so finding the root of (100) 

becomes a complex task. To simplify this task, for sufficiently large r values, cosd�.(�, 
)e can be roughly approximated as 1. This approximation is consistent with 

the case of Circular Uncertainty where the central measurements are scattered just 

around the origin, and the target is assumed to be located in a point far from the 

measurements. Finally by means of this approximation, the following equation appears: 

9� .̂Ã(�) +  0.  −   
�=
.>� ≈  0 (101) 

Therefore, the 
 value which minimizes the NLS cost for a specific the direction � 

can be formulated as the following: 


̂(�)  ≈ 11 9 .̂Ã(�)=
.>� +   11 9 0.=

.>�  (102) 

The first term in (102) is just the projection of the centroid of the sensor positions 

onto the line �� as shown in (103) and (104). And, the second term in (102) is the 

average of the measured distances by the central measurements. Therefore, (102) is the 

proof for circular uncertainty and for its parameters which have been intuitively defined 

in the previous section. 


̂(�)  ≈ 11 9dcos(�) sin(�)e _�.�.`=
.>� +   11 9 0.=

.>�  (103) 


̂(�)  ≈ dcos(�) sin(�)e P11 9 _�.�.`=
.>� Q +   11 9 0.=

.>�  
 

(104) 
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5.3.3. Solving NLS Equation via Circular Uncertainty 

In this section, it is demonstrated how Circular Uncertainty can be utilized to 

conveniently solve the NLS equation in (88). By means of Circular Uncertainty, the size 

of search space will be reduced. As mentioned above, global minimum occurs along the 

Circular Uncertainty possibly with a small deviation. Therefore, the global minimum 

must be searched along the Circular Uncertainty whose parameters are defined in (92) 

and (93). Let us write the equation of Circular Uncertainty as a function of � as the 

following: �(�) = �¾¦ + 
¾¦ cos (�) (105) �(�) = �¾¦ + 
¾¦ sin (�) (106) 

Therefore, the NLS equation in (88) can be rewritten as the following: 

��Å� =  argmin(�) 9 :;(�¾¦ + 
¾¦ cos (�) − �.)� +  (�¾¦ + 
¾¦ sin (�) − �.)� −  0.<�=
.>�  (107) 

As seen, the size of search space is reduced by means of Circular Uncertainty. 

Furthermore, because � is periodic, only the range (0,2Fe is of interest instead of 

infinite intervals for � or � in (88). In Figure 5.4.a, the setup of a Monte Carlo 

simulation which consists of 1000 iterations is shown. In each iteration, the eight 

sensors are randomly positioned within square area limited by the interval [-10, 10] 

along x and y axis. The target (emitter or source) is randomly located anywhere within 

the interval [-80, 80] along x and y axis, yet it is not allowed to stay close to the origin 

smaller than 30 units i.e. not inside the circle drawn as dashed line. In Figure 5.4.b, the 

performances of localization by Circular Uncertainty and conventional distance NLS are 

shown as root mean squared (RMS) distance error. As seen, both distance NLS and 

Circular Uncertainty can attain CRLB. However, in Section 5.4.3, it will be shown that 

the execution time of the Circular Uncertainty is quite smaller than NLS. Therefore, 

Circular Uncertainty is found to be a convenient solution when all sensor positions are 

precise. However, the real benefit of this solution will be apparent in the next sections in 

which the issue of imprecise sensor positions is discussed. 
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(a) (b) 

Figure 5.4. (a) The simulation setup - a sample measurement scheme and (b) the RMS distance error of 

localization: Circular Uncertainty and NLS 

 

5.3.4. MLE Solution by Circular Uncertainty 

In practical situations, the sensors can only be allowed to be located within a 

limited region and the target can be located far from the sensors. In order to increase 

estimation capability, in addition to the central measurements taken within a limited 

region, a few number of peripheral measurements can be deployed. However, to scan a 

broad peripheral area, the peripheral measurements can be designed as moving sensors, 

which, as a result, brings the issue of uncertainties in the positions of sensors as 

discussed in the literature [54]. In this section, it is demonstrated how Circular 

Uncertainty can be utilized to conveniently solve the MLE for this type scenario in 

which there are uncertainties in sensor positions for peripheral measurements. First, let 

us rewrite the parameters of the Circular Uncertainty as the following: 

(�¾¦ , �¾¦) = P 1Æ 9 �.. ∊ ¾  , 1Æ 9 �.. ∊ ¾   Q (108) 


