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Member : Prof. Dr. Levent ONURAL .................
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ÖZET

SPEKTRAL ÇİZGE TABANLI GÖRÜNTÜ TEMİZLEME YÖNTEMLERİ

Ali Can YAĞAN

Elektrik-Elektronik Mühendisliği Anabilim Dalı

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Aralık, 2016

Danışman: Prof. Dr. Mehmet Tankut ÖZGEN

Bazı spektral çizge tabanlı görüntü temizleme yöntemleri incelenmiş ve

ayrıca bu metodların ulaştığı temizleme performanslarını geliştirmek için çizgesel

Fourier alanında bir Wiener filtreleme işlemi önerilmiştir. Zaten ulaşılmış olan

temizleme başarımını daha da iyileştirmek için bir işlem-sonrası basamağı olarak

kullanılması önerilen Wiener filtresi, temizleme işleminden geçirilen çizgesel Fourier

katsayıları kullanılarak tahmin edilmektedir. Bu çizgesel Wiener filtresi tüm görün-

tüden tahmin edilerek tüm görüntüye uygulanabilmekte ya da yerel uyarlanabilir

bir şekilde görüntü parçalarına göre kullanılabilmektedir. Sonuçlarımız, çizgesel

Fourier dönüşümünü hesaplamada kullanılan ağırlıklı yakınlık ve Laplasyen mat-

rislerinin farklı seçenekleri için, ve elde edilen dönüşüm katsayılarını temizlemede

kullanılan farklı işlemsel yöntemler için, önerilen Wiener filtresinin istikrarlı bir

biçimde iyileştirme sağladığını göstermiştir. Basit yapıdaki bazı görüntüler için

literatürdeki en iyi sonuçları veren yöntemlerden biri olan BM3D algoritmasından

daha iyi PSNR değerleri elde edilmiştir.

Anahtar Kelimeler: Çizgelerde sinyal işleme, spektral çizge metodları, çizgesel

Fourier dönüşümü, görüntü temizleme, Wiener filtresi.
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ABSTRACT

SPECTRAL GRAPH BASED IMAGE DENOISING METHODS

Ali Can YAĞAN

Electrical and Electronics Engineering Program

Anadolu University, Graduate School of Sciences, December, 2016

Supervisor: Prof. Dr. Mehmet Tankut ÖZGEN

Some of the spectral graph based image denoising methods are reviewed

and a Wiener filtering scheme in graph Fourier domain is proposed for improving

image denoising performance achieved by these methods. The proposed Wiener

filter is estimated by using graph Fourier coefficients of the noisy image after they

are processed for denoising, to further improve the already achieved denoising accu-

racy as a post-processing step. It can be estimated from and applied to the entire

image, or can be used patchwise in a locally adaptive manner. Our results indicate

that the proposed step yields consistent accuracy improvement for different choices

of weighted adjacency and graph Laplacian matrices used in computing the graph

Fourier transform and for different processing methods used to denoise obtained

transform coefficients. We obtain higher peak signal-to-noise ratio (PSNR) values

than a state-of-the-art denoising method, known as the BM3D method, for some

standard images.

Keywords: Signal processing on graphs, spectral graph methods, graph Fourier

transform, image denoising, Wiener filter.
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1. INTRODUCTION

1.1. Overview and Motivation

Image processing is used in many areas such as security, criminal laboratory,

military industry, underwater imaging, medicine (tomography, ultrasound), radar,

photographic industry applications, physics, art and biomedicine. Image denoising

is one of the main parts of image processing applications and has been a well-studied

problem in the image processing community. As long as developing technology is a

critical part of our lives, it seems this problem will continue to attract researchers

with an aim to perform better restoration of images in the presence of noise. Espe-

cially with the increasing number of the pixels per image, modern image capturing

devices become more sensitive to noise. However, in previous work on the analysis

of the performance bounds for image denoising, it has been shown that there is

still room for improvement for less textured, smoother images or for those without

much structural complexity or variation [1]. Therefore, image denoising algorithms

that are applied to reduce noise artifacts have still crucial importance for sensor

and camera equipment manufacturers.

The most striking recent examples of denoising algorithms are kernel-based

methods, where denoising is performed based on some type of shrinkage operation

in a fixed or adaptive basis. The first modern adaptive method was the bilateral

filter [2]. This edge-preserving smoothing method had the same spirit with the

previous studies such as normalized convolution [3], Yaroslavky filter [4] and the

SUSAN filter [5] which itself was an extention of the Yaroslavky filter. The common

idea of these algorithms is weighting similar image pixels or data points (or more

generally patches) locally or nonlocally [6], according to their affinities. However,

identifying the similar data points under strong noise was a drawback of bilateral

filter. This local filtering concept was extended to the entire image and a patch-

averaging filter was introduced as nonlocal-means (NLM) filter [7,8]. This approach

locates patches in accordance with their similarities and denoises the center pixel

of a patch by taking weighted average of the center pixels of patches similar to it.

In [9,10], a parameter-free algorithm was proposed to improve the NLM method by

associating an adaptive neighborhood with a modified weight calculation formula.
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A signal-dependent (data adaptive) steering kernel regression (SKR) framework was

introduced in [11]. This method proved to be much more robust under strong noise.

A significantly different technique for denoising was first introduced as K-

SVD algorithm in [12], that employs dictionary learning for denoising. In [13], a

hybrid approach that merges dictionary-based and regression-based methods was

proposed for better restoration of images.

In recent years, two best performing methods that define the current state-

of-the-art were introduced. These methods employ Wiener filtering; one of them

in a spatial patch domain [14], and the other one, which is the block-matching

and three-dimensional filtering (BM3D) algorithm [15], in some three-dimensional

transform domain such as a wavelet, discrete cosine and sine transforms, the Walsh-

Hadamard transform, etc. However, BM3D takes a different approach to denoising.

This method builds on the concept of NLM in identifying and grouping similar

patches in an image, and performs the denoising process in transform domain as

mentioned above.

Another approach related to kernel based filtering techniques covers spec-

tral graph based image denoising methods that connect graph signal representation

and Laplacian matrix in graph theory with non-local similarity in image processing.

An image is viewed as a signal defined on a discrete, weighted, connected and undi-

rected graph with vertices corresponding to image pixels in such methods [16–19].

Kernel similarity matrices are analogous to weighted adjacency matrices in spectral

graph methods: A matrix element representing similarity between two image pixels

serves as the weight of the graph edge connecting those two pixels (vertices) in such

methods [6,18,19]. However, instead of applying row-normalized kernel matrices to

input vectors composed of observed, noisy image pixels as in kernel based methods;

in spectral graph methods, the noisy observed image vector is expanded in terms

of the eigenvectors of the weighted adjacency matrix [20, 21] or a graph Laplacian

matrix derived from it [18], to obtain its graph Fourier transform (GFT) as the

expansion coefficients [18, 20]. Denoising process is performed in GFT domain by

lowpass filtering arising from an l2 regularization framework [18,19], or soft thresh-

olding arising from l1 regularization framework [21], or hard thresholding [22] of the

graph Fourier coefficients. Then, the denoised image is obtained by computing the

2



inverse GFT of the processed coefficient vector, i.e., multiplying it by the eigenvec-

tor matrix of the graph Laplacian or the weighted adjacency matrix [18,20,21].

