
STABILIZATION OF TIME-DELAY
SYSTEMS BY NONCONVEX

OPTIMIZATION TECHNIQUES

Master of Science Thesis

Süleyman Mert ÖZER

Eskişehir, 2016

STABILIZATION OF TIME-DELAY SYSTEMS
BY NONCONVEX OPTIMIZATION TECHNIQUES

Süleyman Mert ÖZER

MASTER OF SCIENCE THESIS

Graduate School of Sciences
Electrical and Electronics Engineering Program

Supervisor: Prof. Dr. Altuğ İFTAR

Eskişehir

Anadolu University

Graduate School of Sciences

September, 2016

This thesis work is supported in part by the Scientific Research Projects Commission of Anadolu

University under the Master Thesis grant 1410F418 and in part by the Scientific and Technical

Research Council of Turkey (TÜBİTAK) under grants 112E153 and 115E379.

FINAL APPROVAL FOR THESIS

This thesis titled “Stabilization of Time-Delay Systems by Nonconvex Op-

timization Techniques” has been prepared and submitted by Süleyman Mert ÖZER

in partial fullfillment of the requirements in “Anadolu University Directive on Grad-

uate Education and Examination” for the Degree of Master of Science in Electri-

cal and Electronics Engineering Department has been examined and approved on

25/08/2016.

Committe Members Signature

Member (Supervisor) : Prof. Dr. Altuğ İFTAR

Member : Prof. Dr. Arif Bülent ÖZGÜLER

Member : Assist. Prof. Dr. Hanife APAYDIN ÖZKAN

......................... ..

Date Director

Graduate School of Science

ABSTRACT

STABILIZATION OF TIME-DELAY SYSTEMS
BY NONCONVEX OPTIMIZATION TECHNIQUES

Süleyman Mert ÖZER

Electrical and Electronics Engineering Program

Anadolu University, Graduate School of Sciences, September, 2016

Supervisor: Prof. Dr. Altuğ İFTAR

In this thesis, both centralized and decentralized controller design for linear

time-invariant time-delay systems is considered. The main objective is to design

a controller which strongly stabilizes the given time-delay system. In this respect,

the centralized controller design method, which uses nonsmooth and nonconvex op-

timization based fixed-order controller design approach, is introduced. Regarding

the nonconvexity, an initialization procedure is proposed as a novel contribution

of this thesis. Then, the centralized controller design algorithm, which uses this

initialization procedure and applies nonsmooth optimization algorithms, is given.

After that, considering the recently developed stabilizability conditions of decen-

tralized time-delay systems, a decentralized controller design algorithm, based on

decentralized pole assignment algorithm, is proposed. Also, a new MATLAB based

software package, named as DCD-TDS, is introduced. Finally, by using DCD-TDS,

the design methods are applied to numerical examples.

Keywords: Time-delay systems, stabilization, decentralized control, optimization,

software development.

iii

ÖZET

ZAMAN GECİKMELİ SİSTEMLERİN
DIŞBÜKEY OLMAYAN OPTİMİZASYON TEKNİKLERİ

İLE KARARLILAŞTIRILMASI

Süleyman Mert ÖZER

Elektrik-Elektronik Mühendisliği Anabilim Dalı

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Eylül, 2016

Danışman: Prof. Dr. Altuğ İFTAR

Bu tezde, doğrusal zamandan bağımsız zaman gecikmekli sistemler için

hem merkezi hem de merkezi olmayan denetleyici tasarımı ele alınmıştır. Asıl

amaç, verilen zaman gecikmeli sistemi kuvvetli kararlılaştıracak bir denetleyici

tasarlamaktır. Bu bağlamda, düzgün ve dışbükey olmayan optimizasayon tabanlı

sabit boyutlu denetleyici tasarım yaklaşımını kullanan merkezi denetleyici tasarım

yöntemi sunulmuştur. Dışbükey olmayışa istinaden, bu tezin özgün bir katkısı

olarak bir başlatma prosedürü önerilmiştir. Sonra, başlatma prosedürünü kul-

lanan ve düzgün olmayan optimizasyon algoritmasını uygulayan merkezi denetleyici

tasarım algoritması verilmiştir. Akabinde, yakın zamanda geliştirilen merkezi ol-

mayan zaman gecikmekli sistemlerin kararlılık koşulları göz önüne alınarak, merkezi

olmayan kutup atama algoritmasına dayanan bir merkezi olmayan denetleyici tasa-

rım algoritması önerilmiştir. Ayrıca, DCD-TDS isminde MATLAB tabanlı yeni

bir yazılım paketi de tanıtılmıştır. Son olarak, tasarım metotları DCD-TDS kul-

lanılarak nümerik örneklere uygulanmıştır.

Anahtar Kelimeler: Zaman gecikmeli sistemler, kararlılaştırma, merkezi olmayan

denetim, optimizasyon, yazılım geliştirme

iv

ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to my supervisor Prof. Dr.

Altuğ İftar for his continuous support and guidance. His hard work, attention to

details, patience and motivation have set an great example which I hope to match

some day. I couldn’t have imagined having a better advisor.

I must acknowledge my dear colleague Mr. Hüseyin Ersin Erol who is the

best research partner that someone can have. He was always ready to help and

share his experiences. I must also acknowledge Ms. Gizem Gülmez for her valuable

contributions to the software. Besides her, Ms. Büşra Şeker, Mr. Mert Yılmaz, and

Mr. Anıl Çamsarı have also contributed to the software.

I am grateful to Prof. Dr. Wim Michiels for his precious comments and

support. I look forward to a continuing collaboration with him in the future. I

would also like to thank the rest of my thesis committee: Prof. Dr. Arif Bülent

Özgüler and Assist. Prof. Dr. Hanife Apaydın Özkan for their insightful comments.

I would like to thank to Ms. Özge Ayvazoğluyüksel, Mr. Ali Can Yağan,

and Mr. Oğuzkağan Alıç for being great friends and standing by me during the

worst times. I would also like to thank to all my colleagues who have been helpful

and supportive.

Finally, I would like to thank my family for the support they provided me

through my entire life. In particular, I greatly appreciate my mother. Without her

encouragement and support, I would not have finished this thesis.

v

02/09/2016

STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES

AND RULES

I hereby truthfully declare that this thesis is an original work prepared by

me; that I have behaved in accordance with the scientific ethical principles and rules

throughout the stages of preparation, data collection, analysis and presentation

of my work; that I have cited the sources of all the data and information that

could be obtained within the scope of this study, and included these sources in

the references section; and that this study has been scanned for plagiarism with

“scientific plagiarism detection program” used by Anadolu University, and that “it

does not have any plagiarism” whatsoever. I also declare that, if a case contrary to

my declaration is detected in my work at any time, I hereby express my consent to

all the ethical and legal consequences that are involved.

..

Süleyman Mert ÖZER

vi

TABLE OF CONTENTS

Page

TITLE PAGE . i

FINAL APPROVAL FOR THESIS . ii

ABSTRACT . iii

ÖZET . iv

ACKNOWLEDGMENTS . v

STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES

AND RULES . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

NOTATION . x

LIST OF ACRONYMS . xi

1. INTRODUCTION 1

1.1. Overview and Motivation . 1

1.2. Thesis Outline . 6

2. BACKGROUND 8

2.1. Stability of Time-Delay Systems . 8

2.2. Nonsmooth and Nonconvex Optimization 11

2.2.1. Gradient Sampling Method 13

2.2.2. BFGS Method . 15

2.2.3. Inexact Line Search 17

2.3. Decentralized Control of Time-Delay Systems 18

3. CENTRALIZED CONTROLLER DESIGN 22

3.1. Structure of the Controller Matrices 26

3.2. Optimization Problem . 27

3.3. Evaluations of the Objective Function and Gradients 29

3.4. Initialization of the Controller Parameters 30

3.5. Algorithm . 32

vii

4. DECENTRALIZED CONTROLLER DESIGN 34

5. SOFTWARE (DCD-TDS v1.0) 39

5.1. System and Controller Definition . 39

5.2. Closed-Loop System Definition . 43

5.3. Computation of ε-modes . 47

5.4. Computation of ε-fixed modes . 49

5.5. Computation of γψ . 51

5.6. Computation of ε-blocking zeros . 51

5.7. Controller Structure . 52

5.8. Initialization of Controller Matrices 53

5.9. Graphical User Interface . 56

5.9.1. Analysis Phase . 56

5.9.2. Design Phase . 57

6. EXAMPLES 60

6.1. Centralized Controller Design . 60

6.2. Decentralized Controller Design . 63

7. CONCLUSION 68

REFERENCES . 70

CURRICULUM VITAE

viii

LIST OF FIGURES

Page

Figure 5.1. Analysis panel of the GUI . 57

Figure 5.2. Design panel of the GUI . 58

Figure 6.1.−2-modes of Σc (red stars), −2-modes of the associated DDE of

Σc (blue pluses), blocking zero of Σc (blue circle), and CD(Σc)

(magenta dashed line). 62

Figure 6.2.−2-modes of Σcl (red stars), −2-modes of the associated DDE

of Σcl (blue pluses), and CD(Σcl) (magenta dashed line). 63

Figure 6.3.−2-modes of Σ0 (red stars). 65

Figure 6.4.−2-modes of Σ1 (red stars), −2-modes of the associated DDE

of Σ1 (blue pluses), and CD(Σ1) (magenta dashed line). 66

Figure 6.5.−2-modes of Σ2 (red stars), −2-modes of the associated DDE

of Σ2 (blue pluses), and CD(Σ2) (magenta dashed line). 67

ix

NOTATION

R Real numbers

C Complex numbers

N Natural numbers with zero

Rn Space of n-dimensional real vectors

Cn Space of n-dimensional complex vectors

Rk×l Space of k × l-dimensional real matrices

Ck×l Space of k × l-dimensional complex matrices

Re(s) Real part of s ∈ C

Im(s) Imaginary part of s ∈ C

C−µ {s ∈ C | Re(s) < µ} for µ ∈ R

C+
µ {s ∈ C | Re(s) > µ} for µ ∈ R

C̄+
µ {s ∈ C | Re(s) ≥ µ} for µ ∈ R

j Imaginary unit, j2 = −1

I Identity matrix of appropriate dimensions

Ik k × k identity matrix

0 Zero matrix of appropriate dimensions

0k k × k zero matrix

0k×l k × l zero matrix

rank(Γ) Rank of a matrix Γ

det(Γ) Determinant of a matrix Γ

ρ(Γ) Spectral radius of a matrix Γ

ΓT Transpose of a matrix or vector Γ

Γ∗ Complex-conjugate transpose of a matrix or vector Γ

Γ−1 Inverse of a matrix Γ

ν̄ {1, . . . , ν} for a positive integer ν

bdiag[· · ·] A block diagonal matrix with blocks · · · on its diagonal

x

ACRONYMS

CFM Centralized Fixed Mode

DFM Decentralized Fixed Mode

DDE Delay Difference Equation

DDAE Delay Differential Algebraic Equation

FM Fixed Mode

GS Gradient Sampling

GUI Graphical-User-Interface

LTI Linear Time-Invariant

PIP Parity Interlacing Property

TDS Time-Delay System

TFM Transfer Function Matrix

xi

1. INTRODUCTION

1.1. Overview and Motivation

Many dynamic systems may involve time-delays, either inherently or due

to delays in communication channels, sensors, actuators, etc. (e.g., see [1] and ref-

erences therein). Considering a feedback control system, acquiring information,

creating control signals and executing decisions does not occur instantaneously [2].

Neglecting these delays may lead to a poor performance or even cause a destabilizing

effect in the feedback control of dynamic systems [3]. Therefore, time-delays must

be taken into account in the system modeling and during the controller design

process. In particular, such systems are described by delay-differential or delay-

differential-algebraic equations (DDAEs) and called time-delay systems (TDS). As

a matter of fact, it is, in general, more difficult to analyze and stabilize time-delay

systems, compared to the delay-free (lumped) systems, since their states can not be

represented by finitely many state variables, thus, they have infinitely many modes

(characteristic roots) [4].

In the scope of this thesis, the aim is to design a finite-dimensional dynamic

output feedback controller which µ-stabilizes the given time-delay system, where

µ ∈ R is a predetermined stability boundary, i.e., the system is µ-stable if the

system does not have any modes in C̄+
µ or any chain of modes approaching C̄+

µ .

Here, the system to be considered may be retarded or neutral type. It is well-

known that, for a retarded type system, there always exist finitely many modes in

any right half plane [2]. On the other hand, a neutral system induces complications

compared to a retarded system. The reason behind this situation is the existence of

the associated Delay-Difference-Equation (DDE) which plays a central role in the

analysis of a neutral type system. Because of the DDE, a neutral system exhibit

chains of modes, whose imaginary parts tend to infinity, yet whose real parts have

always a finite limit [5]. Thus, the µ-stability may not be determined by calculating

finite number of modes in a compact set. Furthermore, the high frequency modes

of these chains may be hypersensitive to delay perturbations which may yield to

detract the robustness to infinitesimal delay changes. Consequently, the presence

of such modes makes the determination of spectral properties (e.g., µ-stability), by

1

calculating finitely many modes, unreliable. This situation was the main motivation

of [5] to introduce the concept of strong stability. More precisely, the system is said

to be strongly µ-stable if it is µ-stable and remains µ-stable for small changes in

the time-delays. In this respect, the stabilization objective is extended so that the

designed controller must ensure not only the µ-stability but strong µ-stability of

the closed-loop system, i.e., the closed-loop system must be robustly stable against

small changes in the time-delays. However, it is not possible to strongly µ-stabilize

a system, whose DDE is not strongly µ-stable, because of the fact that, in practice,

any feedback controller would introduce some time-delays which are independent of

the time-delays of the system itself. So, if the associated DDE is already strongly

µ-stable, then, the designed controller can only maintain the strong µ-stability of

the DDE of the closed-loop system. In fact, in practice, it is not possible to move

the modes of the DDE by any feedback controller [6].

