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ABSTRACT 

 

Ph.D. Dissertation 

 

DETECTION OF INDUCTION MOTOR FAULTS USING  

VIBRATION, CURRENT AND ACOUSTIC DATA 

 

Murat BAŞARAN 

 

Anadolu University 

Graduate School of Sciences 

Electrical and Electronics Engineering Program 

 

Supervisor: Prof. Dr. Doğan Gökhan ECE 

 

2016, 71 pages 

 

Early diagnostics of incipient faults in induction motors is an important aspect of 

preventive maintenance strategies. In this thesis, frequently encountered induction motor 

fault types are detected and classified using stator current, vibration and acoustic data. 

Current, vibration and acoustic that data are acquired from the experiments realized under 

different loading conditions of induction motors on which different fault types created 

synthetically are used for feature extraction by means of different signal processing 

techniques including Wavelet Packet Decomposition, 2D Wavelet Transform and Local 

Binary Patterns. Conversion of one-dimensional data signals into two-dimensional 

grayscale images whose sizes are arranged due to their autocorrelation value provide the 

opportunity of  utilization of texture based methods for feature extraction. Novel feature 

vectors are proposed for fault classification and their performances are tested with Neural 

Network and Bayesian based classifiers. Besides, a remarkable benchmark database is 

constructed consisting of stator current, vibration and acoustic data acquired under many 

operating conditions. This database is expected to be used as medium for future works of 

fault diagnosis related to preventive maintenance strategies of the induction motors. 

 

Keywords: Induction motors, Fault detection, Wavelet Packet Decomposition,           

 2D Wavelet Transform, Local Binary Patterns, Preventive maintenance  
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ÖZET 

 

Doktora Tezi 

 

TİTREŞİM, AKIM VE SES VERİLERİ KULLANARAK  

ASENKRON MOTOR ARIZALARININ BELİRLENMESİ  

 

Murat BAŞARAN 

 

Anadolu Üniversitesi 

Fen Bilimleri Enstitüsü 

Elektrik-Elektronik Mühendisliği Anabilim Dalı 

 

Danışman: Prof. Dr. Doğan Gökhan ECE 

 

2016, 71 sayfa 

 

Asenkron motorların başlangıç seviyesindeki arızalarının önceden tespit edilmesi 

koruyucu bakım stratejilerinin önemli bir unsurudur. Bu tez çalışmasında stator akımı, 

titreşim ve ses verileri kullanılarak asenkron motorlarda sıklıkla karşılaşılan arıza tipleri 

tespit edilmiş ve sınıflandırılmıştır. Üzerlerinde farklı arıza tiplerinin kasıtlı olarak 

oluşturulduğu asenkron motorların farklı yükleme koşulları altında çalıştırması 

deneylerinden elde edilen akım, titreşim ve ses verilerinden Dalgacık Paket Ayrıştırması, 

İki-boyutlu Dalgacık Dönüşümü, Yerel İkili Örüntüler gibi çeşitli sinyal işleme 

yöntemleri ile sınıflandırmada kullanılacak öznitelikler çıkarılmıştır. Tek boyutlu veri 

sinyallerinin otokorelasyon değerlerine göre boyutları ayarlanmış iki boyutlu gri tonlu 

imgelere dönüştürülmesi öznitelik çıkarımında doku analizi tabanlı yöntemlerin 

kullanılmasına olanak tanımıştır. Arıza sınıflandırma için yenilikçi öznitelik vektörleri 

önerilmiş ve sınıflandırma performansları Yapay Sinir Ağları ve Bayes tabanlı 

sınıflandırıcılar ile test edilmiştir. Farklı arıza tiplerine sahip motorlardan farklı yükleme 

koşulları altında elde edilmiş, stator akımı, titreşim ve ses verilerini içeren bir veri tabanı 

oluşmuş olup bu veri tabanının gelecekte yapılacak koruyucu bakım çalışmaları için 

değerli bir kaynak olması beklenmektedir.  

 

Anahtar Kelimeler: Asenkron motorlar, Arıza tespiti, Dalgacık Paket Ayrıştırması,     

 İki-boyutlu Dalgacık Dönüşümü, Yerel İkili Örüntüler, Koruyucu bakım  
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1.   INTRODUCTION 

 

 Electric motors are the most widely used electrical machines in industry. 

Electric motors consume more than half of the energy demand in developed 

countries and the consumption is expected to increase in every year depending on 

the economic and population growth. In 2011, the total number of electric motors 

operating in industry was around 16.1 billion worldwide. Furthermore, in the last 

past five years, the number of the operating motors tend to increase with a growth 

rate of about 50% (Henao et al., 2014). Among all electric motors, the squirrel-cage 

induction motors, in sizes ranging from fractional horsepower to industry grade, are 

the most commonly used electric motors in industrial installations. Due to their 

simple construction, cost effectiveness and easy maintenance, the squirrel cage 

induction motors are the most preferable electrical motors in the industry. The 

global competition on the production industry enforce the companies to continue 

their industrial operations more reliably with high efficiency. In order not to 

interrupt the industrial processes caused by unexpected failures of induction motors, 

preventive maintenance strategies are essential. Early diagnostics of incipient faults 

in induction motors are important to ensure safe operation and help to recognize 

and fix the problems with low cost and time. 

 An induction motor can be simply defined as an asynchronous machine 

which converts energy from the electrical to mechanical form by means of 

electromagnetic induction. An induction motor consists of many parts as shown in 

Figure 1.1. The essential parts of a squirrel-cage induction motor are a wound stator 

and a squirrel-cage rotor. The rotor of the motor comprises a squirrel-cage rotor 

which consists of conducting bars embedded in slots that are short circuited at both 

ends by conducting end rings, a rotor shaft and lamination stacks. The rotor bars 

are enveloped by a laminated iron core that concentrates the magnetic flux from the 

stator windings and also the iron core mechanically supports the shaft. Also there 

is a small space between the stator and the rotor which is named as air-gap. The 

bearings are located on the both sides of the shaft, which are the mechanically 

rotating parts of the motors having a set of spherical or cylindrical rolling elements 

inside two circular rings that allow rotor shaft to spin freely inside the motor. The 
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stator of the motor comprises the frame, lamination core and the stator windings. 

The frame mechanically supports the stator and the bearings located at the ends of 

the rotor shaft.  The stator windings are composed of three equally distributed coils 

along the stator lamination core. These windings are electrically shifted by 120o. 

These electrically shifted windings can be supplied either directly by 3 phase AC 

network or by the output of a frequency inverter. In both cases, only stator coils are 

connected with the power line. When a current i passes through stator coils, it 

induces a magnetic field H, which is proportional to the current (Chapman, 2005). 

When three phase voltage is applied, three stator phase currents generate three 

magnetic fields. Since the currents are phase shifted by 120o, these magnetic fields 

are also shifted by 120o. The energy for the rotor is delivered by means of induction 

by the synchronous rotation of the stator magnetic field and this phenomenon gives 

the name “induction motor” for these kind of electrical machines (Fitzgerald et al., 

1990). Since opposite poles attract each other, the rotor follows the rotating 

magnetic field of the stator resulting in a rotation slightly slower than the rotating 

magnetic field of the stator and the difference in rotational speed is called the slip 

speed. 

 

 

Figure 1.1. Parts of a squirrel-cage induction motor 
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1.1.   Literature Overview 

 

 Induction motors are being used increasingly in many industrial and 

commercial applications such as cranes, lifts, conveyors, pumps, fans, heating and 

ventilation systems and various type of manufacturing systems. Incipient type of 

faults such as cracked or broken rotor bars or end-rings, opening or shorting of one 

or more of a stator phase winding, minor bearing damages, static or dynamic air-

gap irregularities, and misalignments which do not completely block the rotor, may 

cause unbalanced air-gap voltages and line currents, increase in noise, decrease in 

torque, excessive currents and heat during the steady state operation of the motor 

(Nandi et al., 2005; Acosta et al., 2006). These faults may cause failures resulting 

downtime in the industrial process and loss of huge investment which can’t be 

compared to the cost of the motor itself or the maintenance costs. Furthermore, 

unexpected shutdown may result in the interruption of critical services such as 

medical, military and transportation applications. Downtime is not tolerable in 

those applications since the continuous process is needed and any interruption may 

cause huge maintenance costs, even loss of life (Toliyat et al., 2012). Therefore, 

faults must be detected at their inception by means of preventive maintenance in 

order to avoid undesirable motor failures.  

 Induction motors consists of many mechanical and electrical parts such as 

stator windings, rotor bars, rotor end-rings, ball bearings and terminal box. Each 

part of induction motors is highly potentially exposed to the risk of unexpected 

mechanical, chemical and electrical failures due to the harsh industrial working 

environments. The frequently encountered reasons behind the induction motor 

failures in industry have been commonly reported as unrated power, voltage and 

current utilization due to unstable power source, overload or unbalanced load, 

electrical stresses from fast switching of inverters, grounding problems and residual 

stresses from manufacturing of the motors. Besides, problems may also originate 

from harsh industrial working environments such as dust, water leaks, chemical 

contamination, high temperature and environmental vibration. 

 In recent years, condition monitoring of induction motors, early fault 

diagnosis and classification topics become popular among researchers who are 
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being motivated from the necessity of preventive maintenance strategies in 

industry. Considerable amount of researches have been focused on the methods for 

detection of the mechanical and electrical faults in induction motors. More than 300 

publications issued until 1999 are listed by Benbouzid in reverse chronological 

order in a bibliographical manner which can be considered as a great source of 

information covering these topics (Benbouzid, 1999). After 1999, the amount of 

research of fault diagnosis methods for detection and classification of different fault 

types have been increasing so far. Both invasive and noninvasive methods are used 

to measure motor current, vibration, temperature, speed and torque variations, and 

acoustic noise for detection of motor abnormalities. However, the most often used 

method of condition monitoring is the motor current signature analysis (MCSA) 

since the motor current contains required information for fault detection.  

 In addition to current spectrum monitoring techniques, mechanical vibration 

and acoustic monitoring are the commonly used maintenance techniques to prevent 

motor faults. Vibration monitoring technique requires additional sensors such as 

accelerometers to be placed on the operating motors. Since permanently placing of 

accelerometers to every operating motors is not an efficient choice economically, 

periodical check with portable equipment is more preferable for preventive 

maintenance. Like vibration monitoring, acoustic monitoring requires additional 

equipment like microphones, sound amplifiers and recorders. Some motors used in 

critical applications may not be easily reachable or the working environment may 

not be suitable to place additional equipment and this drawback makes motor 

current monitoring more reliable compared to vibration and acoustic monitoring in 

those situations (Toliyat et al., 2012).  

 In literature, many time domain methods are proposed which utilize time 

domain information energy, local extrema, kurtosis and skewness parameters as 

features which are extracted from the time domain motor stator current signals, 

sometimes by utilizing different sizes of sliding windows (Günal et al., 2009; 

Dalvand et al., 2015). Neural Network based classification of induction motor faults 

using time-domain features are also proposed (Samanta and Al-Balushi, 2003). 