The two-pass algorithm proposed in [22] uses the denoised image from the

first pass to construct an improved graph for the second pass. In both passes,

GFTs of images are computed by using eigenvectors of normalized graph Laplacian

matrices and denoising is achieved by hard thresholding of graph Fourier coefficients.

This work reports higher peak signal-to-noise ratio (PSNR) values than the BM3D

method for a standard set of images, demonstrating that spectral graph based

methods can compete with state-of-the-art image denoising techniques.

Elaborate spectral graph lowpass filter designs in GFT domain are devel-

oped in [23, 24], for image and graph signal denoising based on l2 regularization

involving more complex regularization operators in terms of graph Laplacian ma-

trices, by minimizing l2 regularized cost functions between observed, noisy and

denoised images. Moreover, spectral graph Wiener filtering has been developed for

stationary graph signals for denoising and deconvolution purposes [25–28]. How-

ever, underlying signals or images may be non-stationary or even be modelled as

deterministic.

To our knowledge, a simple and more general implementation of a Wiener

filter directly in graph Fourier domain, without requiring to estimate power spectral

densities or correlation functions first, is lacking, for minimizing the mean-square

error (MSE) between original and denoised images.

In [29], an estimated (MSE) is optimized with respect to truncation of

eigenmodes of the denoising filter and iteration number while iteratively applying

the filter, which yields a restricted optimization of filter eigenvalues instead of a

true Wiener filtering operation.

To further improve denoising accuracies attained by such spectral graph

based algorithms as reviewed above, we propose a Wiener filtering scheme in the

GFT domain as a post-processing step. In this thesis, we use processed graph

Fourier coefficients of a noisy image and the estimated noise variance to estimate

graph Fourier coefficients of the underlying noiseless image and to construct a

Wiener filter frequency response from them. The proposed Wiener filter can be

applied either to the input noisy image or to the already denoised image. It can

3



be estimated from and applied to the entire image, or can be used patchwise in a

locally adaptive manner.

1.2. Thesis Goals and Contributions

Motivated by aforementioned facts, the goal of the thesis is to improve

image denoising performance achieved by various spectral graph based image de-

noising methods, with the proposed Wiener filter post-processing step. Therefore,

obtaining improvement for different kinds of benchmark images such as determinis-

tic, less textured or complex structured etc. and for all spectral graph based image

denoising methods is the main goal of this thesis. This thesis contributes to the

literature in a few dimensions:

• The proposed post-processing Wiener filter is the first to be used for image

denoising in spectral graph based methods.

• It can be estimated from and applied to the entire image, or can be used

patchwise in a locally adaptive manner.

• It is promising that this proposed method appended to the spectral graph

based algorithms can compete with the state-of-the-art image denoising tech-

niques such as BM3D.

1.3. Thesis Outline

Organization of the thesis is as follows: Chapter 2 gives the background

information about spectral graph based image denoising approaches that will be

improved by our Wiener filter stage. In Section 2.1, different forms of graph weights

are considered. Denoising methods in spectral graph domain are summarized in

Section 2.2. Finally, spectral graph based image denoising algorithms considered in

this work are presented in Section 2.3.

In Chapter 3, the proposed graph Wiener filter post-processing step is de-

scribed in detail to further improve accuracies of spectral graph based image de-

noising methods mentioned in the previous chapter.

4



In Chapter 4, simulation results are presented to evaluate improvements

achieved by the proposed approach and compare them with denoising accuracies of

the BM3D algorithm for some benchmark images.

The thesis is concluded in Chapter 5.

5



2. SPECTRAL GRAPH BASED IMAGE DENOISING

In this chapter, we review some of the spectral graph based image denois-

ing methods in the literature, and gather up three algorithms to be improved by

appending our proposed Wiener filtering step to them. These algorithms to be

improved are linear filtering algorithms in terms of input/output relationship.

In the work of Shuman et al. in [18], utilization of graph signals in many

different engineering and science fields such as transportation networks, brain imag-

ing, etc. is presented. In the paper, there are two developed ideas which are aimed

at extending the application area of the graph signal processing. The first one is

the idea of processing data on irregular data domains such as arbitrary graphs.

Secondly, it is proposed to use well-known DSP algorithms on graph signals. As

a result, a framework for processing data on graphs is achieved by adapting the

elementary operators, such as filtering, convolution and translation, to graph set-

ting. It has been shown that these approaches can be directly adapted to many

operators, and it has several advantages due to the irregularity of the associated

data.

To examine more elaborately, let X and Y be an original noiseless image

and its noisy version with known noise variance, respectively, of size m × n. Any

such image can be regarded as a signal defined on a discrete, weighted, connected

and undirected graph G = (V , E,K) that consists of a finite set of vertices (pixels)

representing image pixels with cardinality |V| = mn = N , a set of weighted edges

E ⊆ V ×V connecting vertices (pixels), and a weighted adjacency matrix K of size

N×N . If pixels i and j are connected via an edge e = (i, j) directed from j to i, the

element Ki,j represents the positive weight of the edge as a measure of similarity

between those pixels. If they are not connected, Ki,j = 0. Images can be considered

as undirected graphs; hence Ki,j = Kj,i, i.e., K is a symmetric matrix [16–19].

The graph Laplacian is defined as

L = D −K

where the degree matrix D is diagonal matrix whose ith diagonal element is given

by the sum of elements of the ith row of K. Since L is also a real symmetric matrix,

it has a complete set of real, orthonormal eigenvectors vl, for l = 0, 1, . . . , N − 1.

6



Its eigenvalues are real and nonnegative, λl, for l = 0, 1, . . . , N − 1, sorted from the

smallest to the largest, with λ0 = 0. Eigenvalues represent graph frequencies from

the lower to the higher when sorted this way [16,18].

The normalized graph Laplacian defined as [17,18]

L̃ = I −D−1/2KD−1/2

is also used in spectral graph based image denoising [22].

The image measurement model is given by

y = x + n, (2.1)

where y and x denote column-stacked vectorized forms of the observed noisy and

original noiseless images, respectively, of size N . n is a noise vector of additive,

zero-mean, white noise samples with variance σ2. The image denoising problem is

to estimate x given its noisy version y.

2.1. Graph Weights

The observed image y is first pre-filtered by a Gaussian filter, in this thesis,

and graphs used in denoising algorithms are constructed from the pre-filtered image

x̃ to stabilize graph weights by reducing the effect of noise, as suggested in [6, 7,

16, 19]. The following alternatives for the weighted adjacency matrix representing

image pixel similarities are preferred among the others, in this work, because of

their better results for benchmark images tested and presented in this thesis.