¾¦ = 1Æ 9 0.. ∊ ¾  (109) 

where D is the set of central measurements with precise positions and Æ is the 

number of elements in this set. In accordance with the Circular Uncertainty equations of 

(105) and (106), MLE equation in (91) can be rearranged as the following: 
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��Å , È��� , ��� | É ∊  Ê � = argmin��,   È¯Ë,°Ë | �∊ÌÊ�
§̈
¨̈̈
©  1(-¤)� 9 :;(�(�) − �.)� + (�(�) − �.)� − 0.<�

. ∊ ¾
+ 9 ÍÎÏ

ÎÐ 1(-¤)�  ?Ñ��(�) − ���� + ��(�) − ���� − 0�A� + 1(-b)�   :��� − ���� + ��� − ����< ÒÎÓ
ÎÔ

� ∊ Ì  ¬­
­­­
®   (110) 

where   is the set of peripheral measurements with imprecise positions. In order 

to find the global minimum, the number of parameters to be estimated is 2� + 2 where � is the number of measurements with imprecise positions (i.e. the size of the set  ). By 

means of circular uncertainty, this number is reduced to 2� + 1 by representing both � 

and �-axis of the target as a function of �. Moreover, if the imprecise sensor positions 

minimizing the MLE cost are also achieved to be represented as functions of �, then the 

total number of parameters to be estimated will be reduced to 1 i.e. only �. Let us 

consider the estimation of a single imprecise sensor position which minimizes jointly 

distance and sensor position error given the location of the target ��(�), �(�)� : 

���� , ���� = argmin�¯Ë,°Ë� §̈
© 1(-¤)� ?Ñ��(�) − ���� +  ��(�) − ���� −  0�A�

+ 1(-b)�  :��� − ���� +  ��� − ����< ¬­
®   (111) 

First of all, in order to minimize (111), the estimated position of the sensor ����  ,  ����, the measured position of the sensor ��� ,  ��� and the location of the target (�, �) must linearly align because of triangular inequality. Let us designate the distance 

error as � and the sensor position error as Õ. In Figure 5.5.a, an estimation for the sensor 

position is shown which does not lie on the line which passes through ��� ,  ��� and ��(�), �(�)�. It is apparent that the projection point of this estimation onto this line 

would yield smaller � and Õ so a smaller cost value. Therefore, the solution of (111) 

must be located on the line which passes through the measured position of the sensor ��� ,  ��� and the location of the target ��(�), �(�)� as shown in Figure 5.5.b. For this 

scheme, only the lengths of � and Õ are required. 
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(a) (b) 

Figure 5.5. The estimated position of the sensor ����  ,  ����, the measured position of the sensor ��� ,  ��� 

and the location of the target (�, �) must linearly align 

 

Therefore, solving (111) can be equivalently achieved by the solving following 

equation: 

��Ö, ÕÖ� =  argmin(×,Ø) f 1(-¤)�  (�)� +   1(-b)�  (Õ)�g (112) 

subjected to the constraint: 

� +  Õ =  Ù = Ñ��(�) − ���� + ��(�) − ���� −  0�  (113) 

where Ù is the difference between the measured distance 0� and the distance 

between the target and the measured position of the sensor ��� ,  ���. If the following 

equity is inserted into the cost function shown in (112): � = Ù − Õ (114) 

and then if the derivative of this cost function is taken with respect to Õ, the 

following the equation is obtained: 2 (-¤)� Õ − 2 (-b)� (Ù − Õ) = 0 (115) 

Therefore, the estimated value of Õ which minimizes (112) is as the following: 

ÕÖ = (-b)�(-b)� +  (-¤)�   ?Ñ��(�) − ���� +  ��(�) − ���� −  0�A (116) 
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Based on this value, the estimated sensor position ���� , ���� which minimizes (111) 

can be written as the following: 

��� = �� +  ÕÖ  (� − ��)Ñ�� − ���� +  �� − ���� 
(117) 

��� = �� + ÕÖ  (� − ��)Ñ�� − ���� +  �� − ���� 
(118) 

Finally, (117) and (118) can be written as the functions of �: 

���(�) = �� +  (-b)�(-b)� +  (-¤)�  §©1 − 0�Ñ��(�) − ���� +  ��(�) − ����¬® ��(�) − ��� (119) 

���(�) = �� + (-b)�(-b)� +  (-¤)�  §©1 − 0�Ñ��(�) − ���� +  ��(�) − ����¬® ��(�) − ��� (120) 

To sum up, the MLE cost function in (110) can be rewritten as a function of �: 

