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OZET

HAREKETLI SENSORLERLE PAB- iSBIRLIKSIZ
YAYICI KONUMLANDIRMA

Seckin ULUSKAN

Elektrik-Elektronik MUhendisfii Anabilim Dal
Anadolu Universitesi, Fen Bilimleri Enstitiisii, M2@18
Dansman: Dog. Dr. TansulEIK

Hareketli sensorlerle radyo frekansi (RF) yayiankmlandirma; rota planlamasi,
sgilam tahmin sistemleri ve verimli konumlandirma altgoalari vb. konularini iceren
cok boyutlu bir sorundur. Bu caina, hareketli sensarlerle gaauli bir konumlandirma
sistemi elde etmek icin eksiksiz bir yapi sunmaktadota planlamasina yonelik olarak
bu calsmada, surekli rotalar boyunca surekli 6lgimleréiimi varsayan Fisher surekli
bilgi matrisi (FCIM) adi verilen yeni bir kavram wturmustur. FCIM'ler kullanilarak,
sinirh uzunlukta dgrusal bir rota icin en iyi dgrultunun, yalnizca toplam hareket
uzunlysunun yayiciya bgangi¢ uzakkina oranin bir fonksiyonu olgu kanitlanmgtir.
Dahasl, alinan sinyal gicu (RSS) tabanli konumtamaliicin, hareket eden sensor
yayiciya ulaabiliyorsa, en iyi rotanin yayiclya ga hareket etmek olgu tespit
edilmistir. Sonraki @amada, RSS tabanli konumlandirma icin yol kayisdasinin
(PLE) ve yayicinin gucinin bilinmedli durumlarda, Ustel Bilinmezlik Dgultusu
(DEU) olarak adlandirilan yeni gugcli bir geometgéizim oOnerildi. DEU, yayicinin
konumunu tahmin etmeden onagdo hareket etmek icin temel glurmaktadir. Bu
nedenle DEU, hareketli sensoérler icin etkili bitaglanlama araci ve dahasi Cramer
Rao Alt Sininni (CRLB) yakalayan ve hesaplama mgligini artiran etkin bir
konumlandirma sistemi olarak 6nerilmektedir. Yaytonumlandirmada hareket eden
sensorlerden yararlaniimasi, kacinilmaz olarak Ggekenumlarina yonelik bilginin
hatali olmasina neden olur. Bunun ic¢in bu ggah, yayiclyr 6zel bir cember boyunca
arayarak Maksimum Olabilirlik tahmininin (MLE) geneninimumunu guvenli bir
sekilde bulan Dairesel Belirsizlik adi verilen yebir konum belirleme stratejisi
onermektedir. Ojer yontemler kismen barisiz olurken, Dairesel Belirsizlik yontemi
her durum icin CRLB'yi yakalayabilmektedir.

Anahtar Sozciikler: Konumlandirmajnsansiz Hava AracilA), Rota Planlamasi,
Alinan Sinyal Kuvveti (RSS), Belirsiz Sensor Konumu



ABSTRACT

PASSIVE NONCOOPERATIVE RF EMITTER LOCALIZATION
VIA MOVING SENSORS

Sec¢kin ULUSKAN

Department of Electrical and Electronics Enginegrin
Anadolu University, Graduate School of Sciences;di&£018

Supervisor: Assoc. Prof. TansiiiK

Localization of radio frequency (RF) emitters witinoving sensors is a
multidimensional problem which requires trajectptgnning, robust estimation systems
and efficient localization algorithms etc. Thisdfuyrovides a complete framework to
achieve a successful localization system with mg#ansors. For trajectory planning,
this study introduces a new concept called Fisharticuous information matrix
(FCIM) which assumes continuous observations thrazantinuous trajectories. Using
FCIMs, this study proves that the best directioradimited linear trajectory is only a
function of the ratio between the total travel lmgnd the initial distance to the emitter.
Moreover, for received signal strength (RSS) bdsedlization, the best trajectory is
found to move towards the emitter, if the movingss® is able to reach it. Next, a new
powerful geometrical solution called Direction ok@dnent Uncertainty (DEU) is
proposed for RSS based localization when pathdepenent (PLE) and transmit power
are both unknown. DEU is a basis to move towardsethitter without estimating the
emitter location. Therefore, DEU is proposed asetiitient route planning tool for
moving sensors and an effective localization scheumieh attains Cramer Rao Lower
Bound (CRLB) with increased computational efficignExploiting moving sensors in
emitter localization inevitably results in impreeisensor positions. Therefore, this
study proposes a new search strategy, namely @irtiricertainty which safely finds
the global minimum of Maximum Likelihood estimatigMLE) by searching for the
emitter along a special circle. Circular Uncertpirdttains CRLB, where other
competing methods partly fail.

Keywords: Localization, Unmanned Aerial Vehicle (UAV), Trajecy Planning,
Received Signal Strength (RSS), Imprecise senssitiqgo.
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1. INTRODUCTION

Mobile communication devices that communicate ia thdio frequency (RF)
band are getting extensively widespread througtieutvorld because of the ease of use
and implementation of wireless communication systemcalization of these and other
similar devices is an important requirement in baothl and military areas and has a
wide range of applications. For several differepplacations, accurate localization
systems are created to meet a broad range of neeldsling smart transportation
systems to mobile user tracking, rescue activibedefense systems and so on. For this
reason, positioning different types of RF emitteith various different techniques is an
important problem which is vigorously studied ir iterature of signal processing and
wireless communications.

The localization system should be able to coveryndifierent types of emitters
and a wide range frequency spectrum to able toemehvarious tasks. Several issues
(such as the signals of target RF emitters are wik duration of the broadcast is
short, the signal is distorted due to rural or arib@rain and weather conditions, the
target RF emitter are moving and so on) make iesgary to mount the localization
systems on moving platforms (mostly on aerial vielsic The localization system
should be able to move towards the coverage ard@edarget RF emitter and scan the
relevant area in a short time to effectively lopalthe target RF emitter. Therefore, all
these requirements make it inevitable to exploivimg sensors in localization systems.

The previous studies in this area can be dividamtino parts according to the use
of single or multiple platforms in the localizati@ystems. In multi-platform systems,
organizing the coordination or synchronization kesiwthe platforms and compensating
time delays between measurements if necessary @arplicating the localization
system. For this reason, it is necessary to dewlsggms with single or limited number
of platforms that are less costly than multi-platiosystems. Previous studies in this
area have been carried out with the capabilitiesnohanned aerial vehicles (UAVS) in
military standards (in terms of flight time, altk®, power, equipment etc.). However,
increasing popularity of wireless devices in catea requires the use of mini UAVs in
RF emitter localization systems. Mini UAVs are sknhahexpensive, and easily
accessible mini-sized aerial vehicles which aretipassed for civilian purposes, and
they have significant restrictions on the amounus¥ful load they may carry and flight
time. Therefore, the use of these mini UAVs requitbe existing localization
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algorithms to be made feasible under very importanistraints and lower components,
So it requires new research.

Wireless localization is the estimation of the lhma of the emitters (or
sometimes the receivers) within the frameworks afious receiver-emitter scenarios
using radio frequency waves. These studies aralativinto two main categories in
terms of the localization scenario: cooperativédmrative and non-cooperative
scenarios. In cooperative scenarios, there is pazation between the receivers and the
emitter to achieve determination of the emitteiatamn. On the other hand, when there
IS no co-operation between receivers and emitten tit is called non-cooperative
scenario. In these scenarios, the receivers haaedomplish the positioning task by
themselves.

The most commonly used parameters in RF sourcéZatian are received signal
strength (RSS), angle of arrival (AOA), time ofieal (TOA), time difference of arrival
(TDOA) and finally hybrid parameters. TDOA and AQ#ased systems have been
attributed to yield more accurate localization eyst compared to RSS. While RSS
based localization systems are criticized not tte @b result in robust solutions,
undoubtedly they are the most affordable solutiamsong other RF localization
parameters. Because of their physical constramtsjing platforms bear the necessity
to use the most efficient hardware and softwarelioation. Therefore, there exists a
growing attention on RSS based localization systemtake the advantage of their
affordable and simple structures.

In Figure 1.1, a moving platform which is designasl a moving sensor is
illustrated. The UAV shown in Figure 1.1 basicahlgludes a GPS, an RSS sensor (or
any different type of sensor) and a processing diié RSS sensor measures the RSS
values regarding to the signal incoming from thettem The GPS is engaged in order
to locate the UAV itself, so each RSS measuremeats be matched with the
measurement location. The processing unit can bizedt to make the necessary
computation to estimate the location of the emitierto dynamically determine the
route of the UAV. If such a processing unit is nmgs then each RSS value and
measurement location must be transmitted to a aestation which estimates the
emitter location and controls the movement of th&VU In this study, advanced
algorithms for these moving platforms are createdrder to allow these platforms to

estimate the emitter location more effectively.
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Figure 1.1.Unmanned Aerial Vehicle (UAV) with RSS sensor desigis a moving sensor.

Section 2 provides a literature review which fillststrates the basics of RSS and
range-only localization. Second, current researgasain RSS based localization are
discussed and then a broad literature review ofei@ifitial RSS (DRSS) is presented.
Next, the previous studies about joint estimatiérpath loss exponent and emitter's
location, and RSS based Localization via UAVs areviged. Then, trajectory
optimization for emitter localization are discussadd finally, a comprehensive
literature review on sensor position uncertaintypissented. When a moving sensor
travels with the aim of estimation the locationtleé emitter, the first goal must be to
create an effective route planning strategy whititigically guarantees the best
possible estimation capability at the end of tlavet of the moving sensor. Section 3
deals with trajectories of the moving sensors aesicdbes the essence of trajectory
planning with new understandings. It explores tbstlangular direction given a limited
length travel for both RSS and range-only basedlipation.

After trajectory planning, an effective and effiaielocalization framework is
necessary to be able to successfully achieve thie gw@al i.e. localization of the
emitter. Path loss model which describes RSS asdibn of the distance to the emitter
is a useful building block for creating RSS basechlization systems, however, it is
possible that most of the parameters in path losdeincan be unknown. Therefore,

Section 4 provides a new localization as well asoate planning strategy called

3



Direction of Exponent Uncertainty [1] in order teal with the harsh localization
conditions where both path loss exponent and ersittegnal power are unknown. The
proposed solution is an efficient geometrical solutwhich attains Cramer Rao Lower
Bound (CRLB) i.e. the statistical lower bound givbe noise level.

Finally, when dealing with moving sensors, it isywkkely that the measurement
positions are also uncertain in some extent du¢héomovement of the platform.
Therefore, Section 5 creates an advanced localizascheme called Circular
Uncertainty [2] in which measurement position esrare handled in a smart way to
achieve the statistically best solution. Sectioprésents the discussions about each

section and finally Section 7 provides the condn®f the study.



2. LITERATURE REVIEW

In this section, a comprehensive literature revieprovided. First, basics of RSS
and range-only localization are discussed withsthative flow diagrams depicting the
localization process. Second, current researchsaieaRSS based localization are
discussed and then a broad literature review ofef@ifitial RSS (DRSS) is presented.
Next, the previous studies about joint estimatiérpath loss exponent and emitter's
location, and RSS based Localization via UAVs arevided. Then, trajectory
optimization for emitter localization are discussadd finally, a comprehensive

literature review on sensor position uncertaintygrissented.

2.1. Basics of Received Signal Strength (RSS)

Received signal strength can be regarded as thage/@ower of an incoming
signal received by a sensor. Path loss model fateslthe received signal strength
(RSS) in dB (or dBm) as the following way [3]:

P =p, — 10n logyo(d/do) + W (1)

where p, is the emitter's power in dB (namely the RSS vahtea reference
distanced,), d is the distance between the sensor and the enatidn is the path loss
exponent. An additive zero mean Gaussian ewowith standard deviatiom are
included within the model to represent the measargrarror. Becaus# is a random
variable,P is also a random variable. Therefore, the meanevaf P is a function of
Po, n and finallyd.

In some of the studies in literature, the powerenfitter p, and the path loss
exponentn can be assumed to be known if the characterisfiche emitter and the
terrain are known. Basically, an RSS value provaesie for the distance between the
sensor and the emitter, therefore by means of tlogvledge of the distances between
the multiple measurement points and the emitter ldalization algorithms are trying
to find the best possible position of the emitteis also possible that, is not a known
parameter in advance if the characteristics ofdimitter can not be guessed. In this
case, the difference between two RSS values froodifferent positions is providing a
cue about the ratio of the distances of the emitbethese two distinct positions.
Therefore, localization process becomes more caateld and a new feature called
Differential RSS (DRSS) has been introduced to dethl these situations.
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Moreover, path loss exponent can be also unknovan far the localization of the
emitter. Path loss exponent is a parameter whighertts on the medium or the
environment that the signal is propagating. Inlifeeature for outdoor environments, it
is recorded that this value can range between 24ar@n the other hand for indoor
environments, it is possible that path loss expboan even be as high as 5 or 6. It is
also possible that path loss exponent can be Itiveer 2, if a corridor of the buildings
creates a tunnel effect which results in a susthsignal along this corridor. While
there exists very important uncertainty in pathsl@xponent in applications, in the
literature there are only a few studies which tpkéh loss exponent as an unknown
parameter. This situation reveals an importantigdpe literature that needs to be filled

by advanced studies.

2.2. Fundamentals of RSS Based and Range-Only Localizati

In this section, RSS based and range-only locaizatre mathematically
presented and also visually depicted by meansoef @tharts. One of most important
schemes of RSS based localization is depicted gurgi 2.1. As illustrated, RSS
measurements depend basically on the positionbeosénsors and the emitter. RSS
measurements are also influenced by the level esorement error which is sometimes
referred to as "Log-Normal Shadowing”. As seen imgufe 2.1, these RSS
measurements are converted to the informationeotlistances between the emitter and
each sensors. Now, the issue is that because &unepaent errors, it is not possible to
find a position for the emitter which satisfies #ie distance conditions declared by
RSS measurements. Therefore, the aim of the lat&lizis to find such an estimation
for the position of emitter that the mismatch betwehe measured and the estimated
distances will be minimum. One of the way of acmgvthis task is to employ
Nonlinear Least Squares (NLS) method to find a fpwihich minimizes the mean of
squared distance error as shown in (2) wiiefey;) is the location of théth sensor,
and D; is the measured distance ity sensor (or measurement) aNdis the total

number of sensors (or measurements):

N

(%,9) = argmin Y (VG =27 + (i = 92 = D)’ @)

xy) =




This way of localization is called "lateration". teaation (or sometimes tri-
lateration) is a general name for the processeshwaccomplish localization using
distance (or range) information when distance mfmtion are obtained through many
different ways such as RSS, time of arrival (TOAY dime of flight (TOF) and so on.
Lateration can be the statistically best solutishoag as the error in distance-to-emitter
measurements is assumed to be Gaussian. As mehtiaipeve for RSS based
localization, the error is modelled as log-norm@dowing, yet NLS solution can still

effectively approximate Cramer Rao Lower Bound (GRL
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Figure 2.1.NLS solution of RSS based localization: RSS basedtion

In Figure 2.2, another RSS based localization sehismprovided again by means
of a flow diagram. In this figure, the measured R@&ies are not converted to distance
values. On the other hand, by setting a prospegibiet for the emitter, the distances
between the emitter and each sensors are deternainédhen converted to RSS values.
In this scheme, the aim of the localization isitalfsuch an estimation for the position
of the emitter that the mismatch between the medsand estimated RSS values will
be minimum. This task is achieved by finding a paumich minimizes the mean of

squared RSS error as shown in (3):

N

x,9) = argminz <Pi —po + 10.n.logy, <M>> 3

xy) — do



whereP; is the RSS value measuredith sensor and;(x, y) is the distance of

ith sensor to angx, y) locatior as the following:

2;(x,y) = (i — 02+ (i — ¥)? (4)
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Under the assumption of L-Normal shadowing whiclproposes normally
distributed errordan RSS values, this localization scheme correspdndslaximum
Likelihood Estimation (MLE).Now, let us define an RSS error vector whdth

element is théth RSSerror for the estimation of the emitter location
Is;rr(i) = P;—po + 10.n.logo(4;/d,) %)

The joint probability density function 1I3W can be written as (6):

- 1 1 - T -
- - _ = -1
(et ) = (=5 () 7 () ©
whereC is the covariance matrix (13,3”. BecauseP,,..(i) 's are independe, C
becomes a diagonal matrices whose diagonal eleraggs? i.e. the tandard deviation

of error. Therefore, (63an be rewritten as the multiplicen of eachith term as shown

in (7):



L 1 4,06\
p(ﬁerr | x, y) = | | exp (— = (Pl- — Py + 10.n.logy, <—L ' >> > (7)
t_LVem 02 20 do

If the natural logarithm of (7) is taken, then tbBowing equation is obtained:

2
In (p(Bor 1 %.7)) = =N In(V2m 07) - %Z (Pi —po + 10.n.10gs (—Ai(;‘; 3’)>> 8)

N
i=1
It can be observed that maximizing (8) correspotwlsminimization of (3).
Because of this reason, (3) can be directly cadlsedMLE solution of RSS based
localization. To sum up, in this section two impoitt schemes of RSS localization have
been discussed. Figure 2.1 and Figure 2.2 are tanigoictures of RSS localization, so
the next sections will mention these pictures agéirerefore, these important pictures

can be called as "RSS-Localization Flow Charts".