It should be noted that, for a retarded type system, even though the µ-

stability extends to the strong µ-stability, thus the µ-stabilizing controller strongly

µ-stabilizes the system at the same time, when the system has a delayed direct

feedback, this situation will be dramatically changed. In that case, the closed-loop

system will be neutral type. Thus, strong µ-stability must be considered, precisely.

In fact, assuming that any feedback introduces some time-delays, in practice, this

situation is unavoidable.

So far, many different controller design methods for time-delay systems

have been proposed in the literature (e.g., see [7] and references therein). Among

the existing methods, eigenvalue-based methods have become popular in the sta-

bilization of linear time-invariant (LTI) time-delay systems [1]. First, the so-called

continuous pole placement algorithm was presented in [8] for retarded-time delay

systems, then, extended to the neutral case in [9], where strong stability context

was also considered. As an alternative to the continuous pole placement method,

a nonsmooth optimization-based fixed-order controller design method, which was

originally introduced for robust stabilization of finite-dimensional systems in [10],

was adapted to the retarded time-delay systems in [11]. This method was then

employed in [12] to design strongly stabilizing state-derivative controllers for re-

tarded time-delay systems. Although, the given system was assumed to be re-

2

tarded in [12], the closed-loop system becomes neutral due to the structure of the

controller used. Finally, strong stabilization of neutral time-delay systems, whose

autonomous parts can be described by DDAEs, was considered in [13]. In addition

to these papers, fixed-order controller design method has been considered in many

studies [14], [15], [16], [17]. Even though, (closed-loop) stability is not guaranteed

by using this method, it can, in principle, be achieved through minimizing the real

part of the rightmost mode, i.e., spectral abscissa, as a function of the controller

parameters.

However, the main difficulty of this optimization based method is that, the

objective function to be minimized is both nonsmooth and nonconvex. Because

of that, a specialized algorithm must be employed, since, standard optimization

algorithms may fail to overcome the nonsmoothness of the objective function [18].

For this purpose, the gradient sampling (GS) algorithm of [19], which is able to find

local minima of general nonsmooth, nonconvex objective functions, is proposed.

Alternatively, as it is shown in [20], BFGS algorithm can also be used to minimize

nonsmooth objective functions. In the literature, both of them are advised to

be used with an inexact line search. Furthermore, both of these methods have

been coded in MATLAB and brought together in a software package named as

HANSO [21].

Moreover, it has been shown in [22] for retarded systems and in [17] for

neutral systems that, since the optimization problem to be solved is not convex, a

completely random initialization may not always produce the best result. There-

fore, special care must be given to initialize the optimization parameters, i.e., the

entries of the initial controller matrices, in order to facilitate the convergence of the

optimization algorithms.

In this method, the structure of the controller is also fixed (this is why,

sometimes it is called as fixed-structure controller design). So, one possible option

is to let all the elements of all the controller matrices be free parameters. However,

since the input-output relation of the output feedback controller is unique only up

to a similarity transformation, this option yields a unnecessarily high number of

free parameters for optimization. Therefore, the controller matrices are structured

in certain canonical forms in [22]. In fact, reducing the number of optimization

3

parameters will not only lessen the burden on the optimization algorithm, but, it

will also facilitate the convergence of the algorithm by avoiding over-parametrization

of the controller (e.g., see [12] for empirical evidence).

On the other hand, for many large-scale systems, it may be very costly, even

impossible, to collect all the information in a centralized place, process it there, and

dispatch the control commands from there [23]. For such systems, decentralized

control is necessary or preferable [24]. As a result, such systems are no longer

controlled by a centralized controller but by several independent controllers, each

of which can observe and control only the certain part of the overall system. In this

structure, these local controllers, all together, represent a decentralized controller

[25].

Furthermore, many large-scale systems may involve time-delays. Recently,

there have been a number of studies on this topic as well (e.g., [22], [25], [26], [27],

[28] and references therein). Even though, there exist controller design methods for

time-delay systems, a few of them has been adapted to decentralized case in recent

years. This was the main motivation of this thesis to introduce a decentralized

controller design method for time-delay systems which makes use of the (modified

versions of) existing centralized controller design algorithms.

The stabilizability of a decentralized system is determined by its fixed

modes. Basically, a mode of a LTI dynamic system is called as fixed if its loca-

tion on the complex plane does not change for any LTI static output feedback

controller applied to the system. In particular, a fixed-mode is called as a decen-

tralized fixed mode (DFM) if the considered system is decentralized and applied

controller is a decentralized controller. On the other hand, a fixed-mode is called

as a centralized fixed mode (CFM) if the considered system is a centralized system,

which, in general, may be the part of a decentralized system, and applied controller

is a centralized controller.

In order to establish stabilizability conditions for a decentralized system,

first, the characterization of fixed modes must be made. Luckily, there is a wide

literature on this topic. The notion of fixed mode is first introduced as DFM in [29]

for finite-dimensional decentralized systems. According to the notion of DFM, it

has been shown that a necessary and sufficient condition for stabilizability of a

4

LTI decentralized finite-dimensional dynamic system by LTI decentralized finite-

dimensional dynamic controllers is that it should not have any unstable DFMs. In

the infinite-dimensional case, it was shown in [30] that, a LTI retarded time-delay

system can be stabilized by a LTI dynamic controller if and only if the system

does not have any unstable CFMs. Then, the result of [29] is extended to a LTI

decentralized retarded time delay system with commensurate-time-delays in [31].

The same result is extended to retarded systems with incommensurate-time-delays

in [32] and, then, to neutral systems in [33]. In this thesis, studies are carried

on control of time-delay systems based on [26] which establishes the most general

results on µ-stabilizability of a time-delay system.

In order to design a decentralized controller, by using the fixed-order con-

troller design method, first attempt has been made in [22] for retarded time-delay

systems. In [22], a decentralized controller design algorithm for LTI retarded time-

delay systems was proposed. This algorithm is based on the decentralized pole

assignment algorithm of [34] which was originally proposed for finite-dimensional

systems. In this algorithm, a centralized controller is designed for each control agent

sequentially. Therefore, a centralized controller design algorithm is needed to be

used in this approach. For this purpose, nonsmooth optimization based fixed-order

controller design method of [13] is used. Then, in [35], the design method of [22]

is extended to the decentralized neutral time-delay systems by using the proposed

method of [17] which, in particular, aims strong µ-stability.

Although, there are a few software packages to design decentralized con-

trollers for finite-dimensional systems (e.g., [36]), there exists no such software

available for decentralized time-delay systems. Therefore, a new software package,

which, besides analysis, can be used to design centralized or decentralized controllers

to strongly µ-stabilize time-delay systems, has been introduced in [35]. The final

version of this software, named as DCD-TDS, will be presented in this thesis. It

should be noted that, in the centralized controller design phase, DCD-TDS makes

use of the slightly customized version of related functions in the software package

TDS STABIL [13]. On the other hand, as in TDS STABIL, HANSO is employed

to solve optimization problems. Besides the decentralized controller design ability,

however, compared to TDS STABIL, DCD-TDS have the following features:

5

• It allows to structure the controllers in a suitable canonical form or in any

user-defined form.

• In order to choose the most favorable initial controller, it uses an initialization

procedure which facilitates the convergence of the optimization algorithm.

• It has a user-friendly Graphical-User-Interface (GUI) which provides an effi-

cient utilization.

1.2. Thesis Outline

In Chapter 2, the background for both the centralized and decentralized

controller design is given. In Section 2.1, the stability of a time-delay system is

outlined. In Section 2.2, first, the numerical optimization is outlined, then, the

nonsmooth and nonconvex optimization algorithms of HANSO are given in the

subsections. In Section 2.3, decentralized control of time-delay systems is intro-

duced. In this section, the well-known stabilizability conditions of a decentralized

time-delay system are presented with some important definitions. Also, the decen-

tralized pole assignment algortihm of Davison and Chang [34], which is originally

proposed for finite-dimensional systems, is introduced.

In Chapter 3, a centralized controller design method for centralized time-

delay systems is proposed. In the beginning of this chapter, system definitions are

given, first, and then, the controller design objective is stated. In Section 3.1, the

structure of the controller matrices is introduced. In Section 3.2, the optimization

problem is introduced. In Section 3.3, the numerical computation of the objective

function and its gradient is given. In Section 3.4, the initialization procedure is

proposed. In Section 3.5, the overall centralized controller design algorithm, which

uses optimization algorithms of HANSO, is given.

In Chapter 4, first, decentralized time-delay system definitions are given.

Then, the overall decentralized controller design algorithm, based on decentralized

pole assignment algorithm and centralized controller design method given in Chap-

ter 3, is proposed.

In Chapter 5, a MATLAB based software package, named as DCD-TDS,

which can be used to analyze and stabilize a given centralized/decentralized time-

6

delay system, is introduced. Some important modules and related functions are

presented in the consecutive sections.

In Chapter 6, the proposed controller design methods, given in Chapter

3 and Chapter 4, are illustrated by using DCD-TDS. In Section 6.1, a centralized

neutral time-delay system is considered. In Section 6.2, a decentralized retarded

time-delay system is considered.

In Chapter 7, the concluding remarks are given. Also, in this chapter,

possible future works are suggested.

7

2. BACKGROUND

In this chapter, the background for the subsequent chapters is presented. In

Section 2.1, the stability of a time-delay system is outlined. As it is mentioned in the

previous chapter, the proposed controller design methods are based on nonsmooth

optimization. Due to this, in Section 2.2, a brief introduction to the numerical

optimization is given first, and then, the employed algorithms are presented in con-

secutive subsections. In Section 2.3, first, the background of decentralized control

of time-delay systems is outlined, then, the decentralized pole assignment algorithm

of Davison and Chang [34] is introduced.

2.1. Stability of Time-Delay Systems

Consider a LTI time-delay system whose autonomous part is described by

the DDAEs:

Eẋ(t) =
σ∑
i=0

Aix(t− hi) (2.1)

where x(t) ∈ Rn is the state vector at time t. The time-delays hi (i = 0, . . . , σ)

satisfy h0 < h1 < . . . < hσ, where σ indicates the number of distinct delays involved

in (2.1). In particular, h0 := 0 is used for notational convenience, i.e., i = 0

corresponds to the delay-free part of the system. The matrices E and Ai, i =

0, . . . , σ, are constant real matrices. In order to ensure the solvability of (2.1), it is

assumed that

rank [E A0] = rank
[
ET AT0

]T
= n . (2.2)

Definition 2.1. For any given ε ∈ R, the set of ε-modes of (2.1) is defined as

Ωε =
{
s ∈ C̄+

ε | det (φ(s)) = 0
}

(2.3)

where φ(s) := sE − Ā(s) is the characteristic matrix of the system, where

Ā(s) :=
σ∑
i=0

Aie
−shi . (2.4)

For any given µ ∈ R, where µ is the stability boundary, (2.1) is said to be

µ-stable if there exist a ξ > 0, such that Ωµ−ξ = ∅. Note that, for µ ≤ 0, this

definition is equivalent to exponential stability with a decay rate less than µ [4].

8

Moreover, the µ-stability condition can also be expressed in terms of the

spectral abscissa of the system, which is defined as

c := sup {Re(s) | det (φ(s)) = 0} . (2.5)

Then, (2.1) is µ-stable if and only if c < µ.

The spectral characteristics of a neutral time-delay system are quite com-

plicated than a retarded time-delay system. In the stability analysis of a neutral

time-delay system, the associated delay-difference equation plays an important role.

Let n̄ denote the rank deficiency of E, i.e., n̄ := n−rank(E). Note that, when n̄ = 0

(i.e., rank(E) = n), (2.1) describes a retarded system. In this case, the associated

delay-difference equation does not exist and Ωε is a finite set for any ε ∈ R. In

the case 1 ≤ n̄ ≤ n, i.e., when (2.1) describes a neutral system, let U ∈ Rn×n̄ and

V ∈ Rn×n̄ be such that

UTE = 0 and EV = 0 , (2.6)

where the columns of U and V form a minimal basis for the left and right null spaces

of E, respectively. Then, due to the form of E and A0, given in (2.2), UTA0V is

nonsingular.

The associated DDE of (2.1) can be described as

σ∑
i=0

Âix̂(t− hi) = 0 , (2.7)

where Âi := UTAiV , i = 0, . . . , σ and x̂(·) ∈ Rn̄ is a dummy state vector. Stability

of (2.7) is determined by the location of the roots of its characteristic equation

det(φD(s)) = 0 , (2.8)

where

φD(s) :=
σ∑
i=0

Âie
−shi (2.9)

is the characteristic matrix of (2.7). In this case, (2.7) is µ-stable if and only if all

the infinitely many roots of (2.8) are located to the left hand side of the µ− ξ axis,

for some ξ > 0. We can also express this stability condition in terms of the spectral

abscissa of (2.7), which is defined as,

cD := sup {Re(s) | det (φD(s)) = 0} . (2.10)

9

Then, (2.7) is µ-stable if and only if cD < µ. In fact, µ-stability of (2.7) is a

necessary condition for the µ-stability of (2.1) [5].