��Å� = argmin�
§̈
¨̈̈
©  1(-¤)� 9 :;(�(�) − �.)� +  (�(�) − �.)� − 0.<�

. ∊ ¾
+ 9 ÍÎÏ

ÎÐ 1(-¤)�  ?Ñ:�(�) − ���(�)<� +  :�(�) − ���(�)<� − 0�A� + 1(-b)�  f:�� − ���(�)<� + :�� − ���(�)<�g ÒÎÓ
ÎÔ

� ∊ Ì  ¬­
­­­
®   (121) 

After representing the imprecise sensor positions as a function of �, the total 

number of parameters to be estimated within MLE equation in (110) is reduced from 2� + 1 to 1, in other words, the global minimum will be only searched through the 

parameter �. 

 

5.4. Simulations 

5.4.1. Imprecise Sensor Positions within Central Measurements 

In this section, a Monte Carlo simulation which consists of 1000 iterations is 

conducted for the scenario where there are eight central measurements with precise 

position together with three central measurements with imprecise positions. The 
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standard deviation of the sensor position error -b is set to 3. Figure 5.6.a shows the 

simulation setup by means of a sample measurement scheme. In each iteration, while 

both the sensors and target are randomly positioned, they are subjected to the same 

constraints of Figure 5.4.a (concerning the positions of the sensors and the target). In 

Figure 5.6.b, the performance of various localization techniques are compared to each 

other by means of RMS distance error of localization. 

 

  
(a) (b) 

Figure 5.6. (a) The simulation setup - a sample measurement scheme with eight central precise and three 

central imprecise measurements and (b) the RMS distance errors for various localization 

method 

 

Distance NLS is the localization which simply minimizes the conventional NLS 

cost function in (88) without taking the uncertainties in certain sensor positions into 

account. Circular Uncertainty is the localization technique that this study has introduced 

in (107). Circular Uncertainty in (107) again does not take the uncertainties in certain 

sensor positions into account. "Circ. Unc. + Dist NLS" is the method where the 

estimation of the Circular Uncertainty is used as the initial point of Distance NLS. The 

significance of this type initialization will be apparent in the next sections. For this 

scenario, these methods i.e. Distance NLS, Circular Uncertainty and "Circ. Unc. + Dist 

NLS" have the equivalent rate of performance which is significantly above CRLB. SR-

WLS is the abbreviation of the squared range weighted least-squares introduced by [63]. 

They introduce this algorithm in order to conveniently solve the localization problems 

with imprecise sensor positions. Unlike MLE, SR-WLS avoids jointly estimating the 
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target and the sensor positions. It solves a least squares equation whose terms are 

skillfully weighted by also taking the uncertainties in the sensor positions into account. 

While implementing SR-WLS, because this study assumes that the standard 

deviation of sensor position errors along � and � axis are the same i.e. -b and the errors 

are independent, the � matrix (introduced in [63]) is removed during calculation of the 

weighting matrix , as shown below: , = d� (�¤ +  �b) � eK� (122) 

where �¤ is the diagonal matrix whose diagonal elements are (-¤)�, and �b is an 

11x11 matrix as the following:  

�b =
XYY
YYZ
 0    ⋱    0                   -b�    -b�    -b�[\\

\\]
��¯��

 (123) 

and � is the matrix as defined in [63]. While constructing �b, it is assumed that 

the last three measurements have imprecise positions. By removing the matrix �, the 

need for an initial estimation for the target position mentioned in [63] is also removed. 

As seen in Figure 5.6.b, SR-WLS and MLE by the Circular Uncertainty in (121) 

introduced in the previous section can attain CRLB while the former methods which do 

not take the uncertainties in the sensor positions into account fail to achieve this 

performance. SR-WLS weights the sensor according to their closeness to target, the 

relative error level in distance measurements and the standard deviation of sensor 

positions. In this sense, for the simulation setup that this study has defined in Figure 

5.6.a, SR-WLS opts to weight the three sensors with imprecise positions by smaller 

numbers. By doing this, SR-WLS reduces the importance of these sensors because they 

are not reliable due to their uncertain positions. This is the justification of the success of 

SR-WLS in attaining CRLB. However, a trade-off will occur when you need to heavily 

rely on the sensors with imprecise sensors if they are peripheral measurements instead 

of central ones. Therefore, the true benefit of MLE with Circular Uncertainty will be 

more apparent in the next sections. 
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5.4.2. The Benefit of Peripheral Measurements 

It has been discussed that when there are only central sensors which take distance-

to-target measurements, the localization suffers from a low capability of estimating the 

angular position of the target. Therefore, in addition to the central measurements, a few 

number of peripheral measurements can be deployed to increase the estimation 

capability of localization system. To scan a broad peripheral area, the peripheral 

measurements can be designed as moving sensors which at the end brings the issue of 

uncertainties in the positions of peripheral sensors. Nevertheless, in this section, it is 

shown how peripheral measurements even with imprecise positions can significantly 

increase the performance of the localization systems. In Figure 5.7, two CRLBs are 

shown for two different localization scenarios.  