2.3. Current Research Areas in RSS Based Localization

This section briefly lists and illustrates the ttenin current research related to
RSS based localization. Even though there exist&a variety of studies, majority of
the studies falls into one of these topics listelbw [3]:

» Source of Location Error (Shadow Fading, systemic bias etc.)

* New Statistical Models for RSi.e. new path loss models)

« Statistical modeling of DRSS

« Geometrical interpretation and solutions for RSS and DRSS based lateration

» Least Squares optimization(linearization of NLS i.e. NLS to linear least
squares (LLS) conversion)

* Probabilistic approaches: Assuming that RSS has a log-normal probability
density distribution, the position of the emittereistimated as the most likely location.

« Statistical supervised learning: The sample distribution of the location
estimations are obtained through statistical |eayni

» Sensor Array Geometry and Positioning:In this field, the aim is to find the
optimum sensor array geometry to minimize the di/eyealization estimation error in
the area of interest. Path or trajectory planneug lge listed in this field.

» Kernel Based Algorithms: A kernel function is a nonlinear and parameterized

function of input variables. Model-based algorithose standard statistical models to



provide a relationship between distance and RSSefibre these algorithms require a
prior knowledge, and they are not able encapsulaecomplex relation with the
distance and RSS for indoor environments. Oppg@siiRES fingerprinting includes a
training phase to learn the relation between RSBd&stance. Kernel Based Algorithms
is to mix both model-based and RSS fingerprintilgg@thms.
* RSS fingerprinting: In these methods, machine learning tools are gragl®o

map RSS values to the certain locations in x-y dorttarough a training data. These
methods are useful especially for indoor local@ativhen the relation between distance

and RSS is not straightforward due to the comp@itatructures of building.

2.4. Literature Review on Differential RSS

The literature of RSS based localization is soagbteat different expressions are
being used for the same concepts by different asitiéor this reason, this section is
providing a rigorous literature review which exhiaey includes all related previous
studies by unifying the related concepts. RSS wdiffee, differential RSS or RSS ratio
are all same concepts which refers to RSS differémdB (or equivalently RSS ratio in
magnitude) between any two sensors located atreliffepositions. This concept has
been built to remove the necessity to know the tenst transmit power within RSS
based localization algorithms. In one of early sadon this subject, [4] has built a
method which is primarily based on comparison tditree strength of RSS values on
different sensors instead of using directly RSSueslon each sensor. In [5], authors
discuss that emitter's transmit power can be censtdas an unknown parameter,
therefore they mention about only considering tiféeretnces between RSS values
measured at pairs of receivers. They emphasizeRB& difference is analogous to
TDOA, because it removes the necessity to knovatheal transmit power. Then, they
explain that they are utilizing RSS differenceswssin directional antennas within a
sensor node to be able determine angle of arrM@K).

In [6], in order to discard the dependency on tmahgpower, magnitude RSS
values at two sensors are divided each other ardThylor expansion are applied both
to nominator and denominator to simplify the ecquati They called the ratio of
magnitude RSS values as energy ratio. In [7], fire time that the term differential
received signal strength (DRSS) is used to refetaking difference between RSS

values in dB at two sensors. They mentioned thaB®Rurves can be represented by
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circles, just as TDOAs can be represented by hygtierfunctions. By referring to [8],
they explain that DRSS circle is a different notittran the circles of RSS-based
lateration. After explaining some geometrical asperf DRSS, they created a least
squares estimation method based on DRSS. In [6Y, uked the term "RSS difference
(RSSD)" (in decibels) to refer to the same concafier explaining that this feature is
suitable for uncooperative scenarios, they explicitentioned that a RSSD is defining
a specific circle, and they formulated the cented @he radius of this circle as a
function of the RSSD value and the locations of semsors. They also created non-
linear and linear least square solutions to eséntla¢ location of the emitter. In [10],
they clearly matched the term RSS difference witicooperative scenarios. In their
studies [10], they gave a couple of RSSD algoritfionsnon-cooperative emitters. In
[11], the ideas related to DRSS in [7] are represin more detail. In [12], this time
the authors called DRSS circle as DRSS based fiatera

In [13], by using one of sensors as the referetheg; convert all their RSS values
to DRSS and then applied Weighted Least SquaresS{Wihethod for localization. In
[14], performance of maximum likelihood (ML) locaii estimators for both received
signal strength (RSS) and received signal streddgtarence (RSSD) are shown to be
equivalent to each other as opposed to the comraeption that the RSS-based ML
location would perform better. In [15], a brieklititure review specifically about DRSS
is provided. [16] and [17] preferred to use "RS&orao refer to DRSS, while [18] used
both the terms DRSS and RSS ratio in their papefl9] as a recent study, Taylor
series expansion approximations and semidefinisxadon (similar to [6]) based on
DRSS are applied. More recently, [20] renamed tbacept of DRSS as power
difference of arrival.

As can be seen, the terms DRSS, RSSD, RSS ratipamer difference of arrival
are used interchangeably each other in the prevétudies. The authors are also
sometimes publishing their studies independentlgiclv is also mentioned by [15].
Hence, by collecting all these terms, this studyaees the barriers of ambiguity in
terminology and the difficulties to access all theslated studies in this area. In order to
maintain consistency, the term "DRSS" is used @rdmaining of this study.

Even though there exist many different related issids mentioned above, there
is an important gap in the literature regardinghi® geometrical or analytical details of

DRSS. Even though some geometrical explanatiom3R8S are present, the common
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point of all of the previous studies on this subjedo create a cost function by means
of DRSS and try to solve non-convex cost functiongo find linear approximations.
Although it was explicitly explained that DRSS cesv are circles with certain
parameters, this information has not been utilinddcalization problems. On the other
hand, geometrical properties of DRSS can be effelgtiexploited to create a very
efficient algorithm in RF localizations. More retlgnintersection of DRSS circles are
studied in [20]. However, the key point is that CR8ircles are Apollonius circles,
therefore all of the properties of Apollonius casl also apply to DRSS circles.
Consequently, this study carefully investigateddhalytical and geometrical aspects of
DRSS circles from a broad perspective to build angstrical closed form solution
based on DRSS.

2.5. Joint Estimation of Path Loss Exponent and Emitters Location

In Section 2.1, it has been mentioned that path Bgonent can take several
different values regarding to the environmentatdesc Therefore, in some applications,
it IS necessary to jointly estimate both the lawatof the emitter and the path loss
exponent. In [21], it is mentioned that if pathdosxponent (PLE) is assumed to be
known a priori for RSS based localization, theis i significant oversimplification for
many application scenarios. They illustrated théeafof unknown PLE on the
localization performance. In [22], they argue tlvatactual environments, path loss
exponent for each link between emitter and recsigan be quite unpredictable. They
obtain a higher localization accuracy via jointirsttion of path loss exponent and the
location compared to the conventional localizatroathod using the same path loss
exponent for all the links. Below, some other stgdin this subject are listed:

- Mao et al. (2007) "Path loss exponent estimat@nwireless sensor network
localization” [23]

- Chan et al. (2011) "Received signal strengthlipaion with an unknown path
loss exponent” [24]

- Wang et al. (2012) "On received-signal-strengtisdal localization with
unknown transmit power and path loss exponent" [25]

- Salman et al. (2012) "On the joint estimationtleé RSS-based location and
path-loss exponent” [26]
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- Chan et al. (2012) "Estimation of emitter pow&cation, and path loss
exponent" [27]

- Gholami et al. (2013) "RSS-based sensor locatimain the presence of
unknown channel parameters" [28]

These studies all deal with localization in theeca$ unknown PLE. However
unlike these ones, in this study, the problem dnarvn PLE will be solved effectively

by means of new powerful geometrical definitions.

2.6. RSS Based Localization via UAVs

Passive RF localization with unmanned aerial veBigUAV) is one of the
emerging topic within academic and industrial emwments. There exist previous
studies which created RSS based localization systeith multiple UAVs (e.g. [29]).
Recently, there are new studies which are buildysiems specifically based on DRSS
(rather than RSS) for localization by UAVs. In [3@hd [31], to obtain optimal
trajectories for multiple UAVs during localizatioof multiple sources, the authors
directly exploited the concept of DRSS. They bthkir study based on Kalman filters.
In [32], a GPS jammer localization system with mgi UAV is created by means of a
DRSS geolocation approach. Below, some other studiech are related to RSS based
or range-only localization via UAVs are listed:

- Uluskan, S. et al. (2017) "RSS based localizatban emitter using a single
mini UAV" [33]

- Wagle & Frew et al. (2010) "A particle filter amach to wifi target
localization™ [34]

- Carvalho (2014) "Unmanned Air Vehicle Based Laalon and Range
Estimation of Wi-Fi Nodes" [35]

- Ibrahim & Sharawi (2014) "Real Time RSS Based ptoe@ Beam Steering
Algorithm for Autonomous Vehicles" [36]

- Ullah et al. (2013) "An Experimental Study on tBehavior of Received Signal
Strength in Indoor Environment (Small UAV)" [37]

- Cheng et al. (2012) "An indoor localization stigy for a mini-UAV in the
presence of obstacles" [38]

- Walter et al. (2012) "Localization of RF emittersing compressed sensing with
multiple cooperative sensors (Small UAV)" [39]
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In this study, by means of a geometrical approadtilding block (i.e. DEU) is
proposed which is a significant contribution for 8R based localization and target

tracking with moving sensors.

2.7. Trajectory Optimization for Emitter Localization

Radio frequency (RF) source localization with mgvpiatforms is a challenging
research area which deals with both trajectorynaigfition and target localization at the
same time. While authors previously used to uséeims such as observer trajectory or
receiver trajectory optimization to name their #8d40], with the dramatic increase in
the availability of small UAVs, the authors shifttdm these terms directly to UAV
trajectory optimization [41]. Even though RF localion with UAVs has a great
potential for many applications such as searchrasdue activities etc., because of the
physical constraints of UAVs, the need for veryaint solutions has emerged in terms
of both hardware and software [29].

Many different UAV path planning systems have bdmscussed which are based
on different sensors such as angle of arrival (AQ)e difference of arrival (TDOA),
scan-based (SC) and finally received signal streriBiSS) [42]. Among these, RSS
based systems have a special place because th@yerégps complex hardware and
software combinations [29]. Because of this reasomte the earlier studies about UAV
based RF localization [43], RSS sensors are fratjuemcluded in UAV trajectory
planning. RSS or differential RSS based UAV trajegctplanning recently obtained
significant attention by the researchers [30, 31 45].

The common point of the previous studies is to mtuemotion of the UAVs as
a set of discrete waypoints. Moreover, to decréasecomputational complexity, the
space of movement of the UAVs is also quantized. [44 order to optimize the
trajectories of UAVs, the waypoints are updatedasgically throughout the motion of
the UAVs. Trajectory planning (or namely trajectasptimization) problem can be
viewed as a special extension of sensor placentebtgm. Fisher information matrix
(FIM) is a significant basis to obtain a trajectagntrol objective function. For optimal
trajectories, there are many criteria which areedasn FIM. In D-optimality criterion,
the determinant of FIM is maximized to minimize #rea of error ellipse [41].

However, motions of UAVs are more than just disemeasurement states. First,

UAVs can continue to take measurements betweemiypoints. Therefore, assuming
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that measurements are only taken at specific poemslead to loss of some important
portion of data. Previously in [46], continuous m@@ments along continuous
trajectories are discussed within the context cdittver forecasting. Therefore, building
a model for continuous measurements along thectmjes of UAVs can be an
inspiring solution for the systems in which the si@@ments can be taken so frequently
(such as RSS based trajectory planning). Secorstead of discrete waypoints,
modeling UAV trajectories as continuous paths camgba stronger basis for trajectory
optimization. Finally, modeling continuous trajets together with continuous
measurements can create a new understanding wdsahis in significant convenience

for optimal trajectory planning.

2.8. Literature Review on Sensor Position Uncertainty

This study provides an effective new method to edlve localization problem
with distance-to-target measurements in the presefisensor positions errors. Source
localization with imprecise sensor positions is @d research area which has been
subject of many different applications since thee [8970s. The uncertainty in sensor
positions first discussed for the large towed arodyhydrophones in the field of
underwater acoustic research. The distortion instiege of the array of hydrophones
due to the movement of the tow ship was mentionedaareason of positional
uncertainty in the receiving hydrophones [47, 48]. &his type of arrays are then
regarded as randomly perturbed arrays and thali@tamer Rao lower bound (CLRB)
derivations are obtained for range and bearingnesiton [50]. In [51], it is mentioned
that overall localization accuracy can be domindigdthe uncertainty in the sensor
positions. Therefore, they mentioned about calibnst of sensor array geometries for
better localization of a single far-field sourca. [b2], the issue of uncertainty in the
sensor positions is listed under additional topicthe sensor array processing.

In [53], it is mentioned that error in sensor laoas can emerge when the sensors
are randomly deployed in an ad hoc network or wkensors move to different
positions in time. In [54], it has been discusdaat th modern localization applications,
the receivers can be airplanes or unmanned aeefasicles (UAVs) therefore their
positions as well as velocities can not be pregigabwn. Therefore, they explicitly
mentioned that deployment of UAVs as moving reasil@ings the issue of uncertainty
in receiver position. As a result, the new trendusing UAVs as moving sensors has
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increased the importance of localization with ingge sensor positions. Therefore,
localization with imprecise sensor positions viadi difference of arrival (TDOA) or
frequency difference of arrival (FDOA) have remairas an interesting research area
until today. In [55], for TDOA based localizatioa,calibration emitter is proposed to
calibrate the location of the sensors to compensatsor position errors. In [56, 57],
they give a significant emphasis to TDOA based @®localization with random sensor
position errors by dividing their study into tworfsafor specifically static sensors and
then mobile sensors with imprecise positions. BJ,[fhe authors deal with TDOA and
FDOA based localization and in [59], a TDOA baseehlization with inaccurate sensor
positions is discussed and so on.

Imprecise sensor positions are also specificalbgused for source localization
with distance-to-target (or range-only) measuresent[60] and [61], they introduced
distance based localization schemes in wirelessoseretworks when both the locations
of the nodes and the anchors are unknown or ingeedihey built semi-definite and
second order cone programming to address this.i$syé2], the focus is directly on
source localization by means of time of arrival @0n the presence of sensor position
errors. They build CRLB for range based localizatod a source with imprecise sensor
positions. They emphasized that the source lodadizais highly sensitive to the
inaccuracy in sensor positions. Finally, they baillWeighted Least Square (WLS)
solution for sensor position errors which are gaitall. In [63], TOA and TDOA based
localization with sensor position errors were dgsmd in terms of again WLS solutions
but this time for larger sensor position error lsveompared to [62]. Maximum
likelihood estimation (MLE) solution is also mented to attain CRLB without
explicitly presenting MLE solution in their papén.[64], TOA based localization with
sensor position errors is solved by a two-stagerdlgn where an initial estimate for

the location of source at the first stage is furihgroved at the second stage.
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3. PATH PLANING: BEST DIRECTION GIVEN A LIMITED TRAJEC TORY

When a moving sensor travels with the aim of ediimgathe location of the
emitter, the first goal must be to create an eiffectoute planning strategy which
statistically guarantees the best possible estimaiapability at the end of the travel of
the moving sensor. This section deals with trajgesoof the moving sensors and
describes the essence of trajectory planning thr@ugew perspective namely Fisher
Continuous Information Matrix. It explores the basigular direction given a limited

length of travel for both RSS and range-only bdeedlization.