Although (2.10) is continuous in the entries of the system matrices, it is

not continuous in the time-delays. As a consequence of this, the high frequency

roots of the delay-difference equation, accordingly cD, may be highly sensitive to

infinitesimal perturbations in the time-delays. This situation was the main moti-

vation of [5] to introduce the concept of strong stability. (2.1) is said to be strongly

µ-stable if it is µ-stable and remains µ-stable for small changes in the time-delays.

Furthermore, (2.7) is strongly µ-stable if and only if γµ < 1, where, for σ ≥ 2,

γµ := max
θ ∈ [0, 2π]σ−1

ρ

(
Â−1

0

[
Â1e

−µh1 +
σ∑
k=2

Âke
−µhkejθk

])
, (2.11)

where θ := {θ2, . . . , θσ}, and, for σ = 1,

γµ := ρ
(
Â−1

0 Â1e
−µh1

)
(2.12)

(see, e.g., [13] for the case µ = 0; the general case follows by the transformation

s → s − µ). Although the above condition is enough to determine the strong

µ-stability of (2.7), it is still crucial to know cD since it gives direct information

about the location of the roots of (2.8). Considering the hypersensitivity of cD, the

so-called safe upper bound which is robust to the perturbations in the time-delays

must be defined. The safe upper bound, which will be indicated as CD, is equal to

the unique root of

g(ζ)− 1 = 0, (2.13)

where, for σ ≥ 2,

g(ζ) := max
θ ∈ [0, 2π]σ−1

ρ

(
Â−1

0

[
Â1e

−ζh1 +
σ∑
k=2

Âke
−ζhkejθk

])
, (2.14)

where θ := {θ2, . . . , θσ}, and, for σ = 1,

g(ζ) := ρ
(
Â−1

0 Â1e
−ζh1

)
. (2.15)

Hence, the delay-difference equation (2.7) is strongly µ-stable if and only if CD < µ.

The strong µ-stability condition for (2.1), then, can be expressed in terms

of c and either γµ or CD. As a result, (2.1) is strongly µ-stable if and only if c < µ

and CD < µ, while the latter condition can also be expressed as γµ < 1.

10

2.2. Nonsmooth and Nonconvex Optimization

The general concern in optimization is solving the problem

min
p∈Rn

f(p) (2.16)

where f : Rn → R is called the objective function, and p is the vector of parameters

with n ≥ 1. By solving (2.16) iteratively, we find a p∗ ∈ Rn which minimizes f .

Basically, algorithms start with an initial point and generate a sequence of points

{pi}i∈N that converges to a minimizer of f as i→∞.

In the field of optimization, the problems (hence, the related algorithms)

are classified with respect to the characteristics of the objective function, and the

strategy used to iterate. If the objective function f is convex, that is

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b) (2.17)

for all a, b ∈ Rn and all λ ∈ [0, 1], then (2.16) is called as convex optimization.

In this case, any local minimizer of f is also the global minimizer. But if f is

not convex, then the algorithm seeks only the local minimizers of f without the

knowledge of whether it is global or not. Furthermore, if the objective function f

is smooth (i.e., continuously differentiable for all p), then (2.16) is called as smooth

optimization. Regarding the applied strategy, most of the optimization algorithms

use either line search or trust region based methods [37]. In this thesis, only line

search based methods are of interest.

At ith iteration of any line search method, a search direction di and a step

length βi, which will be taken along di, are obtained. Then, the next iteration can

be defined as

pi+1 = pi + βidi. (2.18)

Here, di must be a decent direction, so that, with small enough positive βi, f can

be reduced along this direction. In the general case, such a search direction is in

the form

di = −Bi
−1∇fi. (2.19)

where Bi is a symmetric and nonsingular matrix, and ∇fi indicates the gradient

vector computed at pi, assuming that f is differentiable at pi. Note that, di is a

11

decent direction as long as Bi is positive definite. There are several line search based

methods which are distinguished from each other with respect to the determination

of a search direction. In the steepest descent method, Bi is simply the identity matrix

I in an appropriate dimension. In the Newton’s method, on the other hand, Bi is

the exact Hessian ∇2fi. Although, the Newton’s method is more powerful than the

steepest descent method, obviously, it is computationally demanding. Therefore,

quasi-Newton methods became quite popular in the optimization field, and provide

an attractive alternative to Newton’s method. Contrary to the Newton’s method, in

the quasi-Newton methods, Bi is an approximation of the Hessian which is updated

after each iteration according to a certain formula [37].

In this thesis, we are interested in the optimization algorithms which are

capable of solving (2.16) when f is continuous, but, in particular, nonsmooth and

nonconvex function of p. The main concern in the nonsmooth optimization is to

identify the minimizer by examining the subgradients which are the generalization

of the concept of gradient to the nonsmooth case. Although there is a rich lit-

erature, and qualified algorithms for nonconvex optimization, a few of them are

specialized for nonsmooth case. Thus, early references about nonsmooth optimiza-

tion have been considered in the field of convex optimization. An excellent survey

on this discussion can be found in [19]. In this respect, there are two nonsmooth

optimization algorithms, which can be used for nonconvex objective functions, at

the top of the literature.

First one is the Gradient Sampling (GS) algorithm which was first intro-

duced in [38], then, the complete algorithm was given in [19] with a convergence

analysis. Note that, the convergence analysis of [19] is improved by [39]. Thus,

the GS algorithm is a specialized algorithm for nonsmooth optimization, and it has

convergence guarantees when f is locally Lipschitz. However, the GS algorithm

performs successfully on many nonsmooth problems where the objective function is

not locally Lipschitz, even though the convergence analysis does not exist for such

functions [19].

The second algorithm is one of the quasi-Newton methods, named as BFGS

after its developers Broyden [40], Fletcher [41], Goldfarb [42], and Shanno [43].

Although, the BFGS algorithm is developed for smooth optimization, thus, the

12

convergence analysis does not even exist for nonsmooth optimization, it is much

more efficient than GS algorithm, in practice, when a suitable inexact line search

is used [44].

In fact, the GS and BFGS algorithms differ by how di in (2.18) is chosen,

and how the local minimizer is identified. Regarding the sampling strategy, the

GS algorithm is more robust, but, unfortunately, it is computationally expensive.

Both of these algorithms have been coded in MATLAB and brought together in a

software package named HANSO [21]. In the next two subsections, the associated

algorithms of HANSO are presented, respectively. Then, the employed inexact line

search method is given in Subsection 2.2.3.

2.2.1. Gradient Sampling Method

At a given iterate, the gradients of the objective function on a set of ran-

domly generated nearby points is computed within the predetermined sampling

radius ε. Once the bundle of gradients is collected, the descent direction is ob-

tained by solving a quadratic program. Then, this information is used to obtain a

local search direction that can be considered as an approximate ε-steepest descent

direction.

Before starting the algorithm, let p0 indicate the starting parameter vector.

Also, fix the vector of sampling radiuses, ε1, ..., εnr , in a descending order where εj

indicates the jth radius, for j = 1, .., nr, where nr indicates the number of sampling

radiuses (as a default value, ε1 = 10−3, ε2 = 10−4, ε3 = 10−5). In addition to that,

let kmax be a predetermined limit on the iteration numbers. The basic steps of the

GS algorithm of HANSO are as follows:

GS Algorithm:

1) Let j = 1 and k = 0.

2) Compute ∇f(pk), whenever f is differentiable at pk.

3) Sample N random points in a ball with center at pk and radius εj. Compute

the additional gradients in the sampled points. Collect these gradients into a

bundle, serving as an approximation for the ∂cf(pk) (see (2.21) below).

13

4) Compute the vector with smallest norm out of this bundle by solving a

quadratic programming. Let the search direction, dk, be the negative of this

vector. If the norm of dk is smaller than a threshold value, continue with next

step. Otherwise, go to the step 6.

5) If j = nr, then stop: f(pk) corresponds to a local minimum. Let p∗ = pk. If

j 6= nr, then, let p0 = pk. Let j = j + 1 and k = 0. Go back to step 2.

6) If ∇f(pk)
Tdk < 0, i.e., dk is a descent direction, continue with step 7. Other-

wise, if j = nr, then, stop: indicate p∗ = pk. If j 6= nr, then, let p0 = pk. Let

j = j + 1 and k = 0. Go back to step 2.

7) Perform a line search, along the direction dk, to determine a step length, βk,

such that (2.23), to be given below, is satisfied. If such a βk can not be found,

and k 6= kmax, let pk+1 = pk and k = k + 1, then, go back to step 2. If such

a βk can not be found, k = kmax, and j 6= nr, then, set j = j + 1, p0 = pk,

k = 0 and go back to step 2. If such a βk can not be found, k = kmax, and

j = nr, then, stop and indicate p∗ = pkmax . If βk is found, continue with the

next step.

8) Let pk+1 = pk + βkdk. If k 6= kmax, let k = k + 1 and go back to step 2. If

k = kmax and j 6= nr, set j = j + 1, p0 = pk, and k = 0 and go back to step

2. If k = kmax and j = nr, stop and indicate p∗ = pkmax .

In the above algorithm, the non-smooth steepest descent direction, dk, is defined

as the negative of the vector with smallest norm in the Clarke subdifferential at pk,

i.e.

dk := − arg min
x∈∂cf(pk)

||x|| . (2.20)

where

∂cf(pk) := convexhull

{
lim
p→pk

∂f

∂pk
(p) : p ∈ N

}
(2.21)

denotes the Clarke subdifferential at pk, which is the set containing all the Clarke

subgradients at pk, where N is a subset of a neighborhood around pk. The reason of

using (2.21) is to be able to detect the nonsmooth points which are usually the local

14

minimizers of the nonsmooth functions. Such a point is called Clarke stationary

point if 0 ∈ ∂cf(pk). Thus, the convergence to the Clarke stationary point highly

depends on the approximation of the Clarke subdifferential.

Note that, in the 7th step of the GS algorithm, even if a proper βk can

not be found in the line search, the algorithm continues to iterate. Because, this

typically means that, the gradient set is not rich enough and we should continue

sampling in the ball with current radius.

2.2.2. BFGS Method

It is well-known that, in the Newton’s method, the search direction is ob-

tained as

dk = −(∇2f(pk))
−1∇f(pk) (2.22)

assuming that ∇2f(pk) is positive definite. Obviously, the Newton method is

computationally demanding. BFGS is known as the most effective quasi-Newton

method that approximates the inverse Hessian matrix by using the first order gra-

dient only. Thus, the approximation of the inverse Hessian, which is updated in

each iteration with respect to the standard BFGS formula, is used to determine

the search direction [37]. In [20], it is empirically shown (convergence proof is not

provided) that, BFGS method with an inexact line search drives the function value

to the Clarke stationary point for almost every starting point.

Before starting the algorithm, let p0 indicate the starting parameter vector.

Also, let Hk indicate the approximation of inverse Hessian matrix in the kth step

and set H0 to the identity matrix in an appropriate dimension. In addition to that,

let kmax be a predetermined limit on the iteration numbers. The basic steps of the

BFGS algorithm of HANSO are as follows:

BFGS Algorithm:

1) Let k = 0. Compute ∇f(p0), i.e. the gradient at p0. If ‖∇f(p0)‖ < κ, where

κ is a predetermined tolerance, then stop and indicate p∗ = pk. Otherwise,

continue with the next step.

2) Let dk = −Hk∇f(pk). If ∇f(pk)
Tdk < 0, i.e., dk is a descent direction,

continue with the next step. Otherwise, stop and indicate p∗ = pk.

15

3) Perform a line search, along the direction dk, to determine a step length, βk,

such that (2.23), to be given below, is satisfied. If such a βk can not be found,

then, stop and indicate p∗ = pk. Otherwise, let pk+1 = pk +βkdk and compute

∇f(pk+1), then, continue with the next step.

4) If ‖dk‖βk < κ̄, add ∇f(pk) into a bundle. Otherwise, discard the gradients

which are collected so far and let ∇f(pk) be the only element of the new

bundle. Then, compute the vector with smallest norm out of this bundle by

solving a quadratic programming. If the norm of this vector is smaller than

a threshold value, then, stop and indicate p∗ = pk. Otherwise, continue with

the next step.

5) Let yk = ∇f(pk+1) − ∇f(pk), Vk = I − (pTk yk)
−1pky

T
k . Update the approxi-

mation of Hessian matrix as Hk+1 = VkHkV
T
k + βk(p

T
k yk)

−1pkp
T
k . If k = kmax,

then stop and indicate p∗ = pkmax . Otherwise let k = k + 1 and go back to

step 2.

In [44], the BFGS method with an inexact line search is applied to the

nonsmooth and nonconvex functions without doing any modification on the general

BGFS method. In the 5th step of the above algorithm, the approximation of the

Hessian matrix is obtained with respect to the well-known secant condition which

guarantees that Hk remains positive definite (see [37] for further details).