As the first alternative, the adjacency matrix is computed in a form remi-

niscent to that of the bilateral filter kernel [2, 6], as

Ki,j = exp
(
−‖x̃i − x̃j‖2/h2x

)
exp

(
−‖pi − pj‖2/h2p

)
(2.2)

for i, j = 1, 2, . . . , N , where x̃i and x̃j denote vectorized forms of patches centered

at pixels i and j in the pre-filtered image, and pi and pj denote their locations

in the two-dimensional (2-D) image, respectively. The vector norm is Euclidean

norm above. hx and hp are smoothing parameters in the photometric and spatial

domains, respectively. Each pixel (vertex) is connected to each other in the image,

with the above weight, in this first alternative.

7



In the second alternative graph structure, each image pixel is chosen to

be connected to only its eight nearest neighbors in the 2-D image with the above

weights again, rendering a sparse K matrix.

As a third alternative graph for representing images, each pixel is taken to

be connected to only its eight nearest neighbors with weights as proposed in [22]:

KMS
i,j = exp

[
− (‖x̃i − x̃j‖+ β‖pi − pj‖)2 /δ2

]
(2.3)

where the nonnegative parameter β controls the effect of patch similarity and the

parameter δ controls the scaling of the overall similarity metric [22].

2.2. Denoising in the Graph Fourier Domain

Eigendecomposition of the symmetric graph Laplacian

L = D −K

or normalized graph Laplacian

L̃ = I −D−1/2KD−1/2

obtained from the adjacency matrix K, is conducted first, as L = V SV T . Then,

orthonormal eigenvectors are used to compute the GFT of the observed noisy image

vector y [18, 19,22] as

yf = V Ty (2.4)

for denoising in the GFT domain, where V = [v0,v1, . . . ,vN−1] denotes the eigen-

vector matrix. By processing the GFT of the noisy image, yf = [yf (λ0), yf (λ1), . . . ,

yf (λN−1)]
T , the GFT of the denoised image

x̂f = [x̂f (λ0), x̂f (λ1), . . . , x̂f (λN−1)]
T

is obtained. As the last step, the inverse GFT is computed as

x̂ = V x̂f

=
N−1∑
l=0

x̂f (λl)vl (2.5)

to yield the denoised image vector x̂.

8



The following denoising methods in the GFT domain are considered in this

thesis. Denoising can be achieved by minimizing the l2 regularized cost function,

‖x̂− y‖2 + αx̂TLx̂

leading to [18,19]

x̂ = (I + αL)−1y = V (I + αS)−1V Ty, (2.6)

where the GFT of the noisy image vector is masked in the frequency domain by

multiplying with a diagonal matrix and the inverse GFT of the result is computed

to give the (vectorized) denoised image. Comparing (5) and (6) reveals the following

lowpass filtering in the GFT domain [18,19]

x̂f (λl) =
1

1 + αλl
yf (λl) (2.7)

for l = 0, 1, . . . , N−1. α > 0 is a regularization parameter the value of which should

be searched to result in a good denoising performance for a particular image, or for

each patch of it if the above filter is applied patchwise.

Hard thresholding of graph Fourier coefficients of the noisy observed image

is also used for denoising [22]:

x̂f (λl) = yf (λl)1(|yf (λl)| ≥ t), (2.8)

for l = 0, 1, . . . , N − 1, where 1(·) returns 1 if the condition is satisfied and 0

otherwise. t is the threshold parameter to be searched for a good denoising accuracy,

usually chosen to be proportional to the estimated standard deviation of the noise

[7].

Assuming that the noiseless original image is sparse in the GFT domain,

minimization of the l1 regularized cost function

‖y − V x̂f‖22 + 2α‖x̂f‖1

leads to soft thresholding in the GFT domain;

x̂f (λl) = max(0, |yf (λl)| − α)sgn(yf (λl)).

However, soft thresholding has resulted in worse denoising results than the other

two methods, for algorithms and benchmark images considered. Therefore, in this

thesis, soft thresholding was not included.
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2.3. Algorithms

Our proposed Wiener filter will be appended to the following spectral graph

based image denoising algorithms, designated as SGMs, to test the resulting im-

provement in accuracy for each of them.

Table 2.1. SGM1 Algorithm

SGM1 :

1. Set the graph weights (K) as given by (2.2);

2. Derive the Laplacian (L = D −K) and perform its eigendecomposition;

3. Compute the GFT of the observed noisy image yf as given by (2.4);

4. Perform denoising process by lowpass filtering in the GFT domain as in (2.7);

5. Compute the denoised image x̂ by the inverse GFT as given by (2.5);

In SGM2, each image pixel is connected to only its eight nearest neighbors

in the 2-D image, with the weights given by (2), to construct K. The remain steps

are the same with those of SGM1.

Table 2.2. SGM2 Algorithm

SGM2 :

1. Set the graph weights (K) as given by (2.2) between each pixel and only its

eight nearest neighbors;

2. Derive the Laplacian (L = D −K) and perform its eigendecomposition;

3. Compute the GFT of the observed noisy image yf as given by (2.4);

4. Perform denoising process by lowpass filtering in the GFT domain as in (2.7);

5. Compute the denoised image x̂ by the inverse GFT as given by (2.5);

10



Table 2.3. SGM3 Algorithm

SGM3 :

Step 1

1. Obtain pre-filtered image x̃ by performing Gaussian filtering;

2. Set the graph weights (K) as given by (2.3) between each pixel and only its

eight nearest neighbors;

3. Derive the normalized Laplacian (L̃ = I −D−1/2KD−1/2) and perform its eigen-

decomposition;

4. Compute the GFT of the observed noisy image yf as given by (2.4);

5. Perform denoising process by hard thresholding in the GFT domain as in (2.8);

6. Compute the denoised image x̂1 by the inverse GFT as given by (2.5).

Step 2

1. Set the new graph weights (K) from the cleaner output image of the first step

x̂1 as given by (2.3) with each pixel connected to only its nearest eight neighbors;

2. Derive the normalized Laplacian (L̃ = I −D−1/2KD−1/2) and perform its eigen-

decomposition;

3. Compute the GFT of the observed noisy image yf as given by (2.4) using the

new eigenvector matrix V ;

4. Perform denoising process by hard thresholding in the GFT domain as in (2.8);

5. Compute the denoised image x̂ by the inverse GFT as given by (2.5) using the

new eigenvector matrix V ;
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3. WIENER FILTERING IN THE GRAPH FOURIER DOMAIN

In this chapter, we propose a Wiener filtering scheme implemented directly

in GFT domain without requiring power spectral density or correlation function

estimation first, to be integrated to various spectral graph based image denois-

ing algorithms as a post-processing step to further improve their already achieved

denoising accuracies. This is the main contribution of our thesis.