3.1. Fisher Information Matrix and D-Optimality Criterio n

Range only measurements are the measurements giviehus cues about the
distance between the source (or target) and theoserherefore, a range only

measuremerk; can be modeled as the following:

Ri=y(x—x)*+@-y)*+ W ~ N(0,0) (9)

where f;, y;) is the position of théth sensor, X, y) is the position of the target
andWW is a zero mean Gaussian noise with a standarctttmvir. Fisher information
matrix (FIM) for estimating the parameters, () given the range only measurements

from N spatially distinct points can be written as thiéofeing [65]:

i (x — x,)? SRR D)
, 59) 1 |[& (- x)*+ (y — yi)? e (x = x)*+ (Y —yi)? (10)
range (X, =—-
gV T gt | & (x —x)(y — ) c (v — y)?
(e —x)?+ (v -yt (- x)?+ (- y)?

i
Received signal strength (RSS) is a function of distance between the target
and the measurement point, so each RSS measuramderttly provides us with a
range information. In accordance with path loss ehodn RSS measurement provides
us with the information of logarithm of distancetween the sensor and the source.
When the RSS sensor measurement errors are assoifpedero-mean Gaussian, each

RSS measurement can be expressed as the following:

S = Py = 10.nlogyo [(VG = x)?+ O =y0?) /do| + W ~ N(O.0) (A1)
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whereP, is the emitter's power in dB (at a reference diséad,), n is the path
loss exponent. With this measurement model, Figifermation matrix for the RSS

measurements fro spatially distinct points can be expressed asalh@wving [66]:

i (e = x)? G0
=)+ -yl &l —x)* + (v —y)*)?
Ipss(x,y) = N N (12)

Z (x—x).(y—y) Z (y — Yi)z

Sl —x)*+ -y Sl —x)* + (& - y)?)?)

whereK is a constant such that:
1 /10.n\*
k=% (ln(lO)) (13)

Because of RSS measurements are related to thethogaof the distance, the
accuracy of the range information reduces as th@mte between the source and the
target increases. This is the main distinction leetwthe range-only and RSS based
localization.

For the vectofZ, §]” which contains unbiased estimators for the x apdsjtions
of the target, the inverse of the Fisher InformmatMatrix is the lower bound for the

covariance matrix of this estimation vector [67]:

Cov(%,9) = 1(x,y)™" = X(x,¥) (14)

In accordance with the principle component analyte orientations of two
dimensional error distribution for the estimatiae ¢he eigenvectors (i.@; andu,) of
I71(x, y). Moreover, the variances along these orientatamaseigenvalues (i.é, and
A,) of I71(x,y) [68]. The error distribution of estimation can le@resented by means
of an ellipse within two dimensional space. As thienber measurement increases, the
error ellipse is supposed to diminish around thacexarget location as illustrated in
Figure 3.1.a and Figure 3.1.b.
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Figure 3.1. The size of error ellipse decreases as the numbeareasurements increases while moving

sensor moves along its path

The size of error ellipse can be considered torbpgational to the determinant of

I71(x, y) which is equal to the product of the eigenvaltieanda,.
Size of Error Ellipse ~det(I"1) = A, -1, (15)

Trajectory optimization which is a special versmioptimal sensor placement is
to manage the motion of moving sensor in order ldaio the highest possible
estimation capability in the vicinity of the targét order to minimize the error ellipse,
the determinant of inverse FIM matrix must be mizma, or oppositely the
determinant of FIM must be maximized. This critarizvhich is commonly used in

trajectory optimization is called D-optimality @tion [41].

3.2. Optimal Sensor Placement

In the last section, it has been mentioned th@drary optimization is a special
case of optimal sensor placement, therefore ietessary to first understand the basics
of optimal sensor placement. In order to simpltg bverall task, in the studies about
optimal sensor placement, the target is assumdx tocated at the origin (i.e.= 0
and y = 0), so the FIM in (10) for range only localizatioanc be rewritten as the

following:
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IF==1% =1 (16)
7 Z Xi Yi v —y)®
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Moreover, if the location of théth measurement point is expressed as polar

coordinategr;, 6;), then FIM can be written as:

N N 1
cos?(6;) sin(6;) cos(8;)
ro L Z Z (17)
da — 2| N N
Z sin(;) cos(8;) Z sin®(6;)

The interesting point in (17) is that the radialombnates (i.e.r;'s) of
measurement points do not appear within FIM. Inepotiwords, only the angular
coordinates are important, so the radial coordsai@n be simply neglected during
optimal sensor placement. Therefore, not the epaicitts of the sensors but their radial
projections onto the unit circle can be taken iatwount in order to emphasize the
importance of the angular position during optimiatof sensor positions for range-
only localization.

Whenx andy coordinates of the radial projections of ffieneasurements points

onto the unit circle are expressed as separater\sei(}k.)? andY as shown below,

X = [cos(0;) ,cos(B,) ,cos(B3) ... cos(Oy) ] (18)

Y = [sin(6;) ,sin(8,) ,sin(6s) ... sin(6y) ] (19)

then FIM in (17) can be expressed as the following:

1|[X- % X7 1 |)?|2 |)?| |17|cos(<p)
IR = = == , (20)
X - Y Y |)?| |17|cos(go) |}_’)|

where g is angle betweeX and ¥ within N dimensional space. In accordance
with the D-optimality criterion, the vectoss and Y must be specifically chosen so that

det (I¥) given below is maximized:

20



det (If) = % X1 7] [1 - cos(9)?] (21)

given the constraint [65]:

2 —2

X"+ |7 =N (22)
Consequently, this maximization process declarasttie vectors{ andY must

be in same size and perpendicular to each othammit dimensional space [65]. In x-y

domain, this corresponds that sensors must bepEs@part as possible to each other.

If it is assumed that sensors are only alloweddmlaced along the unit circle, then

they must be equally separated to obtain the higkstimation capability around the

origin. Figure 3.2.a illustrates an optimal senglacement around the origin for three

sensors, and Figure 3.2.b shows the corresponﬁngnd Y vectors within N

dimensional space. As seghandY are perpendicular to each other and in the same

size (i.e. on the same sphere) for this optimasseplacement.
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~~
- ~

05 g .

Target

Y-axis

-0.5

(@)

-0.5

Sensor Position 3

—

X

-positions -
05 PO Sensor Position 2

\ »
+ Sensor Position 1
\

¥ y-positions

Y

0.5 05

(b)

Figure 3.2.(a) An optimal sensor placement around the originthree sensors, (bf andY (i.e. the

vectors of x and y positions of the sensors respdg} must be perpendicular to each other

and in the same size (i.e. on the same spher@ptonal sensor placement.

To sum up, for optimal sensor placement, the rgali@jections of measurement

points must be uniformly distributed along the utiitle. Therefore for the optimal

trajectories, it can be intuitively argued that fm®jection of the trajectory (i.e. the

projection of the measurement points along thee¢tajy) must correspond to the

largest arc along the unit circle. Moreover, thejgetions of measurement points along

the unit circle must be aligned as uniformly asgius.
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When the target is located at the origin and tleation of theith measurement

point is expressed as polar coordingted;), then FIM in (12) can be rewritten as:

N N

cos?(6;) sin(6;) .cos(6;)
Z T Z T
5= K . i=1 i=1 . (23)
sin(6;) .cos(6;) sin?(6;)
2 2
=1 ! =1

Please note a difference exists between this FIt¥l thie one in (17). Unlike (17),
the radial coordinates of the measurement poines aso important in Fisher
Information Matrix and consequently in sensor phaest or trajectory optimization.
The measurement points which are close to the ttamgemore valuable because they
provide us with a more accurate range informatienalise of log-normal shadowing.
Therefore, in addition to the objectives mentioabdve (i.e. the longest projected arc
on unit the circle and the most possible uniformtribution of the projected sensor
positions), the moving sensor must also try geserao target while planning its

trajectory in RSS based localization.

3.3. Continuous Trajectories: Fisher Continuous Informaton Matrix

The common point of trajectory optimization studie$o model the motion of the
sensor as a set of discrete waypoints togetherdistirete measurements. However, the
motion of moving sensors is in fact a continuouth ptnerefore when measurements are
frequent enough, they can be regarded as contintimgs stochastic processes. The
summation operators within FIM can be appropriat@gverted to line integrals [69].
To provide a detailed insight into trajectory optiation for range-only and RSS-based
localization, this study shifts the scope of Fisheformation Matrix (FIM) from
discrete measurement geometries to continuous megasat curves.

In order to differentiate continuous curve FIMsnfrousual FIMs, the FIMs
associated with continuous trajectories will bdethbs Fisher Continuous Information
Matrices (FCIM) in the remaining of this study. NoRCIMs for continuous curves of
range-only and RSS measurements will be defined.a~gontinuous curvd,, the
summation operators within the FIM matrices in (&Ay in (23) are converted to line

integrals as in the following:
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2 .
chos (@) ds Lsm(Q).cos(H) ds 1 ak,  ak,

o , . o o R R
fsm(H).cos(H) ds fsm (@) ds az1 Az
L L
cos?(6) sin(@).cos(8)
j >— ds j 5 ds
r r az;  ai,
L L
IS=k| _2 =K (25)
J‘sm(H).cos(H) ds j‘sm €)) ds as, as,
r? r?
L], L

FCIM can be regarded as an overall FIM which israbi@ristically related to the
continuous curvé. Therefore, FCIM is a measure of the capabilityhaf overall curve
L to estimate the location of the emitter. FCIM rdependent of measurement
frequency along the curve. FIMs of the discrete sueaments which are frequently

taken throughout the curdecan be approximated as the following:

5= fIF (26)

I3 = f. IS (27)

wheref is the rate of the measurement per unit lengthf Ascreases[? andI3
can be better approximated by the right sides 6§ éhd (27) respectively. Figure 3.3
illustrates the new proposed definition namely FCft a continuous curve of
measurement. FCIM shifts the scope of FIM from idite measurement geometries to

continuous curves.
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Figure 3.3.Fisher continuous information matrix of a contingaturve of measurement.

3.4. Calculation of Line Integrals for Linear Trajectori es

In this section, calculation of line integrals i€IMs for linear trajectories will be
discussed. In order to calculate the line integralSCIMs, lines must be represented in

terms of polar coordinates as shown in Figure 3.4.

/ILI

7 sin(6)
sin(a)

o] ___

a
0 r cos(8) rsin(0) A
tan(a)
N~ 7
~
A

Figure 3.4.The geometry of the linear trajectory and its paesens.
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The equation of the line passing from the initiainp of movement (i.e. the point

A in Figure 3.4) can be written in terms of polaoibnates as the following:

(28)

r(6) = 4 <COS(9) N sin<e>> _ Asin(@)

tan(a)/  sin(a + 0)

where4 is the distance between the ponand the emitter, and theis the angle
between the curvé and x-axis. In this equation, the radial coordenais expressed as
a function angular coordinate The upper limitd, for the angular coordinate which
makes the length of the curve be equdliccan be written as:

A

1
0, = arceor(2
) arcco L sin (a)

cot(a)) (29)

The line elemendls can be calculated as the following [70]:

dr\? T
ds = |72 ( )dez—de (30)
S e do sin(6 + a)

After these calculations, the integrals in (24) 488) can be calculated with
respect ta. Let us reorganize the integrals within the eletsarf IX:

0, 0, 6,
ak, =f cos?(0) ds = f Cosisj((g—):o((? do = Asin(a)f sirclg(st;—(-le-)a) d9  (31)
6, 6,
- [ sin?(6) r(@) sin?(0)
azz = b[ sin“(6) ds = b[ sin(6 + a) B in(a )J- sin?(0 + a) a9 (32)
62

sin(8) cos(0)

sin?(0 + a) (33)

al, = a¥, —f sin(8) cos(0) ds = Asm(a)f

0

Similarly, the integrals within the elements B can be rewritten as:

6, 6,
_ [ cos?(®) cos?(0) B
ai; = f r2(6) ds = bf r(0) sin(6 + a) do = A sin(a)bf

cos?(0) do (34)
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0, 02
sin?(0) sin®(0)
az, =Of 7200) ds = Oj 7(6) sin(0 + a)

62
1 .
6 =Asin(a)(!- sin“(08) do (35)

02
R f sin(8) cos(0)

02
1
S = = = _—m i 36
ai, = ay 2(0) ds Asin(a)f sin(0) cos(6) db (36)
0

As seen, the indefinite integrals Bf can be easily obtained in order to calculate
determinant of the matrix in the closed form. Hoem\the indefinite integrals df are
not too straightforward, so numerical calculatidrimtegrals can be utilized faf for

the next sections.

3.5. Best Orientation is only a function of|L|/A

In this section, it will be proved that the besieatation for a linear trajectory in
terms of estimation capability is only a functiohtbe ratio between total length of
travel and the initial distance to target (i|l&|/4). Based on (31-33) and (34-36),

determinants of? andI2 can be expressed as:

det(I¥) = w g(a,8,) (37)
det(ICS) = m h(a, 92) (38)

where g(a,6,) and h(a, 6,) are the functions which can be determined after
calculating the integrals in (31-33) and (34-36)thke ratio|L|/4 is designated as,
then 6, which has been defined in (29) is a function ofyoa and p. Therefore
determinant of? andI? can be rewritten as:

2

det(I¥) = % g'(a, p) (39)

2

det(I¥) = IZ—Z h'(a, p) (40)

where g'(a, p) and h'(a, p) are the functions which represent the parts of the

determinants which depend @nand p. To find the best directions i.ez's which
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maximize the determinants, the partial derivatifdeterminants with respect tomust
be taken and then the roots of these equationsimeusiund:

0 (det(tf)) _

P (41)

0 (det(1s)) _

P (42)

The terms4? /a* andK?/A? disappear while taking partial derivative, so iest
directions i.e.ap’s which maximize the determinant§ and IS are found to be
functions of onlyp i.e. |L|/A. Next section, the relation betwegnand az will be

explored for both range-only and RSS-based lodadiza

3.6. Best Possible Orientation given a limited length dfravel

Moving sensors can be carried by many different imgpvplatforms such
unmanned aerial vehicles etc. Mini UAVs can haveoaple of physical constraints
including maximum flight time, maximum weight of efal load etc. All these
constraints can lead to a limited range of traval $mall UAVs. Moreover, the
emergency of the localization mission may implydiconstraints which also result in
limited total lengths of travel. Therefore, the tpassible estimation capability can be
desired given a limited length of travel which oger than initial distance to emitter.
In this section, the best orientations of the Imtajectories will be discussed by the
means of FCIMs.

In Figure 3.5.a, the determinants of the FIMs fioedr discrete measurements are
illustrated for various possible orientations ofe tirajectory. To obtain the best
capability of estimation, this study sets threeins criteria: (1) the radial projection of
the trajectory onto unit circle must correspondtite longest possible arc, (2) the
projections of the measurements along trajectorgtrba uniformly distributed as much
as possible, and for RSS based localization (3)ntkasurements must be as close as
possible to the target. In some extent, all théseet criteria contradict each other.
Considering the RSS based localization, basedefirgt criterion, moving along the x-
axis appears as the best way because it yieldsltsest measurements to the target.
However, this trajectory strictly violates first carsecond criteria because the radial

projection of it has no arc length. It will be alslmown that first and second criteria also
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contradict each other. Therefore, best orientatrrst take all the tradeoffs between
these criteria into account. Consequently, thectlve marked with the ellipse in Figure
3.5.a is the best orientation which maximizes thtaninant of FIM under a certain
constraint on the total length of travel. Figur&.8.depicts the continuous trajectory
version of this maximization process. As seen b directions correspond to each to
other for discrete and continuous trajectoriesthia section, the best direction will be

demonstrated with respect|tt| /4 by means of FCIMs.

B Determinant of FIM sar Determinant of I,
80 of each trajectory sk of each trajectory '\\
\ .
0l \\ 70t \\ L
L]  C

60 Best direction which g7 2% 1.71 B0+ Best direction which Sgp 224 168
2 ol maximizes FIM 354 - e 50 maximizes [, 363
o -k @ r =
" \ a4 5 8 H p \ 430
> oo >

d -
10 Constraintonthe 403 )ty EY: | | Constraintonthe 435
20 lengthof total 57, / g a0 lengthof total 5, /
travel / : travel /
10 091 o 10 1.02
0 .l .
B = A B < A
10 . ) - . . 0 ) . L. ; A
0 20 40 80 80 100 0 20 40 60 80 100
X - axis X - axis
() (b)

Figure 3.5.The best direction for best estimation capabilitpund the origin given a constraint on the
length of total travel: (a) maximizing the deteranh of the FIM for linear discrete
measurements, (b) maximizing the determinant of FE@M for linear continuous

trajectories.