In the 4th step of the above algorithm, considering the nonsmoothness, a

simple test is provided to detect the approximate Clarke stationary points (which

are, possibly, encountered as the local minimizers). The algorithm gathers prede-

termined number of gradients which are evaluated in consecutive points located in

a small neighborhood, i.e., which is determined by κ̄. Meanwhile, in each iteration,

the smallest vector in the convex hull of the set, which consist of the gradients gath-

ered so far, is obtained by solving a quadratic programming. Now, Clarke stationary

points can be detected by comparing the smallest vector, which is obtained by the

quadratic programming, with a predetermined tolerance on norm, e.g. κ. Notice

that, this simple test is reduced to detect smooth stationary point of f whenever

the set consist of a single gradient.

16

Actually, the reason behind the success of the BFGS method on nonsmooth

functions is the ability of the inexact line search. As it is empirically shown in [20],

nondifferentiable points are never encountered (besides the local minimizers), when-

ever a random initialization is provided. Thus, in the algorithm presented above,

it is assumed that ∇f(pk) exists at any pk. Furthermore, the positive definiteness

of the inverse Hessian is always ensured.

2.2.3. Inexact Line Search

In both of the optimization algorithms given above, a decent search direc-

tion dk at the kth iteration is determined in a certain way. Once dk is obtained, the

length of the step βk which will be taken along the dk must be determined. The ideal

βk which makes maximum reduction in the value of f is the global minimizer of the

function f(pk+βkdk) ,where βk > 0. However, solving this kind of a problem (which

is called as exact line search) is too expensive considering the possible function and

gradient evaluations. Instead, performing an inexact line search, which generates

limited number of trial step lengths to ensure sufficient reduction in the value of f ,

is more practical. Therefore, in both of the above mentioned optimization methods,

βk is determined by an inexact line search which imposes the following conditions:

f(pk + βkdk) ≤ f(pk) + c1βk∇f(pk)
Tpk

∇f(pk + βkdk)
Tpk ≥ c2∇f(pk)

Tpk

(2.23)

where the first one (called as Armijo condition) ensures sufficient decrease in the

value of f , and the second one (called as weak Wolfe condition) ensures algebraic

increase in the ∇f(pk) along dk. Here, the scalar multipliers c1 and c2 can be any

real number satisfying 0 < c1 < c2 < 1. Note that, despite of the theory, there is no

harm to set c1 to zero in practice [44]. The suitable choice of c2 differs according to

the used method. The performance of this inexact line search on nonsmooth and

nonconvex functions is illustrated in several studies [44], [45]. Further discussions

and the associated algorithm of HANSO can be found in [44].

17

2.3. Decentralized Control of Time-Delay Systems

Decentralized control systems consist of several independent control agents

which can measure only a subset of all the outputs and access only a subset of all

the inputs. By using these agents, it is aimed to µ-stabilize the overall closed-loop

system, for a given µ ∈ R. In particular, the µ-stabilizability of a decentralized con-

trol system is determined by its fixed modes. Here, the background with necessary

definitions are stated in this respect.

Consider a decentralized LTI time-delay system, to be denoted by Σ, with

ν control agents, described as

Eẋ(t) =
σ∑
i=0

(
Aix(t− hi) +

ν∑
j=1

Bj,iuj(t− hi)
)

yj(t) =
σ∑
i=0

(
Cj,ix(t− hi) +

ν∑
k=1

Dk,j,iuk(t− hi)
)
, j ∈ ν̄ ,

(2.24)

where t is the time variable, x(t) ∈ Rn is the state vector at time t, and uj(t) ∈

Rm and yj(t) ∈ Rq are, respectively, the input and the output vectors at time t,

accessible by the jth control agent. Here, h0 := 0 is used for notational convenience

(i.e., i = 0 corresponds to the delay-free part of the system), σ indicates the number

of distinct time-delays involved, and, for i = 1, . . . , σ, hi > 0 are the time-delays.

The matrices E, Ai, Bj,i, Cj,i and Dk,j,i, (i = 0, . . . , σ, j ∈ ν̄, k ∈ ν̄) are constant real

matrices.

It is worth to emphasize that, a decentralized neutral time-delay system

which is described as

˙̃x(t) +
σ∑
i=1

(
Ẽi ˙̃x(t− hi)

)
=

σ∑
i=0

(
Ãix̃(t− hi) +

ν∑
j=1

B̃j,iuj(t− hi)
)

yj(t) =
σ∑
i=0

(
C̃j,ix̃(t− hi) +

ν∑
k=1

D̃k,j,iuk(t− hi)
)
, j ∈ ν̄ ,

(2.25)

can be brought into the form of (2.24) by defining δ(t) := x̃(t) +
∑σ

i=1

(
Ẽix̃(t−hi)

)
and x(t) :=

[
δ(t)T x̃(t)T

]T
.

Note that, (2.1) and the autonomous part of Σ are in the same form.

Therefore, strong µ-stability of Σ can be analyzed as for (2.1). Thus, the set of ε-

modes, the µ-stability, c, cD, CD, and γµ can be defined as in Section 2.1. Although,

18

here, the µ-stabilizability of Σ is analyzed through its fixed modes, it is assumed

that cD(Σ) < µ.

A controller K is said to µ-stabilize the system Σ if the closed-loop system,

obtained by applying K to the system Σ, is µ-stable. In decentralized control system

design, the main objective is to design ν decentralized controllers which µ-stabilize

the system Σ. For this purpose, define three different classes of finite-dimensional

controllers as follows:

• Kc
s : the class of centralized static LTI controllers is all the controllers of the

form:

u(t) = Ky(t) , (2.26)

where

u(t) :=
[
uT1 (t) · · · uTν (t)

]T
∈ Rm ,

y(t) :=
[
yT1 (t) · · · yTν (t)

]T
∈ Rq ,

(2.27)

where m :=
∑ν

j=1mj and q :=
∑ν

j=1 qj, and K ∈ Rm×q is such that

det

(
lim

Re(s)→+∞
φΣ,K(s)

)
6= 0 , (2.28)

where φΣ,K is the characteristic matrix of the closed-loop system obtained by

applying controller K to the system Σ.

• Kd
s : the class of decentralized static LTI controllers is all the controllers of

the form:

uj(t) = Kjyj(t) , j ∈ ν̄ , (2.29)

where Kj ∈ Rmj×qj , j ∈ ν̄, such that Kj satisfies (2.28).

• Kd
d: the class of decentralized finite-dimensional dynamic LTI controllers is

all the controllers of the form:

żj(t) =Fjzj(t) +Gjyj(t)

uj(t) =Hjzj(t) +Kjyj(t)
, j ∈ ν̄ , (2.30)

19

where zj ∈ Rlj is the state of the jth local controller and Fj, Gj, Hj, and Kj

are real constant matrices such that Kj satisfies (2.28). Here, the dimension

of the controller, lj ∈ N, is arbitrary. Note that when lj = 0, for all j ∈ ν̄, such

a controller reduces to a decentralized static LTI controller; thus, Kd
s ⊂ Kd

d.

Definition 2.2. For a given ε ∈ R, the set of ε-fixed modes (ε-FMs) of Σ with

respect to the class of controllers K is defined as

Λε(Σ,K) = {s ∈ C̄+
ε | det(φΣ,K(s)) = 0, ∀K ∈ K} (2.31)

where φΣ,K is the characteristic matrix of the closed-loop system obtained by ap-

plying controller K to the system Σ.

In particular, when the class concerned is Kc
s , Λc

ε(Σ) := Λε(Σ,K
c
s) indicates

the set of ε- centralized fixed modes (ε-CFMs). On the other hand, when the class

concerned is Kd
s , Λd

ε (Σ) := Λε(Σ,K
d
s) indicates the set of ε- decentralized fixed modes

(ε-DFMs). Note that, as it is stated in [26], Λd
ε (Σ) is exactly same for both Kd

s and

Kd
d. Relying on this fact, it is more practical to consider Λd

ε (Σ) for Kd
s .

By definition, Λc
ε(Σ) ⊂ Λd

ε (Σ) ⊂ Ωε(Σ). Accordingly, provided that cD(Σ) <

ε, both Λc
ε(Σ) and Λd

ε (Σ) are finite sets. Therefore, the elements of these sets can

be computed by either a numerical procedure or a rank test given in [26] (see Sec-

tion 5.4).

In particular, the ε-DFMs of Σ can be determined by using the following

result of [26].

Lemma 1: Let Re(s0) ≥ ε. s0 ∈ Λd
ε (Σ) if and only if there exists k ∈

{0, . . . , ν} and {i1, . . . , ik} ⊂ ν̄ where i1, . . . , ik are distinct, such that

rank


Ā(s0)− s0E B̄i1(s0) . . . B̄ik(s0)

C̄ik+1
(s0) D̄ik+1,i1(s0) . . . D̄ik+1,ik(s0)

...
...

. . .
...

C̄iν (s0) D̄iν ,i1(s0) . . . D̄iν ,ik(s0)

 < n (2.32)

where {ik+1, . . . , iν} := ν̄ \ {i1, . . . , ik},

Ā(s) :=
σ∑
i=0

Aie
−shi , (2.33)

20

and, for j, k ∈ ν̄,

B̄j(s) :=
σ∑
i=0

Bj,ie
−shi , C̄j(s) :=

σ∑
i=0

Cj,ie
−shi , (2.34)

D̄j,k(s) :=
σ∑
i=0

Dj,k,ie
−shi . (2.35)

Since, Λd
ε (Σ) ⊂ Ωε(Σ), the test in Lemma 1 needs to be carried out only

for s0 ∈ Ωε(Σ), which is a finite set for any ε > cD.

From Lemma 2 in [26], provided that µ > cD(Σc), where Σc is a centralized

system (i.e., the system in the form of (2.24) when ν = 1), there exist a centralized

controller (e.g., controller K ∈ Kd
d with ν = 1) which µ-stabilizes the system Σc if

and only if Λc
µ(Σc) = ∅.

It was further shown in [26], provided that cD(Σ) < µ, Σ can be µ-stabilized

by a controller in the class Kd
d if and only if Λd

µ(Σ) = ∅. From this follows, to

determine whether or not it is possible to µ-stabilize Σ, it suffices to compute

Λd
ε (Σ), for some ε < µ.

There are several decentralized controller synthesis algorithms developed in

the last four decades [25]. Relying on Theorem 3 in [34], which basically states that

there exist a decentralized LTI controller which can stabilize the system if and only

if the system does not have any unstable DFM, Davison and Chang proposed the

decentralized pole assignment algorithm for finite-dimensional decentralized sys-

tems. In the decentralized pole assignment algorithm, a centralized controller is

designed first by using only one of the control agents to eliminate as many unstable

modes as possible, except for the unstable CFM(s) of the associated centralized

system. After this controller is designed, the corresponding loop is closed and a

decentralized control system with ν − 1 control agents is obtained. After repeating

this procedure ν times, the overall decentralized controller is obtained.

Then, relying on Lemma 3 in [26], this algorithm is extended to the design of

decentralized controllers in the form of (2.30) for retarded and neutral decentralized

time-delay systems, respectively in [22] and in [35]. The related algorithm is given

in Chapter 4.

21

3. CENTRALIZED CONTROLLER DESIGN

Let us consider a centralized LTI time-delay system Σc, described by delay-

differential-algebraic equations:

Eẋ(t) =
σ∑
i=0

(
Aix(t− hi) +Biu(t− hi)

)
y(t) =

σ∑
i=0

(
Cix(t− hi) +Diu(t− hi)

) (3.1)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rq are, respectively, the state, the input,

and the output vectors at time t. h1, . . . , , hσ > 0 are the time-delays, where σ is

the number of distinct time-delays of the system. h0 := 0 is used for notational

convenience. The matrices E, Ai, Bi, Ci, and Di, i = 0, . . . , σ, are constant real

matrices.

The system description (3.1) is quite general as illustrated in [14]. Further-

more, it is worth to emphasize that, a neutral time-delay system which is described

as

˙̃x(t) +
σ∑
i=1

(
Ẽi ˙̃x(t− hi)

)
=

σ∑
i=0

(
Ãix̃(t− hi) + B̃iu(t− hi)

)
y(t) =

σ∑
i=0

(
C̃ix̃(t− hi) + D̃iu(t− hi)

) (3.2)

can be brought into the form of (2.24) by defining δ(t) := x̃(t) +
∑σ

i=1

(
Ẽix̃(t−hi)

)
and x(t) :=

[
δ(t)T x̃(t)T

]T
.

In order to strongly µ-stabilize Σc, we consider finite-dimensional LTI out-

put feedback controllers of the form

ż(t) =Fz(t) +Gy(t)

u(t) =Hz(t) +Ky(t)
, (3.3)

where z(t) ∈ Rl is the state of the controller at time t and F , G, H, and K are real

constant matrices. Here, the dimension of the controller, l ∈ N, is arbitrary. Notice

that when l = 0, (3.3) describes a static controller in the form of (2.26).

When the controllers of the form (3.3) are used, one possible option is to

let all the elements of all the controller matrices be free parameters. However, since

the input-output relation of the controller (3.3) is unique only up to a similarity

22

transformation, this option leads to a unnecessarily high number of free parameters

for optimization. Therefore, we structure the controllers in certain canonical forms

(see Section 3.1). In any one of these forms, the number of free parameters is equal

to

l̃ := l(q +m) + qm . (3.4)

Therefore, compared to the case when all the entries of all the controller matrices

are taken as free parameters (in which case the number of free parameters is l2 +

lq + lm+ qm), the number of free parameters are reduced by l2.