The Wiener filter coefficients in the GFT domain, that minimize the MSE

MSE = E
{
‖x− x̂‖2/N

}
between original, noiseless and denoised images, are derived in [6, 25–29] as

W (λl) =
x2f (λl)

x2f (λl) + σ2
(3.1)

with xf (λl), l = 0, 1, . . . , N − 1 denoting GFT coefficients of the noiseless image.

E {·} denotes the statistical expectation operation above. This form is valid for a

real, orthonormal V matrix. This true Wiener filter requires unknown GFT coeffi-

cients of the original, noiseless image. In [29], an estimated MSE is optimized with

respect to truncation of filter eigenmodes and iteration number while iteratively ap-

plying the denoising filter, that yields a restricted optimization of filter eigenvalues

instead of a true Wiener filtering; whereas, in this work, we attempt to approach

the optimal filter eigenvalues given in (9) based on knowledge of the observed noisy

image, only, to minimize the MSE.

To approximate the true Wiener filter in (9), GFT coefficients of the noise-

less image and the noise standard deviation σ should be estimated. Squared GFT

coefficients of the noiseless image are estimated by using processed GFT coeffi-

cients of the noisy image, i.e., GFT coefficients of the denoised image obtained by

any method described in the previous section, and the estimated noise variance, as

x̂2f (λl) = x̂2f (λl)− σ̂2, (3.2)

for l = 0, 1, . . . , N−1, in the form suggested for discrete Fourier, cosine and wavelet

transform domains in [7, 30]. σ̂ denotes the estimated noise standard deviation,

computed from the noisy observed 2-D image Y by the methods proposed in [31].
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While [7,30] use transform coefficients of the input noisy image in the above form,

we employ GFT coefficients of the denoised image above, in this work, to obtain

much better and stabilized results.

Substituting (10) into (9), we obtain the proposed empirical Wiener fre-

quency response as

Ŵ (λl) = max

{
0,
x̂2f (λl)− σ̂2

x̂2f (λl)

}
, (3.3)

for l = 0, 1, . . . , N − 1.

The proposed Wiener filter can be applied either to the observed, noisy

image y as

x̂W,f (λl) = Ŵ (λl)yf (λl) (3.4)

or to the denoised image x̂ itself obtained by any spectral graph based method to

which it is appended, as

x̂W,f (λl) = Ŵ (λl)x̂f (λl), (3.5)

where x̂W,f (λl), l = 0, 1, . . . , N − 1 denote GFT coefficients of the output image of

the Wiener filter, x̂W. This Wiener filter output is finally computed by the inverse

GFT,

x̂W = V x̂W,f

Our simulations indicate that applying the Wiener filter to the denoised

image gives better results. Therefore, we adopt the second approach constituted by

(3.3) and (3.5) as our graph Wiener filtering scheme. We append this Wiener filter

to the algorithms presented in the previous section as a post-processing step to im-

prove their denoising accuracies. Integrated algorithms are designated as SGM1W,

SGM2W and SGM3W.
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4. EXPERIMENTAL RESULTS

We apply three spectral graph based algorithms presented in Chapter II,

their improved versions by the proposed Wiener filter in Chapter III, and the

BM3D algorithm for denoising 256 × 256 benchmark gray scale images (available

at http : //www.cs.tut.fi/∼foi/GCF − BM3D/BM3D images.zip). Noise stan-

dard deviation is first taken as σ = 15 for additive, white, zero-mean Gaussian noise.

We compare PSNR values in dB (10 log(2552/MSE)) averaged over 20 independent

realizations given by these methods in Table 4.1. Except for the stripes image,

spectral graph based methods and Wiener filters appended to them are applied to

each image patch of size 64× 64 in a locally adaptive manner, as also proposed for

local adaptive Wiener filters in fixed transform domains [30].

Table 4.1. PSNR values (in dB) for SGM1, SGM1W, SGM2, SGM2W, SGM3, SGM3W

and BM3D algorithms.

Box Stripes House C.man Peppers Montage

SGM1 47.409 55.279 31.744 29.897 30.403 32.641

SGM1W 53.105 58.017 32.658 30.281 31.232 33.834

SGM2 48.225 45.683 32.099 29.626 30.754 32.050

SGM2W 53.051 45.772 32.884 30.216 31.293 33.564

SGM3 57.249 45.733 30.022 27.672 27.193 29.729

SGM3W 57.269 45.734 30.152 28.324 27.447 30.257

BM3D 45.859 46.587 34.932 31.585 32.687 35.097

In Table 4.1, denoising accuracies of considered spectral graph based algo-

rithms, their versions improved by the proposed Wiener filter and the BM3D al-

gorithm are presented for some standard benchmark images. Spectral graph based

algorithms and their versions integrated with the Wiener filter have significantly

surpassed the BM3D algorithm for the simpler box image. SGM1 and SGM1W

have outstanding performances for the stripes image as compared to BM3D. This is

also the case for SGM3 and SGM3W for the box image. For other four images that

are more complicated, the BM3D has performed better. However, for all images,

results obtained by spectral graph algorithms have been consistently improved by

14



the Wiener filter post-processing, especially for SGM1W and SGM2W over SGM1

and SGM2, respectively.

Table 4.2. PSNR values (in dB) for the stripes image for SGM1, SGM1W and BM3D

algorithms for different noise standard deviation values.

σ = 5 σ = 10 σ = 15 σ = 20 σ = 25

SGM1 65.081 59.749 55.279 53.206 41.214

SGM1W 67.577 62.484 58.017 54.859 43.013

BM3D 56.141 50.123 46.587 44.102 42.144

In Table 4.2, PSNR values for SGM1 and its improved version with the

Wiener filter, SGM1W, are presented to compare with the BM3D, for the stripes

image only, for different noise standard deviations. Proposed combined algorithm

SGM1W has a superiority to BM3D for all values of standard deviations. Especially

for lower ones, obtained denoising accuracies are extremely remarkable. However,

for σ = 25, there is a clear deterioration in the result given by SGM1; it is surpassed

by the BM3D. For this case, the proposed Wiener filter step enabled the combined

spectral graph method SGM1W to surpass the BM3D. This deterioration hints that

eigendecomposition employed in spectral graph methods becomes less stable with

increasing noise levels.

The proposed Wiener filter post-processing has improved performances of

three spectral graph methods considered, in all cases. Improvements are significant

for simpler box and stripes images. The improvement is not quite significant for

SGM3 that employs hard thresholding in the GFT domain, than SGM1 and SGM2.

This is because Wiener filter does not change nulled GFT coefficients.
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Figure 4.1. Original box image. Figure 4.2. Noisy box image.

Figure 4.3. Denoised box image by

the SGM3 algorithm.

Figure 4.4. Denoised box image by

the SGM3W algorithm.