Besides, an amplitude modulation (AM) detector is proposed to detect incipient type 

of race defects (Stack et al., 2004). 
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 Well known signal processing tools of Fourier, Wavelet, and Hilbert–Huang 

transformations are applied to acquired motor current data to extract necessary 

features for motor fault detection (Benbouzid and Kliman, 2003; Zhang et al., 2003; 

Douglas et al., 2004; Ayhan et al., 2005; Knight and Bertani, 2005; Yan and Gao, 

2006). During steady-state operation, induction motors draw noisy and 

harmonically rich line current due to their nonlinear characteristics. Spectral 

methods used for MCSA are employed to extract signature identifiers, namely 

features to be used for fault classification. Instead of direct use of stator current, 

applying notch-filter to stator current is another aspect of motor current signature 

analysis. Notch-filtered motor current signature analysis (NFMCSA) can be 

considered as another method of induction motor condition monitoring (Günal and 

Gerek, 2009). 

 In literature, a generic fault detection approach based on discriminative 

energy functions is proposed to identify failures where these energy functions 

display discriminative frequency domain regions related to motor faults (Ilonen et 

al., 2005).Also the combination of wavelets and support vector machine (SVM) is 

utilized and MCSA based on induction motor start-up transient current signal is 

used for fault detection and classification (Widodo et al., 2007). During start-up, 

since induction motors draw large currents from the supply system, contributions 

of possible faults to the current spectra is more pronounced and extraction of 

features due to a fault is easier. Although successful detection and classification 

results were obtained, the presented method may not be applied without interrupting 

the process run by the induction motor under investigation (Widodo and Yang, 

2008).  

 Wavelet packet decomposition (WPD) of current signals to solve induction 

motor fault diagnosis problems is a widely used tool in literature. By proper 

selection of decomposition level, very narrow frequency resolution can be obtained 

in order to observe the effects local peaks around the fundamental frequency 

component on the current spectra of the current signal (Ece and Başaran, 2011). 

 Vibration measurement is widely used popular technique to detect induction 

motor faults, especially in faulty bearings problems. However, vibration monitoring 

can be expensive and cannot always be performed, while electrical quantities such 
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as stator current are often measured for control and detection purposes of faults. In 

literature, there are detailed comparative works which states pros and cons of both 

vibration and current and their theoretical analysis of the physical links between the 

indications of faults (Immovilli et al., 2010; Trajin et al., 2010). Electric machines 

produce noise and vibration during operation and these acoustic and vibration 

signals may indicate that incipient type of fault if exists. Small amplitude of 

vibration signal may produce relatively high amount of noise. Noise and vibration 

can be originated by magnetic, mechanical and aero dynamical forces. Vibration 

data is also utilized in the fault detection and classification problem using genetic 

algorithms, namely clone selection programming (Gan et al., 2009), and using the 

combination of SVM with independent component analysis (Widodo et al., 2007). 

A Hidden Markov Model (HMM) based technique for vibration signals is also 

developed for bearing fault detection (Ocak and Loparo, 2005). Common vector 

approach (CVA), which is a well-known subspace-based pattern recognition 

method that is commonly used in speech and image recognition can also applied to 

induction motor fault diagnosis with vibration monitoring. A common vector for 

each class is calculated using the feature vectors in the training set of that class in 

which the common vector is unique and represents the common properties of that 

class by means of vibration data processing for bearing fault classification 

(Gülmezoğlu and Ergin, 2007; Ergin et al., 2012). 

 In the fault detection process, significant features from vibration signals can 

be extracted through the scale invariant feature transform (SIFT) algorithm to detect 

the faulty symptoms with 2D representation of the vibration signals (Chong, 2011). 

By 2D representation of the signal, texture related features can be extracted. If a 

priori knowledge of the classes to be recognized is exists, appropriate texture based 

techniques can be applied for the classifications of the patterns caused by indicators 

like vibration signals (Tuceryan and Jain, 1993; Arivazhagan and Ganesan, 2003; 

Avci et al., 2009). Artificial neural network (ANN) based bearing fault 

classification of bearing faults with vibration spectrum imaging is another example 

of grayscale to binary image conversion of vibration signal in literature. This work 

shows the spectral contents of the translation-variant time-segmented vibration 

signal, transformed into a spectral image (Amar et al., 2015). New approaches for 
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fault diagnosis of induction motors utilizing two-dimensional texture analysis based 

on local binary patterns (LBP) is getting popular. Firstly, time domain vibration 

signals acquired from the operating motors can be converted into two-dimensional 

grayscale images. Then, discriminating texture features can be extracted from these 

images employing LBP operator (Shahriar et al., 2013). 

 Unlike vibration based analysis, there is very limited literature on fault 

diagnosis of induction motors based on techniques of acoustic analysis. Also some 

of the works analyze the acoustic data which is recorded in an echo-free silent 

environment, which seems impractical for the real life applications, especially in 

industrial processes (Benko et al., 2004). Instead of echo-free silent environment, 

new approaches are tried with acoustic data collected from noisy environment. By 

acquiring acoustic data with simultaneous recordings of five microphones, fairly 

good classification results are obtained in fault classification of motors (Germen et 

al., 2014). Also the identification of acoustic noise spectra in induction motors by 

using frequency-domain cross-power spectrum estimation algorithm is a recently 

developed technique in acoustic based fault classification literature (Akcay and 

Germen, 2015). For industrial applications, there are few papers related to acoustic 

analysis that investigates the effects of sound radiation direction in faulty hermetic 

compressors (Kaya et al., 2008; Germen et al., 2010).  

 

1.2.   Thesis Outline 

 

 In this thesis, frequently encountered induction motor fault types are 

explained in Section 2. The magnitude of certain frequency components can be 

increased by the existing fault mechanism that gives signature of the faults. From 

the view of the preventive maintenance strategy, the early detection and diagnosis 

of the fault mechanism is crucial. The motivation of this thesis is to propose novel 

methods to detect and discriminate incipient type of induction motor faults by using 

non-invasive methods. From this motivation many different experiments are 

realized in Power Systems Laboratory of Anadolu University in order to construct 

a benchmark database consisting of current, vibration and acoustic data. This gives 
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importance and novelty to the work in literature as it uses three different sources of 

fault indicators. 

 In Section 3, experimental setup and data acquisition procedures followed 

during the experimental works of this thesis are explained. Synthetic creation of 

faults on test motors and motor experiments under different load conditions both 

with directly supplied from the AC network and driven by adjustable speed drives 

are explained in detail. Many different experiments under predetermined speed 

references and load conditions are realized in order to obtain current, vibration and 

acoustic data from test motors to classify motor faults.  

 In Section 4, feature extraction techniques used in thesis from current, 

vibration and acoustic signals are explained. Wavelet packet decomposition and 2D 

discrete wavelet transformation is one of the main motivation sources of these 

techniques. One dimensional data is converted to two dimensional grayscale images 

to reveal underlying fault mechanism and this method became the motivation under 

texture based methods like local binary patterns (LBP) applied for feature 

extraction.  

 In Section 5, classification Bayesian originated classifiers linear and 

quadratic discriminant classifiers and Fisher’s linear discriminant based classifier 

are explained. Also Neural Network (NN) based classification algorithm self-

organizing maps (SOM) and learning vector quantization (LVQ) techniques are 

explained which are used in fault classification of current, vibration and sound data 

obtained from various experiments realized and classification results for different 

cases are given in Section 6. Classification performances of different type of 

classifiers and selected filter types are discussed and results are given in tabular 

format. Also to make a fair comparison, current, vibration and acoustic data 

performances with same features are discussed to show the convenience of data 

type for classification. Some scatter plots are also given to show clustering of the 

selected features on three dimensional space. Concluding remarks for the thesis are 

given in the last section.  
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2.   FREQUENTLY ENCOUNTERED INDUCTION MOTOR FAULTS 

 

 Although squirrel-cage induction motors are rugged and reliable electric 

machines, they are exposed to many different mechanical and electric stresses 

which may lead to different types of faults. Frequently encountered induction motor 

failures can be separated into two main groups according to the reason behind the 

failure as mechanical and electrical failures.  

 Electrical faults mainly covers stator and rotor failures such as, opening or 

shorting of one or more of a stator phase windings, inter-turn short circuits in stator 

windings and broken rotor bars or end-rings.  

 Different types of bearing damages and static and dynamic air-gap 

irregularities resulting from the misalignments between the shaft of the motor and 

the load can be considered as mechanical faults. The existence of a fault mechanism 

exhibits itself as unbalanced stator voltages and currents, torque fluctuations, 

excessive heating of the motor, increase in vibrations, decrease in efficiency and 

torque. Besides, the magnitude of certain frequency components can be increased 

by the existing fault mechanism. 

 Among all types of faults, bearing related motor failures are the most 

commonly encountered type, which cause roughly almost half of the failure 

incidents. After bearing faults, electrical faults are the second most encountered 

fault types which stator winding failures and rotor failures accounts for about 35% 

and more than 5% share respectively among all failure incidents. The rest of the 

failure incidents are caused by other types of mechanical faults mainly resulting 

from misalignments and other axial connection mistakes (Bellini et al., 2008; 

Tavner, 2008).  

 

2.1.   Rotor Bar Faults  

 

 Broken or cracked rotor bars and end-rings may cause severe problems in 

induction motors, which accounts for more than 5% of all industrial motor failures.  

Although broken rotor bars do not initially cause an induction motor to fail, there 

can be serious side effects.  
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 The reasons behind the breakage of the rotor bars and end-rings can be 

several such as the imperfections in the manufacturing of the rotor cage, mechanical 

stresses caused by vibrating loads, thermal and mechanical stresses caused by direct 

starting of the motor under overloading conditions which motor is not designed to 

operate and dynamic stresses arising from shaft torques (Thomson and Fenger, 

2001; Nandi et al., 2005). Also the environmental factors like contamination, 

corrosion and abrasion of the rotor due to chemicals and humidity and the 

mechanical factors such as loose and weak laminations, wearied parts and the 

problems related to bearings may cause broken or cracked rotor bar failures. 

 When the cage winding is symmetrical, there is only a forward rotating field 

at slip frequency with respect to the rotor. Once a broken rotor bar exists, no current 

will flow in this rotor bar therefore the field in the rotor around the broken rotor bar 

will not exist.  As a result, the force applied to that side of the rotor would be 

different from that on the other sides of the rotor and this creates an asymmetric 

magnetic force that rotates at one times of the rotational speed and modulates at a 

frequency equal to slip frequency times the number of poles (Finley et al., 1999). 

Due to the asymmetry, there will be a resultant backward rotating field at slip 

frequency with respect to the forward rotating rotor. This backward rotating field at 

slip frequency, induces an electromotive force (EMF) and current in the stator 

winding at the frequency which is referred to as a twice slip frequency sideband due 

to broken rotor bars. The analytical expression for the frequencies that are present 

in the air gap flux is given as: 

 

     0 1 2brf f ns                                                     (2.1) 

 

where f0 is line frequency, n is the set of positive integers and s is the per-unit slip 

of the motor. All of these frequencies should be present in the air gap flux. These 

are the classical twice slip frequency sidebands due to broken rotor bars. In other 

words, a broken rotor bar problem actually is an asymmetry of the rotor and it 

causes torque pulsations, unbalance in line currents and reduce in average torque 

and induction motors. This asymmetry boosts up the left sideband of the source 

frequency (Nandi et al., 2005). Broken rotor bar problem can be determined by time 
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and frequency analysis of the induced voltages. In normal operation, stator winding 

is supplied with an AC source having  f0 line frequency and rotor bar currents are 

induced at sf0 frequencies (Filippetti et al., 1998). When an asymmetry occurs due 

to the rotor bar problem, stator EMF at 𝑓0(1 ± 2𝑠) frequencies are induced that 

causes ripples in speed and torque. 

 The amplitude of the air gap flux harmonics at the frequencies varies due to 

the variables that affect the frequency of these sidebands such as rotor design, power 

rating of the motor, different load conditions and mechanical load characteristics. 