Considering (3.1) and (3.3), the closed-loop system, which will be indicated

by Σcl, can be described as

E η̇(t) = A0(p)η(t) +
σ∑
i=1

Aiη(t− hi) (3.5)

where η(t) :=
[
x(t)T y(t)T z(t)T u(t)T

]T
∈ Rñ is the new state vector at time

t, where ñ := n+m+ q + l,

E :=


E 0 0 0

0 0q×q 0 0

0 0 Il 0

0 0 0 0m×m

 , A0(p) :=


A0 0 0 B0

C0 −Iq 0 D0

0 G F 0

0 K H −Im

 ,

and, for i = 1, . . . , σ,

Ai :=


Ai 0 0 Bi

Ci 0q×q 0 Di

0 0 0l×l 0

0 0 0 0m×m

 .

Here, p ∈ Rl̃ denotes the vector of free controller parameters, where l̃ is given in

(3.4). Notice that only A0 depends on p, since the controller matrices appear only

in A0.

Furthermore, if rank(E) = n (i.e., if Σc is a retarded system), let

U = V :=


0n×q 0

Iq 0

0l×q 0

0 Im

 , (3.6)

23

otherwise,

U :=


U 0 0

0 Iq 0

0 0l×q 0

0 0 Im

 , V :=


V 0 0

0 Iq 0

0 0l×q 0

0 0 Im

 (3.7)

where U and V are as in (2.6). Also let Ũ ∈ Rñ×(n−n̄+l) and Ṽ ∈ Rñ×(n−n̄+l) be such

that

Ū :=
[
Ũ U

]
and V̄ :=

[
Ṽ V

]
are nonsingular. Note that, the closed-loop characteristic matrix is

φΣcl(s) := sE − Ā(s), where

Ā(s) :=
σ∑
i=0

Aie−shi . (3.8)

Then, the closed-loop system is well-posed, i.e., (2.28) is satisfied, if and only if

det

(
lim

Re(s)→+∞

(
sE − Ā(s)

))
= det

(
lim

Re(s)→+∞
ŪT
(
sE − Ā(s)

)
V̄
)
6= 0 (3.9)

Noting that lim
Re(s)→+∞

Ā(s) = A0 , this reduces to

det



UTA0V 0 UTB0

C0V −Iq D0

0 K −Im


 6= 0 . (3.10)

Recalling that UTA0V is nonsingular, this further reduces to

det
(
I −K

(
D0 − C0V (UTA0V)−1UTB0

))
6= 0 . (3.11)

Note that, when Σc is retarded, (3.11) reduces to

det (I −KD0) 6= 0 . (3.12)

Therefore, to guarantee the well-posed of the closed-loop system, K must be chosen

to satisfy (3.11) (or (3.12) when Σc is retarded).

On the other hand, the associated delay-difference equation of (3.5) is

H0(p)η̂(t) +
σ∑
i=1

Hiη̂(t− hi) = 0 , (3.13)

24

where η̂(·) ∈ Rn̂ is a dummy state vector, where n̂ := n̄ + m + q, where n̄ :=

n − rank(E). Also, H0(p) := UTA0(p)V , which depends only on the K matrix of

the controller, and, for i = 1, . . . , σ, Hi := UTAiV , which are independent of the

controller.

Note that, Σcl and the autonomous part of Σc are both in the form of (2.1).

Therefore, strong µ-stability of both the open-loop and closed-loop system can be

analyzed as for (2.1). Thus, the set of ε-modes, the strong µ-stability, c, CD, and

γµ can be defined as in Section 2.1.

In particular, Σcl is strongly µ-stable if and only if c(Σcl) < µ and CD(Σcl) <

µ, while the latter condition can also be expressed as γµ(Σcl) < 1. Since these

quantities depend on the free parameter vector, p ∈ Rl̃, of the controller, from here

on, for a particular p ∈ Rl̃, we will denote c(Σcl), CD(Σcl), and γµ(Σcl) as c(p),

CD(p), and γµ(p), respectively. We note, however, that, although c(p) depends on

the complete p ∈ Rl̃, in general, CD(p) and γµ(p) depend only on the K matrix,

since (3.13) depends only on the K matrix. Therefore, from hereafter, CD(p) and

γµ(p) will be denoted as CD(pK) and γµ(pK), exclusively, where pK is the part of

p that consist of the elements of K. Also note that γµ(pK) is finite for any µ ∈ R

if and only if (3.11) (or (3.12) when Σc is retarded) is satisfied. Therefore, keeping

γψ(pK) < 1, for any ψ ∈ R, also guarantees the well-posedness of the closed-loop

system.

It is worth to note that, even if the given system Σc is a retarded system, Σcl

would in general be a neutral system when Di 6= 0, for at least one i ∈ {1, . . . , σ}.

Furthermore, this result can also be generalized to the case of D0 6= 0, since any

feedback would introduce a delay in practice [46].

Hence, the aim is to design a controller of the form (3.3), i.e., to find an

l ∈ N and a p ∈ Rl̃, which makes Σcl strongly µ-stable. Here, l̃ depends on l through

(3.4). It is important to note that, since in practice any feedback controller would

introduce some time-delays, no matter how small, which are independent of the

time-delays of the given system, it is not possible to reduce CD(Σ) by feedback.

Because of this reason, hereafter, it is assumed that Σc satisfies CD(Σc) < µ, i.e.,

γµ(Σc) < 1. Furthermore, it is also assumed that Λc
µ(Σc) = ∅.

To achieve our aim, stated above, a nonsmooth optimization based method

25

is proposed. Before getting into the related optimization problem, the structure of

the controller matrices is introduced in the next section. Then, the optimization

problem is given in Section 3.2. In Section 3.3, the evaluation of the corresponding

objective function and its gradient is given. Then, the initialization procedure is

introduced in Section 3.4. Finally, the overall centralized controller design algorithm

is given in Section 3.5.

3.1. Structure of the Controller Matrices

Let the dimension of the output, y, be q and the dimension of the input,

u, be m. Then the controller has q inputs and m outputs. If q ≤ m, then the

multivariable controllable canonical form is used for the controller. If the dimension

of the controller, l, is greater than or equal to q, then the controller matrices take

the following form:

F =


0(l−q)×q Il−q

a1,1 . . . a1,l

...
...

aq,1 . . . aq,l

 , G =

0(l−q)×q

Iq

 ,

H =


c1,1 . . . c1,l

...
...

cm,1 . . . cm,l

 , K =


d1,1 . . . d1,q

...
...

dm,1 . . . dm,q

 .

(3.14)

where ai,j (i = 1, . . . , q, j = 1, . . . , l), ci,j (i = 1, . . . ,m, j = 1, . . . , l), and di,j

(i = 1, . . . ,m, j = 1, . . . , q) are the free parameters. If l < q, then the controller

matrices take the following form:

F =


a1,1 . . . a1,l

...
...

al,1 . . . al,l

 , G =


b1,1 . . . b1,q−l

Il
...

...

bl,1 . . . bl,q−l

 ,

H =


c1,1 . . . c1,l

...
...

cm,1 . . . cm,l

 , K =


d1,1 . . . d1,q

...
...

dm,1 . . . dm,q

 ,

(3.15)

where, ai,j (i = 1, . . . , l, j = 1, . . . , l), ci,j (i = 1, . . . ,m, j = 1, . . . , l), di,j (i =

1, . . . ,m, j = 1, . . . , q), and bi,j (i = 1, . . . , l, j = 1, . . . , q−l) are the free parameters.

26

If q > m, then the multivariable observable canonical form is used for the

controller. If l ≥ m then the controller matrices take the following form:

F =


0m×(l−m) a1,1 . . . a1,m

...
...

Il−m al,1 . . . al,m

 , G =


b1,1 . . . b1,q

...
...

bl,1 . . . bl,q



H =
[
0m×(l−m) Im

]
, K =


d1,1 . . . d1,q

...
...

dm,1 . . . dm,q


(3.16)

where ai,j (i = 1, . . . , l, j = 1, . . . ,m), bi,j (i = 1, . . . , l, j = 1, . . . , q), and di,j

(i = 1, . . . ,m, j = 1, . . . , q) are the free parameters. If l < m then the controller

matrices take the following form:

F =


a1,1 . . . a1,l

...
...

al,1 . . . al,l

 , G =


b1,1 . . . b1,q

...
...

bl,1 . . . bl,q

 ,

H =


Il

c1,1 . . . c1,l

...
...

cm−l,1 . . . cm−l,l

 , K =


d1,1 . . . d1,q

...
...

dm,1 . . . dm,q


(3.17)

where, ai,j (i = 1, . . . , l, j = 1, . . . , l), ci,j (i = 1, . . . ,m − l, j = 1, . . . , l), di,j (i =

1, . . . ,m, j = 1, . . . , q), and bi,j (i = 1, . . . , l, j = 1, . . . , q) are the free parameters.

Note that, in all the forms above, the number of free parameters is l̃, as

given in (3.4).

3.2. Optimization Problem

As it is stated in Section 2.1, Σcl is strongly µ-stable if and only if c(Σcl) < µ

and γµ(Σcl) < 1. The proposed method is based on minimizing c(p) over p such that,

for some ψ < µ, γψ(pK) < 1. Here, ψ ∈ R is the strong stability boundary introduced

for the infinite chains of modes. Since it is not possible, in practice, to reduce

CD(Σc), one should choose ψ > CD(Σc). This constrained optimization problem

can be reformulated as an unconstrained optimization problem, as in [12], by using

27

the so-called barrier method. By this way, the optimization problem becomes

min
p
f(p) (3.18)

where

f(p) := c(p)− r log(1− γψ(pK)) . (3.19)

Here, r > 0 is a weighting parameter and the logarithmic term is the barrier func-

tion, which is used to penalize c(p) for violations of the constraint γψ(pK) < 1. This

is achieved since f(p) converges to infinity as γψ(pK) approaches 1. Thus, if a local

minimizer, p∗, of (3.18) corresponds to c(p∗) < µ, then the controller corresponding

to p∗ strongly µ-stabilizes Σc.

Notice that, if Σc is a retarded system with Di = 0, i = 1, ..., σ, strong

µ-stability can be reduced to µ-stability only, thus, it is more practical to let

f(p) := c(p).

As indicated in [11], c(p) is a non-convex function of p. Therefore, there

might be several local minima. Furthermore, c(p) is nonsmooth when it is deter-

mined by more than one modes of (3.5) which have same real parts. However, for

almost every p, gradient of c(p) exists [12]. Furthermore, for almost every p, gradi-

ent of γψ(pK) exists, thus of f(p). Relying on that, the optimization problem (3.18)

can be solved by using a gradient based algorithm. However, standard gradient

based algorithms may fail because of the nonsmoothness of the objective function.

Therefore, a specialized algorithm must be employed. In this respect, the GS algo-

rithm of [19] and the BFGS method of [44] is used to solve (3.18). The details of the

optimization algorithms have already been given in Section 2.2. Furthermore, the

associated software package of these algorithms, named as HANSO, is embedded

to the developed software package.

The optimization algorithms of HANSO do not require any information

about the structure of the objective function f (such as subgradient or subdifferen-

tial formulas, partial smoothness of the function). Instead, a user-provided routine,

which returns the function value f(p) and the gradient vector ∇f(p) at p when-

ever f is differentiable at p, is needed. Indeed, considering the round-off errors, it

is impractical to determine whether f is differentiable at p or not in the sense of

numerical computation. The computation of f(p) and ∇f(p) are given in the next

28

section. Moreover, HANSO requires an initial parameter vector as a starting point.

In this respect, the developed initialization procedure is given in Section 3.4.

3.3. Evaluations of the Objective Function and Gradients

The first step in the computation of f(p) is the evaluation of γψ(pK) which

can be handled as given in Section 5.6. Then, the spectral abscissa, c(p), can be

calculated by computing the ε-modes of Σcl, for ψ < ε, as described in Section 5.3.

Once the set of ε-modes are computed, the spectral abscissa can be determined as

the real part of the rightmost ε-mode.

Accordingly, the partial derivative of f(p) w.r.t each controller parameter

can be calculated as,

∂c

∂pk
(p) +

r

1− γψ(pK)

(
∂γψ
∂pk

(pK)

)
. (3.20)

Firstly, the partial derivatives of c(p) can be obtained as the sensitivity

of the rightmost mode w.r.t the free parameters of the controller. If there exists

multiple of such (simple) modes, then, one of these modes is chosen. For, k = 1, ..., l̃,

it can be expressed as

∂c

∂pk
(p) = Re

 w∗
(
∂A0

∂pk
(p)
)
z

w∗ (E +
∑σ

i=1Aihie−sohi) z

 (3.21)

where E , A0(p), and Ai, i = 1, . . . , σ, are the matrices of the closed-loop system

written in the form (3.5), so is (one of) the right-most ε-mode(s) of Σcl, and w, z ∈

Cñ are non-zero vectors satisfying

w∗φ(so) = 0 , φ(so)z = 0 and w∗z = 1,

where φ(s) := sE − Ā(s) is the characteristic matrix of Σcl, where

Ā(s) := A0(p) +
σ∑
i=1

Aie−shi , (3.22)

and E ,Ai, for i = 0, . . . , σ, are as defined in (3.5).