Figure 4.5. Denoised box image by

the BM3D algorithm.
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Figure 4.1 and Figure 4.2 present noiseless and noisy (with σ = 15) box

images, respectively. Figure 4.3 displays denoised image obtained by the SGM3

algorithm. Improved denoising by the SGM3W algorithm employing the Wiener

filter as post-processing is illustrated in Figure 4.4. Finally, denoised version of the

box image obtained by the BM3D algorithm is given in Figure 4.5. It can be easily

seen that the proposed algorithm is quite effective in deblurring the original image

edges and attaining the true pixel values of the original noiseless image. Further-

more, SGM3W is seen to recover flat regions better than the BM3D algorithm for

this case. Its output image is almost indistinguishable from the noiseless image.

Table 4.3. PSNR values (in dB) for different regions of the box image for SGM1,

SGM1W algorithms.

Flat Region Edge Region Corner Region

SGM1 65.081 59.749 55.279

SGM1W 67.577 62.484 58.017

In Table 4.3, PSNR values for SGM1 and its improved version with the

Wiener filter, SGM1W, are presented for different regions of the box image. These

algorithms are applied to each region of a patch of size 15×15 in a locally adaptive

manner. Obtained results demonstrate that spectral graph based algorithm and its

improved version with the Wiener filter perform denoising better on flat regions as

compared to edge and corner regions of the image.
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Figure 4.6. Original stripes image. Figure 4.7. Noisy stripes image.

Figure 4.8. Denoised stripes image by

the SGM1 algorithm.

Figure 4.9. Denoised stripes image by

the SGM1W algorithm.

Figure 4.10. Denoised stripes image by

the BM3D algorithm.
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For the stripes image, original noiseless and noisy (with σ = 15) images are

displayed in Figure 4.6 and Figure 4.7, respectively. Figure 4.8 presents denoised

image obtained by the SGM1 algorithm. Denoised image by the proposed algorithm

SGM1W (with the Wiener filter), is given in Figure 4.9. Finally, the denoised image

given by BM3D is displayed in Figure 4.10. Denoised images obtained by these three

algorithms can not be distinguished from each other, due to the texture of the stripes

image. However, it has been shown in Table 4.2 that PSNR values achieved by the

SGM1W algorithm are significantly higher than those of the BM3D algorithm, for

all standard deviation values from 5 to 25.
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Figure 4.11. Original montage image. Figure 4.12. Noisy montage image.

Figure 4.13. Denoised montage image

by the SGM1 algorithm.

Figure 4.14. Denoised montage image

by the SGM1W algorithm.

Figure 4.15. Denoised montage image

by the BM3D algorithm.
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Figure 4.11 and Figure 4.12 display original noiseless and noisy (with σ =

15) images, respectively. Denoised image obtained by the SGM1 algorithm is given

in Figure 4.13. Denoised images obtained by SGM1W and BM3D algorithms are

presented in Figure 4.14 and Figure 4.15, respectively. The montage image has four

different subimages; two upper subimages are less textured, simpler images, and

the lower ones are more complicated benchmark images. Therefore, our proposed

algorithm SGM1W could surpass the BM3D algorithm for the two upper simpler

subimages only.
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Figure 4.16. Original cameraman image. Figure 4.17. Noisy cameraman image.

Figure 4.18. Denoised cameraman image

by the SGM1 algorithm.

Figure 4.19. Denoised cameraman image

by the SGM1W algorithm.

Figure 4.20. Denoised cameraman image

by the BM3D algorithm.
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Figure 4.21. Original house image. Figure 4.22. Noisy house image.

Figure 4.23. Denoised house image by

the SGM1 algorithm.

Figure 4.24. Denoised house image by

the SGM1W algorithm.

Figure 4.25. Denoised house image by

the BM3D algorithm.
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Figure 4.26. Original peppers image. Figure 4.27. Noisy peppers image.

Figure 4.28. Denoised peppers image

by the SGM1 algorithm.

Figure 4.29. Denoised peppers image

by the SGM1W algorithm.

Figure 4.30. Denoised peppers image

by the BM3D algorithm.
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Original, noisy and denoised versions of the other three benchmark images,

i.e., cameraman, house and peppers images are presented in the rest of the figures.

Since these images are comparatively more textured and complicated, the BM3D

has performed better than the spectral graph based methods. A clear improvement

in visual quality is observed for denoised images obtained by the SGM1W algorithm

over those obtained by the SGM1 algorithm. This visual improvement is also in

agreement with comparison of the PSNR values of these two methods given in

Table 4.1. Since the edges have been preserved on denoised images obtained by

the SGM1W algorithm, this proposed algorithm can also compete with the BM3D

algorithm in edge recovery.

25



5. CONCLUSION

We have proposed a Wiener filter in the GFT domain to improve denoising

accuracies of spectral graph based image denoising methods. Our results indicate

that this Wiener filter applied as a post-processing step yields consistent accuracy

improvement for different choices of graph weights and graph Laplacian matrices

and for different processing methods used to denoise obtained GFT coefficients.

With this improvement, combined spectral graph methods have attained signifi-

cantly higher PSNR values than the BM3D method, for box and stripes images,

and for upper two subimages of the montage image that are simple enough to be

modeled as deterministic images. This suggests that proposed approach has the po-

tential of improving denoising accuracy especially for such less textured, smoother,

simpler structured images that can be viewed as deterministic, as hinted by bounds

derived in [1]. When integrated into the second stage of the two-stage algorithm

that surpasses the BM3D algorithm for a set of benchmark images [22], the Wiener

filter step is expected to yield even better results, since it improves the results of

SGM3 that uses the same type of graph weights.

The proposed combined filtering is usually applied to each image patch

adapted to its local structure, rather than to the entire image, for better perfor-

mance. Therefore, it can be regarded as a simple and decimated form of a space

varying or space-frequency (vertex-frequency) filter in a windowed graph Fourier

transform domain [32], since the graph shift operation matches the spatial shift op-

eration for a regular graph as an image. Such a filtering is reminiscent to denoising

in a spectral graph wavelet domain [33].
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APPENDIX

Appendix A: SGM1W Algorithm in MATLAB

SGM1W Algorithm:

Laplacian matrix as Bilateral(Lap) and L2 regularization.

One-pass denoising.

Laplacian matrix, L2 regularization in graph FT domain.

clc; clear all; close all;

M = 32;

N = 32;

X = 60 ∗ ones(M,N);

X(M/8 : 7 ∗M/8, N/8 : 7 ∗N/8) = 120 ∗ ones(3 ∗M/4 + 1, 3 ∗N/4 + 1);

X(M/4 : 3 ∗M/4, N/4 : 3 ∗N/4) = 180 ∗ ones(M/2 + 1, N/2 + 1);

X(3 ∗M/8 : 5 ∗M/8, 3 ∗N/8 : 5 ∗N/8) = 240 ∗ ones(M/4 + 1, N/4 + 1);

Standard deviation value

sig = 15;

Y = X + sig ∗ randn(M,N);

[M,N ] = size(Y );

Window width.

w = 1;

Extended input image allocated.