Figure 3.6 shows a trajectory and its radial propec on unit circle. For
simplicity, 4 is assigned to be 1, so the initial point of moeatnof moving sensor is
set to be (1,0). The constraint on the total lengtlepresented by means of circle
centered at (1,0) with radius j§|. As seen, the first criterion (i.e. obtaining lesy
projected arc length) can be achieved wheis equal toarccos(|L|/4). It has been
mentioned the third criterion is only for RSS basmzhlization, so it is not relevant to
range only localization. Therefore, it can be assairthat the best direction for range
only localization can be simply formulated asccos(|L|/4) in accordance with the
first criterion. However, first and second crited#so contradict each other, which

causes the best direction deviate framccos(|L|/4).
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Figure 3.6.The first criterion (i.e. obtaining longest projedtarc length) can be achieved wheis

equal toarccos(|L|/4)

Figure 3.7.a shows the case thas set taarccos(|L|/4), therefore trajectory has
the longest projected arc length. In this casecaih be observed that the radial
projections of the measurement points close toirtli@l point are positioned near to
each other compared to those in the end of trajgcidnis structure violates the second
criteria which requires radial projections to beifearmly distributed as much as
possible. Figure 3.7.b shows the case in whichrdldél projections of measurements

are uniformly distributed as much as possible akbregunit circle.
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Figure 3.7. (a) The first criterion contradicts the second eribn (i.e. the radial projections of
measurements must be uniformly distributed as nagchossible), (b) one of the best case

for second criterion.
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Figure 3.8 shows the plots of the best angulamtaten for range only and RSS
based localization with respectiit| /4. As can be seen, for range only localization, the
best angular orientation mostly matches the arneo&inction for small values ¢f.|/

A. However, for large valuef.|/4, the best angular orientation deviates from the
arccosine function because the second criterientfie need for uniform distribution of
projected measurements along unit circle) startbdoimportant compared to first
criterion (i.e. the need for longest projected aFgr RSS based localization, the best
angular orientation always stays below arccosimatee third criterion is now valid for
RSS based localization. The important point regaydo RSS based localization is that
the best angular direction is 0 degree whigi4 is 1. In other words, if the moving
sensor is able to reach to target, than it mustileeted towards the target for the best
possible estimation capability. In the next sectiamew method called Direction of
Exponent Uncertainty is introduced which aims teate a direction towards the emitter

for any time of the travel.

[ Arccos
O Range Only Localization
/\ RSS based Localization
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Figure 3.8.The best angular orientation for range only and R8Sed localization with respect [tb| /4
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4. A NEW ROUTE PLANNING AND LOCALIZATION METHOD:
DIRECTION OF EXPONENT UNCERTAINTY

In Section 3.6, it has been shown that if the mg\sensor is able to reach to
target, than it must be directed towards the tafgetthe best possible estimation
capability. In this study, a new powerful geomedticlosed-form solution called as
Direction of Exponent Uncertainty (DEU) [1] is praged for received signal strength
(RSS) based far-field localization when path loggoment (PLE) and transmit power
are both unknown. The uncertainty in the PLE dueemwironmental factors is a
significant challenge for RSS based localizatioB\Ds built after careful investigation
of geometrical behaviors of differential receiveghsl strength (DRSS) circles, i.e. the
locus of possible location of the emitter when srait power is unknown. It is shown
that the uncertainty in the PLE corresponds tm@alr uncertainty for the location of the
emitter in two dimensional space. This critical @vation creates a basis for the sensor
to move towards the emitter without estimating émeitter location after only three
measurements. Furthermore, with only four differsrgasurements, it is possible to
effectively estimate the location of the emitter wsll as the PLE by means of
intersection of DEUSs. Intersection of DEUs attaramer Rao Lower Bound (CRLB)
with a dramatically reduced execution time compacedonlinear least squares (NLS)
estimator. DEU is also proposed as an efficienterqlanning tool for moving sensors

such as unmanned aerial vehicles (UAVS).

4.1. Feedback Domains of RSS Based Localization

In Section 2.2, two important schemes of RSS bassadization was introduced.
Now, in this chapter, the advantages and disadgestaf these schemes will be
discussed to come up with new ideas of solutiondoalization. Figure 4.1 shows the
flow chart of the information-flow during RSS baskedalization. This flow chart is
distinctively divided into three domains, namely SlR8omain, distance domain and
(x,y) domain. In Section 2.2, it was discussed that@SRILE solution, the feedback
for the goodness of the estimation of the emitieation is provided from RSS domain.
The mismatch between measured and the estimated/&& are used to evaluate the
goodness of the estimation. On the other hand S8 Based lateration, the feedback for
the goodness of the estimation of the emitter lonas provided from distance domain.

As depicted in Figure 4.1, as the feedback domppraaches to left, the statistical
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meaning of the localization becomes higher. Oppbgsias the feedback domain shifts
to right, the localization process obtains a higheel of geometrical meaning.

Estimation gains Statistical Meaning
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Figure 4.1.Flowchart of RSS based Localization

As discussed in Section 2.2, when RSS domain id asehe feedback domain,
the localization scheme corresponds to MLE solutibmerefore, RSS domain based
localization schemes have a high level of statttimeaning. It is easy to statistically
explain the validity of this estimation structui@n the other hand, this localization
schemes lacks geometrical point of view. Furtheemdhe localization feedback is
relatively far from the(x,y) domain. In other words, the mismatch in RSS domain
provides a difficult cue about how to adjust théineation of emitter position. This

situation results in a complicated cost functiotvéominimized:

k 2

E x;— %)%+ (y; — y)?

(X,9) = argmin P; —py + 10.n.log,, \/( i ) vi— ) 43)
xy) =3 do

Figure 4.2.a and Figure 4.2.b show respectivelystirtace of the cost functions
when the emitter is located somewhere at the middléhe sensors and when the
emitter is located far from the sensors. In bothesathere exist irregularities, saddle
points and local minima which may trick the minimupoint search algorithm.
Furthermore, especially at Figure 4.2.b, the mimmpoint is not located at the bottom
of a good convex structure. In other words, theimim point is visually not apparent.
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This situation will yield a more difficult task ihaling large number of iterations during

search for the minimum point.
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Figure 4.2.Example Structures of Cost Functions of MLE (RS8Bailo feedback)

To sum up, when RSS-domain used as the feedbaclkaidprtne following

situations are arising [71]:

. NLS equation corresponds to MLE solution

. It is easy to statistically explain the validitytbie estimation

. The estimation lacks geometrical meaning

. Feedback is relatively far from tlfe, y) domain (i.e. complicated cost function)

When distance domain used as the feedback donm&iriptalization scheme do
not have a high level of statistical meaning. hat very easy to statistically explain the
validity of this estimation structure. Minimizindpé squared error in distance can be
only regarded as an approximation of MLE functicddn the other hand, this
localization schemes has a geometrical point ofv\ge that this localization schemes
are called as lateration. Some of the resources (8]) have directly classified
lateration based localization under geometricalitsmhs. Furthermore, the localization
feedback is relatively closer to tlie, y) domain, in other words, the mismatch in RSS
domain provides a simpler cue about how to adjustestimation of emitter position.

This situation results in an efficient cost funotim be minimized:

k

(2,9) = argmin Y (VG =07 + 0= 32 —dy). (44)

&xy) =

Figure 4.3.a and Figure 4.3.b show respectivelystivtace of the cost functions

when the emitter is located somewhere at the middléhe sensors and when the
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emitter is located far from the sensors. In bosesathere exist smooth regular surfaces
which may help the global minimum searching aldonit Furthermore, the minimum
points are located at the bottom of good convexcsires. The minimum points are
even visually apparent. This situation will yieldhpler tasks including smaller number

of iterations during search for the minimum point.
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Figure 4.3.Example Structures of Cost Functions of RSS baderhtion (Distance domain feedback)

To sum up, when distance-domain used as the fekdb@uain, the following

situations are arising [71]:

. NLS equation corresponds to RSS-based lateration

. It is not easy to statistically explain the valddf the estimation

. The estimation has a geometrical point of view

. Feedback is relatively closer to tte y) domain (i.e. simple cost function)

4.2. A New Geometrical Solution: Direction of Exponent Wcertainty

Based on the following sections, a new discussian be initiated about
performing localization directly withinx,y) domain. As it has been discussed in
previous sections, as the path of feedback forliladéon error becomes longer, it is
difficult to handle with the localization algorithnTherefore, this study will focus on
localization systems directly operating(ity y) domain as shown in Figure 4.4. In order
to achieve this task, RSS measurements must lectirsrerted to some geometrical
definitions within (x,y) domain. Next sections will introduce Direction BXponent
Uncertainty which is a powerful geometrical toolr férajectory planning and

localization.
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Figure 4.4.Localization directly within(x, y) domain: geometrical tools

By using RSS parameters, some major techniqueseamgloyed to obtain
solutions to localization problem [3]: mapping erprinting) which is based on
building a learner which maps the specific RSS eslio the related locations, statistical
technigues which are providing theoretical framewgaio overcome difficulties in the
presence of noise, range-based solutions suchlaeration and finally geometrical
solutions. RSS fingerprinting is criticized for tedng a large initial data to train the
system, but it is found useful for indoor localinatwhen the relation between distance
and RSS values are complicated. Based on a predefirodel, statistical methods are
criticized for not being able encapsulate the c@xpelations between the distance and
RSS values [72]. Even though geometrical solutpnaside very simple approaches, it
is not always possible to explain the optimum sofutn case of noisy or imperfect
environments by means of geometrical concepts.

Recently new applications have gain importance wihmount sensor systems on
moving platforms such as unmanned aerial vehidles\(). Because of the physical
constraints of moving platforms, these applicatibear the necessity to use the most
efficient hardware and software combination. WIils tmotivation, RSS based systems
emerge as significant tools for affordable solusioMoreover, building a geometrical
solution for RSS based localization will providevery efficient localization system
which also exploits the simplicity of geometricgdppoaches. In this study, a new
powerful geometrical solution called as DirectionExponent Uncertainty (DEU) is
introduced which shows that the uncertainty in kheation of the emitter can be
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modeled as a special line when path loss exporgeninknown. It is shown that
intersection of DEUs attains Cramer Rao Lower Bo(@&LB) with a dramatically
reduced execution time compared to nonlinear lespiares (NLS) estimator.
Furthermore, since DEU proposes a closed-form isoluthe algorithm does not have a
divergence issue. The new method is constituted only mathematical and
trigonometric equations. On the other hand, NLSitsmh requires a difficult nonconvex
optimization and the localization algorithm canl.fdbEU is also proposed as an
efficient route planning tool for moving sensorsclsuas unmanned aerial vehicles

(UAVSs), because it helps the sensor move efficyetativards the target.

4.3. Problem Formulation

This part carefully sheds a light to the geomelfedaviors of DRSS circles with
an emphasis how they can be exploited in RF loatdin. As proved by many previous
studies [12], path loss model can be formulated bsy-distance equation as described
in (1). The path loss exponemin (1) determines the rate of change in RSS vaklits
respect to log-distance. Path loss expomeptin vary due to different environmental
conditions. It can take a value between the ranga®4 for outside, while it can also
drop below 2 or exceed 4 for some special situati@] as described in Section 2.1.
Therefore, uncertainties in path loss exponenttereasignificant challenge in RSS

based localization.

4.3.1. DRSS Problem Formulation
In accordance with the path loss model, it canHmve that DRSS locus of two

different measurements must satisfy the followiggation:

ﬁ _ n/2|RSS,[mag] (45)
d, RSS,[mag]

whered; andd, are distances of RF emitter to the first and sés@nsors, and
RSS,[mag] andRSS,[mag] are RSS values in magnitude in first and secondmss
respectively. Geometrically, the set of all poistdisfying (45) can be shown to be a
circle called DRSS circle [7]. In essence, DRS2Ieiis an Apollonius Circle [73]

defined as the points with constant ratio of diseanto two fixed points. Even though
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previous studies did not expli DRSS circle through Apollonius circle, th

successfully defined the center of the DRSS asalleving [9],

Xcenter = (1 — K12) » Ycenter = (1 — K12)

(1 — Kiz-%2) 1 — Ki2.y2) (46)

where(x4,y;) and(x,, y,) are the location of the first and second sensoiK;,

n/2
K., = RSS,[mag] 7)
RSS,[mag]

It can be also shown thaie radius of DRSS circles is [20]:

is defined as,

2 2\ o2 a2 (21 — Kip-%3)% | (71 — Kip.¥7)?
o Ga+ D) = a4 — ¥t Tk, Tk | (@48)

Radius =
(1-Ky2)

As an Apollonius circle, DRSS circle s two important properties. First, tl
center of DRSS circle must be located along the Wwhich passes through the sens
locations. Second, DRSS circles must pass betweeisensorsFigure 4.5 illustrates
the structure of an DRSS circ

121

or DRSS Circle:

(d /dy= Kiz)

(Icente ! y‘éenter)

RF Emitter

Y - Axis

Sensor 1 l.

ol ——=——=

X - Axis
Figure 4.5.1llustration of DRSS circle which is a special tygfeApollonius Circl
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4.3.2. DRSS based Cost Function and Localization
The DRSS based cost function for location estinmaigsadefined as [9],

2ym=3

k<l

(x—x)*+ (y—y)?
(x—x)*+ (y — yi)?

2
DRSSy [dB] — 5.n.logqg l (49)

where DRSS, [dB] is the difference of RSS values in dB betwééh and "
sensors(x,, yx) and(x;,y,) is the location ofkt" and ' sensors respectively, and
finally (x,y) is the possible location of the emitter. To obtainonlinear least squares
(NLS) solution, the estimator needs to jointly fitige (x, y) location and ther value
which will minimize the cost functio@(x, y,n). This study finds a very effective
geometrical closed form solution which perfectlypagximates NLS solution and

attains CRLB with very low computational requirert'ecompared to the NLS solution.

4.3.3. Circle-Circle Intersection

It is possible to estimate the location of the &niby intersecting the DRSS
circles [9]. In Figure 4.6, intersection of twoales are depicted. Let us designate the
center points of the circles as, (y;) and ,y,) and the radii of the circles asandr,
respectively for first and second circles. Therk g two intersection points namety
andP,. Let us call the line which passes through thelest centers ak, the distance
between the centers of two circlesdsthe angle between thHe and x-axis ag and
finally the angle betweefj and the line which connects;(y;) andP; asa, then the

location ofP; andP, can be formulated as the following,

d= (= x)?+ (2, — y1)? (50)

B = arctan (%) (51)

¢ = arccos (_ ﬂ) (52)
2.1.d

6= B +a and 6,= B—a (53)

P, = ( x; +1y.c0s(6,) , y1 +1y.5in(6;)) (54)
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P, = ( x4 +1r.cos(0,) , y; + ry.sin(6,)) (55)

i S_gg_m_g{rcle

~ &

Y - Axis

|
|
| 1 1 1 1
2 0 2 4 6 8
X - Axis

Figure 4.6.lllustration of circle-circle intersection

4.3.4. Intersection of DRSS circle

In Figure 4.7 three RS measurements are taken from three different positio
order to estimate the location of the emitter. Hshbeen discussed t two
measurements from two different locations enablsstw draw a DRSS circl
Therefore, taking three measurements provides tis thiee distinct DRSS circles f
each of three pairs of measurements. Here, it @rtant to emphasize that these tf
circles are confined to intersect always at only t@oints (even under noi¢ [73].
While any three circles can normally intersect iatdistinct points, three Apollonit
circles of three fixed points carnly intersect at two points [73Because any two ¢
these circles areenough for localization, one of these circles can discarded
Furthermore, because DRSS circles must pass bettheeassociated measurem
points as mentioned in Secti4.3.1 one of the intersection points must stay clos
measurement points and the other one is located @istant positionThis study
assumeghat the emitter is located far from the measurdnwations (or the startir
point where the sensor begins its motion), theeethe intersection point which is clo
to the measurement poi will be neglectedConsequently, for the scope of thisdy,
three measurements are enough to detect the Inaattithe emitter when the path Ic

exponent is known.
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Figure 4.7.Intersection of DRSS circles

4.4. Direction of Exponent Uncertainty: A New Localization Method

In Section 4.3.4, it has been discussed that takireg measurements is enough to
locate the RF emitter when path loss exponehtg known. However, as it has been
discussed in Section 2.1, it is very common thatan be unpredictable due to
environmental or some other factors. Thereforeed®in of the exact location of the
emitter by means of three measurements is notlgessiowever, in this study, it will
be proved that having no knowledge about the value is not an obstacle for the
moving sensor to be directed towards the emittewill be shown that with three
measurements, a direction which passes througlerthger can be determined which
yields an effective localization system.

4.4.1. Direction of Exponent Uncertainty: Definition

Figure 4.8shows the intersections of DRSS circles when [msth exponent values
are accepted as 2, 3 and 4 where thenealue is 3. As shown, when the accepted
values of path loss exponent (denotethgs ;) increases, DRSS circles grow and the
intersection point of the circles (possible locatiof the emitter) changes. It can be
observed that only whem;,,..s IS equal to exaat, the guess point coincides with the

correct location of the emitter.
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12 } DRSS cilrcles for

NGuss = 3
52 I

81 / Intersectjon of ‘

" DRSS circles for .