Secondly, to find the partial derivatives of γψ(pK), let H0(pK) and Hi,

i = 1, . . . , σ, be the matrices in (3.13) and let

Ψ(pK) := (H0(pK))−1Ψ0 (3.23)

29

where

Ψ0 := H1e
−ψh1 (3.24)

if σ = 1, and, if σ ≥ 2,

Ψ0 := Ψ1(θ∗) (3.25)

where

Ψ1(θ) := H1e
−ψh1 +

σ∑
k=2

Hke
−ψhkejθk (3.26)

where θ := [θ2, . . . , θσ] ∈ [0, 2π]σ−1 and θ∗ ∈ [0, 2π]σ−1 is such that

ρ
((
H0(pK)

)−1
Ψ1(θ∗)

)
≥ ρ

((
H0(pK)

)−1
Ψ1(θ)

)
, ∀θ ∈ [0, 2π]σ−1 .

Then, let γ∗ be an eigenvalue of Ψ(pK) such that |γ∗| = ρ(Ψ(pK)). Note that,

γψ(pK) = |γ∗|. Furthermore, the partial derivatives of γψ(pK) can be found as

∂γψ
∂pKk

(pK) =
1

|γ∗|
Re

(
γ∗ŵ∗

[
∂Ψ

∂pKk
(pK)

]
ẑ

)
(3.27)

where ŵ, ẑ ∈ Cn̂ are the vectors satisfying

ŵ∗Ψ(pK) = γ∗ŵ∗ , Ψ(pK)ẑ = γ∗ẑ and ŵ∗ẑ = 1.

Furthermore,

∂Ψ

∂pKk
(pK) =

∂(H0(pK))−1

∂pKk
Ψo (3.28)

where

∂(H0(pK))−1

∂pKk
= (H0(pK))−1∂H0(pK)

∂pKk
(H0(pK))−1. (3.29)

3.4. Initialization of the Controller Parameters

The optimization algorithms of HANSO require an initial parameter vector,

which corresponds to an initial controller in our case, as a starting point. In the

software of [13], this vector is initialized randomly by a normal distribution centered

at zero unless a specific initial parameter vector is indicated. However, since the

30

optimization problem to be solved is not convex, a completely random initialization

may not always produce the desired result. Therefore, an initialization procedure

which aims to facilitate the convergence of the optimization algorithm was developed

in [22] and extended to the neutral case in [17]. Before outlining this procedure, let

us first define the blocking zeros of the open-loop system Σc.

Definition 3.1. Let

T (s) := C̄(s)
(
sE − Ā(s)

)−1
B̄(s) + D̄(s) (3.30)

be the transfer function matrix (TFM) of Σc, where Ā(s) :=
∑σ

i=0Aie
−shi , B̄(s) :=∑σ

i=0Bie
−shi , C̄(s) :=

∑σ
i=0Cie

−shi , and D̄(s) :=
∑σ

i=0 Die
−shi . Then, λ ∈ C is

said to be a blocking zero of Σc, if T (λ) = 0.

It is well-known that, in order to stabilize a real LTI system by a real LTI

controller, the controller must be chosen such that the open-loop system of the

controller and the given system satisfies the so-called parity interlacing property

(PIP) [47]. Therefore, in the initialization procedure of [22], the free parameters of

the F matrix are chosen such that the open-loop system satisfies PIP.

In this procedure, first an ε < µ is chosen. Then, a region D with the

boundaries ε ≤ Re(D) ≤ ξ and −δ ≤ Im(D) ≤ δ, where ξ is the rightmost real

ε-mode of Σc (if Σc does not have such a mode, then PIP is automatically satisfied

and we take lmin = 0) and δ is a small real number, is formed.

Then, the dynamics matrix of (3.3), F , is initialized such that it has one

real eigenvalue between any pair of blocking zeros in the prescribed region D with

an odd number of real modes of Σc between them and also one real eigenvalue to

the right of the rightmost blocking zero in the region D, if there is an odd number of

real modes to the right of that zero. Here, the complex-conjugate pairs of blocking

zeros within D are treated as real zeros in order not to force modes to move between

such zeros (which would require high gains - see [22] for details). The dimension of

the controller, l, is then initialized as lmin, which is the number of such eigenvalues

needed to satisfy PIP. If the dimension of the controller, l, has to be increased

beyond lmin during the controller design algorithm, then l− lmin eigenvalues (either

as real or as complex-conjugate pairs) are randomly chosen in the region C−ε . The

31

parameters of the F matrix are then determined such that F has those chosen

eigenvalues (see Section 5.8 for details).

On the other hand, the free parameters of the G and H matrices are ini-

tialized randomly according to a normal distribution centered at zero. However,

since Σcl may be a neutral system, γψ(pK) may be greater than or equal to 1, which

makes (3.18) infeasible from the very beginning. In order to avoid this situation,

the elements of the K matrix are chosen randomly according to a normal distri-

bution centered at zero so that γψ(pK) < 1. Otherwise, the magnitude of all the

elements of K must be reduced until this condition is satisfied (by the assumption

CD(Σc) < ψ, this condition is satisfied for a small enough K) (see Section 5.8 for

details).

3.5. Algorithm

In order to strongly µ-stabilize the given system Σc, for given µ and ψ, a

controller of the form (3.3) can be designed by using the following algorithm.

Centralized Controller Design Algorithm:

1) Choose pK0 randomly according to a normal distribution centered at zero so

that γψ(pK0) < 1.

2) Determine the minimum number of initial controller modes, indicated as lmin,

so that PIP is satisfied in the prescribed region D. Let l = lmin. If l > 0,

choose the initial controller modes s1, . . . , sl so that the open-loop system

satisfies PIP (see Section 3.4) and continue with the next step.

3) If l > lmin, choose slmin+1, . . . , sl randomly in C−ε . Then, if l > 0, choose

the free parameters of the F matrix such that F has eigenvalues s1, . . . , sl.

Then, choose the free parameters of G and H randomly according to a normal

distribution centered at zero. Then, initialize the p vector accordingly, where

the part of p that corresponds to the K matrix is pK0 .

4) Solve the optimization problem (3.18). Let the minimizer be p∗.

5) If c(p∗) < µ, stop: the controller corresponding to p∗ strongly µ-stabilizes the

given system Σc. Otherwise, let l = l + 1 and go back to step 3.

32

Since the optimization problem (3.18) is not convex, it is not guaranteed to

end up with a p∗ which corresponds to a strongly µ-stabilizing controller, i.e., it may

happen that c(p∗) ≥ µ no matter how large l is. However, let l∗ be the minimum

dimension so that there exists a controller of dimension l∗ which stabilizes Σc (under

the foregoing assumptions, there always exists such a l∗ [30]). Then, empirical

evidence has shown that, for some l ≥ l∗, solving the optimization problem (3.18)

for several starting points, which are chosen with a proper initialization procedure,

leads to a desired result. Therefore, it is advised to repeat steps 3 and 4 by using

different starting points (i.e., different slmin+1, . . . , sl values, different initial values

for the G and H matrices, and different pK0 , where each pK0 satisfies the condition

in step 1), before increasing the dimension of the controller in step 5.

33

4. DECENTRALIZED CONTROLLER DESIGN

Consider a decentralized LTI time-delay system Σ, with ν control agents,

which is described by (2.24) where the autonomous part of Σ and (2.1) are in the

same form. Furthermore, Σ describes a centralized system when ν = 1, i.e., Σ =

Σc. In order to µ-stabilize Σ, we consider finite-dimensional LTI output feedback

decentralized controllers, K1, . . . ,Kν , in the form of (2.30).

As it is stated in Section 2.3, µ-stabilizability of Σ is determined by its

fixed modes. Given that cD(Σ) < µ, the system Σ can be µ-stabilized by the

decentralized controllers (2.30) (with sufficiently large lj, j ∈ ν̄) if and only if

Λd
µ(Σ) = ∅. Therefore, hereafter, it is assumed that Σ does not have any µ-DFMs.

Furthermore, as it is emphasized in Section 2.1 and also taken into account in

Chapter 3, the strong µ-stability, rather than µ-stability, is aimed. Therefore, it

must be provided that CD(Σ) < µ.

The proposed method is based on the decentralized controller design algo-

rithm of [22], where the controller design algorithm given in Section 3.5 is employed

to design a centralized controller for each agent.

Suppose that, for some s < ν, decentralized controllers K1, . . . ,Ks of the

form (2.30) have been designed. Let Σs denote the decentralized control system

with ν − s control agents which is obtained by applying the controllers K1, . . . ,Ks
to the first s channels (in this notation Σ0 denotes the open-loop system Σ). Let

Σc
s denote the centralized system obtained from Σs by taking us+1 as the only

input and ys+1 as the only output. In order to describe Σc
s, let ms :=

∑s
j=1mj,

qs :=
∑s

j=1 qj and ls :=
∑s

j=1 lj. Also define us(t) := [uT1 (t) · · · uTs (t)]T ∈ Rms ,

ys(t) := [yT1 (t) · · · yTs (t)]T ∈ Rqs and zs(t) := [zT1 (t) · · · zTs (t)]T ∈ Rls . Then, the

first s controllers can be compactly represented as

żs(t) =F szs(t) +Gsys(t)

us(t) =Hszs(t) +Ksys(t)
(4.1)

34

where

F s := bdiag(F1, ..., Fs) ,

Gs := bdiag(G1, ..., Gs) ,

Hs := bdiag(H1, ..., Hs) ,

Ks := bdiag(K1, ..., Ks) .

Finally, define the “new state vector”:

ηs(t) :=
[
x(t)T ys(t)T zs(t)T us(t)T

]T
∈ Rn+ms+qs+ls . (4.2)

Then, Σc
s can be described as

Êsη̇(t) =
σ∑
i=0

(
Âsiηs(t− hi) + B̂s

i us+1(t− hi)
)

ys+1(t) =
σ∑
i=0

(
Ĉs
i ηs(t− hi) +Ds+1,s+1,ius+1(t− hi)

) (4.3)

where

Ês :=


E 0 0 0

0 0qs 0 0

0 0 Ils 0

0 0 0 0ms

 , Âs0 :=


A0 0 0 Bs

0

Cs
0 −Iqs 0 Ds

0

0 Gs F s 0

0 Ks Hs −Ims

 ,

Âsi :=


Ai 0 0 Bs

i

Cs
i 0qs 0 Ds

i

0 0 0ls 0

0 0 0 0ms

 , i = 1, . . . , σ

and, for i = 0, . . . , σ,

B̂s
i :=



Bs+1,i

D1,s+1,i

...

Ds,s+1,i

0(ls+ms)×ms


, Ĉs

i :=
[
Cs+1,i 0qs+1×(qs+ls) Ds+1,1,i . . . Ds+1,s,i

]
.

35

Note that, since (3.5) describes the autonomous part of (4.3) for s =

1, . . . , ν, the well-posed of Σc
s is guaranteed when Ks is chosen so that (3.11) is

satisfied (or (3.12) when Σc
s−1 is retarded).

The decentralized controller design algorithm designs a controller Ks+1 of

the form (2.30) to strongly µ-stabilize Σc
s, except for its µ-CFMs, for each s =

1, . . . , ν − 1, sequentially. Since each CFM of any Σc
s should appear as a non-fixed

mode of Σc
r for some r > s with probability one as long as it is not a DFM (follows

from the arguments of [34] - see [22]), this strategy results in a strongly µ-stabilizing

overall decentralized controller for Σ, as long as CD(Σ) < µ and Λd
µ(Σ) = ∅.

In the design of Ks+1, for s = 1, . . . , ν− 1, the centralized controller design

algorithm, which utilizes the nonsmooth optimization algorithms together with the

initialization procedure given in Section 3.4, is employed. But, this algorithm must

be modified when it is used in the decentralized controller design.

First of all, it is assumed that (3.1) is output feedback µ-stabilizable, i.e.,

besides CD(Σc) < µ, Λc
µ(Σc) = ∅. However, in a decentralized framework, even

though the overall system does not have any µ-DFMs, the system from a particular

input channel to the corresponding output channel may have µ-CFMs. In the exis-

tence of a µ-CFM, the optimization procedure will be stuck at such a mode. There-

fore, the optimization problem (3.18) must be modified so that only the modes,

which are not CFMs of Σc are considered. From here on, we refer to these modes

as the non-fixed modes. Thus, the spectral abscissa function, c(Σcl) is re-defined as

c̄(Σcl) := sup
{
ζ ∈ R | Ωζ(Σ

cl) \ Λc
ζ(Σ

c
s) 6= ∅

}
, (4.4)

where Σcl denotes the closed-loop system obtained by applying the controller Ks+1

to the system Σc
s.

Secondly, the initialization procedure given in Section 3.4 and the associ-

ated steps of the centralized controller design algorithm must be modified so that

only the non-fixed modes are considered.

Therefore, Ks+1 is designed such that c̄(Σcl) < µ and γψ(Σcl) < 1, for some

ψ ∈ R, satisfying CD(Σ) < ψ < µ. Note that, the requirement γψ(Σcl) < 1 also

guarantees the well-posedness of Σcl.

The overall decentralized controller design algorithm is given as follows.

36

Decentralized Controller Design Algorithm:

1) Fix the upper limits, l̂1, . . . , l̂ν on the dimensions of the decentralized con-

trollers.

2) Let k = 0. Let Σc
0 indicate the centralized system obtained from Σ by taking

u1 as the only input and y1 as the only output.