These factors significantly affect the fault diagnosis process and should be 

considered for a reliable fault diagnosis system (Kliman et al., 1988). 

 

2.2. Stator Winding Faults 

 

 Stator faults in induction motors occur due to normal aging of the insulation, 

abnormal operating conditions or through a variety of other mishaps. Many of these 

faults are not immediately catastrophic and they have negligible effect on the 

operating performance of the motor. However, presence of the faults will ultimately 

lead to catastrophic failure of motors unless diagnosed (Williamson and Mirzoian, 

1985). 

 The stator is subjected to many types of stresses such as thermal, electrical, 

mechanical, and environmental which severely affects the stator condition and 

leading to faults (Tavner and Penman, 1987). Thermal stresses related to the 

operating temperature of the motors severely affect the insulation such that for 

every 10oC increase in temperature, the life of insulating material gets halved due 

to thermal aging. The winding failure will occur if the insulating material loose its 

physical integrity.  The effect of temperature on thermal aging can be minimized 

either by reducing the operating temperature or by increasing the class of insulation. 

 Electrical problems such as transient voltage conditions, either turn-to-turn 

or turn-to-ground, may also cause insulation failures. Short circuits or starting 

stresses are important electrical problems that may occur in stator windings. The 

rotor can strike the stator mechanically due to problems like bearing failures, shaft 

deflection or rotor-to-stator misalignments. If the strike happens only during 
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startup, then the force of the rotor can cause the stator laminations to puncture the 

coil insulation. Environmental stresses such as the presence of foreign material such 

as contamination due to oil, moisture and dirt could cause abnormalities in heat 

dissipation which cause to increase operating temperature and reduce the life of the 

insulating material (Siddique et al., 2005). Also improper cooling systems may 

cause overheating related problems. 

 In literature, several papers are published on the analysis of air gap and axial 

flux signals to detect shorted turns (Penman et al., 1994). The components in the air 

gap flux waveform that are a function of shorted tums can be given by the equation: 

 

     0 1sw

n
f f k s

p

 
   

 
                                           (2.2) 

 

where f0 is the line frequency, k is set of positive odd integers, n is set of positive 

integers, p is the number of pole pairs in the motor and s is the per-unit slip of the 

motor (Thomson, 2001). The diagnosis of shorted turns via MCSA is based on 

detecting the frequency components given by equation in that these rotating flux 

waves can induce corresponding current components in the stator winding. 

 

2.3. Bearing Faults  

 

 Bearing are the mechanical rotating parts of the motors having a set of 

spherical or cylindrical rolling elements inside two circular rings. The outer ring is 

embedded into the motor frame and named as outer race. The inside ring is called 

as inner race and it clutches the shaft of the motor. Most of the induction motors 

run under non-ideal conditions in industrial applications and bearing of the motors 

are subject to many different corrosive factors. These non-ideal operating 

conditions may lead incipient type of bearing faults which tend to deteriorate and 

propagate on to the races and the rolling elements of the bearings. 

 In the case of a bearing defect, abnormal mechanical noise, excessive 

heating, and some amount of over-current due to the slight blocking effect of the 

defective bearing to the rotating motor shaft will occur. The reasons behind bearing 
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deficiencies are various. Mechanical factors like improper or loose connection of 

the motor shaft and unbalanced motor loads cause excessive vibrations which leads 

to deteriorations inside the bearings. Also aging is another important factor. Long 

time utilization of the motor, even under normal operating conditions, wears the 

bearings and cause excessive vibrations and noise. Some working environments can 

cause contamination due to the moisture and abrasion of bearing elements occur. 

These abrasions may lead to cracks unless the necessary maintenance is made. 

Improper and insufficient lubrication of the bearings are other aspects which 

increase the abrasion of the material by excessive friction and heat. It is also 

possible to encounter bearing faults as rotor asymmetry faults, which usually 

referred as eccentricity faults. 

 Basically, bearing related deficiencies can be categorized as outer bearing 

race defect, inner bearing race defect, ball defect and cage defect. The vibration 

frequencies to detect these faults can be given as formulas as a function of rotational 

frequency and the bearing geometry. The four characteristic vibration frequencies, 

fv in Hertz (Hz) related to each type of faults can be given respectively as follows: 

 

      / 2 1 cos /or b r b pf N f d d                                       (2.3) 

      / 2 1 cos /ir b r b pf N f d d                                     (2.4) 

     2/ 1 ( cos / )bd p r b b pf d f 2d d d                                      (2.5) 

      / 2 1 cos /cd r b pf f d d                                             (2.6) 

 

where fr is the rotational speed, Nb is the number of balls between the races, β is the 

contact angle of the ball with the races, db and dp are the ball diameter and the pitch 

diameter respectively, which can be seen in Figure 2.1. These characteristic 

vibration frequencies reflect themselves in the current spectrum as: 

 

   0bf vf f m f                                                                    (2.7) 
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where m is the set of positive integers, f0 is the line frequency and fv are one of the 

four characteristic frequencies related to bearing fault type (Schoen et al., 1995). 

 

 

Figure 2.1. Ball bearing geometry  
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3.   EXPERIMENTAL SETUP AND DATA ACQUISITION 

 

 In this thesis, current, vibration and acoustic data are acquired for feature 

extraction and fault classification. The experiments were set up under a self-

designed test rig on which a single-phase permanent magnet synchronous generator 

and a test motor coupled to it are placed. By adjusting the resistance values of the 

resistor load bank which is connected to the output of the single-phase 4.2 kVA 

permanent magnet synchronous generator, the different loading conditions of the 

test motors can be arranged. All test motors are identical and products of trademark 

GAMAK, 3-phase and 2-pole squirrel cage induction motors rated at 2.2kW, 50Hz, 

380VLL. Power factor of the test motors is 0.82 and rated current of the test motors 

is 4.94 A. A Δ-Y connected 25 kVA isolation transformer is located between the 

AC network and the test rig.  

 Data acquisition processes are conducted at Power Systems Laboratory of 

Anadolu University Electrical and Electronics Engineering Department. Different 

experiments are realized by induction motors directly supplied with the output of 

the isolation transformer located between AC network and the test rig. Furthermore, 

in order to observe the effect of the adjustable speed drives (ASD) on supply 

current, some current acquisition experiments are realized by placing an industrial 

adjustable speed drive. A rough scheme of the experimental setup for adjustable 

speed drive case can be seen in Figure 3.1. 

 

 

Figure 3.1. Current acquisition of test motor driven by an adjustable speed drive 
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 The adjustable speed drive 3-phase, product of trademark Enko model 

CN2211 and placed between the output of the isolation transformer and the terminal 

box of the test motors. By placing ASD to test circuit, motors are able to operate at 

constant speeds arranged by the speed reference of the inverter. In previous works 

with the current data acquired in the same testing environment, very successful 

classification ratios are achieved in the direct AC supplied case of the motors (Ece 

and Gerek, 2006; Günal et al., 2009). But in the case of placing an ASD to test 

procedure, due to the pulse-width modulation (PWM) switching of the voltage 

source inverter, the motor current waveforms can be obstructed by the noise-like 

additive waveforms, which make fault classification from stator current more 

challenging. From this motivation, current acquisition is realized both with direct 

AC driven case and ASD driven case of the test motors. 

 For the experimental verification, frequently encountered mechanical and 

electrical faults are created synthetically on five of these test motors. In order to 

make clear comparisons, one of these identical motors is left untouched to get 

healthy motor data. The list of motor faults created synthetically and their assigned 

classes can be seen in Table 3.1. 

 

Table 3.1. List of synthetically created faulty motors in experimental setup 

 

Class Faulty Motor 

rb1 Motor with bearing fault type-1 

rb2 Motor with bearing fault type-2 

rot3 Motor with 3 broken bars  

rot5 Motor with 5 broken bars 

sw Motor with arbitrarily shorted stator winding 

healthy Healthy reference motor 

 

 The synthetically created fault types are chosen such that those are the most 

encountered incipient faults in industry. Broken rotor bar faults are realized by 

punching holes to the rotor bars with a drill which can be seen in Figure 3.2. Three 

and five holes are drilled respectively to two different motors over total 18 rotor 

bars.  
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Figure 3.2. Realization of broken rotor bar fault  

 

 In order to simulate bearing related faults, bearings of the unused motors are 

disassembled and replaced with faulty bearings. Faulty bearings are obtained from 

a real industrial induction motor maintenance workshop which are disassembled 

from induction motors that had been used for a long time and are taken out of 

service due to the noise and excessive heat problems. The faulty and unused 

bearings can be seen in left and right sides of the Figure 3.3 respectively. 

 

 

 

Figure 3.3. Faulty and unused bearings 

 

 Shorted stator winding fault is created by arbitrarily peeling the insulation 

of two adjacent stator coils of another unused test motor for a couple of millimeters 

and soldering them together. 
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 In industrial applications, induction motors are mostly driven directly from 

AC network with constant voltage and frequency under various loads. To simulate 

different loading conditions, test motors are coupled with a single-phase 4.2 kVA 

permanent magnet synchronous generator connected to an adjustable resistive load 

bank. The resistor values on load banks are adjusted to different values such that 

the motors are driven by different levels of stator current which corresponds to a 

different loading condition. These values are selected such as 3.6, 4.1, 4.7, 4.9, 5 

and 5.4 Amperes. By selection of these values, the situations of motors operating 

below and above the rated current values can be simulated. Before collecting the 

data, test motors start to operate under no load and after a few minutes of operation. 

When the motor reaches to the steady state, the resistor values have been adjusted 

to load the motors consecutively to the pre-determined load levels during the 

experiments.  

 

3.1.   Acquisition of Stator Current Data 

 

 Current acquisition is realized both with direct AC driven case and ASD 

driven case of the test motors. In directly driven case, motors are driven with the 

output of the isolation transformer. In this case, motor speeds are slightly changing 

due to the concept of rotor slip. In ASD driven case, motors are supplied from the 

output of adjustable speed drive which is located between the output of the isolation 

transformer and the test rig. In this case motors are operated at constant speeds 

which is determined by the frequency reference of the ASD.  

 The 3-phase supply-side stator currents are obtained via properly selected 

shunt resistances located at supply side and Sony Tektronix A6906 isolators. 

Current data are digitized with an NI 6251 data acquisition card with 16 bit vertical 

resolution at a sampling rate of 20 kHz. The acquired supply side current and 

corresponding motor side current waveforms obtained from test motor with 5 

broken bars (rot5) driven by adjustable speed drive with 35 Hz speed reference can 

be seen in upper and lower side of the Figure 3.4 respectively.  
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Figure 3.4. Line-side and motor current waveforms 

 

 An expert inspection of these waveforms shows that due to pulse-width 

modulation (PWM) switching of the voltage source inverter, the motor current 

waveform with 35 Hz fundamental is occluded by the noise-like additive waveform 

typically above 10 kHz. When this motor current waveform data is used to extract 

necessary features for fault detection and classification, pre-process of the data is 

needed. First, proper filtering to eliminate noise due to the PWM should be applied 

and then the fundamental frequency of the inverter output which is the speed 

reference for the motor under test should be measured. On the other hand, although 

it is not a sine wave and drawn during equal fractions of each half cycle due to the 

large dc link capacitor, supply-side current is always at the known fundamental 

frequency of the supply and is noise free due to the front-end diode rectifier. 