 

Figure 5.7. Increase in the performance of localization systems by means of peripheral measurements 

 

Both of two scenarios in Figure 5.7 employ the same number of measurements i.e. 

eight measurements with precise positions and three measurements with imprecise 

positions. However, the distinction is that in the first scenario, three imprecise 

measurements are the central ones together with other eight measurements, while in the 

second scenario, they are employed as peripheral measurements. The first scenario is 

the one which is already shown in Figure 5.6.a and the second scenario is depicted in 

Figure 5.8.a. In the second scenario, the peripheral measurements are allowed to be 

randomly distributed within peripheral area just like the target, however they are not 
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allowed to get close to the target smaller than 5 units. The standard deviation of the 

sensor position error -b is set to 3. As seen in Figure 5.7, the peripheral measurements 

can significantly increase the performance of the range-only localization system. Please 

note that RMS distance errors are plotted in log-scale, so the difference between these 

two CRLBs points to a significant increase in the performance. 

 

5.4.3. Peripheral Measurements with Imprecise Positions 

In this section, the simulation including peripheral measurements with imprecise 

positions is presented. A Monte Carlo simulation which consists of 1000 iterations is 

conducted to determine the localization performance of the algorithms. The simulation 

setup is depicted in shown in Figure 5.8.a by means of a sample measurement scheme 

where there are eight central measurements with precise positions and three peripheral 

measurements with imprecise positions and the standard deviation of the sensor position 

error -b is set to 3. In each iteration, the sensors and the target are randomly positioned 

in accordance with the peripheral and central constraints settled in previous simulations. 

As depicted previously, in order to take the advantage of the peripheral measurements, 

the localization system must rely on the peripheral measurements even though their 

positions are imprecise.  

The first method shown in Figure 5.8.b is Distance NLS. Because of peripheral 

measurements, the surface of the conventional distance NLS cost function becomes 

somewhat complicated, so the conventional distance NLS suffers from local minima. 

Therefore, Distance NLS presents the worst performance in this scenario because of 

convergence issues. However, Circular Uncertainty that this study has introduced in 

(107) presents a better performance compared to distance NLS. It has been mentioned 

that Circular Uncertainty is a safe and reliable way of obtaining global minimum. When 

the estimation of Circular Uncertainty is employed as the initial point of Distance NLS, 

then Distance NLS can be also guided to obtain the global minimum. Therefore, "Circ. 

Unc. + Dist. NLS" has the same level of RMS error with Circular Uncertainty which is 

quite smaller than that of only Distance NLS. In this context, the important advantage of 

Circular Uncertainty which safely obtains the global minimum becomes visible. 
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 (a)  (b) 

Figure 5.8. (a) The simulation setup - a sample measurement scheme with eight central precise and three 

peripheral imprecise measurements, (b) the RMS distance errors for various localization 

methods 

 

The next thing to be discussed about Figure 5.8.b is that SR-WLS fails to attain 

CLRB for high level of distance-to-target measurements. It has been discussed that the 

strategy of the SR-WLS is to reduce the weights of the measurements with imprecise 

positions in order not to rely on these measurements. However, the major aim here is to 

take the advantage of the peripheral measurements as much as possible despite their 

positions are imprecise in order to exploit all available information for localization of 

the target. Therefore, this situation creates a trade-off for SR-WLS. On the other hand, 

as a complete basis for estimation, the MLE solution can apparently do better than 

weighted least squares algorithms. MLE solution automatically takes the standard 

deviations of errors in distance measurements and imprecise sensor positions into 

account. Not only these, it also takes the geometry or the arrangement of sensors into 

account, which guarantees a superior performance. Eventually, the proposed method, 

i.e. MLE by Circular Uncertainty, can demonstrate better performance compared to all 

other competing methods. Circular Uncertainty or "Circ. Unc. + Dist. NLS" can not 

attain CRLB for low -¤ levels and oppositely SR-WLS can not attain CRLB for high -¤ levels. However, MLE by Circular Uncertainty can always attain CRLB for all levels 

of -¤ as seen in Figure 5.8.b. 