NGuess := 2 §

Y - Axis

Figure 4.8.Intersection of DRSS circles for different, .. values

The main idea of this study is that the possiblealions of the emitter
corresponding to different values af constitute a line in two dimensional space.
Furthermore, the coordinates of these points camdaeled as a linear function of the
values of path loss exponent. This phenomenon eabelter observed in Figure 4.9.
The guess points for differemt;,.s; values have a perfect tendency to align linearly
(even for values of which are not physically meaningful). The uncertgiin then
values creates a linear uncertainty in the locabbremitter. This study calls this
phenomenon as Direction of Exponent UncertaintyYRE

Consequently, when there are three measuremerghoas in Figure 4.9, the
localization system can determine a line which gssthrough the location of the
emitter. It is also possible to use this importabservation to move to the location of
the emitter with a moving sensor at the smallessjite duration when the valueis
unknown. After three measurements, if the movingsee settles its motion along the
DEU, then it catches a linear path which goes ¢oetiitter.
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Figure 4.9.1llustration of the new phenomenon: Direction opBrent Uncertainty (DEL

The linear structure of DElis valid when there exists a ntinear measuremei

geometry. Section 4.5@esents the case when there are three linear neeaesiots

4.4.2. Proof of DEU

Now, the existence of DEU (i.e. linearity of gu@ssnts with respect to differe
n values) will be proved. IFigure 4.10the DRSS circle based on the first and sec
measurements is labeled as DRSS C-12 and the DRSS circle based on the se:
and three masurements is labeled as DRSS C-23. As explainedin the Section
4.3.4, thex component of the guess point of the emican be expresseas in the

following equation:
xguess(n) = x12(n) + 112(n) -COS(Q(n)) (56)

wherer,,(n) andx;,(n) are respectively the radius and theomponent of the
center of DRSS Circlé2, andf(n) is the angle between axis andthe line which
passes through the center of DRSS C-12 and the intersection of the DRSS circ
X1, andr;, both depend on thn value and the RSS values of first and sec
measurements. In addition to these parameéf(n) also depends on the RSS value
third measurement. Nouif it is proved that the derivative of;,.;(n) with respect to

n is a constant term, or at least converges to at@onterm very quickly even for ve
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small values ot1, then the proof vil be completeThe derivative otxg,.ss(n) with

respect tom can be expressed as the follow

d uess d 12 d 12 d 0 o7
xgd - @) = xd n(n) + rd in) .cos(8(n)) + r,(n) .—coz(n(n)) 57)

In accordance wit(47), let us drop the lab@inag] and definek,,(n) such that:

K,,(n) = "A/RSS, / RSS; (58)

12

Radius of DRSS Circle-12

10 I: / N2 (Tl)
f
Center of DRSS Circle-12 \ ”

( xu(n) , )ﬁz(n))

Y - AXis

Second Measurement Location

(Koo, Yoa ) Center of DRSS Circle-23

( x3(n) , y3(n))

1
I : o R
First Measurement Location : Ttk Mec(:)s{urer;?,en; teciztion >
(Xml' le) | L
! ®
| I ; ; sl
0 5 10 15
X - Axis

Figure 4.10.Formulation of the guess point with respecn

Now, after insertinck;,(n) into (46) and (48)the following the derivatives wit

respect tm can beobtaired:

d x,,(n) B RSS, 2.K,(n) (59)
dn (Xmz = Xma) - In (RSSl)nz(Klz(n) — 1)2
drip(n) RSS;\ K12 (M) (K1, (n) + 1) (60)
dn _ Gmz- 0 (RSSl> n2( Ki,(n) — 1)2
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where X,,,; and X,,,, are respectively the components of the first and second
measurement points, adg,;, is the distance between these two points. Aftesehthe
limit values of these functions asapproaches to infinity can be found as,
d X12 (n) _ (sz - Xml)/2

m =
oo dn RSS, (61)
In (RSSl)

im d r12(n) _ dm12/2
n—-oo dn B RSSZ (62)
In (=222
n (RSSl)

Taking limit of 8(n) asn approaches to infinity is not straightforward, fewer, it
can be numerically shown thé&{n) also converges a limit valug;,,. Now, it will be
investigated how quickly these functions reachrtheiit values. In Figure 4.11, it can
be observed that all three functions demonstratg sfeort transition periods and reach
their limit values very quickly. After the value that DRSS Circle-12 and DRSS Circle-
23 start to intersect (the vertical dashed lineghat left in Figure 4.11), all three
functions have great tendency to catch their liwatues. Whenn is equal to 2
(physically the lower bound for path loss exporfentmost of the environments), they

are almost settled to their limit values.

2

I
d x13(n) 1 _IL

dn /’r

o
(L Sqpaps S
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3r I
dry(n) M :
1 I

2 1 I 1 1 J

0 1 2 3 4 5
20 '__:___ :
OF 1 I
0(n) o { |

400 L : L
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n

Figure 4.11.The plots of(n) and the derivative of,,(n) andr;,(n) with respect tm
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Finally, the derivative ofg,.ss(n) in (56) can be rewritten as the following,

d xguess(n) _ (sz - Xml)/2 dmlz/z
dn N RSS, RSS,\
hl(RSSl) hl(Rssl)

cos(Byim) +112(n) .0 (63)

Therefore, taking the integral of the above funtyeelds the following equation:

(sz - Xml) + dmlz- Cos(elim)

2 In (%gi)

xguess(n) = n+ Cl = A n+ Cl (64)
A similar equation regarding to thecomponent of the guess point of the emitter

can be written as in the following,

(sz - le) + dmlz- Sin(elim)

2 In(758)

YQuess(n) = n+C,=Bn+(, (65)

which finalizes the proof of DEU.

4.4.3. Parameters of DEU

To speak roughly, the parameters of DEU dependsligton the measurement
geometry. As an example, when the measurement dgeoreea right triangle whose
legs are aligned witkh andy axes (as shown in Figure 4.9), the slope of th& BEn

be written as:

RSS,

N dma3 In (RSSl) _ dma3 In(RSS;) — In(RSS,) (66)
P iz gy (BS55) © dag In(RSS3) — In(RSS,)
2

whereRSS; denotes RSS values in magnitude ofithemeasurementi,,,;, is the
distance between first and second measurementidosatndd,,,; is the distance
between second and third measurement locationthelfmeasurement geometry is

further isosceles right triangle, the slope camliden as:

RSS,

- __h’(Rssl)__ln(Rssz)-1n(R551)

Dw'}ncw%)_mam%y—maw&)
RSS,

(67)

Another important parameter regarding to DEU isrdt® of the emitter distance

to n, namely4,.itter- This parameter represents the distance betweersiwacessive
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guess points when the guess valuenois incremented by 1. The equation of the

Aomitter TOr isosceles right triangle is as the following,

RSS2 RSS3\ |In (%)2 + In (%)2 o
M) n (RSSZ) ' RSS2\% . /RSS3\2 (68)
in(gss1) - n(Rs32) /

This parameter allows us to quickly estimate thieieraf n after the location of

Aemitter = 1/ ln(

the emitter is determined. Finally, at least a p@nrequired through which the DEU
passes to be able to completely define the DEUhWiis motivation, it is investigated
if there exists a common point through which allssible DEUs for all different
bearings pass. Figure 4.12 shows that one thitdeoéll DEUs shares a common point,
while other one third of them shares another commaint etc. Therefore, there are
three common points corresponding to three diffegeoups of all possible DEUs. The
observations suggest that these common pointsitdast equilateral triangle, however
the size and the location of this equilateral gianstrictly depends on measurement

geometry.

3 DEUs for these directions
share this comn:on point

Y - Axis

"/ Other one third of DEUs ]
2 " | shares this common point
,-/ P :
af Remaining one third of DEUs
shares this common point
_4 1 i 1 | | L 1 ]
-4 -3 2 -1 0 1 2 3 4

X - Axis

Figure 4.12.Common points for DEUSs for different directions
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Consequently, in order to avoid complex formulatiansimple way to obtain
parameters of DEU for all measurement geometriesstablished: use the analytic
equations in Section 4.3.3 only twice to obtairiséction points fon, = 2 andn, = 4
as shown in Figure 4.8. The line which passes tiirdanth of these two intersection
points corresponds to DEU. The valuedef,;:+.,r can be also calculated by dividing the

distance between these intersection points todhesof(n, — n,).

4.5. Simulations and Results

In this section, the performance of DEU which igcaverful geometrical tool for
RSS based localization is presented for the saenarhen both the path loss exponent

and the source signal power are unknown.

4.5.1. Intersection of DEUs

In Section 4.3.2, the DRSS based NLS cost functidnch is a nonconvex
optimization problem was provided. When path loggoaent is known and there are
only three measurements in 2-D space, the inteosscof DRSS circles are the NLS

solution for the location of the emitter,

(%,9) = argmin Q(x,y; RSS;, RSS,, RSS3) (69)
(xy)

Furthermore, the intersection points of DRSS c#eee the points where not only

the cost function is minimized but also the cosiction is equal to zero,

Q&P =0 (70)
Similarly, in the case that path loss exponentnisnown, the intersection points
of DRSS circles are the points where the cost fands minimized for a certaing, s,

value,

(%,9) = ar(gm)in Q(x,y ; RSSy, RSS;, RSS3, Nyuyess) (71)
x,y

Therefore, DEU can be defined as the collectioNb& estimation points for
different guess values of. In other words, for three RSS measurements dage,

statements below which relageto x are equivalent to each other:

Q(x,y; RSS;, RSS;, RSS3, Ngyess) =0 &y =mppy .x + lppy (72)
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wherempzy andlygy are the parameters of the associated DEU. Whea #re
more than three measurements denoted as the VRERrdifferent DEUs can be
derived for each different nonlinear triple comltioas of measurement locations. For
example, in case of four measurements, there aredifferent DEUs. The intersection
of these DEUSs is an effective approximation for l&ieS solution:

(x,y,n)pgy = argmin Q( X, y,n; m) (73)
Ceyn)

Intersection of DEUs can be handled by the besirsettion point of the lines
[74]. In Figure 4.13, in a noisy environment, bdthS and intersection of DEUs make
an erroneous guess for the location of the emittewever, the important thing is that
they point exactly the same wrong location. Thibesause intersection of DEUs is an
effective approximation of NLS solution. To keepnrind, even though the guess is

wrong, this can be considered as the best guess nnise.

12

| NLS estimation for
emitter location

10+

Intersection point
of DEUs

Y - Axis

Measurement
Locations Ve
1%/

X - Axis

Figure 4.13 lllustration of intersection of DEUs

Figure 4.14 shows the results of Monte Carlo Sitmg to compare the
performance of NLS with the intersection of DEUstinoel for different additive error
levels in dB. Monte Carlo simulation is designedlsihat four sensors are located
around origin at (1,1), (-1,1), (1,-1) and (-1,vihere the emitter location is allowed to
randomly be anywhere within the range of [-10,10hg both x and y axis. However,

because of the assumption that emitter is locateddistant position which is already
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mentioned in Section 4.3.4, the emitter is notvedld to stay close to the origin less
than 4 units. For each noise level, Monte Carlousation is conducted by 1000
iterations. Consequently, the new method, namelgrsection of DEUs, achieved
equivalent or even superior performance comparedRSS based NLS by also
performing very close to Cramer Rao Lower Bound (BR[75, 76, 27] for different

noise levels. As shown in Figure 4.15, similar hessare obtained with 8 sensors which

are circularly located around origin.

Localization with 4 Sensors
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Figure 4.14.Comparison of the performance of NLS and interseatif DEUs via Monte Carlo

Simulation (4 sensors)
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Figure 4.15 Comparison of the performance of NLS and interseatif DEUs via Monte Carlo

Simulation (8 sensors)
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While it is possible to obtain similar accuracy ibyersection of DEUS, it can
approximately perform 20 times faster than DRSSet#aBILS algorithm. Same
experiments are conducted to compare the spesdtie @lgorithms. In Figure 4.16, the
average execution times of localization algorithrase provided for NLS and
intersection of DEUs for different number of serssavhen these algorithms are
performed on an ordinary desktop computer with |InBore(TM) 17-3630QM
CPU@2.40 GHz Processor and 16 GB RAM by means of M¥B [77]. As can be
seen, intersection of DEUs always performs sigaifity faster than NLS regardless of
the number of sensors involved in localization. Streggle to simplify the localization
process via geometrical observations, discoveieglinear nature of DEU and finally
skillfully exploiting this discovery in RSS basedchlization lead to a very effective
solution compared to NLS. As discussed in Secti@?24 NLS must conduct a search
within a three dimensional space namgtyy,n) to come up with the solution. NLS
also requires an initial point to start the seafoh the minimum point and its
performance is highly sensitive to the location tbfs initial point. Unlike NLS,

intersection of DEUs requires no initial point.
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Figure 4.16.The average time of execution of NLS and interseatf DEUs for different number of

Sensors
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4.5.2. Moving Towards Emitter: DEU is a Route Planning Tod

In this section, an illustrative simulation for ¢king scenario is presented to be
able to briefly discuss the benefit of DEU as aaiyit route planning tool. A simple
tracking rule is established for a moving sens@seld on the concept of DEU: firstly
derive DEU by using the last three measurementssewbndly move along DEU until
the next measurement. A rival tracking method tat#ished as the following: firstly
estimate the location of the emitter by using @& four measurements, and secondly
move towards this point until the next measuremehis rival method has to engage
the last four measurements because at least foasuraments are necessary to make a
localization as explained in Section 4.5.1. Thev@ibart of the tracking algorithms can

be found in Figure 4.17.

INITIALIZATION: INITIALIZATION:
Take Three Take Four
Measurements DEU bGSEd Measurements NLS bGSEd
| Tracking Tracking
Calculate the location of
Caleaims oRy the emitter via last four
NO \_ measurements

l

Move Along DEU 1

l

Move towards the

Are last three
measurements
linear?

Take another
measurement
YES YES
Task is complete! Slightly deviate Task is complete!
from linear path.

Figure 4.17.Tracking Algorithms' Flowcharts

emitter

Is sufficiently
close to the
emitter?

Is sufficiently
close to the
emitter?

Take another
measurement

The speed of the moving sensor is assigned astZaemiand the emitter starts a
random motion 100 units apart from the moving sengoTable 4.1, the total length
that the moving sensor travels on average untiéaches to emitter is presented for
different RSS measurement error levels and diffespeed levels of emitter. Both high
level of RSS measurement error and high level eedpof emitter are tricking the
tracking method. Therefore, the average lengtrettred by the moving sensor increases

from upper left corner to lower right corner in Tald.1.
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Table 4.1.Comparison of average travel lengths and failureesaof emitter tracking metho

RSS error

(dB) c=0 c=10° o =10%
5 8 O55 | @ 55 | @ 255 | @
£8= 52228 5322 |28 |z2|28
RS 28|82 |28 |8 |28 |82
0.1 NLS 106.20 %0 106.53 %0 129.36 %0
’ DEU 106.14 %0 106.23 %0 120.84 %0
05 NLS 113.37 %0 112.08 %0 131.76 %0
’ DEU 112.05 %0 110.13 %0 121.71 %0
1 NLS 133.15 %1 131.00 %5 153.32 %5
DEU 121.14 %0 120.83 %2 131.54 %2

By taking shorter paths before reaching the emitter tracking algorithm bast
on DEU performs better compared to DRSS based IMd@eover, in this simulatior
not being able to catch the emitter even aftem@id00 units is defined as "failuof
the task". As seen ifable4.1, DEUdisplays a lower rate of failure compared to N
A descriptive video about DEU based trackin presentedn the permanenlink

https://youtu.be/nGyzCvXR8S whose screen captures are show Figure 4.18.

Moreover, an illustrve sample video about t tracking simulations can be fouiin

the permanent linkttps://youtu.be/NFz-Y6C_g4whose screen captures are show
Figure 4.19.

Figure 4.18 Screen captures of tliescriptive video about DEU based track
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The moving sensor| | . After three initial
starts its motion L measurements, it
here to catch L starts to go towards
the emitter the emitter
*‘/ >
& - -

Emitter is here : By means of DEU, the moving

and it is slightly . sensor successfully catches

moving N the moving emitter.

Ml

Figure 4.19.Screen captures of the illustrative sample videaudlbhe emitter tracking simulations

4.5.3. Limitation about DEU

In this section, it will be mentioned that the gu@®ints with respect to different
Ngyess Values lose their ability to align linearly fonéar measurement patterns. Linear
measurement patterns which are not preferable beaafubringing the issue of mirror
effect in localization are also problematic in giely linear DEU structures as shown in
Figure 4.20.a. However, the DEUs can quickly recdweir linear patterns for even
very small angular deviation from linear measureimé&igure 4.20.b illustrates how
DEUs are perfectly reconstructed for only 30 degregeviation from linear
measurement. Therefore, a sensor moving along earlipath can make a small

deviation from the line of motion, if it wants tbexk its direction by means of DEU.
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These DEUs can.not be Linear DEUs are recovered back
maodelled as linear 14 , . s
3 with only a small deviation from

12
10 directions i s L .
12 N s s linear measurement
H : s
H X i
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2 | Problem of Mirror DEUs
4 : because of linear
. H measurement
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(a)

Figure 4.20.(a) Linear measurement patterns brings the probdémon-linear DEUs as well as mirror
DEUs (b) A small deviation from linear measuremism@nough to recover linear DEUs

back
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5. CIRCULAR UNCERTAINTY METHOD FOR RANGE-ONLY
LOCALIZATION WITH IMPRECISE SENSOR POSITIONS

Emitter or source localization is a field of senamay processing, which attempts
to find the location of different of type of souscthrough the information from various
sensors especially in noisy environments. Therebeaseveral types of error within the
information utilized in source localization suchths error at measurements or the error
at measurement positions etc. In the literaturés ientioned that if the sensors are
moving, then it is very likely that the measurempasitions are imprecise. Moreover,
the uncertainties in the measurement positionsloamnate the localization error of the
systems. Therefore, the uncertainties in the measemt positions must be carefully
handled when dealing with the moving sensors. Thispter is dedicated to build a
robust localization scheme when the sensor positoe imprecise.