Therefore, supply-side current data is used since our initial experiments revealed 

that it contains required information for fault detection and classification and does 

not require any pre-processing. Forty seconds-long data is obtained from all six 

motors for each loading conditions at three speed references, (35, 40 and 50 Hz) 

which result in digitized data files of size 800,000 samples. 
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3.2.   Acquisition of Vibration Data 

 

 Vibration data are obtained from the case in which induction motors are 

supplied directly from the AC network. An integrated electronic piezoelectric 

(IEPE) accelerometer, product of trademark Metra Mess model KS943B.100 is 

used for vibration sensing. The accelerometer has a magnetic base for placing to 

the motor fan cover, which can be easily mounted and removed. The accelerometer 

is connected to a multichannel signal conditioner, model M108 of the same brand, 

for amplifying the vibration signals. Signals are digitized with an NI 6251 data 

acquisition card with 16 bit vertical resolution at a sampling rate of 20 kHz. 

Vibration data are collected from 5 test motors under 6 different pre-determined 

loading conditions for forty seconds. For accuracy of the experiments, the placing 

position of the accelerometer set constant to each test motor. The accelerometer and 

its position on fan cover of one of the motors can be seen in Figure 3.5. 

 

 

 

Figure 3.5. Accelerometer and its position on fan cover of the motor 

 

 Besides vibration data, acoustic data is also collected from induction motors. 

Since the data acquisition processes are handled with different appliances and PCs 

at different sampling frequencies, simultaneous recordings do not exist. Acoustic 

and vibration data were able to be recorded at the same environment with some 

small time delays. 
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3.3.   Acquisition of Acoustic Data 

 

 Acoustic data are acquired in laboratory environment with ambient noise 

via five microphones surrounding the test rig. At each pre-determined current level, 

approximately 30 seconds of operating sound recordings are collected by five 

microphones which are located around the test rig and via a full transparent analog 

amplifier at a sampling rate of 44.1 kHz. The location of the microphones can be 

seen in Figure 3.6. 

 

 

 

Figure 3.6. The placement of the microphones over test rig 

 

 One of these microphones is located around 60 centimeters above the center 

of the test rig. Other remaining four microphones are located at a lower height 

compared to the center microphone and they are placed to mark the edges of a 

rectangular shape, which surrounds the test rig. The locations of the microphones 

are very important when calculating the cross correlations between microphone 

pairs. This placement of microphone array produces a virtual hemisphere that 

covers all the experimental setup. 
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 All the experiments are deliberately carried out in a noisy environment to 

simulate real working environment on purpose and the average ambient sound 

pressure level (SPL) is recorded as 53.2 dB, which can be considered as quite noisy 

environment. Sound pressure levels related to each five of the test motors during 

experiments is given in Table 3.2.  

 The microphones are directional and cardioid type condenser ones and they 

are connected to an analog microphone preamplifier product of the trademark 

Millennia model HV-3D. The sound data are digitized with a sampling frequency 

of 44.1 kHz, which results in digitized files of containing approximately more than 

a million samples for each recording.  

 

Table 3.2. Sound pressure levels of the three experiments of the dataset 

 

 

Environment SPL : 53.2 dB 

  Loading Conditions  

  3.6 A 4.1 A 4.7 A 4.9 A 5 A 5.4 A  

Healthy Motor 

Exp1 73.8 76.5 78.5 78.5 78.5 79.4 dB 

Exp2 74.9 76.1 74.6 75.1 76 75.4 dB 

Exp3 73.8 73.8 73.8 73.8 73.8 72.6 dB 

Stator Winding 

Fault (sw) 

Exp1 75.4 74.7 74.5 74.6 74.1 74.1 dB 

Exp2 74.1 73.8 74.1 74.4 73.8 74.2 dB 

Exp3 74.8 74.4 74.8 74.4 73.8 74.7 dB 

Rotor Bar Fault 

(rot3) 

Exp1 75 76.1 77.1 77.1 78.1 77.1 dB 

Exp2 76 74.5 75 75 75.4 74.5 dB 

Exp3 75 74.5 74.1 74.1 74.2 73.8 dB 

Rotor Bar Fault 

(rot5) 

Exp1 80 78.8 79.1 79.1 78.5 79.1 dB 

Exp2 78.8 80.1 79.5 79.5 79.5 79.5 dB 

Exp3 76 75.4 76.1 76 76 76 dB 

Bearing Fault 

(rb1) 

Exp1 84.6 83.7 83.3 83.2 83.2 83.2 dB 

Exp2 83.2 83.2 83.2 83.2 83.2 83.2 dB 

Exp3 83.2 83.7 83.4 83.4 83.8 83.2 dB 

Bearing Fault 

(rb2) 

Exp1 86.2 84.5 84.2 84.3 84.2 84.2 dB 

Exp2 83.7 83.7 83.2 84.2 83.2 82 dB 

Exp3 83.2 83.2 83.4 83.7 83.2 82 dB 
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 These recording procedures are repeated three times for each test motor by 

dissembling the motor from the test rig and reassembling it on to simulate mounting 

differences which can be caused by the technical staff in real industrial work 

platform. In order to fix the motor on to the test rig, mechanical parts like screws 

and bolts are used and in each different assembling attempt, the alignment of the 

connection may change and it may show its own mechanical characteristics which 

may alter noise level and vibration characteristics. In this way, different cases 

corresponding to differently aligned test bed possibilities which can physically 

effect the acoustic and vibration data are handled to create more advanced 

benchmark database to build a more reliable fault diagnosis system. The aim of 

differentiating the faults in this manner during multi experiments is to certify the 

proposed methods more accurately. 
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4.   FEATURE EXTRACTION 

 

 In this thesis, different feature extraction methods are proposed and applied 

to the current, vibration and acoustic signals that are obtained from the laboratory 

environment.  

 

4.1. Feature Extraction by Calculating Wavelet Packet Decomposition 

Coefficients of the Current Data 

 

 Wavelet transformation of signals to solve various real-life problems are 

widely used tool in many engineering fields. In wavelet packet decomposition  

(WPD) of a signal, the signal is filtered with both low-pass (LP) and high-pass 

filters, whose cutoff frequencies are one fourth of the sampling frequency of the 

signal (Eren and Devaney, 2004). The LP and HP filtered signals are half size of 

the original signal that represents the low frequency and high frequency contents of 

the signal and called the approximation (A) and the detail (D) respectively. If this 

decomposition procedure is applied to the first layer approximation and detail 

signals, a new level of decomposition is achieved which consists of four signals 

named as AA (approximation of the approximation), DA (detail of the 

approximation), AD (approximation of the detail), and DD (detail of the detail),  

each of which are in the size of one fourth of the original signal (Ocak et al., 2007). 

In the same manner, this decomposition process can be iterated to more levels until 

the decomposition reaches the desired frequency resolution (Akansu and Haddad, 

2001).  

 Time domain waveform plots of the supply-side current for ASD healthy 

reference motor and ASD-faulty motors were acquired at sampling rate of 20 kHz 

and are illustrated in Figure 4.1. By visual inspection of these waveforms, it can be 

seen that they are quite similar and seem to have similar properties and it is hard to 

discriminate from each other. As a result, direct use of these waveforms is not 

suitable in detection and classification of motor faults.  
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Figure 4.1. Supply-side current waveforms of test motors driven with ASD under 

         4.1.Amperes load at 40 Hz speed reference 

 

 Induction motor faults, especially broken rotor bars, are known to cause 

elevated sidebands around the fundamental frequency component in the spectrum 

of motor stator current (Loránd et al., 2004). The location of these side bands are 

seriously affected by the loading condition and tend to become closer to the 

fundamental frequency especially when the motor load is low below than the rated 

current. Therefore extracting the information related to the changes in side-bands 

requires to monitor very narrow frequency regions of the entire spectra. 

Consequently, a very high frequency resolution is needed in order to monitor such 

narrow frequency regions. If Fast Fourier Transform (FFT) were to be used in this 

work, entire length of each data set (800,000 samples) must be used in FFT and 

later regions of interest may be extracted from the entire spectra to obtain a high 
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frequency resolution. On the other hand, using wavelet packet decomposition with 

properly selected number of levels and filter type would provide better frequency 

resolution compared to the FFT, while requiring less number of data samples. Also, 

to calculate all branches and nodes of the WPD coefficients is not necessary since 

the frequency region of interest is known to be around the fundamental frequency. 

Careful selection of number of data samples, filter size, and decomposition level is 

essential in using WPD. A schematic representation of the 11th level of WPD can 

be seen in Figure 4.2. If the size of the data is not necessarily long, as the number 

of decomposition level increases and data is down sampled at each successive level, 

remaining length of data samples at some nodes would become less than the 

selected filter size resulting meaningless convolution of data samples with filter 

coefficients. The examples of selection different filter types and their effect on the 

classification is showed on results section. 

 

 

 

Figure 4.2. 11th level of wavelet packet decomposition of the original signal 
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 In this work, acquired data, sampled at 20 kHz, is analyzed using 11th level 

of WPD. This way, the coefficients of three nodes at the 11th level of decomposition, 

which corresponds to 43.92–48.8 Hz, 48.8–53.68 Hz, and 53.68–58.56 Hz 

frequency bands that covering the region (43.92–58.56 Hz) of both side-bands and 

the 50 Hz fundamental frequency are obtained.  

 Using the coefficients of each node, four fundamental statistical signature 

identifiers are calculated resulting 12 element feature vectors. The signature 

identifiers are mean, standard deviation, skewness, and kurtosis of each of the three 

nodes mentioned above. Hence, from each acquired data from ASD-motor 

combination, 40 feature vectors with 12 elements were obtained at each load 

condition and at each speed reference frequency. These four signature identifiers, 

mean, standard deviation, skewness, and kurtosis denoted as F1, F2, F3 and F4 

respectively, can be mathematically explained as follows: 
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where N is the number of WPD coefficients in each node, µx is the mean, σx is the 

standard deviation of the coefficients of each node, respectively. If xi is the ith 

coefficient, skewness (F3) and kurtosis (F4) elements are calculated for each node 

as given above. 
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4.2. Feature Extraction by Calculation of the Cross Correlation of the    

Acoustic Data 

 

 The next feature extraction technique proposed in this thesis is calculating 

the cross correlations of the acoustic data recorded by the microphone pairs. 

According to the nature of the fault, the mechanical and the electrical motor faults 

cause irregular air-gap flux that affects spinning of the rotor. According to this 

irregularities and effects of the faults to the proper working conditions, the 

amplitude of fundamental frequency and its related sideband artifacts show 

variations according to the placements of microphones (Germen et al., 2010). It is 

important that, the characteristic of recorded acoustic data differs in each 

microphone according to its distance to certain parts of the motor. The interrelation 

between the channels of semi-sphere shaped located microphone array placed over 

the motor is also changed due to these discrepancies on the operating sound. 

Besides, types of faults are supposed to differentiate channel interrelationships. In 

order to classify different motor faults, cross-correlation coefficients between 

microphone channels are used as attributes of the feature sets. For calculation of the 

cross correlation coefficients, Pearson product-moment correlation coefficient 

method, which is defined with the equation (4.5), is applied to the recorded digitized 

acoustic data by microphone pairs (Lee Rodgers and Nicewander, 1988). 
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 In equation (4.5), subscripts i and j denote the indices of microphones, xi 

and xj are their corresponding data array and N is the number of samples in these 

arrays, which is taken as 800000 in this work. Since five microphones are used, the 

number of total possible combinations of microphone pairs among five channels is 

ten, ten different cross correlation coefficients can be calculated. These ten features 

which are shown on Table 4.1 are obtained from these cross correlation coefficients 
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and they are added to the overall feature set for some of the acoustic based 

classification experiments.  