Finally, average execution times of these algorithms are provided in Table 5.1, 

when these algorithms are performed on an ordinary desktop computer with Intel 

Core(TM) i7-3630QM CPU@2.40 GHz Processor and 16 GB RAM via MATLAB 
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[77]. As can be seen, Circular Uncertainty has the smallest execution time (0.049 

seconds) while Distance NLS follows it with an important gap. Circular Uncertainty 

attains this performance gain because it skillfully reduces the NLS localization problem 

to a simple task. Circular Uncertainty searches the global minimum in a one-

dimensional space while distance NLS makes a two-dimensional search. Circ. Unc. + 

Dist NLS comes after these methods with 0.071 seconds. After these three methods 

which do not take the uncertainty in the sensor positions into account, SR-WLS comes 

with 0.073 seconds of execution time in average. This execution time is quite closer to 

that of Distance NLS or Circ. Unc. + Dist NLS. The success of SR-WLS in terms of 

execution time is that it makes use of the squared ranges in order not deal with square 

roots in the estimation cost function. The last method in terms execution time is MLE 

by Circular Uncertainty. However, the average execution time of MLE by Circular 

Uncertainty and SR-WLS are almost same. When it is considered that this method 

achieves a very complicated task and it outperforms all the other methods in terms of 

localization error, MLE by Circular Uncertainty appears as the most effective method 

among others. When, there exist uncertainties in sensor positions, the success of MLE 

by Circular Uncertainty in terms of both localization accuracy and execution time is due 

to the fact that it reduces the multi-dimensional search space in into one-dimensional 

space without decreasing the localization accuracy. 

Table 5.1. Average execution times of the algorithms when these algorithms are performed on an 
ordinary desktop computer 

Method Execution Time (sec) 

Circular Uncertainty 0.049 

Distance NLS 0.069 

Circ. Unc. +  Dist. NLS 0.071 

SR-WLS (Chen & Ho, 2104) 0.073 

MLE by Circular Unc. 0.074 

 

Finally, the overall idea of Circular Uncertainty is visually demonstrated in a 

movie to give more tangible understanding of this concept  which has been uploaded to 

the permanent link https://youtu.be/sj5CUsZs8W8 and its screen captures are provided 

in Figure 5.9. 
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Figure 5.9. Screen captures of the descriptive video about Circular Uncertainty 
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6. DISCUSSION 

Wireless localization is a significant research area which addresses many different 

applications from rescue activities to smart transportation systems etc. Wireless 

localization with moving sensors is a challenging task which involves several research 

directions such as trajectory planning and optimization, creating effective localization 

strategies, building efficient algorithms and so on. Moving platforms have a couples of 

physical constraints such as a limited useful load and limited time of flight, so the 

localization systems must include the most efficient hardware and software 

combinations. While RSS based localization systems are criticized not to able to result 

in robust solutions, undoubtedly they are the most affordable solutions among other RF 

localization parameters. Therefore, there exists a growing attention on RSS based 

localization systems to take the advantage of their affordable and simple structures. 

In this study, a thorough literature review has been provided. First, basics of RSS 

and range-only localization are discussed together with related formulas. The basic idea 

behind RSS and range-only localization is depicted with illustrative flow diagrams in 

order to provide a better insight into the localization processes. Second, current research 

areas in RSS based localization are discussed. Next, a broad literature review on 

Differential RSS (DRSS) is presented. The literature of RSS based localization is so 

spread that different expressions are being used for the same concepts by different 

authors. For this reason, a rigorous literature review is provided which exhaustively 

includes all related previous studies. Next, the previous studies about joint estimation of 

path loss exponent and emitter's location, and RSS based Localization via UAVs are 

provided. Then, trajectory optimization for emitter localization are discussed and 

finally, a comprehensive literature review on sensor position uncertainty is presented. 

When a moving sensor travels with the aim of estimating the location of the 

emitter, the first goal must be to create an effective route planning strategy which 

statistically guarantees the best possible estimation capability at the end of the travel of 

moving sensor. Section 3 deals with trajectories of the moving sensors and describes the 

essence of trajectory planning through a new perspective. Moving sensors can be 

carried by many different moving platforms such unmanned aerial vehicles etc. As 

mentioned above, mini UAVs can have a couple of physical constraints including 

maximum flight time, maximum weight of useful load etc. All these constraints can lead 

to a limited range of travel for small UAVs. Moreover, the emergency of the 
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localization mission may imply time constraints which also result in limited total 

lengths of travel. Therefore, the best possible estimation capability can be desired given 

a limited length of travel which is shorter than initial distance to emitter. Consequently, 

Section 3 explores the best angular direction given a limited length of travel for both 

RSS and range-only based localization. 