Y ext = zeros(M + w − 1, N + w − 1);

Adjacency (or weight) matrix based on pixel locations allocated.

Kx = zeros(M ∗N,M ∗N);

Adjacency (or weight) matrix based on pixel values allocated.

Ky = zeros(M ∗N,M ∗N);

Initial gaussian filter smoothing parameter.

Gaussian smoothing parameter for the pixel location based weight matrix.

hx = 1;

Smoothing parameter for the pixel value based weight matrix.

hy = 75;

Noisy image to be denoised vectorized columnwise.
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y = reshape(Y,M ∗N, 1);

K and L vectors denoted as column and line indexes, of size M ∗N , respectively.

[K,L] = meshgrid(1 : M ∗N, 1 : M ∗N);

Mcol = ceil(K/M);

Ncol = ceil(L/M);

Mrow = rem(K,M);

Nrow = rem(L,M);

Mrow = Mrow +M ∗ (Mrow == 0);

Nrow = Nrow +M ∗ (Nrow == 0);

Kx is Gaussian Filter impulse response matrix.

Adjacency (weight) matrix based on Pixel Location.

Kx = exp(−((Mrow −Nrow).2 + (Mcol −Ncol).2)/hx);

Initial denoising by Gaussian filter.

xinit = diag(1./sum(Kx.′)) ∗Kx ∗ y;

Initially denoised image set.

Xinit = reshape(xinit,M,N);

Extended image set, symmetrically.

Y ext((w + 1)/2 : M + (w − 1)/2, (w + 1)/2 : N + (w − 1)/2) = Xinit;

for k = 1 : (w − 1)/2

Y ext((w + 1)/2− k, :) = Y ext((w + 1)/2 + k, :);

Y ext(M + (w − 1)/2 + k, :) = Y ext(M + (w − 1)/2− k, :);

Y ext(:, (w + 1)/2− k) = Y ext(:, (w + 1)/2 + k);

Y ext(:, N + (w − 1)/2 + k) = Y ext(:, N + (w − 1)/2− k);

end;

Adjacency (weight) matrix based on pixel locations (Kx), and, pixel values as in

NLM (Ky).

for m = 1 : M ∗N

for n = 1 : M ∗N

Ky(m,n) = exp(−norm(Y ext(Mrow(1,m) : Mrow(1,m) + w − 1,Mcol(1,m) :

Mcol(1,m) + w − 1)− Y ext(Nrow(n, 1) : Nrow(n, 1) + w − 1, Ncol(n, 1) :

Ncol(n, 1) + w − 1), ”fro”)2/hy);

end;
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end;

New smoothing parameter Guassian.

hx = 0.5;

Adjacency (weight) matrix based on pixel locations.

Kx = exp(−((Mrow −Nrow).2 + (Mcol −Ncol).2)/hx);

Kernel matrix as in the bilateral filter.

K = Kx. ∗Ky;

Graph Laplacian matrix based on the weight matrix of the Bilateral filter.

Lap = diag(sum(K.′))−K;

Eigendecomposition of Laplacian matrix.

[V,D] = eig(Lap);

Graph FT of the input noisy image to be denoised.

yf = V ′ ∗ y;

Parameter of low pass filter.

alpha = 250;

L2 regularization (low pass filtering process).

yf = (1./(1 + alpha ∗ diag(D))). ∗ yf ;

Inverse graph FT of thresholded transform to give denoised image vector.

xdenoised = V ∗ yf ;

Denoised image set.

Xdenoised = reshape(xdenoised,M,N);

MSE between original and denoised image.

MSE = mean(mean((X −Xdenoised).2))

Plotting the original image.

figure; colormap(gray); pcolor(X); shadingflat; title(′Original image′);

Plotting the denoised image with SGM1 algorithm.

figure; colormap(gray); pcolor(Xdenoised); shadingflat; title(′Denoised image′);

Proposed Graph Wiener filter for improved performance:

Estimation of noise standart deviation

H = [1 − 2 1;−2 4 − 2; 1 − 2 1];

Mask filter

Z = conv2(Y,H,′ valid′);
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sigest = mean(mean(abs(Z)))/6 ∗ sqrt(pi/2);

Estimated frequency response of the Wiener filter from graph FT of the denoised

image.

wien = max(0, (yf.2 − sigest2)./yf.2);

Output of the Wiener filter applied to the denoised image.

xwien = V ∗ (wien. ∗ yf);

Xwien = reshape(xwien,M,N);

MSE between original and Wiener denoised image.

MSEW = mean(mean((X −Xwien).2))

Plotting the denoised image with SGM1W algorithm (the improved version with

the Wiener filter).

figure; colormap(gray); pcolor(Xwien); shadingflat; title(′Wiener F iltered image′);
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Appendix B: SGM2W Algorithm in MATLAB

SGM2W Algorithm:

Laplacian matrix as Bilateral(Lap) and L2 regularization

Image pixels are connected to their 8 nearest neighbors.

One-pass denoising.

Laplacian matrix, L2 regularization in graph FT domain.

clc; clear all; close all;

M = 32;

N = 32;

X = 60 ∗ ones(M,N);

X(M/8 : 7 ∗M/8, N/8 : 7 ∗N/8) = 120 ∗ ones(3 ∗M/4 + 1, 3 ∗N/4 + 1);

X(M/4 : 3 ∗M/4, N/4 : 3 ∗N/4) = 180 ∗ ones(M/2 + 1, N/2 + 1);

X(3 ∗M/8 : 5 ∗M/8, 3 ∗N/8 : 5 ∗N/8) = 240 ∗ ones(M/4 + 1, N/4 + 1);

Standard deviation value.

sig = 15;

Y = X + sig ∗ randn(M,N);

[M,N ] = size(Y );

Window width.

w = 1;

Extended input image allocated.

Y ext = zeros(M + w − 1, N + w − 1);

Adjacency (or weight) matrix based on pixel locations allocated.

Kx = zeros(M ∗N,M ∗N);

Adjacency (or weight) matrix based on pixel values allocated.

Ky = zeros(M ∗N,M ∗N);

Initial gaussian filter smoothing parameter.

Gaussian smoothing parameter for the pixel location based weight matrix.

hx = 1;

Smoothing parameter for the pixel value based weight matrix.

hy = 75;

Noisy image to be denoised vectorized columnwise.

y = reshape(Y,M ∗N, 1);
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K and L vectors denoted as column and line indexes, of size M ∗N , respectively.

[K,L] = meshgrid(1 : M ∗N, 1 : M ∗N);

Mcol = ceil(K/M);

Ncol = ceil(L/M);

Mrow = rem(K,M);

Nrow = rem(L,M);

Mrow = Mrow +M ∗ (Mrow == 0);

Nrow = Nrow +M ∗ (Nrow == 0);

Kx is Gaussian Filter impulse response matrisi.