 

Table 4.1. Cross-correlation features of acoustic data recorded by microphones 

 

Cross-Correlation Features 

#1:  #2:  #3:  #4:  #5:  

#6:  #7:   #8:   #9:   #10:  

 

 

4.3.   2D Discrete Wavelet Transformation Based Feature Extraction from 2D   

Grayscale Image Representation of the Data 

 

 Texture as an important characteristic for the analysis of many types of 

images is being used for many applications (Ojala et al., 1996). Various measures 

derived from texture properties for classifying texture have been proposed in 

literature (Van Gool et al., 1985; Tuceryan and Jain, 1993). Any one dimensional 

data can be converted into two dimensional image data by normalization and proper 

partitioning of the original data, on which texture related measures can be applied.  

 This feature extraction method is an indirect one, which uses two-

dimensional (2D) grayscale images obtained from current, vibration and acoustic 

data. The 2D image representation of one dimensional data became popular recently 

in pattern recognition and signal processing and also has great potential in detecting 

power quality events (Ece and Gerek, 2004; Gerek and Ece, 2004). During the 

conversion process of 1D data to 2D grayscale image, the amplitude of each data 

samples are normalized between 0 and 255, which is the range for grayscale, and 

these normalized values become the pixel intensities.  

 When directly supplied with AC source, induction motors rotate very close 

but a bit slower than the synchronous speed also level of loading alters the rotation 

speed. The rotation speed of the motor slowly decreases with the increase of the 

stator current. Thus, determination of the exact real rotor frequency is complicated 

and has great importance while constructing 2D images from 1D data. In this work, 
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the widths of the grayscale images are determined due to the length of samples of a 

complete period of the signal. Since the sampling frequency of the acoustic data is 

44.1 kHz, and motor fundamental frequency is 50 Hz, for each complete cycle, 882 

samples are necessary to cover a complete period of the signal under no-slip case. 

But in practice, the fundamental frequency component changes and it becomes less 

than 50 Hz. In these kinds of situations, it is necessary to use more samples than 

882 to cover a complete period of data. 

 In 2D grayscale image construction process from one dimensional data, first 

the normalization between 0–255 is realized. Then the first element of normalized 

data is assigned as the first pixel value, which is the top-left corner of the image. 

The succeeding elements are assigned to the right of first pixel until the elements 

are rendered to form one row consisting of a complete period. After the assignment 

of the last pixel in the first row, the same procedure is carried out for the next row 

and this process is repeated until mxn sized images are obtained. This process is 

depicted in Figure 4.3.  

 

 

 

Figure 4.3. Signal to image construction scheme 

 

 In this thesis, square shaped grayscale images are preferred and nxn sized 

grayscale are constructed from 1D data.  
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 When constructing the 2D grayscale images containing non-overlapping 

period segments, determination of the sample size of a complete period is crucial. 

Hereby, this problematic issue is solved by finding the autocorrelation peaks of the 

1D data, which indicate the ends of complete oscillation cycles. The autocorrelation 

values of the acoustic data recorded by all microphones are the same for specific 

motor type under same loading condition. This situation can be seen by inspecting 

Figure 4.4, where the first 2000 samples of autocorrelation sequences of the five 

microphone recordings for healthy motor under loading condition of 3.6 Amperes 

are depicted.  

 

  

Microphone-1 Microphone-2 

  

Microphone-3 Microphone-4 

 

Microphone-5 

 

Figure 4.4. Autocorrelation sequences of the five microphone recordings for 

healthy motor under 3.6 Amperes load 
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 If the test motor changed, even under the same loading condition, the size 

of the samples which consists of a complete period changes due to fault type. The 

first 4500 samples of autocorrelation sequences of the acoustic data of the test 

motors operated under 3.6 Amperes stator current, recorded by the first microphone 

can be seen in Figure 4.5.  

 

sw 

 

rb1 

rb2 

rot3 

healthy 

 

  Figure 4.5. The autocorrelation sequences of the test motors operating under 3.6 

Amperes load recorded by first microphone 

 

 It is clearly seen that motors with different types of faults have different 

autocorrelation peaks which alters the size of created grayscale images. The cycle 

values at different loading conditions are also calculated in the same manner for 

current and vibration data. As an example, the results for sample sizes of a single 

complete period of 1D acoustic signal acquired from test motors having different 
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types of faults at each loading conditions calculated by autocorrelation peaks for 

each test motor are given in Table 4.2. 

 

Table 4.2. Sample sizes of a period of the acoustic data of the test motors running 

under different loading conditions 

 

 3.6 A 4.1 A 4.7 A 4.9 A 5.0 A 5.4 A 

sw 900 906 912 914 916 919 

rb1 905 910 914 917 918 921 

rb2 901 907 908 916 919 923 

rot3 903 910 912 919 922 926 

healthy 901 906 913 914 915 920 

 

 The image representations of the acoustic data recorded from the test motors 

under 3.6 A by the first microphone are shown in Figure 4.6. The 2D image creation 

process is carried out for every separate five microphones for test motors under six 

different loading conditions for three different experiment trials. Since the images 

preferred to be square shaped, the acoustic image database consists of grayscale 

square images whose widths ranging 900 to 926 according to their corresponding 

autocorrelation peak values.  

 In order to extract another set of features, single level 2D discrete wavelet 

transformation (DWT) is utilized to the grayscale images in test database. The 

discrete wavelet transformation is the projection of a signal onto two subspaces 

called the approximation and the detail subspace. By iteratively applying DWT to 

the approximation, a series of approximation and detail spaces can be obtained. 

Projection process is accomplished by discrete time sub-band decomposition of 

input signals using low-pass and high-pass filtering operations followed by down-

sampling by 2. First the low-pass and high-pass filters and the down-sampling by 2 

operations are applied along rows of an nxn 2D square shaped image. After this 

step, the outputs of the process are two sub-images, denoted as L and H, with sizes 

nxn/2. Then, the same procedure is applied along the columns of these newly 

obtained sub-images L and H. 
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healthy rb1 rb2 

 

  

 

 rot3 sw  

 

Figure 4.6. 2D image representations of acoustic data recorded from first 

microphone over five different test motors under 3.6 Amperes loading 

condition 

 

The outputs at the second step are four square-shaped grayscale images having size 

of n/2xn/2. These two steps correspond to single-level discrete wavelet transform 

of the image. The output images are called the energy, vertical, horizontal and the 

diagonal sub-images and denoted as LL, LH, HL and HH respectively.  

 The energy image (LL), which is also called the approximation image, 

resembles the original image. Remaining images show great differences which 

contain more complicated textures. Clearly, it can be inferred that, these textures 

may show close relationship with the traces of motor failures and they provide great 

opportunity for feature extraction related to fault type. The four sub-images 

constructed after single level 2D wavelet decomposition of the healthy motor image 

which can be seen in the left top of Figure 4.6, are demonstrated in Figure 4.7.  
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Energy Image  Horizontal Image  

  

Vertical Image  Diagonal Image  

 

Figure 4.7. The sub-images constructed after one level 2D wavelet decomposition  

 of the healthy image shown in the left top of Figure.4.6 

 

These sub images have different textures which serves a great medium for 

extraction of texture related features. Figure 4.8 consists of zoomed versions of 

vertical images of the 5 different motor types recorded by first microphone under 

3.6 A loading condition. 

 In wavelet decomposition, the selection of the wavelet type affects the 

process. Various types of wavelet filters such as coiflet, morlet and several types of 

filters from Daubechies family are used in the experiments of the thesis work but 

db2, which is also called as Haar filter, succeed fairly well when compared to 

others. Since this filter has very simple structure, for the minimum computational 

cost, it is preferred in filtering process of the decomposition.  

 In the equations (4.6) and (4.7), mother wavelet ψ(t) and the scaling function 

ϕ(t) of Haar wavelet can be seen.  
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Figure 4.8. Zoomed vertical images of the five different test motors types recorded     

by first microphone under 3.6 Amperes loading condition 

 

 After single level 2D wavelet transformation process, six different features 

are extracted from four sub-band images. First two of these features are the root 

mean square energy of the vertical and diagonal images. Remaining features are 

acquired by calculating the mean of row correlations of the horizontal image and 

the mean of the column correlations of the vertical, diagonal and energy images. 

The correlations between two adjacent rows or columns are calculated over the sub-

images and the mean of these calculated values are taken as the feature. Detailed 

analysis of the images acquired by wavelet decomposition reveals that the most 
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distinguishable information is located mostly in their columns compared to the 

rows. The main reason of this situation arises from the fact that, the rows 

approximately consisted of the data samples of one period of the data. 

Consequently, there are no distinguishable differences between rows. However, 

according to this periodicity, the column information contains the possible 

distinguishable characteristics of the artifacts caused by faults and focusing on this 

data would be more informative. It is worth to state that, both in vertical and 

diagonal images, the textures conceal the indications of the faults, since the column 

information is mostly contained by vertical and diagonal images.  

 Equation (4.8) is used for the calculation of the mean of cross-correlation 

coefficients among neighbor columns within the image, where N and M denote 

number of columns and rows respectively. 
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 On the other hand, rows of the 2D representation of the data also carry 

distinguishable information for classification since they contain the changes in the 

duration of one period of the data. These periodicity fluctuations result in some 

inconsistent shifting effects that can only be analyzed with the relationship between 

neighbor columns of the horizontal image. Equation (4.9) gives the mean of the 

cross-correlation coefficients among neighbor rows within the images where N and 

M denote the number of columns and rows respectively. 
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 Row correlation that calculated for the horizontal image has close similarity 

with autocorrelation value Rxx(N) for 1D signal where N is the period of 1D signal, 

which is also the width of the 2D grayscale image upon the wavelet decomposition 

is performed. This naturally corresponds to an autoregressive model, AR-1 with a 

correlation coefficient, ρ, and a fixed time-lag of N:  

 

                                            [n] [n ] [n]Nx x N                                           (4.10) 

 

where ε[n] is the model error.  

 Column correlation that calculated for the vertical has close similarity with 

autocorrelation value Rxx(1) for the one-dimensional signal. This time, the model 

corresponds to the simple AR-1 with a different correlation coefficient and a simple 

time-lag of 1: 

 

                                            
1[n] [n 1] [n]x x                                              (4.11) 

 

where ε[n] is the model error.  

 The reason behind calculating row and column correlations of the horizontal 

and vertical wavelet components of the 2D image, instead of calculating AR(1) 

parameters directly from 1D signal, is the strengthened information about Rxx(N) 

and Rxx(1) by the wavelet decomposition that also corresponds to horizontal and 

vertical textures in the 2D image representation of the 1D signal. Horizontal 

textures are more distinct in horizontal component than the original 2D image 

representation due to the filtering effects of vertical textures. The same case is also 

valid for vertical textures in vertical component because of filtering effects of 

horizontal textures. 

 The energy image is expected to lack texture information, however 

experiments show that single level wavelet decomposition is insufficient for strict 

extraction of the detail information from the 2D representation. Thus, energy image 

has still some detail information, which may help for the analysis of the texture in 

parallel with the classification of the motor fault type. In order to obtain the 

necessary information contained by the energy image, column correlation is also 
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calculated for energy image, instead of applying second level wavelet 

decomposition.  