5.1. Introduction to Circular Uncertainty

This chapter provides an effective new method dallércular Uncertainty to
solve the range-only localization in the presentceemsor position errors. In practice,
the sensors can stay only within a limited regidmereas the target can be far from
there. To increase the estimation capability, sper@heral measurements with moving
sensors can be obtained which results in the isbuneprecise sensor positions. In these
situations, sensor positions also become unknowanpeters which need to be jointly
estimated together with the target location. Beeanfsthe large number of unknown
parameters, reaching the global minimum becomégn#isant challenge. This chapter
IS dedicated to build a robust localization schebrethese scenarios. A new search
strategy namely Circular Uncertainty is proposedciiallows the localization system
to safely find the global minimum of Maximum Liklebod cost function in case of
imprecise sensor positions. Circular uncertainty owly makes it possible to reach
Maximum Likelihood estimation, but also significensimplifies this task.

In the rest of this chapter, firstly CRLB for loization error is explicitly obtained
for the case of imprecise sensor positions. Néet,basis of the new proposed method
namely Circular Uncertainty is presented by visualisplaying the cost surfaces of
localization of targets. Then, a formal proof forrddlar Uncertainty is provided.
Circular Uncertainty significantly reduces the sipé the search spaces of the

minimization processes. It conveniently finds thebgl minimum of the MLE surface
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which gets quite complicated together with the utaseties in the sensor positions. The
performance of the new proposed method is testedsitmulations for different
scenarios, and also compared with the WLS solutbri63] which is specifically
designed to attain CRLB in the presence of sengsitipn uncertainties. The proposed
solution, which takes the advantage of obtainingBMh a robust way, attains CRLB
regardless of the noise level whereas other solsitipartly fail to achieve this

performance.

5.2. The Basis for The Research

In this part, CRLB for the range-only localizatiauith imprecise sensor positions

is obtained, and then, MLE solution for this lozation scheme is described.

5.2.1. CRLB for Localization with Imprecise Sensor Locatians
This part will formulate CRLB for localization withmprecise sensor positions.
When there ar&/ independent distance observations frl§ndifferent sensor locations,

the Fisher information matrix is as the followir&y],

(x —x)%+ (y —y)? x—x)%+ (y—yi)?

I(x,y) =

(x — x,)? ﬁ:(x—m)@—ya
LT
‘;1 (74)

Syl =

(x —x;). (v — 1) (v —y)?
(x—x)*+ (y—y)? = (x—x)*+ @ —y)?* |

>

Li=1
where f, y) is the target location and;( y;)'s are the sensor positions where
distance-to-target measurements are taken for,.., N. Distance measurements are
obtained with the standard deviatio. This Fisher Information Matrix is only for
localization with precise information for sensorspions. Therefore, the Fisher
information has to be obtained for the case of enfge sensor positions. Now, let us

define the whole measurement model when sensadigrusare imprecise,

D= (x—x)?+ (¥ —y)* + Wi~ N(0,0p) (75)
Xi = X +Zl ~N(0,O'X) (76)
Y=y +T; ~N(0,0y) (77)
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whereD; is distance measurement at the sensor positiory;). The sensors are
physically in their exact positions;(y;). But, the localization system does not have the
precise information for the sensor positions. Hosvevthis does not affecD;
measurements. Therefore, the position of sensorst rhe modeled as imprecise
information. Consequently, in addition f§ namely distance to target measurement,
(X;, ;) is also included within model as the observatbrith sensor position i.ex{,
v;). In this modelW;, Z; andT; represent the zero-mean normal distributed eerong
within D;, X; andY; respectively. The standard deviationDgfX; andY; areo,, oy and
oy respectively.

Now, based on the addition rule of Fisher Matrhe Fisher information for the

measurement model that has been just defined alaovbe written as the following,
N N N
1@ =) @+ ) @+ ) h@ =h@+ L@+ L@ (79
i=1 i=1 i=1

whereq is parameter set, which defines the location efténget and all sensors,

q=1[x,y,%1, Y1, %n , Y] (79)

If a 2x2 matrix is defined such that,

[ (x — x;)? (x—x). (v —yi)
g o |GG G-+ Oy 0)
(x —x). (v — 1) (v —y)?

(x=x)2+ (@ —y)?* (x—x)>+y—y)?

The information matrix for a single distance-togetrmeasuremeist; becomes,

_Al' g Ai
0 0
i=—| 81
IDL-(CI)—E A, A (81)
0
0l

where0 is the 2x2 zero matrix. Therefore, FIM for alltdisce measurements is,

57



r N

DA A A e Ay

i=1

- 1 Al Al
I(@) = oz| (82)
A0 A
-.. Q

Ay 0 Ay

FIM for measurements of x positions of all sensor i
0
1

O_XZ

and FIM for measurements of y positions of all sesss,
0

1 1
Q) =—; 0 (84)

oy?

If the standard deviations of sensor position errare equal in X and y-axis

namely,
O-S = O—X = Uy (85)
then, FIM of measurements of positions of all sensan be written as,
0
0
1
15(@) = — 1 86
s(q) = P 1 (86)
1
Finally, the total FIM is as the following:
I(C_i) = ID(C_I)) + Is(a) 87)
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The lower bound for the mean squared distance efrany localization scheme
can be calculated by summing the first two diag@b@mnents of the inverse of the total
FIM, i.e. I"1(g). The overall effect of having some level of unaity in the sensor

positions is to levitate the CRLB for all levelsdistance error.

5.2.2. Maximum Likelihood Solution for Target Localization with Imprecise
Sensor Positions
The ordinary NLS solution for range-only targetdbzation can be written as the
following [3]:

N

(2,9) = argmin Y (JGr—X02+ G- 102 - D)’ #9)

xy) =

where {;, Y;) is the observed position ath sensor and; is the distance
measurement at this sensor. Dedicated to minimidg the overall error in distance
measurements, this solution neglects if the sepssitions are imprecise, however still
it can be a convenient way to solve the localizafpwoblem with imprecise sensor
positions. Therefore, ordinary distance NLS will bévays included during the
simulations as a baseline solution. The ordinastadice NLS can be MLE solution
when sensor positions are precise. However, foragipe sensor positions, the cost of
estimation must be a complete equation which iredutivo different parts for both
distance-to-target measurement errors and sensitigpoerrors. Therefore, to obtain
MLE cost function, let us write the log likelihooof all parameters inj as the
following:

N

Y (Va7 + G—7 - D)

i=1

1
2(op)?

In p(ﬁ, XY; q)=-
(89)

N
1
o ;m —x)?+ (Y —y)? +K

where isK is a constant such that,

K=—NIn (\/2 s (JD)Z) —2N In (\/2 s (05)2) (90)
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From this point of view, a maximum likelihood esaition (MLE) for all
parameters of the parameter ge&tan be proposed as the following:
1 3 2
Wz (\/(x -x)*+ v —y)* - Di)
(&, 9, %, 91 ...%y,Py) =  argmin sy (91)
(,y,%1,Y1--XN,YN) 1 SRy v _ 5
+ @) ;( i—x)+ Y —y)

This MLE function allows us to take into accoum terror in sensor positions to
better estimate the target positions. To obtainMh& solution, the global minimum of
the MLE cost has to be found in(@N + 2) dimensional space of the parameters
included withing. Estimating jointly all these parameters, i.e. ltteation of target and
all of the sensor positions at the same time,qsite difficult joint estimation problem.
Therefore, this study has built a new concept, mai@ecular Uncertainty, in order to
conveniently search for the global minimum of theB/function.

5.3. Methodology

In this part, first the new method i.e. Circulardgrtainty is introduced via some
illustrative examples of cost surfaces, and theouar Uncertainty is formally proved.

Next, NLS and MLE solutions by means of Circularcdrainty are described.

5.3.1. A New Concept in Range-Only Localization: CircularUncertainty

With the motivation to solve maximum likelihood &ization problem when
sensor positions are imprecise, this study propasegw search strategy, which is
called as Circular Uncertainty. Circular uncertginbughly means that once "a base
cost surface" is established by means of a coujptmtral measurements which are
confined to a limited area, in case of some newsuements are received which
disturb the initial estimation, the disturbed nestiraation has a tendency to move along
a particular circle or arc. This study calls thiesial circle as Circular Uncertainty of
the base central measurements. Let us start wdunte this concept by demonstrating
examples of NLS cost surfaces obtained via som&atlemeasurements with precise
positions.

In Figure 5.1.a, the sensors are circularly locaemind the origin, and noisy

distance measurements are obtained in accordartetie distance measurement
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model in (75). Based on these distance measurentbetyalue of distance NLS cost
function shown in (88) is obtained for all the, (/) points, so the distance NLS cost
surface is obtained. In Figure 5.1.a, this NLS sostace is depicted as a contour plot.
As seen, the global minimum of NLS cost surfaceuradlty occurs around the target.
However, the interesting point is that this NLStdosiction have a tendency to stretch
along a special circle, so it has a croissantdikape surrounding the origin.

The croissant-like shape of contour of NLS surfecdue to the fact that there
exist a few central distance-to-target measurenerdgshe target is located far from the
measurement points. As a result, the angular posérror of the target dominates the
overall error of the NLS solution. In other word¥,.S solution for this scenario has a
limited capability for estimating the angular pasit of the target compared to its radial
position. When the NLS surface with respect to potardinates is plotted as shown in
Figure 5.1.b, it can be seen that NLS surface hasah appearance which resembles a
bivariate normal distribution with a diagonal caaace matrix. Of course, while the
distribution can be an ordinary normal distributedong radial coordinate, it must be a
circular normal distribution (i.e. von Mises disution) along angular coordinate
because of the periodicity of the angular coordintitcan be observed that the variance
along the angular coordinate is quite larger tiewviariance along the radial coordinate.
In this sense, because this distribution is a mt@rnormal distribution in polar
coordinates as seen Figure 5.1.b, then its Camtesianterpart shown in Figure 5.1.a
can be viewed as a circularly wrapped bivariatenabdistribution around the origin of
Cartesian plane. Consequently, this explains tbissant-like shape of NLS surface in

Figure 5.1.a.
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The sensor geometry in Figure 5.1.a is a specal smit may be wondered if this
type of behavior exists for random sensor geonsetiie Figure 5.1.c for a random
measurement geometry located roughly around tlggnoii can be again observed that
NLS surface stretches along a special circle iot.abong some other type of closed
curve. For this case, the croissant shape is motstric around the global minimum,
but it still perfectly stretches along a circle. fSequently, this study will name this
circle as "the Circular Uncertainty" of the partmu cost surface. Intuitively, the

parameters of the circular uncertainty are defiaed

N N
1 1
(Xcu »Yev) = <Nz Xi 'NZ Yi ) (92)
1 i=1

i=

_ 2 D 93
Tcu = N; i (93)
where (x¢y , ycu) IS the center and.;; is the radius of the Circular Uncertainty.
The center of Circular Uncertainty is defined as ¢kntroid of measurement points, and
the radius of the Circular Uncertainty is definedtlae average distance measurements.
The important property of Circular Uncertainty &t global minimum of cost surface
occurs along the Circular Uncertainty. In Figurd.&.and Figure 5.1.c, it can be
observed that the global minimum is located aldrg Circular Uncertainty. In Figure
5.1.d, another interesting point can be observatiinen NLS cost surface has a local
minimum, this local minimum also occurs along thece@ar Uncertainty.

Next, it may be wondered if Circular Uncertaintarss to occur only after some
specific number of measurements. In Figure 5.he,NLS cost surface of only two
measurements are shown where there must be twalgtobima. Surprisingly, in spite
of the existence of only two measurements (andemprently two global minima), NLS
surface still tends to stretch along the Circulaceértainty. The Circular Uncertainty of
this surface is quite visible in 3D plot of the Nk8rface shown in Figure 5.1.f. If it is
considered that a single distance measuremensashalsically a circular uncertainty,
then it can be argued that the defined Circularddiainty always occurs regardless of
the number of measurements.

At the beginning of this section, it is mentionédttonce "a base cost surface" is

established by means of a couple of central meamnts, in case of receiving some
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new measurements which disturb the initial estiomatithe disturbed new estimation
has a tendency to move along the Circular Uncdxtarajectory. This situation occurs
because of the croissant shape of the NLS surfimeg ahe Circular Uncertainty.
Circular Uncertainty is basically "a circular vallewithin the surface of NLS cost
function as demonstrated in Figure 5.1.f. When neasasurements are received which
disturbs the initial estimation, the new disturbestimation will move along this
“circular valley" instead of climbing the hillsides

This phenomenon is depicted in Figure 5.2 whererethare two base
measurements creating a circular uncertainty. thtaa to these base measurements, a
third measurement with a sensor position errobisiaed. Finally, based on these three
measurements, the location of the target is estidnand then plotted as a small circular
point in Figure 5.2. When a random error is repigtadded to the position of third
measurement, and then NLS localization is forcelb¢ate the target as a Monte Carlo
simulation, a set of disturbed NLS solutions can di¢ained. Due to the above
explanations, the disturbed solutions are accurdlatong the Circular Uncertainty. A
similar picture can be observed in literature (B&g9 in [78]), yet the authors did not

pay attention to the above defined Circular Undetygophenomenon.
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Figure 5.2.The distribution of disturbed NLS solutions alohg Circular Uncertainty
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Eventually, this study lists "the properties ofc@ilar Uncertainty" which helps to
create a new understanding in range-only locabraif targets:
1) Global minimum occurs along the Circular Uncertaitmgjectory (possibly with
a small deviation).
2) Local minima (if any) have a tendency to occur gltdme Circular Uncertainty.
3) When the initial estimation is disturbed with neveasurements, the disturbed
estimation moves along the Circular Uncertaintjet®ory, which is the circular

valley of the cost surface.

Property 1 will allow us to conveniently find théogal minimum of the cost
surface of localization when sensor positions aeeipe. Property 3 will further allow
us to handle the issue of imprecise sensor positiva Circular Uncertainty. The
overall idea of Circular Uncertainty is visuallyrdenstrated in a movie to give more
tangible understanding of this concept (https:/ydae/s|j5CUsZs8W3

5.3.2. Proof of Circular Uncertainty

In this section, the new proposed concept i.ecutar uncertainty which has just
introduced in the previous section will be provedfrmulating the polar equation of
the NLS solution. The value which minimizes the NLS cost for a spedifie direction

6 can be expressed as the following:

N

7(0) = argminz (\/(r cos (6) — X;)?> + (rsin () —Y;)? — Di)2 (94)

r e
i=1

Therefore, the value minimizing the NLS cost shown in (94) muatidy the

following condition:

d
ar

L

N 2
(\/(r cos (0) — X;)?> + (rsin () —Y;)? — Di) =0 (95)

When the derivate in (95) is accomplished, theofelhg equation is obtained:

cos(@) (r cos () — X;) + sin(0) (r sin (0)
51' (r)

— Yi)l =0 (96)

N
=1

[z (0 - By

where D;(r) represents the distance between the peinbg(8),r sin(8)) and

the position ofith sensorn(x;, y;) as shown in Figure 5.3); is the distance-to-target
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measurement obtained by titb sensor. As seen in Figure 5.3, the line whickspa
through the origin with the angle with respect to x-axis is labeled Ag. It can be
observed that the nominator of the division at trigh(96) is the projection of the line

segment with the length; onto the lind.,. Therefore, (96) can be rewritten as:
N
~~ D;cos(a;
> [(Di - B) 22 g (97)
i=1

where ; is the angle betweeh, and the line segment connecting the points
(r cos(8),rsin(0)) and (x;,y;). After canceling the common terms, the following
expression is obtained:

N

Z[Di cos(a;) — Dy cos(a;)] =0 (98)

i=1

Origin ., / X-axis

Figure 5.3.The proof for Circular Uncertainty and its paramete

Then, D; cos(a;) can be replaced byr —S?), so the following expression

appears:

N
[Dicos(a;)) — (r— SP)] =0 (99)
=1

2

whereS? is the projection of the line segment connectiregdrigin to the position

of ith sensor(x;,y;) onto the lineLy as shown in Figure 5.3. Obviously} is a
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function of8, while a; is a function of botl® andr, consequently (99) can be rewritten

as the following:
N
Z(Sip (0) + D;cos[a;(6,7)] — 1) =0 (100)
i=1

The difficult point is thata; is a function ofr, so finding the root of (100)
becomes a complex task. To simplify this task, swfficiently large r values,
cos[a;(6,7r)] can be roughly approximated as 1. This approxonais consistent with
the case of Circular Uncertainty where the centnglasurements are scattered just
around the origin, and the target is assumed tdobated in a point far from the

measurements. Finally by means of this approximatiee following equation appears:
N
Z(sg’(e) +D - 1)~ 0 (101)
i=1

Therefore, the value which minimizes the NLS cost for a spedifie directionf

can be formulated as the following:

1% 1%
< 2SO+ 1D, (102)
i=1 i=1

The first term in (102) is just the projection betcentroid of the sensor positions
onto the lineLy, as shown in (103) and (104). And, the second terr(i02) is the
average of the measured distances by the centedurements. Therefore, (102) is the
proof for circular uncertainty and for its parametehich have been intuitively defined

in the previous section.