The common point of trajectory optimization studies in the literature is to model 

the motion of the sensor as a set of discrete waypoints together with discrete 

measurements. However, the motion of moving sensors is in fact a continuous path, 

therefore when measurements are frequent enough, they can be regarded as continuous 

time stochastic processes. Therefore, a new perspective which views trajectories of the 

moving sensors as continuous paths is required. The summation operators within FIM 

can be appropriately converted to line integrals [69]. Consequently, to provide a detailed 

insight into trajectory optimization for range-only and RSS-based localization, this 

study shifts the scope of Fisher Information Matrix (FIM) from discrete measurement 

geometries to continuous measurement curves. In order to differentiate continuous 

curve FIMs from usual discrete FIMs, the FIMs associated with continuous trajectories 

has been called as Fisher Continuous Information Matrices (FCIM) in this study. 

By means of FCIM, Section 3 has demonstrated that the best direction is only 

function of the ratio to |�|/� i.e. the ratio of the total length of travel and the initial 

distance to emitter. Then, Section 3 presents the plots of the best angular orientation for 

range only and RSS based localization with respect to |�|/�. For range only 

localization, the best angular orientation mostly matches the arccosine function for 

small values of |�|/�. However, for large values |�|/�, the best angular orientation 

deviates from the arccosine function because of the need for uniform distribution of 

projected measurements along unit circle. For RSS based localization, the best angular 

orientation always stays well below arccosine because the measurement points which 

are close to the target are more valuable due to log-normal shadowing. The important 

point regarding to RSS based localization is that the best angular direction is 0 degree 

when |�|/� is 1. In other words, if the moving sensor is able to reach to emitter, then it 

must be directed towards the emitter for best possible estimation capability. This result 

justifies the main idea of Direction of Exponent Uncertainty which aims to create a 

direction towards the emitter for any time of the travel. 
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In Section 4, DRSS based emitter localization is analyzed from a geometrical 

point of view. The new proposed method, Direction of Exponent Uncertainty (DEU), is 

a powerful geometrical solution which brings significant computational efficiency and 

robustness in emitter localization. It has been described that in case of three 

measurements, the uncertainty in the location of the emitter can be modeled as a special 

line when path loss exponent is unknown. When there are multiple number of 

measurements from different locations, multiple DEUs can be obtained corresponding 

to different triple combinations of measurements. Finally, it has been shown that finding 

the intersection point of these DEUs is an effective way of estimating the location of the 

emitter, which attains CRLB. 

The initial motivation behind DEU is to create a building block for an RSS-based 

tracking system whose objective is to move the sensor towards the location of the 

emitter at the smallest possible time. DEU based tracking is valuable because the sensor 

moves towards the emitter without calculating the location of the emitter. By this way, 

the sensor can more quickly initialize its motion and it can more flexibly update its 

route because only three measurements are engaged to derive a DEU. DEU based 

systems will be useful in a lot of important applications such as rescue activities, 

detecting unlicensed radio broadcasting etc. where the task is to reach to the target as 

soon as possible. 

The new method, DEU, emerges as a critically important tool when some of the 

parameters of path loss model are changing during localization process, such as the 

emitter is slightly moving (i.e. (�, �) is changing), noise level is changing or finally path 

loss exponent is varying over time. With these changes in the parameters of path loss 

model, the measurement history can lose its validity after a period of time, therefore the 

localization system may need to start over by taking new measurements. In this kind of 

scenarios, DEU based tracking systems can effectively continue to function because it is 

based on very small number of measurements. DEU can calculate a direction towards 

emitter before the consistency between measurements is degraded. 

The power of DEU is to be a geometrical solution. DEU is a powerful geometrical 

tool which removes a lot of computational waste such as iterations or grid searches. It 

converts minimization of non-convex cost function to a very simple task which is to 

find the intersection points of lines. Therefore, this study is an important research which 



 

83 
 

brings a significant emphasis on the benefits of innovative geometrical solutions to 

localization problems. 