 

4.4.   Local Binary Pattern Based Feature Extraction from 2D Grayscale Image     

        Representation of the Data 

 

 The local binary pattern operator can be defined as an image operator which 

converts an image into an array or image having integer labels which describes 

small-scale appearance of the image. These integer labels or their statistical 

properties, most commonly the histograms, are used for further analysis and feature 

extraction (Mäenpää, 2003; Pietikäinen et al., 2011).  

 The basic local binary pattern texture analysis operator, which is introduced 

by Ojala et al., is a grayscale invariant texture measure (Ojala et al., 1996). The 

local binary pattern (LBP) operator labels each pixel by tresholding its p neighbors’ 

pixel value with the center pixel’s value and converts the result into a pattern code 

by the equation: 
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gc denotes the gray value of the center pixel (xc,yc) and gp denotes the gray values 

of p equally spaced pixels on the circumference of a circle with radius R as shown 

in Figure 4.9.  

 

 

 

Figure 4.9. The circular (8, 1), (16, 2) and (8, 2) neighborhoods of LBP operator 
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 LBP is a highly discriminate operator which records the occurrences of 

various patterns in the neighborhood of each pixel in a histogram. Since the signed 

difference gp-gc is not affected by changes in mean luminance, a grayscale shift 

does not affect the LBP code of an image. Therefore, LBP operator is a rotation 

invariant operator against any monotonic transformation of the grayscale values of 

the images (Shahriar et al., 2013). 

 The original version of the local binary operator uses a 3x3 pixel block of 

an image which can be shown on the left of the Figure 4.9. The calculation of a 

pattern code with basic LBP operator on a 3x3 pixel block of an image is illustrated 

by an example given in Figure 4.10. 

 

 

 

Figure 4.10. Pattern code generation by the basic LBP operator 

 

 After calculating the LBP code for each pixel (xc, yc), the original input 

image of size MxN is represented by an LBP histogram H by the equations below: 
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where K is the maximum value of the LBP code. Since for basic LBP operator, the 

p neighborhood is 8, τ will have 28 different labels. Therefore, 256 histogram bins 

H(τ) will be acquired from the images, which can be used as texture descriptor. 
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 LBP technique can be applied to the square shaped grayscale images that 

are created from the current, vibration and acoustic data. In Figure 4.11, the original 

grayscale images and their corresponding LBP images and normalized histograms 

are depicted. By inspection of these images and histogram bins, differences related 

to motor faults can be seen. 

 In this thesis, LBP related features are extracted from normalized LBP 

histograms. Since the sizes of the grayscale images change due to the sampling 

frequency and the loading conditions of the test motors, normalized histograms of 

length 256 are used as feature sources. Three of four fundamental statistical 

parameters, standard deviation, skewness and kurtosis of the histograms are chosen 

as the first three features. Since the histograms are normalized, mean parameter 

become useless in feature selection. In order to observe the repeating patterns of the 

histograms, it is reasonable to use autocorrelation function. Afterwards, 

autocorrelation of the data with itself by neighborhood shifts of 1 to 5 are chosen 

as the remaining five features. By this manner, 8-dimensional feature sets are 

extracted from only using the acquired LBP histograms. 

  Classification performances of features acquired from current, vibration 

and acoustic data are given in results section. When compared to other methods 

proposed in this thesis, LBP based feature extraction requires minimal 

computational cost. 
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Figure 4.11. Original grayscale images, LBP images and LBP histograms of     

vibration data of test motors operating under 4.7 Amperes load  
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5.   FAULT CLASSIFICATION METHODS 

 

 In this thesis, different classification algorithms are applied to the feature 

sets obtained by the proposed methods explained in section 4 from supply current, 

vibration and acoustic data to discriminate and classify the fault types of induction 

motors. Fault classification is performed using three different well-known 

classifiers namely linear discriminant classifier (LDC), quadratic discriminant 

classifier (QDC) and Fisher’s linear discriminant analysis (LDA). Classification 

performances of each classifier are compared in order to decide which one is more 

sensible for the selected feature sets. 

 

5.1.   Fault Classification with Linear and Quadratic Bayesian Classifiers 

 

 Linear and quadratic classifiers are named due to the type of discriminant 

functions they use. Any set of linear functions : , 1,2, ,n

ig i N   , 

 

                           
0 0( ) w , ,T n

i i i i ig x w w   x w x,                         (5.1) 

 

can be thought as a linear classifier. Linear classifier is derived as the minimum-

error Bayes classifier for normally distributed classes with equal covariance 

matrices and this model is called linear discriminant classifier. It is reasonably 

robust classifier and works well even with the classes which do not have normal 

distributions (Kuncheva, 2004).  

 Both of the classifiers, LDC and QDC inherit from the famous Bayes 

classifier that works according to a decision rule to minimize the probability of 

classification error and come up with the a-posteriori probability maximization: 

 

                   (x ) (c ) (x ) (c ) 1,2, , ;i i j jp c p p c p j N j i                   (5.2) 

 

where a feature vector x is assigned to class ci among the classes  c1, c2, . . . , cN  if 

the a-posteriori error statement is satisfied (Duda et al., 2012). Both LDC and QDC 
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are special cases of this selection creation under the assumption of Gaussian 

probability density functions (Van Der Heijden et al., 2005). In LDC, the 

covariances of each class are assumed to be exactly the same, so the comparison 

simplifies to the nearest neighbor selection rule: 

 

                         1,2, , ;i j j N j i    x x                               (5.3) 

 

 The quadratic case arises when the covariance matrices (Ci) of each class 

are treated separately under Gaussian distribution assumption: 

 

    
1 1( ) ( ) ( ) ( ) 1,2, , ;T T

i i i j j j j N j i       x x x xC C        (5.4) 

 

5.2.   Fault Classification with Fisher’s Linear Discriminant Analysis 

 

 This classifier depends on the Fisher’s linear discriminant analysis (LDA), 

which was developed in 1936 (Fisher, 1936). This classifier is also a linear 

classifier, but unlike LDC, it utilizes covariance structures of both within-class and 

between-class relations by projecting the features onto a best separation direction. 

This best linear separation is equivalent to minimizing the distance between 

members of the same class while maximizing the distance to members of the 

remaining (other) classes. To find a transformation for the regarding subspace, the 

following criterion function is maximized: 
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                                                (5.5) 

 

where W is the transformation matrix, and SB and SW denote the between-class and 

within-class scatter matrices, respectively (Welling, 2005). Once transformation is 

constructed, data vectors are applied to this transform by means of vector-matrix 

multiplication, and then the nearest mean decision rule is used for classification in 

the transformed vector space. In multi-class case, the analysis used in the derivation 
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of the Fisher discriminant can be extended to find a subspace which appears to 

contain all of the class variability (Rao, 1948).  

 

5.3.   Fault Classification with Self Organizing Maps 

 

 Self-organizing map (SOM) is a well-known method to organize the input 

feature vectors. Since SOM algorithm is a vector quantization variant, the class 

boundaries should be adjusted well in order to improve the quality of the 

quantization.  The supervised Learning Vector Quantization (LVQ) algorithm 

provides a suitable method to adjust boundaries. Although there are separate 

algorithms in the literature about LVQ, the LVQ3 algorithm preferred in this thesis 

(Kohonen, 1990). 

 SOM provides a powerful method based on Hebbian type neural network 

for the classification problems. The main consequence of the SOM is the possibility 

of tracing the similarities and the discrepancies of the input data. SOM projects the 

input data vector n   which is taken from a sample space of size p to the m 

many codebook vectors of  nM    which organized in planar fashion where p≫m. 

The result after training SOM is a lattice of neurons representing the possible 

clusters.  

 In the training phase, SOM is organized in an unsupervised manner 

according to the equation (5.6): 

 

     (k) M (k 1) ( (k) (i,c,k) [ (k) M (k 1)] 1i i iM i i m                  (5.6) 

 

where α(k) is the learning rate and β(i,c,k) is the neighborhood parameter which 

change in the adaptation phase. The index of the best matching neuron, which is 

denoted as c, is a parameter which depends on: 

 

                                         argmin (k) M (k)i
i

c    .                                         (5.7) 
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 After training phase, the codebook vectors organized in planar lattice 

structure and for each input vector, the closest codebook vectors represent the 

possible cluster. A supervised method Learning Vector Quantization 3 (LVQ3) 

algorithm is used in order to describe the classification regions, and the region of 

clusters (Kohonen, 1995). This algorithm can be expressed as:  

 

                           (k 1) M (k) ( (k) [ (k) M (k)])i i iM                                       (5.8) 

                           (k 1) M (k) ( (k) [ (k) M (k)])j j jM                                     (5.9) 

 

where Mi and Mj are the two closest codebook vectors for Λ(k), and both Λ(k) and 

Mj belongs to the same class however Mi is not. Also it is necessary that Mi, Mj and 

Λ(k) have to be in the window as: 

 

                           1 2

2 1

1
min ,

1

d d window
s where

d d window

  
 

 
                             (5.10)  

 

where d1 and d2 are the distances between the closest codebook vector Mi and the 

input data Λ(k) and second closest codebook vector Mj and Λ(k) respectively.  

 In the algorithm if Mi and Mj are in the same class than the adaptation 

scheme will be as:   

 

                           (k 1) M (k) ( (k) [ (k) M (k)])i i iM                                     (5.11) 

                           (k 1) M (k) ( (k) [ (k) M (k)])j j jM                                    (5.12) 

 

where  and (k) are learning rate parameters.  
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6.   RESULTS 

 

6.1.  Classification Results with Features Obtained by Calculating Wavelet     

Packet Decomposition Coefficients of the Current Data 

 

 Stator current data of induction motors couple with the adjustable speed 

drive is acquired at 20 kHz sampling rate at three different speed references and 

load conditions with a duration of forty seconds, as mentioned in Sections 3 and 4, 

result in data files of length 800,000 samples. By applying 11th level of WPD to the 

elements of the stator current data by a sliding window of length 400,000 with a 

slide amount of 10,000 samples, the wavelet packet coefficients related to three 

specific nodes covering the frequency region 43.92 to 58.56 Hz are calculated at 40 

instances. By calculating the four fundamental statistical parameters (mean, 

standard deviation, skewness and kurtosis) of the coefficients at each of the three 

nodes, 12-dimensional 40 feature vectors are obtained. Fault classification is 

performed by using three different well known classifiers, linear discriminant 

classifier (LDC), quadratic discriminant classifier (QDC) and Fisher’s linear 

discriminant analysis (LDA). Besides, same procedure is performed by changing 

the size of the sliding window length to 20,000 in order to observe the effect of 

selected wavelet filter type on classification process. Four different members of 

wavelet families, Haar, Daubechies2 (db2), Daubechies8 (db8) and Daubechies32 

(db32) are selected wavelet filters in this thesis that provides to observe the effect 

of filter length in WPD at higher decomposition levels.  

 The first approach is to classify fault types under different load conditions 

at each selected speed reference frequencies. In this thesis, feature vectors are 

obtained from six 2.2 kW induction motors running at the same speed via the output 

of the adjustable speed drive at three different loading conditions which cause 4.1, 

4.7 and 5 Amperes of stator currents. These three different load conditions were 

considered separately resulting three different sets of data. Test motors are 

classified with the mentioned classifiers at each load level. Feature vectors are 

obtained by selecting the wavelet type in WPD, therefore four different wavelet 

types are tested separately. Classifier performances are evaluated by applying n-
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fold cross validation (leave-one-out method) so that the overall data set is tested. 