N N
%Z [cos(8) sin(6)] [;i] + %z D; (103)

N
7(0) =~ [cos(0) sin(6)] < ) D;
Z Z (104)

l=
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5.3.3. Solving NLS Equation via Circular Uncertainty

In this section, it is demonstrated how Circularceainty can be utilized to
conveniently solve the NLS equation in (88). By meeaf Circular Uncertainty, the size
of search space will be reduced. As mentioned glglgbal minimum occurs along the
Circular Uncertainty possibly with a small deviatiolherefore, the global minimum
must be searched along the Circular Uncertaintysetmarameters are defined in (92)
and (93). Let us write the equation of Circular Bmainty as a function of as the

following:
x(8) = x¢cy + ey cos (6) (105)
y(0) = ycy + 1y sin (0) (106)

Therefore, the NLS equation in (88) can be rewritie the following:

N

. 2
(9) = argminz (\/(xcu + ey cos (8) — X)? + (yey + ey sin () — Y)? — Di) (107)
©® =

As seen, the size of search space is reduced bgsn@aCircular Uncertainty.
Furthermore, because is periodic, only the rangé€0,2r] is of interest instead of
infinite intervals forx or y in (88). In Figure 5.4.a, the setup of a Monte I&€ar
simulation which consists of 1000 iterations is who In each iteration, the eight
sensors are randomly positioned within square hAmeiged by the interval [-10, 10]
along x and y axis. The target (emitter or soursegandomly located anywhere within
the interval [-80, 80] along x and y axis, yetstriot allowed to stay close to the origin
smaller than 30 units i.e. not inside the circlavdnr as dashed line. In Figure 5.4.b, the
performances of localization by Circular Uncertgiahd conventional distance NLS are
shown as root mean squared (RMS) distance errose&s, both distance NLS and
Circular Uncertainty can attain CRLB. However, iec8on 5.4.3, it will be shown that
the execution time of the Circular Uncertainty isitg smaller than NLS. Therefore,
Circular Uncertainty is found to be a convenierluigon when all sensor positions are
precise. However, the real benefit of this solutiol be apparent in the next sections in

which the issue of imprecise sensor positionsssudised.
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5.3.4. MLE Solution by Circular Uncertainty

In practical situations, the sensors can only bewald to be located within a
limited region and the target can be located famfithe sensors. In order to increase
estimation capability, in addition to the centrabasurements taken within a limited
region, a few number of peripheral measurementdeateployed. However, to scan a
broad peripheral area, the peripheral measurencantbe designed as moving sensors,
which, as a result, brings the issue of uncerisnin the positions of sensors as
discussed in the literature [54]. In this sectidgin,is demonstrated how Circular
Uncertainty can be utilized to conveniently sole tMLE for this type scenario in
which there are uncertainties in sensor positiongéripheral measurements. First, let

us rewrite the parameters of the Circular Uncetyaas the following:

1 1
(Xcu »Yeu) = <MZ Xi :MZ Vi ) (108)

1
Teu = MZ D; (209)

ieC
where C is the set of central measurements with precisgtipns andM is the

number of elements in this set. In accordance thighCircular Uncertainty equations of

(105) and (106), MLE equation in (91) can be reageal as the following:
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(a )2 Z (‘/(x(g) -x)?+ (y(@) —y)*— D; )

(9'{%’%']61)}):(9. ?xrfyr?i?ep})LJrZ!( nY (J(x(e) %)’ + (y0) —y,)" - >2\L) (110)
Y) )

jEPL +(0_57 ((X x]) + (Y y]

whereP is the set of peripheral measurements with impeepositions. In order
to find the global minimum, the number of parameter be estimated &L + 2 where
L is the number of measurements with imprecise jposit(i.e. the size of the sBj. By
means of circular uncertainty, this number is reduto 2L + 1 by representing both
andy-axis of the target as a function &f Moreover, if the imprecise sensor positions
minimizing the MLE cost are also achieved to beespnted as functions 6f then the
total number of parameters to be estimated willrdbuced to 1 i.e. only. Let us
consider the estimation of a single imprecise sepsasition which minimizes jointly

distance and sensor position error given the lonadf the targefx(8),y(8)) :

1 2 2 ‘
(0p)2 (\/(x(e) —x)" + (y(0) —y;) — Dj) \ (111)
+ (0 )2 ((X x]’)z + (¥ - y]’)z)

(55‘]-, j‘/j) = argmin
X}¥j)

First of all, in order to minimize (111), the esétad position of the sensor
(%, 9;), the measured position of the sené#y, ¥;) and the location of the target

(x,y) must linearly align because of triangular inegyaliet us designate the distance

error a4 and the sensor position error&adn Figure 5.5.a, an estimation for the sensor
position is shown which does not lie on the lineickhpasses throug@X]-, Y]-) and
(x(e),y(e)). It is apparent that the projection point of teistimation onto this line
would yield smallerd andd so a smaller cost value. Therefore, the solutib(lbl)
must be located on the line which passes throughteasured position of the sensor
(X;, ¥;) and the location of the target(6),y(6)) as shown in Figure 5.5.b. For this

scheme, only the lengths #fandé are required.
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Figure 5.5. The estimated position of the sen§®r, 9;), the measured position of the senésy, Y;)

and the location of the targét, y) must linearly align

Therefore, solving (111) can be equivalently ackieby the solving following

equation:

. 2 S T
(A, 6) = al‘(%%ln (W (A + )2 () ) (112)

subjected to the constraint:

s+ 8= 7= (x®-x)+ (v6) ~1) - D, (113)

where { is the difference between the measured distdhcand the distance

between the target and the measured position oﬁeheor(X]-, Y]-). If the following

equity is inserted into the cost function showiflih2):
A=(-6 (114)

and then if the derivative of this cost functionta&ken with respect té, the

following the equation is obtained:
2(0p)*6—2(05)*((—=6)=0 (115)

Therefore, the estimated valuedivhich minimizes (112) is as the following:

(05)2

R P e (J(x(@) —x) + (0 -Y)" - Dj> (116)
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Based on this value, the estimated sensor posﬁﬁpﬁj) which minimizes (111)

can be written as the following:

. —X;
f=X+8 (xz ) = (117)
Je-x)y+ G-1)
. —Y
y=Y+o (yz & ; (118)
Je-x)+ 0-1)
Finally, (117) and (118) can be written as the fioms ofo:
2 D:
£(0) = X; + ﬁ /1 - - ] 2\ (x(®-%;) (119)
\ Je@-57+ 00 -1))

(0'5)2 Dj

N2 1 (42 -
(05)? + (op) \/(x(@) —X]-)Z N (y(@) _ Y})z

9,0) =Y + (y(®-Y) (120)

To sum up, the MLE cost function in (110) can beriteen as a function of:

/ @,%)ZZ (‘/(x(g) —x)*+ (y(0) —y)? - Di)z \

ieC

|
{1 23
oy e (e -30)'+ b -30) -] | (121)

A s 6

(9) = argmin
0

After representing the imprecise sensor positiohsadunction off, the total
number of parameters to be estimated within MLEa#iga in (110) is reduced from
2L + 1 to 1, in other words, the global minimum will baly searched through the

parametep.

5.4. Simulations

5.4.1. Imprecise Sensor Positions within Central Measuremss

In this section, a Monte Carlo simulation which sists of 1000 iterations is
conducted for the scenario where there are eightralemeasurements with precise

position together with three central measurementth wnprecise positions. The
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standard deviation of the sensor position etroiis set to 3. Figure 5.6.a shows the
simulation setup by means of a sample measurencbetre. In each iteration, while

both the sensors and target are randomly positjothey are subjected to the same
constraints of Figure 5.4.a (concerning the pas#tiof the sensors and the target). In
Figure 5.6.b, the performance of various local@atiechniques are compared to each

other by means of RMS distance error of localizatio

Eight Central Precise Measurements+

Three Central Imprecise Measurements Eight Central Precisg Measurements+
80 ‘ ¢ Three Central Imprecise Measurements
1
- Central ¢ Distance NLS
Measurements with v Circular Uncertainty
imprecise locations O Circ.Unc + Dist.NLS
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7
% Py ! Gé i
| i | == &
r° ) # : 8 4
> \ pug £ Target location R !’
\ - o Ps
Y N / ~to be estimated P P
- ~ 1 = /.
4 Central o P
Measurements with 1@l “"
0 precise locations _z7
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Figure 5.6.(a) The simulation setup - a sample measuremerinselwith eight central precise and three
central imprecise measurements and (b) the RM%@rtist errors for various localization

method

Distance NLS is the localization which simply mines the conventional NLS
cost function in (88) without taking the uncertastin certain sensor positions into
account. Circular Uncertainty is the localizatiectinique that this study has introduced
in (107). Circular Uncertainty in (107) again doest take the uncertainties in certain
sensor positions into account. "Circ. Unc. + DistN is the method where the
estimation of the Circular Uncertainty is usedl&s ihitial point of Distance NLS. The
significance of this type initialization will be pprent in the next sections. For this
scenario, these methods i.e. Distance NLS, Cirdufarertainty and "Circ. Unc. + Dist
NLS" have the equivalent rate of performance whsckignificantly above CRLB. SR-
WLS is the abbreviation of the squared range wemjl¢ast-squares introduced by [63].
They introduce this algorithm in order to convetligsolve the localization problems

with imprecise sensor positions. Unlike MLE, SR-Wh®oids jointly estimating the
73



target and the sensor positions. It solves a lsgsares equation whose terms are
skillfully weighted by also taking the uncertairgti|n the sensor positions into account.
While implementing SR-WLS, because this study assuriinat the standard
deviation of sensor position errors alon@gndy axis are the same i.¢; and the errors
are independent, thé matrix (introduced in [63]) is removed during adbtion of the

weighting matrixiW as shown below:
W=[B(@Qp+ Q)B]™! (122)

whereQ,, is the diagonal matrix whose diagonal element{@s¢*, andQ; is an

11x11 matrix as the following:

0

Qs = o2 (123)

“11x11

and B is the matrix as defined in [63]. While constragtiQs, it is assumed that
the last three measurements have imprecise pasitiBy removing the matrid, the
need for an initial estimation for the target positmentioned in [63] is also removed.

As seen in Figure 5.6.b, SR-WLS and MLE by the @ar Uncertainty in (121)
introduced in the previous section can attain CRitile the former methods which do
not take the uncertainties in the sensor positions account fail to achieve this
performance. SR-WLS weights the sensor accordinthéo closeness to target, the
relative error level in distance measurements dmed dtandard deviation of sensor
positions. In this sense, for the simulation setwgt this study has defined in Figure
5.6.a, SR-WLS opts to weight the three sensors imigbrecise positions by smaller
numbers. By doing this, SR-WLS reduces the impaganf these sensors because they
are not reliable due to their uncertain positidrtss is the justification of the success of
SR-WLS in attaining CRLB. However, a trade-off wolkcur when you need to heavily
rely on the sensors with imprecise sensors if tn@yperipheral measurements instead
of central ones. Therefore, the true benefit of MiuEEh Circular Uncertainty will be

more apparent in the next sections.
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5.4.2. The Benefit of Peripheral Measurements

It has been discussed that when there are onlyatessinsors which take distance-
to-target measurements, the localization suffesfa low capability of estimating the
angular position of the target. Therefore, in addito the central measurements, a few
number of peripheral measurements can be deplogethdrease the estimation
capability of localization system. To scan a brgastipheral area, the peripheral
measurements can be designed as moving sensors athiise end brings the issue of
uncertainties in the positions of peripheral sesisbievertheless, in this section, it is
shown how peripheral measurements even with imgeepositions can significantly
increase the performance of the localization systedm Figure 5.7, two CRLBs are

shown for two different localization scenarios.

Comparison of CRLBs:
The Benefit of Peripheral Measurements

107 ¢
o Eight Central Precise-
Three Central Imprecise v
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Figure 5.7. Increase in the performance of localization syst&ynmeans of peripheral measurements

Both of two scenarios in Figure 5.7 employ the sanmaber of measurements i.e.
eight measurements with precise positions and thmeasurements with imprecise
positions. However, the distinction is that in tfiest scenario, three imprecise
measurements are the central ones together widt etpht measurements, while in the
second scenario, they are employed as peripherasunements. The first scenario is
the one which is already shown in Figure 5.6.a #wedsecond scenario is depicted in
Figure 5.8.a. In the second scenario, the periphmeemsurements are allowed to be

randomly distributed within peripheral area justelithe target, however they are not
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allowed to get close to the target smaller thambBsu The standard deviation of the
sensor position errass is set to 3. As seen in Figure 5.7, the peripher@hsurements

can significantly increase the performance of trege-only localization system. Please
note that RMS distance errors are plotted in lagescso the difference between these

two CRLBs points to a significant increase in tleefprmance.

5.4.3. Peripheral Measurements with Imprecise Positions

In this section, the simulation including peripHareeasurements with imprecise
positions is presented. A Monte Carlo simulationolthconsists of 1000 iterations is
conducted to determine the localization performasicthe algorithms. The simulation
setup is depicted in shown in Figure 5.8.a by medres sample measurement scheme
where there are eight central measurements wittigerg@ositions and three peripheral
measurements with imprecise positions and the atdrakviation of the sensor position
error g is set to 3. In each iteration, the sensors aadatget are randomly positioned
in accordance with the peripheral and central caimgs settled in previous simulations.
As depicted previously, in order to take the adsgatof the peripheral measurements,
the localization system must rely on the periphenglasurements even though their
positions are imprecise.

The first method shown in Figure 5.8.b is DistahieS. Because of peripheral
measurements, the surface of the conventionaldist&dLS cost function becomes
somewhat complicated, so the conventional distMic® suffers from local minima.
Therefore, Distance NLS presents the worst perfoo@an this scenario because of
convergence issues. However, Circular Uncertaihgt this study has introduced in
(107) presents a better performance compared tandis NLS. It has been mentioned
that Circular Uncertainty is a safe and reliableg/whobtaining global minimum. When
the estimation of Circular Uncertainty is employegdthe initial point of Distance NLS,
then Distance NLS can be also guided to obtairgtbleal minimum. Therefore, "Circ.
Unc. + Dist. NLS" has the same level of RMS errahvZircular Uncertainty which is
quite smaller than that of only Distance NLS. listtontext, the important advantage of

Circular Uncertainty which safely obtains the gloimnimum becomes visible.
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Figure 5.8.(a) The simulation setup - a sample measurememselwith eight central precise and three
peripheral imprecise measurements, (b) the RMSamiist errors for various localization

methods

The next thing to be discussed about Figure 58that SR-WLS fails to attain
CLRB for high level of distance-to-target measuretaelt has been discussed that the
strategy of the SR-WLS is to reduce the weightshef measurements with imprecise
positions in order not to rely on these measuremétwever, the major aim here is to
take the advantage of the peripheral measurementsugah as possible despite their
positions are imprecise in order to exploit all ilakde information for localization of
the target. Therefore, this situation creates @etatf for SR-WLS. On the other hand,
as a complete basis for estimation, the MLE safuttan apparently do better than
weighted least squares algorithms. MLE solutionosaatically takes the standard
deviations of errors in distance measurements amgteicise sensor positions into
account. Not only these, it also takes the geomatrhe arrangement of sensors into
account, which guarantees a superior performangentially, the proposed method,
l.e. MLE by Circular Uncertainty, can demonstragttér performance compared to all
other competing methods. Circular Uncertainty or¢CUnc. + Dist. NLS" can not
attain CRLB for lowa,, levels and oppositely SR-WLS can not attain CRbBHigh
op levels. However, MLE by Circular Uncertainty cdways attain CRLB for all levels
of o, as seen in Figure 5.8.b.