3) If Σc
k is strongly µ-stable, except for its µ-CFMs, choose a random non-zero

Kk+1 ∈ Rmk+1×qk+1 such that the closed-loop system obtained by applying

the static output feedback uk+1(t) = Kk+1yk+1(t) to Σc
k is strongly µ-stable,

except for its µ-CFMs (by the continuity of the modes with respect to the

feedback gains, there exists such a Kk+1 - see [48]). Indicate this controller as

K∗k+1 and go to step 7. Otherwise, continue with step 4.

4) Determine the minimum dimension, lmin
k+1, of the controller for Σc

k so that the

system obtained by cascading Σc
k by the controller satisfies PIP, except for

the fixed-modes of Σc
k (see Section 3.4). Let lk+1 = lmin

k+1. If lk+1 > l̂k+1, let

l̂k+1 = lk+1 + ln step where ln step is some predetermined positive integer.

5) Design lk+1-dimensional controller, K, which is structured as in Section 3.1, in

order to make Σcl
k strongly µ-stable, except for its µ-CFMs. If such a controller

is obtained indicate the corresponding controller K as K∗k+1 and go to step 7.

Otherwise, continue with step 6.

6) If lk+1 < l̂k+1, let lk+1 = lk+1 + 1 and go to step 5. Otherwise, indicate the

last obtained controller K as K∗k+1 and go to step 7.

7) Apply the controller K∗k+1 to the system Σk to obtain Σk+1. If k = ν − 1,

go to step 8. Otherwise, let Σc
k+1 indicate the system obtained from Σk+1 by

taking uk+2 as the only input and yk+2 as the only output. Let k = k+ 1 and

go to step 3.

8) If the overall closed-loop system, Σcl
ν is strongly µ-stable, stop: the desired

decentralized controller has been obtained as K∗1, . . . ,K∗ν . Otherwise, go to

step 9.

37

9) If Σ1 has some non-fixed µ-modes, let m = 1. Otherwise, determine m > 1

such that Σ1, . . ., Σm−1 are all µ-stable, except for their µ-CFMs, but Σm is

not. Let k = m− 1, l̂m = l̂m + ln step, and lm = lm + 1, and go to step 5.

In the first step of the above algorithm, upper limits are defined to avoid us-

ing unnecessarily high-dimensional controllers for the lower indexed control agents.

The reason for applying a static output feedback controller in step 3, whenever Σc
k

is µ-stable, except for its µ-CFMs, is to make sure that any µ-mode of Σ, which

is not a µ-DFM, is a non-fixed mode of Σc
s, for some s > k (so that it can be

eventually moved towards C−µ). As indicated in [34], if such a feedback loop is not

closed, some µ-modes may not appear as non-fixed modes of Σc
s for any s, even if

they are not µ-DFMs.

38

5. SOFTWARE (DCD-TDS v1.0)

As a main objective, the software package DCD-TDS is developed to design

centralized or decentralized controllers to stabilize time-delay systems. In particu-

lar, if the given time-delay system is centralized in the form of (3.1), then a central-

ized controller in the form of (3.3) is designed by applying the centralized controller

design algorithm with all its utilities given in Chapter 3. Otherwise, if the given

system is decentralized in the form of (2.24), then decentralized controllers in the

form of (2.30) are designed by using the decentralized controller design algorithm

which employs the centralized controller design algorithm. Furthermore, DCD-TDS

has ability to analyze the spectral properties of a given time-delay system. It should

be noted that, DCD-TDS makes use of the slightly customized version of related

functions in the software package TDS STABIL [13].

In the subsequent sections, the main modules of the DCD-TDS are intro-

duced with the associated functions. However, other than these functions, there

exist sub-functions which are used either in the analysis or design phase of the

software. The complete collection of these functions can be found in the software

package.

Since, it is not practical to manage all the functions of DCD-TDS, a user-

friendly Graphical-User-Interface (GUI), which provides an efficient utilization, is

developed. This tool makes use of the developed functions of DCD-TDS, system-

atically. In the last Section, the GUI is introduced.

5.1. System and Controller Definition

To define a system of the form (2.25), a MATLAB function, called

tds create, has been created. This function has the same name as the related

function in the TDS STABIL software [13], which was developed for centralized

time-delay systems. In fact, the current function is a generalization of tds create

in TDS STABIL to the decentralized case. In order to create the system object,

39

systematically, we consider the system in the form (2.25) as

˙̂x(t) +
me∑
i=1

(
Êi ˙̂x(t− hei)

)
=

ma∑
i=1

(
Âix̂(t− hai)

)
+

ν∑
j=1

mbj∑
i=1

(
B̂(j,i)uj(t− hb(j,i))

)

yj(t) =

mcj∑
i=1

(
Ĉ(j,i)x̂(t− hc(j,i))

)
+

ν∑
k=1

md
(j,k)∑
i=1

(
D̂(j,k,i)uk(t− hd(j,k,i))

)
, j ∈ ν̄

(5.1)

where t is the time variable, x̂(t) ∈ Rñ is the state vector at time t, and uj(t) ∈

Rmj and yj(t) ∈ Rqj are, respectively, the input and the output vectors at time

t, accessible by the jth control agent (j ∈ ν̄). The matrices Êi, Âi, B̂(j,i), Ĉ(j,i)

and D̂(j,k,i) are constant real matrices. The number of distinct time-delays involved

in the derivative of the state, in the state, in the inputs, at the outputs, and in

the direct connections from the inputs to the outputs are indicated by the non-

negative integers me, ma, mb
j, m

c
j and md

(j,k) (j ∈ ν̄, k ∈ ν̄), respectively. Finally,

hei ∈ (0, hmax], hai , h
b
(j,i), h

c
(j,i), h

d
(j,k,i) ∈ [0, hmax] are the time-delays, where hmax ≥ 0

is the maximum time-delay in the system. Note that hei is positive for all i ∈ me.

However, some of hai , h
b
(j,i), h

c
(j,i), and hd(j,k,i) may be zero for some i, j, k, which

would correspond to the delay-free part.

According to system definition (5.1), the function can be called in two

different ways. For a retarded decentralized control system (i.e., when me = 0), it

is called as

>> tds =tds create(A, hA,B1, hB1, ..., Bn, hBn,C1, hC1, ..., Cn, hCn,

D11, hD11, ..., D1n, hD1n, ..., Dn1, hDn1, ..., Dnn, hDnn,metadata)

For a neutral decentralized control system (i.e., when me 6= 0), on the other hand,

it is called as

>> tds =tds create(E, hE,A, hA,B1, hB1, ..., Bn, hBn,C1, hC1, ..., Cn, hCn,

D11, hD11, ..., D1n, hD1n, ..., Dn1, hDn1, ..., Dnn, hDnn,metadata)

Here, metadata is a struct which consist of several fields. These fields define certain

properties of the system object. In particular, before calling the above function,

two properties of the system must be predefined as

>> metadata.Nagent =ν;

>> metadata.systype =′id′;

40

where the first field of metadata specifies the number of control agents (i.e., ν) and

the second one is used as an identifier of the system type (′retarded′ for a retarded

system and ′neutral′ for a neutral system). Furthermore, the cell arrays of system

matrices and vectors of system delays are defined as follows:

E = {Ê1, . . . , Ême},

hE = [he1, . . . , h
e
me],

A = {Â1, . . . , Âma},

hA = [ha1, . . . , h
a
ma],

B1 = {B̂(1,1), . . . , B̂(1,mb1)},

hB1 = [hb(1,1), . . . , h
b
(1,mb1)],

...

Bn = {B̂(ν,1), . . . , B̂(ν,mbν)},

hBn = [hb(ν,1), . . . , h
b
(ν,mbν)],

C1 = {Ĉ(1,1), . . . , Ĉ(1,mc1)},

hC1 = [hc(1,1), . . . , h
c
(1,mc1)],

...

Cn = {Ĉ(ν,1), . . . , Ĉ(ν,mcν)},

hCn = [hc(ν,1), . . . , h
c
(ν,mcν)],

D11 = {D̂(1,1,1), . . . , D̂(1,1,md
(1,1)

)},

hD11 = [hd(1,1,1), . . . , h
d
(1,1,md

(1,1)
)],

...D1n = {D̂(1,ν,1), . . . , D̂(1,ν,md
(1,ν)

)},

hD1n = [hd(1,ν,1), . . . , h
d
(1,ν,md

(1,ν)
)],

...

Dn1 = {D̂(ν,1,1), . . . , D̂(ν,1,md
(ν,1)

)},

hDn1 = [hd(ν,1,1), . . . , h
d
(ν,1,md

(ν,1)
)],

...

41

Dnn = {D̂(ν,ν,1), . . . , D̂(ν,ν,md
(ν,ν)

)},

hDnn = [hd(ν,ν,1), . . . , h
d
(ν,ν,md

(ν,ν)
)] .

It should be noted that, the time-delays in (5.1) with same superscript must

be distinct. Therefore, even if the user enter same delays with same superscript

while defining (5.1), this function sums up all the matrices which corresponds to

the same delay, hence, creates a system object in the form (2.25) with distinct

delays.

Following the same procedure given in Section 2.3, by defining

δe(t) := x̂(t) +
∑me

i=1

(
Êix̂(t−hei)

)
and x(t) :=

[
δe(t)

T x̂(t)T
]T
∈ Rn, the system,

described by (5.1), can alternatively be rewritten as

Eẋ(t) = A0x(t) +
mae∑
i=1

(
Aix(t− haei)

)
+

ν∑
j=1

mbj∑
i=1

(
B(j,i)uj(t− hb(j,i))

)

yj(t) =

mcj∑
i=1

(
C(j,i)x(t− hc(j,i))

)
+

ν∑
k=1

md
(j,k)∑
i=1

(
D(j,k,i)uk(t− hd(j,k,i))

)
, j ∈ ν

(5.2)

where

{hae1 , . . . , h
ae
mae} := {{ha1, . . . , hama}\{0}} ∪ {he1, . . . , heme} ,

E :=

Iñ 0

0 0ñ×ñ

 , A0 :=

 0
ˆ̂
A0

−Iñ Iñ

 , Ai :=

0
ˆ̂
Ai

0
ˆ̂
Ei

 , i = 1, . . . ,mae ,

and, for j, k ∈ ν̄,

B(j,i) :=

B̂(j,i)

0n̂×pj

 , i = 1, . . . ,mmbj ,

C(j,i) :=
[
0qj×n̂ Ĉ(j,i)

]
, i = 1, . . . ,mmcj ,

D(j,k,i) := D̂(j,k,i) , i = 1, . . . ,mmdj

where

ˆ̂
A0 :=

 Âr, if ha
r = 0

0n̂×n̂, if 0 /∈ {ha
1, . . . , h

a
ma}

,

42

ˆ̂
Ai :=

 Âr, if hae
i = ha

r

0n̂×n̂, if hae
i /∈ {ha

1, . . . , h
a
ma}

, i = 1, . . . ,mae ,

and

ˆ̃Ei :=

 Êr, if hae
i = he

r

0n̂×n̂, if hae
i /∈ {he

1, . . . , h
e
me}

, i = 1, . . . ,mae .

As it is stated in Section 2.3, the form (5.2) is more convenient to work

with. Therefore, in the software, the system in the form (5.1) is first converted to

the form (5.2). The function developed for this purpose is called as

>> openDDAE = tds2DDAE(tds);

where tds is the system object in the form (5.1) and openDDAE is the one in the

form (5.2).

Furthermore, a controller object, which corresponds to (3.3), may need to

be created as well. The function which is developed to create controller object is

named as controller create. To define a static controller, it can be called as

>> controller = controller create(K)

where controller is the created controller object and K is the control gain matrix.

To define a dynamic controller, it can be called as

>> controller = controller create(F,G,H,K)

where F , G, H, and K are, respectively, the dynamics, the input, the output, and

the static gain matrices of the controller.

5.2. Closed-Loop System Definition

In this module, the functions which are used to obtain closed-loop system

objects are presented. Now, suppose that s (s ≤ ν) controllers, controlller1, . . .,

controllers, of the form (2.30), have been obtained for a decentralized control sys-

tem with ν control agents. The decentralized controller design algorithm requires

obtaining a description of the decentralized control system, to be denoted by Σs,

with the remaining ν − s control agents after the first s loops have been closed.

43

The associated system object of Σs, obtained by closing the first s loops

with controlller1, . . ., controllers, which can be compactly represented by (4.1),

can be described, by defining a new state vector

ηs(t) :=
[
x(t)T ys(t)T zs(t)T us(t)T

]T
, (5.3)

as follows:
E 0 0 0

0 0 0 0

0 0 Ils 0

0 0 0 0

 η̇s(t) =


A0 0 0 B̂

s

0

Ĉ
s

0 −Iqs 0 D̂
s

0

0 Gs F s 0

0 Ks Hs −Ips

 ηs(t)

+
ms∑
i=1


Âi 0 0 B̂

s

i

Ĉ
s

i 0 0 D̂
s

i

0 0 0 0

0 0 0 0

 ηs(t− h
s
i) +

ν∑
j=s+1

m̂bj∑
i=1

B̂(j,i)uj(t− ĥb(j,i))

yj(t) =

m̂cj∑
i=1

Ĉ(j,i)ηs(t− ĥci) +
ν∑

k=s+1

md
(j,k)∑
i=1

D(j,k,i)uk(t− hd(j,k,i)),

(5.4)

j = s+ 1, . . . , ν, where

B̂
s

0 :=
[

ˆ̂
B(1,0) · · ·

ˆ̂
B(s,0)

]
, Ĉ

s

0 :=
[

ˆ̂
CT

(1,0) · · ·
ˆ̂
CT

(s,0)

]T
,

D̂
s

0 :=


ˆ̂
D1,1,0, . . .