Adjacency (weight) matrix based on Pixel Location.

Kx = exp(−((Mrow −Nrow).2 + (Mcol −Ncol).2)/hx);

Initial denoising by Gaussian filter.

xinit = diag(1./sum(Kx.′)) ∗Kx ∗ y;

Initially denoised image set.

Xinit = reshape(xinit,M,N);

Extended image set, symmetrically.

Y ext((w + 1)/2 : M + (w − 1)/2, (w + 1)/2 : N + (w − 1)/2) = Xinit;

for k = 1 : (w − 1)/2

Y ext((w + 1)/2− k, :) = Y ext((w + 1)/2 + k, :);

Y ext(M + (w − 1)/2 + k, :) = Y ext(M + (w − 1)/2− k, :);

Y ext(:, (w + 1)/2− k) = Y ext(:, (w + 1)/2 + k);

Y ext(:, N + (w − 1)/2 + k) = Y ext(:, N + (w − 1)/2− k);

end;

Adjacency (weight) matrix based on pixel locations (Kx), and, pixel values as in

NLM (Ky).

for m = 1 : M ∗N

for n = 1 : M ∗N

if

norm([Mrow(1,m),Mcol(1,m)]− [Nrow(n, 1), Ncol(n, 1)], inf) <= 1

Ky(m,n) = exp(−norm(Y ext(Mrow(1,m) : Mrow(1,m) + w − 1,Mcol(1,m) :

Mcol(1,m) + w − 1)− Y ext(Nrow(n, 1) : Nrow(n, 1) + w − 1, Ncol(n, 1) :

Ncol(n, 1) + w − 1),′ fro′)2/hy);
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end;

end;

end;

for m = 1 : M ∗N

for n = 1 : M ∗N

Ky(m,n) = exp(−norm(Y ext(Mrow(1,m) : Mrow(1,m) + w − 1,Mcol(1,m) :

Mcol(1,m) + w − 1)− Y ext(Nrow(n, 1) : Nrow(n, 1) + w − 1, Ncol(n, 1) :

Ncol(n, 1) + w − 1),′ fro′)2/hy);

end;

end;

New smoothing parameter Guassian.

hx = 0.5;

Adjacency (weight) matrix based on pixel locations.

Kx = exp(−((Mrow −Nrow).2 + (Mcol −Ncol).2)/hx);

Kernel matrix as in the bilateral filter.

K = Kx. ∗Ky;

Graph Laplacian matrix based on the weight matrix of the Bilateral filter.

Lap = diag(sum(K.′))−K;

Eigendecomposition of Laplacian matrix.

[V,D] = eig(Lap);

Graph FT of the input noisy image to be denoised.

yf = V ′ ∗ y;

Parameter of low pass filter.

alpha = 250;

L2 regularization (low pass filtering process).

yf = (1./(1 + alpha ∗ diag(D))). ∗ yf ;

Inverse graph FT of thresholded transform to give denoised image vector.

xdenoised = V ∗ yf ;

Denoised image set.

Xdenoised = reshape(xdenoised,M,N);

MSE between original and denoised image.

MSE = mean(mean((X −Xdenoised).2))
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Plotting the original image.

figure; colormap(gray); pcolor(X); shadingflat; title(′Original image′);

Plotting the denoised image with SGM1 algorithm.

figure; colormap(gray); pcolor(Xdenoised); shadingflat; title(′Denoised image′);

Proposed Graph Wiener filter for improved performance:

Estimation of noise standart deviation.

H = [1 − 2 1;−2 4 − 2; 1 − 2 1];

Mask filter.

Z = conv2(Y,H,′ valid′);

Estimated noise standard deviation.

sigest = mean(mean(abs(Z)))/6 ∗ sqrt(pi/2);

Estimated freq. resp. of the Wiener filter from graph FT of the denoised image.

wien = max(0, (yf.2 − sigest2)./yf.2);

Output of the Wiener filter applied to the denoised image.

xwien = V ∗ (wien. ∗ yf);

Xwien = reshape(xwien,M,N);

MSE between original and Wiener denoised image.

MSEW = mean(mean((X −Xwien).2))

Plotting the denoised image with SGM1W algorithm (the improved version with

the Wiener filter).

figure; colormap(gray); pcolor(Xwien); shadingflat; title(′Wiener F iltered image′);
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Appendix C: SGM3W Algorithm in MATLAB

SGM3W Algorithm:

Graph denoising methods based on graph Laplacian matrix.

Image pixels are connected to their 8 nearest neighbors.

Weights are set as done in [Meyer,Shen].

Two-pass denoising.

Normalized Laplacian matrix, hard-thresholding in graph FT domain.

clc; clear all; close all;

M = 64;

N = 64;

X = 60 ∗ ones(M,N);

X(M/8 : 7 ∗M/8, N/8 : 7 ∗N/8) = 120 ∗ ones(3 ∗M/4 + 1, 3 ∗N/4 + 1);

X(M/4 : 3 ∗M/4, N/4 : 3 ∗N/4) = 180 ∗ ones(M/2 + 1, N/2 + 1);

X(3 ∗M/8 : 5 ∗M/8, 3 ∗N/8 : 5 ∗N/8) = 240 ∗ ones(M/4 + 1, N/4 + 1);

Standard deviation value.

sig = 15;

Y = X + sig ∗ randn(M,N);

[M,N ] = size(Y );

Window width.

w = 1;

Extended input image allocated.

Y ext = zeros(M + w − 1, N + w − 1);

Parameter that controls the effect of patch similarity.

beta = 12;

Parameter that controls the scaling of the overall similarity metric.

delta = 5;

Noisy image to be denoised vectorized columnwise.

y = Y (:);

K and L vectors denoted as column and line indexes, of size M ∗N , respectively.

[K,L] = meshgrid(1 : M ∗N, 1 : M ∗N);

Mcol = ceil(K/M);

Ncol = ceil(L/M);
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Mrow = rem(K,M);

Nrow = rem(L,M);

Mrow = Mrow +M ∗ (Mrow == 0);

Nrow = Nrow +M ∗ (Nrow == 0);

Smoothing parameter for the Gaussian prefilter.

hx = 1;

Kernel matrix for the Gaussian prefilter.

Kx = exp(−((Mrow −Nrow).2 + (Mcol −Ncol).2)/hx);

Adjacency (or weight) matrix allocated.

K = zeros(M ∗N,M ∗N);

Initial denoising by Gaussian filter.

xinit = diag(1./sum(Kx.′)) ∗Kx ∗ y;

Initially denoised image set.