In Section 5, a new method, i.e. Circular Uncertainty, is introduced to deal with 

the issue of imprecise sensor positions in emitter localization. Emitter or source 

localization is a field of sensor array processing, which attempts to find the location of 

different of type of sources through the information from various sensors especially in 

noisy environments. There can be several types of error within the information utilized 

in source localization such as the error at measurements or the error at measurement 

positions etc. In the literature, it is mentioned that if the sensors are moving, then it is 

very likely that the measurement positions are imprecise. Therefore, Section 5 provides 

an effective new method to solve the localization problem by means of distance-to-

target measurements in the presence of sensor position errors. 

Distance-to-target measurements are nonlinear observations with respect to the 

unknown parameters namely the coordinates of the target location [63]. This situation 

makes target localization based on distance-to-target measurements a challenging task. 

Therefore, the estimators seeking the best possible estimation such as maximum 

likelihood estimation (MLE) require iterative searches along nonlinear cost surfaces. 

Iterative solutions are computationally expensive and their accuracy significantly 

depends on the initial points of the iterations. In various localization scenarios, MLE 

cost surface can be complicated with a couple of local minima and saddles points. 

Therefore, depending on the initial point, the minimization process can end up with a 

local minimum, so this can lead the performance of estimator to diverge from the ideal 

case. However, Section 5 proposes a completely safe localization scheme without any 

convergence issue. 

When the sensor positions have uncertainties in addition to the uncertainties in 

distance measurements, it brings an additional difficulty for localization system. In 

these cases, the positions of sensors also become unknown parameters which need to be 

jointly estimated together with the target location. The number of parameters to be 

estimated becomes very large, so reaching the global minimum becomes a significant 

challenge for iterative solutions [63]. Taking this fact into account, this study removes 

this issue by conveniently reducing the multi-dimensional search space to a single 

dimensional space by means of the proposed method called Circular Uncertainty. The 

method of Circular Uncertainty allows the localization system to safely find the global 



 

84 
 

minimum even for complicated cost functions in the existence of imprecise sensor 

locations. 

Distance based localization can be solved by nonlinear least squares (NLS) of 

errors of distance-to-target measurements. However, NLS solutions are not suitable to 

deal with the uncertainties in sensor positions. Weighted least squares (WLS) can be 

regarded as a special case of NLS where each term is skillfully weighted by taking the 

uncertainties in sensor positions into account. Weighting the squared distance errors can 

be quite useful to manage the uncertainties in sensor positions. However, to obtain a 

better scheme of localization, the cost of estimation must be a complete equation which 

includes two different parts for both distance-to-target measurement errors and sensor 

position errors. Therefore, in this study, the complete maximum likelihood cost function 

is established and solved in a smart and convenient way which guarantees to obtain the 

Cramer Rao Lower Bound (CLRB) in any condition.  

In practical situations, the sensors can only be allowed to be located within a 

limited region whereas it is very likely that the target can be located far from this 

region. The important observation is that while it is very common to encounter this type 

of localization scenario, it provides a very limited capability for estimating the angular 

position of the target via distance-to-target observations. Therefore, in addition to the 

central measurements taken within a limited region, a few number of peripheral 

measurements can be deployed to dramatically increase the estimation capability of 

localization system. However, to scan a broad peripheral area, the peripheral 

measurements can be designed as moving sensors, which, as a result, brings the issue of 

uncertainty in the position of sensors. Moreover, both the error in the sensor positions 

and the error of distance measurements can be significantly high in practical situations. 

Therefore, the localization systems must be so robust that they keep functioning even 

under high level of noise and they must try to localize the target as accurate as possible 

in every case. Section 5 is dedicated to build this type of robust localization system. 

For the scenario mentioned in the above paragraph, it is demonstrated that NLS 

cost surface of range-only localization has the croissant shape which results in the new 

concept Circular Uncertainty. Circular Uncertainty is basically "a circular valley" within 

the surface of NLS cost function. When new measurements are received which disturbs 

the initial estimation, the new disturbed estimation will move along this "circular 

valley" instead of climbing the hillsides. Once "a base cost surface" is established by 



 

85 
 

means of a couple of central measurements, in case of receiving some new 

measurements which disturb the initial estimation, the disturbed new estimation has a 

tendency to move along the Circular Uncertainty trajectory. Using this observation, a 

new robust localization scheme which finds the global minimum of the MLE solution 

has been created. The new solution, which takes the advantage of obtaining MLE in a 

robust way, attains CRLB regardless of the noise level whereas other solutions partly 

fail to achieve this performance. 