Finally, average execution times of these algorghameprovidedin Table 5.1,
when these algorithms are performed on an ordimksktop computer with Intel
Core(TM) i7-3630QM CPU@2.40 GHz Processor and 16 RV via MATLAB

77



[77]. As can be seen, Circular Uncertainty has shaallest execution time (0.049
seconds) while Distance NLS follows it with an imgamt gap. Circular Uncertainty
attains this performance gain because it skillfodlgluces the NLS localization problem
to a simple task. Circular Uncertainty searches gfhabal minimum in a one-
dimensional space while distance NLS makes a tweedsional search. Circ. Unc. +
Dist NLS comes after these methods with 0.071 s#xoAfter these three methods
which do not take the uncertainty in the sensoitjpos into account, SR-WLS comes
with 0.073 seconds of execution time in averages €kecution time is quite closer to
that of Distance NLS or Circ. Unc. + Dist NLS. Theccess of SR-WLS in terms of
execution time is that it makes use of the squaaedes in order not deal with square
roots in the estimation cost function. The lasthodtin terms execution time is MLE
by Circular Uncertainty. However, the average ekeoutime of MLE by Circular
Uncertainty and SR-WLS are almost same. When itoissidered that this method
achieves a very complicated task and it outperfoaththe other methods in terms of
localization error, MLE by Circular Uncertainty aggrs as the most effective method
among others. When, there exist uncertainties msa@epositions, the success of MLE
by Circular Uncertainty in terms of both localizatiaccuracy and execution time is due
to the fact that it reduces the multi-dimensioredrsh space in into one-dimensional

space without decreasing the localization accuracy.

Table 5.1.Average execution times of the algorithms wherethégorithms are performed on an
ordinary desktop computer

Method Execution Time (sec)
Circular Uncertainty 0.049

Distance NLS 0.069

Circ. Unc. + Dist. NLS 0.071

SR-WLS (Chen & Ho, 2104) 0.073

MLE by Circular Unc. 0.074

Finally, the overall idea of Circular Uncertainty visually demonstrated in a
movie to give more tangible understanding of tlweaept which has been uploaded to
the permanent link https://youtu.be/sj5CUsZs8¥fl its screen captures are provided

in Figure 5.9.
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will move along
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Figure 5.9.Screen captures of the descriptive video aboutuirdUncertainty
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6. DISCUSSION

Wireless localization is a significant researchaamhich addresses many different
applications from rescue activities to smart tramggion systems etc. Wireless
localization with moving sensors is a challengiagkt which involves several research
directions such as trajectory planning and optitioza creating effective localization
strategies, building efficient algorithms and so Bloving platforms have a couples of
physical constraints such as a limited useful laad limited time of flight, so the
localization systems must include the most efficidmrdware and software
combinations. While RSS based localization systarascriticized not to able to result
in robust solutions, undoubtedly they are the nadffsirdable solutions among other RF
localization parameters. Therefore, there existgr@aving attention on RSS based
localization systems to take the advantage of éiféardable and simple structures.

In this study, a thorough literature review hasrbpevided. First, basics of RSS
and range-only localization are discussed togetliter related formulas. The basic idea
behind RSS and range-only localization is depictéth illustrative flow diagrams in
order to provide a better insight into the locdiima processes. Second, current research
areas in RSS based localization are discussed., exiroad literature review on
Differential RSS (DRSS) is presented. The literataf RSS based localization is so
spread that different expressions are being usedht® same concepts by different
authors. For this reason, a rigorous literaturaeseuis provided which exhaustively
includes all related previous studies. Next, thevjmus studies about joint estimation of
path loss exponent and emitter's location, and B&®d Localization via UAVs are
provided. Then, trajectory optimization for emittircalization are discussed and
finally, a comprehensive literature review on senssition uncertainty is presented.

When a moving sensor travels with the aim of ediimgathe location of the
emitter, the first goal must be to create an eiffectoute planning strategy which
statistically guarantees the best possible estimaiapability at the end of the travel of
moving sensor. Section 3 deals with trajectoriehefmoving sensors and describes the
essence of trajectory planning through a new petsge Moving sensors can be
carried by many different moving platforms such ammed aerial vehicles etc. As
mentioned above, mini UAVs can have a couple ofspia constraints including
maximum flight time, maximum weight of useful loatt. All these constraints can lead

to a limited range of travel for small UAVs. Moraay the emergency of the

80



localization mission may imply time constraints whialso result in limited total
lengths of travel. Therefore, the best possiblenadion capability can be desired given
a limited length of travel which is shorter thaitial distance to emitter. Consequently,
Section 3 explores the best angular direction gadimited length of travel for both
RSS and range-only based localization.

The common point of trajectory optimization studieghe literature is to model
the motion of the sensor as a set of discrete waigpdogether with discrete
measurements. However, the motion of moving senisoins fact a continuous path,
therefore when measurements are frequent enougiyctin be regarded as continuous
time stochastic processes. Therefore, a new pdrgpachich views trajectories of the
moving sensors as continuous paths is required.stihemation operators within FIM
can be appropriately converted to line integra8y.[€onsequently, to provide a detailed
insight into trajectory optimization for range-ondnd RSS-based localization, this
study shifts the scope of Fisher Information Maf{f£tM) from discrete measurement
geometries to continuous measurement curves. leraw differentiate continuous
curve FIMs from usual discrete FIMs, the FIMs assed with continuous trajectories
has been called as Fisher Continuous Informatiotriéés (FCIM) in this study.

By means of FCIM, Section 3 has demonstrated tmatbiest direction is only
function of the ratio tdL|/4 i.e. the ratio of the total length of travel arg tinitial
distance to emitter. Then, Section 3 presents lthts pf the best angular orientation for
range only and RSS based localization with resgeciL|/4. For range only
localization, the best angular orientation mostlgtches the arccosine function for
small values oflL|/A. However, for large valueH.|/4, the best angular orientation
deviates from the arccosine function because ofnded for uniform distribution of
projected measurements along unit circle. For R&®db localization, the best angular
orientation always stays well below arccosine bseahe measurement points which
are close to the target are more valuable duegmdéomal shadowing. The important
point regarding to RSS based localization is thatliest angular direction is O degree
when|L|/4 is 1. In other words, if the moving sensor is ableeach to emitter, then it
must be directed towards the emitter for best pbssstimation capability. This result
justifies the main idea of Direction of Exponentdértainty which aims to create a
direction towards the emitter for any time of thevel.
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In Section 4, DRSS based emitter localization ialyed from a geometrical
point of view. The new proposed method, DirectibEoponent Uncertainty (DEU), is
a powerful geometrical solution which brings sigraht computational efficiency and
robustness in emitter localization. It has beenculesd that in case of three
measurements, the uncertainty in the location efethitter can be modeled as a special
line when path loss exponent is unknown. When them@ multiple number of
measurements from different locations, multiple BEtan be obtained corresponding
to different triple combinations of measurementaaHy, it has been shown that finding
the intersection point of these DEUs is an effectiay of estimating the location of the
emitter, which attains CRLB.

The initial motivation behind DEU is to create althmng block for an RSS-based
tracking system whose objective is to move the aetswards the location of the
emitter at the smallest possible time. DEU basacking is valuable because the sensor
moves towards the emitter without calculating theation of the emitter. By this way,
the sensor can more quickly initialize its motiamdat can more flexibly update its
route because only three measurements are engagedrive a DEU. DEU based
systems will be useful in a lot of important apgtions such as rescue activities,
detecting unlicensed radio broadcasting etc. whwzeask is to reach to the target as
soon as possible.

The new method, DEU, emerges as a critically ingodrtool when some of the
parameters of path loss model are changing duonglization process, such as the
emitter is slightly moving (i.e(x, y) is changing), noise level is changing or finalithp
loss exponent is varying over time. With these dgeanin the parameters of path loss
model, the measurement history can lose its vglaftier a period of time, therefore the
localization system may need to start over by @kiaw measurements. In this kind of
scenarios, DEU based tracking systems can effégtomtinue to function because it is
based on very small number of measurements. DEcakmnlate a direction towards
emitter before the consistency between measurernsedégraded.

The power of DEU is to be a geometrical solutiok\Dis a powerful geometrical
tool which removes a lot of computational wastehsas iterations or grid searches. It
converts minimization of non-convex cost functiana very simple task which is to

find the intersection points of lines. Therefolaststudy is an important research which
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brings a significant emphasis on the benefits ofovative geometrical solutions to
localization problems.

In Section 5, a new method, i.e. Circular Uncettgirs introduced to deal with
the issue of imprecise sensor positions in emikbealization. Emitter or source
localization is a field of sensor array processiwgich attempts to find the location of
different of type of sources through the informatfoom various sensors especially in
noisy environments. There can be several typesrof within the information utilized
in source localization such as the error at measanés or the error at measurement
positions etc. In the literature, it is mentionédttif the sensors are moving, then it is
very likely that the measurement positions are aujge. Therefore, Section 5 provides
an effective new method to solve the localizatisnbpem by means of distance-to-
target measurements in the presence of sensorgpositors.

Distance-to-target measurements are nonlinear wdis@mns with respect to the
unknown parameters namely the coordinates of tlgettdocation [63]. This situation
makes target localization based on distance-tetarggasurements a challenging task.
Therefore, the estimators seeking the best possbtanation such as maximum
likelihood estimation (MLE) require iterative selaes along nonlinear cost surfaces.
Iterative solutions are computationally expensived aheir accuracy significantly
depends on the initial points of the iterations.various localization scenarios, MLE
cost surface can be complicated with a couple oéllaninima and saddles points.
Therefore, depending on the initial point, the mmiziation process can end up with a
local minimum, so this can lead the performancestimator to diverge from the ideal
case. However, Section 5 proposes a completelylgaddization scheme without any
convergence issue.

When the sensor positions have uncertainties intiaddo the uncertainties in
distance measurements, it brings an additionalcdlffy for localization system. In
these cases, the positions of sensors also becoknewn parameters which need to be
jointly estimated together with the target locatidrine number of parameters to be
estimated becomes very large, so reaching the Igilolmmum becomes a significant
challenge for iterative solutions [63]. Taking tiiést into account, this study removes
this issue by conveniently reducing the multi-disienal search space to a single
dimensional space by means of the proposed methltet CCircular Uncertainty. The

method of Circular Uncertainty allows the localinatsystem to safely find the global

83



minimum even for complicated cost functions in #dstence of imprecise sensor
locations.

Distance based localization can be solved by neatineast squares (NLS) of
errors of distance-to-target measurements. HowéNe§ solutions are not suitable to
deal with the uncertainties in sensor positionsigited least squares (WLS) can be
regarded as a special case of NLS where each seskillfully weighted by taking the
uncertainties in sensor positions into account.gang the squared distance errors can
be quite useful to manage the uncertainties in@epassitions. However, to obtain a
better scheme of localization, the cost of estiamathust be a complete equation which
includes two different parts for both distancedoget measurement errors and sensor
position errors. Therefore, in this study, the c@atgomaximum likelihood cost function
is established and solved in a smart and convemiaptwhich guarantees to obtain the
Cramer Rao Lower Bound (CLRB) in any condition.

In practical situations, the sensors can only bewald to be located within a
limited region whereas it is very likely that tharget can be located far from this
region. The important observation is that whiles ivery common to encounter this type
of localization scenario, it provides a very lintiteapability for estimating the angular
position of the target via distance-to-target obggons. Therefore, in addition to the
central measurements taken within a limited regianfew number of peripheral
measurements can be deployed to dramatically iseréae estimation capability of
localization system. However, to scan a broad per@l area, the peripheral
measurements can be designed as moving sensocs, \&hia result, brings the issue of
uncertainty in the position of sensors. Moreovethlthe error in the sensor positions
and the error of distance measurements can bdisagrily high in practical situations.
Therefore, the localization systems must be sosbthat they keep functioning even
under high level of noise and they must try to laeathe target as accurate as possible
in every case. Section 5 is dedicated to buildtps of robust localization system.

For the scenario mentioned in the above paragiigjpd,demonstrated that NLS
cost surface of range-only localization has thessamt shape which results in the new
concept Circular Uncertainty. Circular Uncertairgyasically "a circular valley" within
the surface of NLS cost function. When new measargsare received which disturbs
the initial estimation, the new disturbed estimatiwill move along this “circular

valley" instead of climbing the hillsides. Once Base cost surface" is established by
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means of a couple of central measurements, in «dseeceiving some new
measurements which disturb the initial estimatitve, disturbed new estimation has a
tendency to move along the Circular Uncertaintyetrmry. Using this observation, a
new robust localization scheme which finds the glahinimum of the MLE solution
has been created. The new solution, which takesdliantage of obtaining MLE in a
robust way, attains CRLB regardless of the noisellevhereas other solutions partly
fail to achieve this performance.

In localization systems, the biggest problem wite MLE solution is that it is
said to be computationally inefficient. Moreoveechuse of local minima or irregular
cost functions, attempting to reach MLE solution b& sometimes problematic or even
impossible. In this study, a new method, Circulancértainty, is established to
effectively and reliably solve a very complicated.®&problem. Circular certainty not
only makes it possible to reach MLE solutions, bl#o significantly simplifies this
task. A high dimensional joint estimation problesiréduced to the estimation of only a
single parameter i.@.. The success of Circular Uncertainty is to innoxdy handle the

range-only localization problem with solid obseroas.
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7. CONCLUSION

Recent advancements in wireless technology hasatiicatly increased the use of
wireless devices in every field of the life. Thenef, localization of wireless devices has
become an important requirement for many differeoitemporary and prospective
applications. In rescue activities, the naturedlans, the climbers or the people who are
lost in some regions due to accidents, naturalstBss or any other reasons can be
searched via the wireless devices that they cMoyeover, the workers or the people
who are subjected to this type of risks can beestpd to carry special wireless devices
which can broadcast some special high level emeggsignals to allow the rescue
teams find their location. Another subject of watsd localization is to localize the
unlicensed broadcasts. Unlicensed broadcasts cdealivered from a changing position
via moving platforms such as cars or trucks, sed#tg these broadcasts can be a quite
challenging task. Wireless localization also inesidietection or localization of vehicles
to build smart transportation or smart traffic gyss. Localizing the trespassing people,
vehicles or drones within a specific area through wireless devices that they have is
also another topic of wireless localization. Fipaliracking some special animals or
endangered species can be also achieved by meam®lefss localization.

Commercialization of UAVs (especially mini dronasquadcopters) in the recent
years has allowed a very large of bulk of peopleat@ess this technology. The
increased popularity of UAVs in civil applicatiotekes the attention of both academic
and industrial environments. Therefore, researctiemighout the world are trying to
expand the scope of the applications that can heaed by means of commercial
UAVs. Wireless localization is among the applicatidhat is desired to be achieved via
mini commercial UAVs. Several issues such as thgeats of target RF emitters are
weak, the duration of the broadcast is short, iipeas is distorted due to rural or urban
terrain and weather conditions, the target RF emidre moving and so on make it
necessary to mount the localization systems on mgoyilatforms namely UAVS.
However, commercial UAVs are small, inexpensived aasily accessible aerial
vehicles which are mostly used for civilian purpgsand they have significant
restrictions on the amount of useful load they roayry and the flight time. Therefore,
use of these commercial UAVs in wireless localmatirequires the localization
algorithms to be made feasible under very importanistraints and lower components,

SO0 it requires new research.
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RSS based and range only localization of wireles$ters with moving sensors is
a multidimensional problem which requires us to stder many different aspects.
Optimization of trajectories of the moving sensdrs obtain the best possible
localization capability, a robust estimation sturet which has no convergence issue
while finding the location of the emitter, a fasicélization algorithm with several
unknown parameters for real-time systems, a framewm handle the uncertainties in
sensor positions are all among the requirementsredting a successful localization
system with moving sensors. This study providesompdete localization structure
which covers all of the issues mentioned above. tAd proposed methods include
innovative and smart solutions to the researchlpnob. The proposed solutions in this
study are based on remarkable new observationsebtafter careful investigation of
the problems. All the new concepts are depicteconbt with clear formulation but also
with visual materials such as figures, flow diagsaamd illustrative movies in order to
give better insight into the subject. The propossdutions namely Direction of
Exponent Uncertainty for unknown path loss exporeamd Circular Uncertainty for
imprecise sensor positions are attaining CRLB wliley are also computationally
efficient. Consequently, creating effective yeti@éint solutions at the same time has
been the major goal of the study. At the end, fitospectory planning to localization
with several unknown parameters, from efficientatetgies for emitter tracking to
skillfully managing the uncertainties in sensoriposs, this study provide a complete
structure for RF emitter localization with movingnsors.

In the future research, the new proposed methodshvare designed for limited
number of moving platforms in this study can beasmqed for multi-platform systems.
As an example, two moving sensors starting theitione far from each other can be
engaged to obtain DEUs from two different locatiofiserefore, the location of emitter
can be effectively estimated by means of intereactif DEUs at the very beginning.
Moreover, the proposed methods can be combined different parameters such
TDOA or AOA in order to create more robust systeRisally, this study provided new
methods which have great potentials to be develdapentder to obtain more robust

wireless localization systems in the future.
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