Xinit = reshape(xinit,M,N);

Y ext((w + 1)/2 : M + (w − 1)/2, (w + 1)/2 : N + (w − 1)/2) = Xinit;

Extended image set, symmetrically.

for k = 1 : (w − 1)/2

Y ext((w + 1)/2− k, :) = Y ext((w + 1)/2 + k, :);

Y ext(M + (w − 1)/2 + k, :) = Y ext(M + (w − 1)/2− k, :);

Y ext(:, (w + 1)/2− k) = Y ext(:, (w + 1)/2 + k);

Y ext(:, N + (w − 1)/2 + k) = Y ext(:, N + (w − 1)/2− k);

end;

Adjacency (weight) matrix set.

for m = 1 : M ∗N

for n = 1 : M ∗N

ifnorm([Mrow(1,m),Mcol(1,m)]− [Nrow(n, 1), Ncol(n, 1)], inf) <= 1

d = norm(Y ext(Mrow(1,m) : Mrow(1,m) + w − 1,Mcol(1,m) :

Mcol(1,m)+w−1)−Y ext(Nrow(n, 1) : Nrow(n, 1)+w−1, Ncol(n, 1) : Ncol(n, 1)+

w − 1),′ fro′) + beta ∗ norm([Mrow(1,m),Mcol(1,m)]− [Nrow(n, 1), Ncol(n, 1)]);

K(m,n) = exp(−d2/delta2);

end;

end;
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end;

Normalized graph Laplacian matrix.

Lapnor = eye(size(K))− diag(1./sqrt(sum(K.′))) ∗K ∗ diag(1./sqrt(sum(K.′)));

Lapnor = (Lapnor + Lapnor.′)/2;

Eigendecomposition of Laplacian matrix.

[V,D] = eig(Lapnor);

Graph FT of the input noisy image to be denoised.

yf = V ′ ∗ y;

Parameter for hard-thresholding.

threshold = 105;

Graph FT coefficients of the noisy image are hard-thresholded.

yf = (abs(yf) >= threshold). ∗ yf ;

Number of kept transform coefficients.

countc = sum((abs(yf) >= threshold));

Inverse graph FT of thresholded transform to give denoised image vector.

xdenoised = V ∗ yf ;

Denoised image set.

Xdenoised = reshape(xdenoised,M,N);

Second pass:

Window width.

w = 1;

Extended input image allocated.

Y ext = zeros(M + w − 1, N + w − 1);

Parameter that controls the effect of patch similarity.

beta = 15;

Parameter that controls the scaling of the overall similarity metric.

delta = 5;

Noisy image to be denoised vectorized columnwise.

y = Y (:);

K and L vectors denoted as column and line indexes, of size M ∗N , respectively.

[K,L] = meshgrid(1 : M ∗N, 1 : M ∗N);

Mcol = ceil(K/M);
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Ncol = ceil(L/M);

Mrow = rem(K,M);

Nrow = rem(L,M);

Mrow = Mrow +M ∗ (Mrow == 0);

Nrow = Nrow +M ∗ (Nrow == 0);

Smoothing parameter for the Gaussian prefilter.

hx = 1;

Kernel matrix for the Gaussian prefilter.

Kx = exp(−((Mrow −Nrow).2 + (Mcol −Ncol).2)/hx);

Adjacency (or weight) matrix allocated.

K = zeros(M ∗N,M ∗N);

Initial denoising by Gaussian filter.

xinit = diag(1./sum(Kx.′)) ∗Kx ∗ y;

Initially denoised image set.

Xinit = reshape(xinit,M,N);

Y ext((w + 1)/2 : M + (w − 1)/2, (w + 1)/2 : N + (w − 1)/2) = Xinit;

Extended image set, symmetrically.

for k = 1 : (w − 1)/2

Y ext((w + 1)/2− k, :) = Y ext((w + 1)/2 + k, :);

Y ext(M + (w − 1)/2 + k, :) = Y ext(M + (w − 1)/2− k, :);

Y ext(:, (w + 1)/2− k) = Y ext(:, (w + 1)/2 + k);

Y ext(:, N + (w − 1)/2 + k) = Y ext(:, N + (w − 1)/2− k);

end;

Adjacency (weight) matrix set.

for m = 1 : M ∗N

for n = 1 : M ∗N

ifnorm([Mrow(1,m),Mcol(1,m)]− [Nrow(n, 1), Ncol(n, 1)], inf) <= 1

d = norm(Y ext(Mrow(1,m) : Mrow(1,m) + w − 1,Mcol(1,m) :

Mcol(1,m)+w−1)−Y ext(Nrow(n, 1) : Nrow(n, 1)+w−1, Ncol(n, 1) : Ncol(n, 1)+

w − 1),′ fro′) + beta ∗ norm([Mrow(1,m),Mcol(1,m)]− [Nrow(n, 1), Ncol(n, 1)]);

K(m,n) = exp(−d2/delta2);

end;
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end;

end;

Normalized graph Laplacian matrix.

Lapnor = eye(size(K))− diag(1./sqrt(sum(K.′))) ∗K ∗ diag(1./sqrt(sum(K.′)));

Lapnor = (Lapnor + Lapnor.′)/2;

Eigendecomposition of Laplacian matrix.

[V,D] = eig(Lapnor);

Graph FT of the input noisy image to be denoised.

yf = V ′ ∗ y;

Parameter for hard-thresholding

threshold = 105;

Graph FT coefficients of the noisy image are hard-thresholded.

yf = (abs(yf) >= threshold). ∗ yf ;

Number of kept transform coefficients.

countc = sum((abs(yf) >= threshold));

Inverse graph FT of thresholded transform to give denoised image vector.

xdenoised = V ∗ yf ;

Denoised image set.

Xdenoised = reshape(xdenoised,M,N);

MSE between original and denoised image.

MSE = mean(mean((X −Xdenoised).2))

Plotting the original image.

figure; colormap(gray); pcolor(X); shadingflat; title(′Original image′);

Plotting the denoised image with SGM1 algorithm.

figure; colormap(gray); pcolor(Xdenoised); shadingflat; title(′Denoised image′);

Proposed Graph Wiener filter for improved performance:

Estimation of noise standart deviation.

H = [1 − 2 1;−2 4 − 2; 1 − 2 1]; Mask filter.

Z = conv2(Y,H,′ valid′);

Estimated noise standard deviation.

sigest = mean(mean(abs(Z)))/6 ∗ sqrt(pi/2);

Estimated freq. resp. of the Wiener filter from graph FT of the denoised image.
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wien = max(0, (yf.2 − sigest2)./yf.2);

Output of the Wiener filter applied to the denoised image.

xwien = V ∗ (wien. ∗ yf);

Xwien = reshape(xwien,M,N);

MSE between original and Wiener denoised image.

MSEW = mean(mean((X −Xwien).2))

Plotting the denoised image with SGM1W algorithm (the improved version with

the Wiener filter).

figure; colormap(gray); pcolor(Xwien); shadingflat; title(′Wiener F iltered image′);
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