Classification results for this approach is given in Tables 6.1 to 6.3, which shows 

the classification error percentages under speed reference frequencies of 35, 40 and 

50 Hz in order.  

 

Table 6.1. % of classification errors for motors run with speed reference of 50 Hz 

 

Selected Classifier Load Level (A) 

Selected wavelet type 

Haar db2 db8 db32 

LDA 

4.1 0.42 0.00 0.83 6.67 

4.7 0.00 0.00 1.67 0.00 

5.0 0.00 0.00 0.00 0.00 

QDC 

4.1 0.00 0.00 0.00 5.42 

4.7 0.00 0.00 0.00 0.00 

5.0 0.00 0.00 0.00 0.00 

LDC 

4.1 0.00 0.00 0.00 0.00 

4.7 0.00 0.00 0.00 0.00 

5.0 0.00 0.00 0.00 0.00 

 

 

Table 6.2. % of classification errors for motors run with speed reference of 40 Hz 

 

Selected Classifier Load Level (A) 

Selected wavelet type 

Haar db2 db8 db32 

LDA 

4.1 0.00 0.00 0.83 5.42 

4.7 5.83 4.58 7.92 3.75 

5.0 0.42 0.00 0.42 0.00 

QDC 

4.1 0.00 0.00 0.42 2.50 

4.7 0.00 0.00 0.83 3.33 

5.0 0.00 0.00 0.00 0.00 

LDC 

4.1 0.00 0.00 0.42 1.25 

4.7 0.00 0.00 0.42 2.50 

5.0 0.00 0.00 0.00 0.00 
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Table 6.3. % of classification errors for motors run with speed reference of 35 Hz 

 

Selected Classifier Load Level (A) 

Selected wavelet type 

Haar db2 db8 db32 

LDA 

4.1 2.92 0.83 1.67 1.25 

4.7 0.83 0.00 0.00 1.25 

5.0 0.00 0.00 0.00 2.08 

QDC 

4.1 0.00 0.00 0.00 0.42 

4.7 0.00 0.00 0.42 0.83 

5.0 0.00 0.00 0.00 0.00 

LDC 

4.1 0.00 0.42 1.67 0.00 

4.7 0.00 0.00 0.00 0.42 

5.0 0.00 0.00 0.00 0.00 

 

 When overall recognition accuracies given it Tables 6.1 to 6.3, for all load 

levels and filter types, QDC performs better than both LDA and LDC. QDC is 

indeed superior to LDA overall, although in some cases, Fisher’s LDA 

classification success rates are comparable with ones obtained from QDC. The 

deliberate change of load levels and speed reference frequencies provided us with 

observations regarding the feature vector position on the multi-dimensional feature 

space. It is expected that features obtained from the same class motor under the 

same load and speed reference frequency should constitute a compact cluster on the 

multi-dimensional feature space. On the other hand, depending on the type of 

classifiers, other features from another motor should form a different cluster which 

could be separated from the previous one using hyper-planes or hyper-curves. The 

superior performance of QDC over other classifiers used here reveals that the 

proposed feature vectors belonging to different motors with different faults can be 

best distinguished with quadratic hyper-curves. In order to illustrate this situation 

for the proposed feature set, in Figures 6.1 to 6.3, the examples of mentioned 

clusters with selected features are presented as 3D scatter plots, using selected 

wavelet filter type of db2, for load and speed reference frequency conditions of 4.1 

A at 35 Hz, 4.7 A at 40 Hz, and 5 A at 50 Hz, respectively. It can be noted that the 

amount of load and speed reference frequency seem to have no significant effect on 

the recognition rate as long as the proper classifier is used. To sum up, the argument 
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is that the proposed set of feature vector elements, which are the statistical 

parameters extracted from WPD coefficients constitute a reasonable feature set with 

satisfactory classification results. 

 

 

Figure 6.1. Feature clusters at 4.1 A at 35 Hz 

 

 

Figure 6.2. Feature clusters at 4.1 A at 40 Hz 
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Figure 6.3. Feature clusters at 5.0 A at 50 Hz 

 

 The detection and classification of induction motor faults by motor current 

signature analysis, requires the detailed analysis of very narrow bands in the 

frequency spectrum regardless of adjustable speed drive supplied motor or 3-phase 

direct line supplied motor. So, this becomes a necessity that the current data must 

be obtained at high sampling rates therefore a good frequency resolution is reached 

in considered narrow bands and the method that is used in extracting features from 

these bands must be applied carefully. If the data length is not sufficiently long, 

WPD yields very short data segments and low frequency resolution at nodes in high 

decomposition levels due to the successive down sampling. In such a case, 

convolution of selected wavelet filter with data in a node to obtain decomposition 

samples may become meaningless if the selected filter size is almost equal or longer 

than the data length in a node. For example in literature, seven level WPD is applied 

to motor current data of 150,000 samples result in 31 samples at nodes 

corresponding to frequency bands of interest (Teotrakool et al., 2009). The selected 

filter type has a size of 24 which is comparable to the data length at nodes 

considered resulting arguable classification success rate. Also in this thesis, 

regardless of the load condition and speed reference frequency, all classifiers 



52 
 

performed well except the case when the selected filter type is db32 which has a 

filter length of 64. This outcome of short data size was also tested by applying 11th 

level of WPD to motor stator current data size of 20,000 and the classification 

results are presented in Table 6.4. Poor classification results were observed as the 

selected wavelet filter size increases. 

 

Table 6.4. % of classification errors for motors run with speed reference of 35 Hz 

(20,000 samples in WPD) 

 

Selected Classifier Load Level (A) 

Selected wavelet type 

Haar db2 db8 db32 

LDA 

4.1 0.00 4.58 2.50 8.33 

4.7 2.92 9.58 14.17 14.17 

5.0 0.00 3.75 4.58 4.17 

QDC 

4.1 0.00 0.83 0.42 8.33 

4.7 0.83 3.33 11.25 11.25 

5.0 0.00 0.42 3.33 2.50 

LDC 

4.1 4.58 12.50 12.50 8.75 

4.7 12.08 23.75 19.17 22.92 

5.0 2.08 4.17 4.58 15.42 

 

Performing the classification at a fixed load condition is not general enough to test 

the efficiency of the proposed features for arbitrary and practical engineering 

applications. Hence another approach is adopted where the data are explicated 

regardless of the load. In this manner, combined feature vector data of 120 sets for 

each motor are used in the classification process, corresponding to all three load 

levels. Percent classification errors regardless of the load condition at 40 Hz are 

given in Table 6.5. Again, the performance of QDC is superior to LDC and LDA. 

In this case also, as the selected wavelet filter size increases, the recognition rate 

diminishes. However, the classification accuracy obtained by using QDC is very 

high and it may easily be observed that proposed feature vector elements are 

capable of perfectly representing different motor faults in an ASD-motor 

combination once a proper classifier is selected. The successful classification 
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results are also showed in the form of a confusion matrix for QDC at 40 Hz speed 

reference and using wavelet filter type of db8 in Table 6.6.  

 

Table 6.5. % of classification errors for motors run with speed reference of 35 Hz 

 regardless of load 

 

Speed Reference Selected Classifier 

Selected wavelet type 

Haar db2 db8 db32 

35 Hz 

LDA 33.33 23.20 22.92 32.64 

QDC 0.28 0.00 3.75 9.03 

LDC 30.00 20.00 18.75 30.83 

40 Hz 

LDA 16.94 22.36 22.56 33.06 

QDC 0.00 0.00 2.78 3.47 

LDC 12.92 17.91 19.17 32.78 

50 Hz 

LDA 10.69 13.75 17.64 23.47 

QDC 0.00 0.00 1.11 3.47 

LDC 11.11 11.67 15.56 19.31 

 

Table 6.6. Confusion matrix for QDC with db8 filter regardless of load at speed 

 reference of 40 Hz 

 

 Predicted 

 rb1 rb2 rot3 rot5 sw healthy 

rb1 120 0 0 0 0 0 

rb2 0 118 2 0 0 0 

rot3 0 7 113 0 5 0 

rot5 0 0 0 119 1 0 

sw 0 0 10 0 110 0 

healty 0 0 0 0 0 120 

 

 It is obvious from the results of this work that any fault perturbs the supply 

side current of ASD-motor combination in terms of significant changes in the 

statistical parameters of WPD coefficients. Clearly, the leakage of the injected 

energy into harmonic components other than the fundamental increases with the 
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existence of a motor fault and the proposed feature vector elements are good 

indicators of this change in energy. 

 

6.2.   Classification Results with Features Obtained from Acoustic Data Using 

Self-Organizing Maps  

 

 In order to classify motor faults, with SOM, a combined feature vector set 

is used. 40 combined features obtained from both cross correlations of acoustic data 

recorded by different microphones and features obtained from the wavelet 

decomposition of the 2D images constructed from 1D sound data of each 

microphone are added into the combined feature set and listed in Table 6.7. Also, 

the flow diagram of the entire feature extraction and classification process is given 

below in Figure 6.4. 

 

Table 6.7. Combined feature set for acoustic based and classification process 

 

Cross-Correlation 

Features 

Wavelet Decomposition Features (from the images constructed from  

the acoustic data recorded by microphones 1 to 5) 

#1:  #6:   #11, #17, #23, #29, #35: RMS energy of vertical images  

#2:  #7:   #12, #18, #24, #30, #36: RMS energy of diagonal images  

#3:  #8:   #13, #19, #25, #31, #37: Column correlation of vertical images  

#4:  #9:   #14, #20, #26, #32, #38: Column correlation of diagonal images  

#5:  #10:  #15, #21, #27, #33, #39: Row correlation of horizontal images  

 #16, #22, #28, #34, #40: Column correlation of energy images  

 

 In order to train a 5x10 dimensional SOM, the feature vectors obtained from 

two different experiment sets (Exp1 and Exp3) are used. Prior to training, the input 

vectors are normalized. After training phase, the resultant map in Figure 6.5 has 

been obtained. Naturally, the SOM results depends on the nature of the feature 

vectors. In this work the vectors are composed of both cross correlation values of 

time domain data and the image-related correlations as explained in Section 4. 

1 2
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Figure 6.4. Flow diagram of the entire feature extraction and classification process 

of acoustic data with SOM 

 

 The motor number labels, which can be seen on the map, are the 

corresponding localizations of the training motor data on the map. The vicinity in 

two-dimensional map shows the possible close relationship of the input feature 

vectors. In other words, if two feature vectors from two different experiments are 

mapped to neurons which are close to each other in the lattice, it is possible to 

deduce that there is somehow a resemblance between those motors. Conversely, the 

increase in the space between the neurons indicates the differences of the features 

obtained from the motors. 
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Figure 6.5. 5x10 Dimensional SOM map trained with Exp1 and Exp3 dataset 

 

 

 

Figure 6.6. Localization of test data from Experiment 2 on 5x10 Dimensional SOM 

map  

 

 By inspecting Figure 6.6, rb1 and rb2 data have been localized at the left of 

the healthy motor and the other faults are settled at the right of the healthy one. It is 

not surprising that rb1 and rb2 faults have some close relationship with each other 

since being ball bearing related problems and the SOM map has a consistent result 

with this relationship. In order to test the results, the experiment set Exp2 data are 

directly applied to the trained map and the following results have been obtained. 

Clearly, the test data localization is highly consistent with the trained data at a first 

glance. In Figure 6.6, the number in parentheses designates the number of hits for 

the relevant motor.  
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 Table 6.8 demonstrates the classification performance without applying 

LVQ algorithm. After applying LVQ3 algorithm, the results show the improvement 

in the classification performance as shown in Table 6.9. 