In localization systems, the biggest problem with the MLE solution is that it is 

said to be computationally inefficient. Moreover, because of local minima or irregular 

cost functions, attempting to reach MLE solution can be sometimes problematic or even 

impossible. In this study, a new method, Circular Uncertainty, is established to 

effectively and reliably solve a very complicated MLE problem. Circular certainty not 

only makes it possible to reach MLE solutions, but also significantly simplifies this 

task. A high dimensional joint estimation problem is reduced to the estimation of only a 

single parameter i.e. �. The success of Circular Uncertainty is to innovatively handle the 

range-only localization problem with solid observations. 
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7. CONCLUSION 

Recent advancements in wireless technology has dramatically increased the use of 

wireless devices in every field of the life. Therefore, localization of wireless devices has 

become an important requirement for many different contemporary and prospective 

applications. In rescue activities, the nature travelers, the climbers or the people who are 

lost in some regions due to accidents, natural disasters or any other reasons can be 

searched via the wireless devices that they carry. Moreover, the workers or the people 

who are subjected to this type of risks can be requested to carry special wireless devices 

which can broadcast some special high level emergency signals to allow the rescue 

teams find their location. Another subject of wireless localization is to localize the 

unlicensed broadcasts. Unlicensed broadcasts can be delivered from a changing position 

via moving platforms such as cars or trucks, so detecting these broadcasts can be a quite 

challenging task. Wireless localization also includes detection or localization of vehicles 

to build smart transportation or smart traffic systems. Localizing the trespassing people, 

vehicles or drones within a specific area through the wireless devices that they have is 

also another topic of wireless localization. Finally, tracking some special animals or 

endangered species can be also achieved by means of wireless localization. 

Commercialization of UAVs (especially mini drones or quadcopters) in the recent 

years has allowed a very large of bulk of people to access this technology. The 

increased popularity of UAVs in civil applications takes the attention of both academic 

and industrial environments. Therefore, researchers throughout the world are trying to 

expand the scope of the applications that can be achieved by means of commercial 

UAVs. Wireless localization is among the applications that is desired to be achieved via 

mini commercial UAVs. Several issues such as the signals of target RF emitters are 

weak, the duration of the broadcast is short, the signal is distorted due to rural or urban 

terrain and weather conditions, the target RF emitter are moving and so on make it 

necessary to mount the localization systems on moving platforms namely UAVs. 

However, commercial UAVs are small, inexpensive, and easily accessible aerial 

vehicles which are mostly used for civilian purposes, and they have significant 

restrictions on the amount of useful load they may carry and the flight time. Therefore, 

use of these commercial UAVs in wireless localization requires the localization 

algorithms to be made feasible under very important constraints and lower components, 

so it requires new research. 
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RSS based and range only localization of wireless emitters with moving sensors is 

a multidimensional problem which requires us to consider many different aspects. 

Optimization of trajectories of the moving sensors to obtain the best possible 

localization capability, a robust estimation structure which has no convergence issue 

while finding the location of the emitter, a fast localization algorithm with several 

unknown parameters for real-time systems, a framework to handle the uncertainties in 

sensor positions are all among the requirements of creating a successful localization 

system with moving sensors. This study provides a complete localization structure 

which covers all of the issues mentioned above. All the proposed methods include 

innovative and smart solutions to the research problems. The proposed solutions in this 

study are based on remarkable new observations obtained after careful investigation of 

the problems. All the new concepts are depicted not only with clear formulation but also 

with visual materials such as figures, flow diagrams and illustrative movies in order to 

give better insight into the subject. The proposed solutions namely Direction of 

Exponent Uncertainty for unknown path loss exponent and Circular Uncertainty for 

imprecise sensor positions are attaining CRLB while they are also computationally 

efficient. Consequently, creating effective yet efficient solutions at the same time has 

been the major goal of the study. At the end, from trajectory planning to localization 

with several unknown parameters, from efficient strategies for emitter tracking to 

skillfully managing the uncertainties in sensor positions, this study provide a complete 

structure for RF emitter localization with moving sensors. 

In the future research, the new proposed methods which are designed for limited 

number of moving platforms in this study can be expanded for multi-platform systems. 

As an example, two moving sensors starting their motions far from each other can be 

engaged to obtain DEUs from two different locations. Therefore, the location of emitter 

can be effectively estimated by means of intersection of DEUs at the very beginning. 

Moreover, the proposed methods can be combined with different parameters such 

TDOA or AOA in order to create more robust systems. Finally, this study provided new 

methods which have great potentials to be developed in order to obtain more robust 

wireless localization systems in the future. 
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