 

Table 6.8. Confusion matrix and correct classification results of test data without 

 applying LVQ algorithm 

 

 Predicted 

 healthy rb1 rb2 rot3 sw classification % 

healthy 6 0 0 0 0 100 

rb1 0 6 0 0 0 100 

rb2 0 0 6 0 0 100 

rot3 1 0 0 5 0 83 

sw 0 0 0 0 6 100 

 

 

Table 6.9. Confusion matrix and correct classification results of test data after 

 applying LVQ algorithm 

 

 Predicted 

 healthy rb1 rb2 rot3 sw classification % 

healthy 6 0 0 0 0 100 

rb1 0 6 0 0 0 100 

rb2 0 0 6 0 0 100 

rot3 0 0 0 6 0 100 

sw 0 0 0 0 6 100 

 

 

6.3.   Comparative Classification Results of Current, Vibration and Acoustic 

Data with Linear and Quadratic Bayesian Classifiers 

 

 In this thesis, different classification approaches are proposed for current, 

vibration and acoustic data. WPD of stator current data works well with the current 

data obtained from the motors driven with adjustable speed drive. But in many 
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applications, the use of driving of motors directly with AC network is very 

common. In order to make a comparative classification between current, vibration 

and acoustic monitoring, these three different data are collected with three sets of 

experiments. Vibration and current data are sampled with 20 kHz and collected 

simultaneously with NI-6251 data acquisition card. But it was impossible to collect 

sound data recorded with 5 microphones simultaneously. With another PC, acoustic 

data are tried to be collected at a sampling rate of 44.1 kHz at the same time of the 

collection of vibration and current but it is sure that pure synchronization of the 

processes are not possible. It is worth to note that some time delays exist between 

these two parallel data acquisition processes.  

 Cross-correlation based features worked well for acoustic based 

classification with five microphones which make simultaneous recording but these 

kind of features are useless for current and vibration. In order to make a fair 

comparison, features obtained by converting 1D data to 2D grayscale images are 

used. Images are constructed as square shaped whose width is equal to the number 

of samples of a period of a signal which is calculated by finding the autocorrelation 

of the signal. According to the size of the collected data samples, number of created 

grayscale images changes due to the sampling frequencies. For this reason, from 

each trial of the experiments, four grayscale images are constructed for current and 

vibration data while only one grayscale image can be constructed for acoustic data 

for recordings of a single microphone. Since the classification performances are 

compared, this difference does not affect the classification process. Also for 

acoustic data, recordings of separate microphones are converted to grayscale 

images separately and for each trail, features are obtained from each five images 

are added separately to the feature set. After applying single level of 2D DWT to 

all images, features are obtained using some properties of the sub-band images as 

described in section 4.  These six features are, RMS energy of vertical images, RMS 

energy of diagonal images, column correlation of vertical images, column 

correlation of diagonal images, row correlation of horizontal images, and column 

correlation of energy images. Classification performance of LDC and QDC, 

regardless of loading condition using six features can be seen in Table 6.10. 
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Table 6.10. Comparative % of classification errors for different types of data of    

motors regardless of load 

 selected classifier 

selected data type LDC QDC 

current data 43.75 21.99 

acoustic data 24.07 14.44 

vibration data 6.94 1.85 

 

 Results are quite well for acoustic and vibration data even only 6 features 

are used for classification. But when compared to WPD based classification, this 

method provides very poor classification performance for current data. Also QDC 

is superior to LDC for each data type. A detailed look to classification errors can 

be seen by the confusion matrices given for acoustic and vibration data using QDC 

in Tables 6.11 and 6.12. 

 

Table 6.11. Confusion matrix for QDC for acoustic data regardless of load 

 
 Predicted 

 rb1 rb2 rot3 rot5 sw healthy 

rb1 84 6 0 0 0 0 

rb2 0 79 11 0 0 0 

rot3 0 0 78 8 0 4 

rot5 0 0 12 57 18 3 

sw 0 0 1 10 79 0 

healty 0 0 3 2 0 85 

 

Table 6.12. Confusion matrix for QDC for vibration data regardless of load 

 
 Predicted 

 rb1 rb2 rot3 rot5 sw healthy 

rb1 72 0 0 0 0 0 

rb2 0 72 0 0 0 0 

rot3 0 0 68 0 4 0 

rot5 0 0 1 70 1 0 

sw 0 0 0 1 71 0 

healty 0 0 1 0 0 71 
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 From the confusion matrices, it can be stated that vibration data is more 

sensitive for differentiating bearing faults. It can be also seen by scatter plot of 

arbitrarily selected 3 features over 6 in Figure 6.7. 

 

Figure 6.7. Feature clusters of vibration based features regardless of load 

 

 As it can be seen in Figure 6.7, feature clusters of bearing faults are 

separated from other fault clusters and they lie in the same direction but in separate 

clusters. Features of broken rotor bar faults of 3 and 5 broken bar problems’ clusters 

are close to each other, is also an expected result.  

 Acoustic data were obtained using 5 different microphones simultaneously. 

When the features related to each microphone are lumped together, which results 

in 30-dimensonal feature vector instead of 6. This new group of features provide 

better results for acoustic based fault classification.  

 

Table 6.13. Comparative % of classification errors for acoustic data related features 

of motors regardless of load 

 

 selected classifier 

selected feature set LDC QDC 

6 features 24.07 14.44 

30 features 1.85 6.48 
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6.4.   Classification Results with Features Obtained by LBP Histograms   

 

 The 8-dimensional feature vectors which are extracted by only using the 

properties of the acquired LBP histograms from the square shaped grayscale images 

constructed from current, vibration and acoustic data are used for classification of 

the motor faults.  

 Classification performances of data types are compared by using three 

different well known classifiers, linear discriminant classifier (LDC), quadratic 

discriminant classifier (QDC) and Fisher’s linear discriminant analysis (LDA). 

Vibration data gives the best performance, approximately 95% correct 

classification with only 8 features with QDC. Also as it is seen from the results, 

current data is not sensible for this type of feature extraction technique since it 

shows more stationary characteristic compared to vibration and acoustic data.  

 

Table 6.14. % of classification errors for LBP histograms based fault classification 

of motors regardless of load 

 

 selected classifier 

 LDA QDC LDC 

Current Data 45.14 27.13 46.06 

Vibration Data 15.74 5.32 16.20 

Acoustic Data 22.41 6.48 18.89 
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7.   CONCLUSION 

 

 Induction motors are the most widely used electrical machines in industry 

due to their simple construction, cost effectiveness and easy maintenance. In this 

thesis, fault classification of induction motors are realized with the current, 

vibration and acoustic data acquired by various experiments in laboratory 

environment. In order not to interrupt the industrial processes caused by unexpected 

failures of induction motors, preventive maintenance strategies are getting more 

popular since early diagnostics of incipient faults in induction motors are important 

to ensure safe operation and help to recognize and fix the problems with low costs 

and time. Motivating from the preventive maintenance approach, induction motors 

faults that frequently encountered in industry are created synthetically on test 

motors. In order to clarify the indicators of fault types definitely, certain faults are 

created synthetically on new test motors. 

 In this thesis, proposed classification tools are Bayesian originated 

classifiers: linear and quadratic discriminant classifiers, Fisher’s linear discriminant 

based classifier, and Neural Network (NN) based classification algorithm self-

organizing maps (SOM) and learning vector quantization (LVQ) techniques. These 

classifiers are utilized in fault classification of current, vibration and sound data 

obtained from various experiments realized. Classification results of different cases 

are given in and classification performances of different type of classifiers and 

selected filter types are also discussed. Current, vibration and acoustic data 

performances with same features are discussed to show the convenience of data 

type for classification.  

  During experiments, test motors are operated under different loading 

conditions in order to construct classification methods which provide reliable 

classification performances regardless of load. Besides, stator current data of test 

motors are acquired under the cases of both driven directly with AC line and driven 

with adjustable speed drive (ASD) experiments are realized. In the case of placing 

an ASD to test procedure, it is known that due to the pulse-width modulation 

(PWM) switching of the voltage source inverter, the motor current waveforms can 

be obstructed by the noise-like additive waveforms which conceal the fault 



63 
 

characteristics on stator current. Even in this challenging case, the proposed 

Wavelet Packet Decomposition (WPD) based feature extraction method showed 

great success for the classification of motor faults. The effect of filter type selection 

in WPD process is also critical since with increase of the level of decomposition, 

convolution of selected wavelet filter with data in a node to obtain decomposition 

coefficients may become meaningless if the selected filter size is almost equal or 

longer than the data length in a node. In order to see the effect of selected filter type 

in WPD, different wavelet types are tested during classification experiments. 

Besides, different classifiers are applied to the feature sets in order to obtain lower 

classification errors. 

 In addition to stator current, vibration and acoustic data based feature 

extraction techniques are used for fault classification. Novel feature extraction 

methods which use 2D representations of data signals are proposed.  By 2D 

representation of the signal, classification with texture related features is possible 

if a priori knowledge of the classes to be recognized does exist. Appropriate texture 

based techniques can be applied for the classifications of the patterns caused by 

indicators like vibration and acoustic signals. Utilizing 2D discrete Wavelet 

Transformation to the grayscale image representations obtained from test data, the 

properties of the formed sub-images are used for feature indicators and give fairly 

good performances on vibration and acoustic based analysis. Texture based feature 

extraction methods found inefficient for current data since the nature of data is less 

random which may result in strict texture patterns in acquired grayscale images.    

 Unlike current and vibration based methods, there is very limited literature 

on fault diagnosis of induction motors which is based on acoustic analysis. Besides, 

some of these works analyze the acoustic data which are recorded in an echo-free 

silent environment, which seems impractical for the real life applications, especially 

in industrial processes. Instead of echo-free silent environment, acoustic data are 

collected from quite noisy laboratory environment which resembles a real industrial 

environment and this type of fault classification can be considered as another 

novelty about this thesis. Acoustic data are acquired in laboratory environment with 

ambient noise via five microphones surrounding the test rig. In order to classify 

different motor faults, cross-correlation coefficients between microphone channels 
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are used as attributes of the feature sets, which provide great increase on overall 

classification performance. 

 The local binary pattern (LBP) operator is an image operator which converts 

an image into an array or image having integer labels which describes small-scale 

appearance of the image. LBP is also utilized to the grayscale image representations 

of the acquired data signals. LBP is a highly discriminate operator which records 

the occurrences of various patterns in the neighborhood of each pixel in a histogram, 

and it is invariant to rotation changes of images. LBP histograms can be simply 

constructed from the images and the properties of the resulting histograms can be 

used for feature indicators. The last proposed method in this thesis is LBP 

histograms based classification. By using the fundamental statistical properties of 

the histogram and the autocorrelation of the histogram data with itself as feature 

vectors, classification performances of the different types of data are tested. Again 

as in other 2D representation methods, current data failed to classify but acoustic 

and vibration data provide quite enough success. Also when compared to other 

wavelet based feature extraction techniques proposed, LBP histogram methods 

require minimal computational cost.  

 To summarize, this thesis provides novel feature extraction techniques from 

current, vibration and acoustic data which are acquired in real industry-like 

laboratory environment. Quite well classification performances are reached by 

proper selection of the filtering method and classifier type. Besides, a remarkable 

benchmark database is constructed consisting of stator current, vibration and 

acoustic data acquired under many operating conditions. This database is expected 

to be used as medium for future works of fault diagnosis related to preventive 

maintenance strategies of the induction motors, which may be considered as a 

natural consequence of this thesis work.  
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