ˆ̂
D1,s,0

...
. . .

...

ˆ̂
Ds,1,0 . . .

ˆ̂
Ds,s,0

 ,

where, for j, k ∈ ν̄,

ˆ̂
B(j,0) :=

B(j,r), if hb
(j,r) = 0

0n×pj , if 0 /∈ {hb
(j,1), . . . , h

b
(j,mb

j)
}
,

ˆ̂
C(j,0) :=

C(j,r), if hc
(j,r) = 0

0qj×n, if 0 /∈ {hc
(j,1), . . . , h

c
(j,mc

j)}
,

ˆ̂
D(j,k,0) :=

D(j,k,r), if hd
(j,k,r) = 0

0qj×pj , if 0 /∈ {hd
(j,k,1), . . . , h

d
(j,k,md

(j,k)

}
,

44

and, for i = 1, . . . ,ms,

Âi :=

 Ar, if hs
i = hae

r

0n×n, if hs
i /∈ {hae

1 , . . . , h
ae
mae}

,

B̂
s

i :=
[

ˆ̂
B(1,i) · · ·

ˆ̂
B(s,i)

]
, Ĉ

s

i :=
[

ˆ̂
CT

(1,i) · · ·
ˆ̂
CT

(s,i)

]T
,

and

D̂
s

i :=


ˆ̂
D(1,1,i), . . .

ˆ̂
D(1,s,i)

...
. . .

...

ˆ̂
D(s,1,i) . . .

ˆ̂
D(s,s,i)

 ,

where, for j, k ∈ s,

ˆ̂
B(j,i) :=

B(j,r), if hs
i = hb

(j,r)

0n×pj , if hs
i /∈ {hb

(j,1), . . . , h
b
(j,mb

j)
}
,

ˆ̂
C(j,i) :=

C(j,r), if hs
i = hc

(j,r)

0qj×n, if hs
i /∈ {hc

(j,1), . . . , h
c
(j,mc

j)}
,

and

ˆ̂
D(j,k,i) :=

D(j,k,r), if hs
i = hd

(j,k,r)

0qj×pj , if hs
i /∈ {hd

(j,k,1), . . . , h
d
(j,k,md

(j,k)
)
}
.

Furthermore, for j = s+ 1, . . . , ν,

B̂(j,i) :=
[

ˆ̃BT
(j,i)

ˆ̃DT
(1,j,i) · · ·

ˆ̃DT
(s,j,i) 0pj×(ls+ps)

]T
and

Ĉ(j,i) :=
[

ˆ̃C(j,i) 0qj×(qs+ls)
ˆ̃D(j,1,i) · · ·

ˆ̃D(j,s,i)

]
,

where, for i = 1, . . . , m̂b
j,

ˆ̃B(j,i) :=

B(j,r), if ĥb
(j,i) = hb

(j,r)

0n×pj , if ĥb
(j,i) /∈ {hb

(j,1), . . . , h
b
(j,mb

j)
}
,

45

and, for k ∈ s,

ˆ̃D(k,j,i) :=

D(k,j,r), if ĥb
(j,i) = hd

(k,j,r)

0qk×pj , if ĥb
(j,i) /∈ {hd

(k,j,1), . . . , h
d
(k,j,md

(k,j)
)
}
,

and, for i = 1, . . . , m̂c
j,

ˆ̃C(j,i) :=

C(j,r), if ĥc
(j,i) = hc

(j,r)

0qj×n, if ĥc
(j,i) /∈ {hc

(j,1), . . . , h
c
(j,mc

j)}
,

and, for k ∈ s,

ˆ̃D(j,k,i) :=

D(j,k,r), if ĥc
(j,i) = hd

(j,k,r)

0qj×pk , if ĥc
(j,i) /∈ {hd

(j,k,1), . . . , h
d
(j,k,md

(j,k)
)
}
.

Also, it is defined that

{hs1, . . . , hsms} :=
{
{hae1 , . . . , h

ae
mae} ∪ h̄bs ∪ h̄cs ∪ h̄ds

}
\{0}

where

h̄bs :=
s⋃
j=1

{
hb(j,1), . . . , h

b
(j,mbj)

}
,

h̄cs :=
s⋃
j=1

{
hc(j,1), . . . , h

c
(j,mcj)

}
,

and

h̄ds :=
s⋃
j=1

s⋃
k=1

{
hb(j,k,1), . . . , h

d(
j,k,md

(j,k)

)} .

Furthermore, for j = s+ 1, . . . , ν, define{
ĥb(j,1), . . . , ĥ

b
(j,m̂bj)

}
:=
{
hb(j,1), . . . , h

b
(j,mbj)

}⋃{
s⋃

k=1

{
hd(k,j,1), . . . , h

d
(k,j,md

(k,j)
)

}}
and{
ĥc(j,1), . . . , ĥ

c
(j,m̂cj)

}
:=
{
hc(j,1), . . . , h

c
(j,mcj)

}⋃{
s⋃

k=1

{
hd(j,k,1), . . . , h

d
(j,k,md

(j,k)
)

}}
.

The function loop close creates the system described by (5.4). It can be

called as

>> res DDAE = loop close(openDDAE, controller1, . . . , controllers)

46

Here, res DDAE is the resulting system and openDDAE is the original system.

By this way, for s = ν, the overall closed-loop system can ben obtained. Thus, the

overall closed-loop system is described as


E 0 0 0

0 0 0 0

0 0 Ilν 0

0 0 0 0

 η̇ν(t) =


Â0 0 0 B̂

ν

0

Ĉ
ν

0 −Iqν 0 D̂
ν

0

0 Ĝν F̂ ν 0

0 K̂ν Ĥν −Ipν

 ην(t)

+
mν∑
i=1


Âi 0 0 B̂

ν

i

Ĉ
ν

i 0 0 D̂
ν

i

0 0 0 0

0 0 0 0

 ην(t− h
ν
i)

(5.5)

We note that in the case lj = 0, for some or all j ∈ ν̄, the descriptions given

in (5.4) and (5.5) are still valid, except that in this case zj(t) would be missing in

(5.3) and the matrices Fj, Gj, and Hj would be missing in (5.4) and (5.5).

Furthermore, considering a centralized system (5.2) (for ν = 1) and a

controller in the form of (3.3), where all the entries of the controller matrices is

zero, one can obtain the closed-loop system by calling

>> closedDDAE = getclosedDDAE(openDDAE,Nz)

where openDDAE is the system object created by the function tds2DDAE, Nz

is the dimension of the controller (i.e., l), and closedDDAE is the closed-loop

system object in the form of (3.5). Once such a closed-loop system, which can be

considered as a template since the entries of the controller matrices are all zero, is

obtained, one can obtain the true closed-loop system by placing the free parameters

of the controller in their exact places according to the controller structure used (see

Section 5.7).

5.3. Computation of ε-modes

This module includes functions to compute the set of the ε-modes, defined

as in Section 2.1, of a system whose autonomous part can be described by (2.1).

47

Such modes, however, can be computed only when there are finitely many of them.

As explained in Section 2.1, such would be the case if ε > cD, where cD is given

by (2.10). However, as discussed in Section 2.1, cD is not robust to perturbations

in the delays. Therefore, we use CD instead of cD (see Section 5.6). Once CD is

computed, the ε-modes, for any ε > CD, of (2.1) can be computed by the spectral

discretization approach of [13], which extends the approach of [49] to systems whose

autonomous part can be described by DDAEs.

The present function used for this purpose is only a slightly customized ver-

sion of the function of TDS STABIL software. This function is named as

compute roots DDAE and can be called as

>> eigenvalues = compute roots DDAE(ddae, rootoptions)

where ddae is the system object whose autonomous part is in the form of (2.1)

(e.g., created by the tds create function and transformed to the form (5.2) by

using tds2DDAE function - see Section 5.1) and eigenvalues is the set of modes

computed. The rootoptions are same as in the TDS STABIL software and are

defined as follows:

• minimal real part is the ε value for which ε-modes are to be computed. The

default value is −1.

• max size eigenvalue problem is the limit of the number of discretization

points for the characteristic roots computations. The default value is 1000.

• newton max iterations is the maximum number of Newton iterations to

correct characteristic roots. The default value is 20.

• root accuracy is the norm on the residual which is used as the stopping

criterion for the Newton’s method. The default value is 10−10.

• commensurate basic delay is the basic delay h in the case of commensurate

delays. The use of this option is optional and, if used, may speed up the

computations if all the delays are commensurate.

• number grid points p is the number of grid points in the [0, 2π) interval

for the discretization. The default value is 20.

48

• new basic delay q is used for approximating delays by commensurate de-

lays. The default value is 100.

Although there are infinitely many ε-modes, for ε < CD, there will be

finitely many ε-modes for any finite ε̄ which satisfies −ε̄ ≤ Im(s) ≤ ε̄. Relying on

that, the ε-modes of (2.1) can be computed in a predetermined region. For this

purpose, quasi-polynomial mapping based root-finder (QPmR) algorithm of [50] is

used. This algorithm is developed for computing all the roots of a quasi-polynomial

located in a predefined bounded region R of the complex plane. The input argu-

ments of QPMR are the function whose roots are to be found and the region R

specified by its minimum and maximum boundaries of its real and imaginary parts.

The approach behind this function is based on mapping the real and imaginary

parts of the quasi-polynomial in the complex plane using the level curve tracing

algorithm [51]. In order to compute the ε-modes of (2.1) in a predetermined region,

a function named as QPmR roots can be called as

>> eigenvalues = QPmR roots(ddae, options)

where ddae is the system object whose autonomous part is in the form of (2.1) and

eigenvalues is the set of modes computed. The qpmroptions are the options of

QPmR itself and are defined as follows:

• region is a vector, whose elements specify the boundaries of the region, and

in the form of [real min real max imag min imag max], where the first two

elements indicate the left and right hand side boundaries, respectively, and

the last two elements indicate the upper and lower boundaries, respectively.

• e specifies the computation accuracy. If e=-1, then e=10−3*ds.

• ds specifies the grid step for mapping the zero-level curves. If ds=-1, the grid

step is adjusted automatically.

5.4. Computation of ε-fixed modes

As it is indicated in Section 2.3, given that µ > cD, in order to determine

whether or not it is possible to µ-stabilize a system of the form (2.24), it suffices to

compute Λd
ε (Σ), for some ε < µ.

49

There are two main methods to compute Λd
ε (Σ). First one is called as rank

test, which is based on the rank test given by (2.32) in Lemma 1. In order to

determine Λd
ε (Σ), Ωε(Σ) must first be obtained. Then, for each s0 ∈ Ωε(Σ), the

rank test in Lemma 1 must be carried out to determine whether s0 ∈ Λd
ε (Σ).

The other method to compute Λd
ε (Σ) is named as numerical procedure and is

based on the algorithm, which was originally presented in [34] for finite-dimensional

systems. In this method, different static output feedback controllers are generated

by using a random number generator, then, the ε-modes of the closed-loop systems

are computed in order to determine whether a certain ε-mode remains fixed or not.

Here, the closed-loop system is obtained by using the functions given in Section 5.2.

It should be noted that, the numerical procedure gives Λd
ε (Σ) with proba-

bility 1. Therefore, the rank test is more certain than the numerical procedure as

long as the rank computation is reliable.

In both methods, the common step is the calculation of the ε-modes.

In the function developed for this module, this step is carried out by using the

compute roots DDAE function explained in the previous section.

Note that, either of the above methods can also be used to determine the

µ-CFMs by defining ν = 1 and using u(t) and y(t), defined in (2.27), as the input

and the output vector, respectively.

The function developed to find the set of ε-CFMs or ε-DFMs is named as

tds fm and is called as follows:

>> fms = tds fm(ddae, options)

where ddae is the system object (created, e.g., as explained in Section 5.1) and

fms is the resulting set of ε-DFMs (or ε-CFMs if ν = 1). Here the options include

all the options of the function compute roots DDAE, as explained in the previous

section. The particular options are as follows:

• method specifies the method to be used to calculate the fixed modes. When

set to ′rt′ (which is the default) the rank test is used. When set to ′np′ the

numerical procedure is used.

• root accuracy fm is used only when the method is set to ′np′ and specifies

50

the maximum allowed difference between eigenvalues in the computational

procedure. The default value for this option is 10−5.

5.5. Computation of γψ

In order to compute (2.11), for some ψ ∈ R, a predictor-corrector approach

is used, as it was done in [13]. In the prediction step, Dekker-Brents method is

used, where the evaluations are approximated by restricting each θi to a grid. The

function used to compute γψ is the same function as in TDS STABIL and is called

as

>> gamma psi = computegammapsi(diff, psi)

where the output of this function is the computed value of γψ and diff can be

obtained by calling the function getdiff as

>> diff = getdiff(ddae)

where ddae is a system object and diff corresponds to the associated DDE in the

form of (2.7).

5.6. Computation of ε-blocking zeros

In order to carry out the initialization procedure, given in Section 3.4, real

blocking zeros of a centralized system, Σc
s, which is obtained from Σs by taking us+1

as the only input and ys+1 as the only output, with real part greater than or equal

to ε, must be computed. In order to obtain Σc
s, function getcentralizedtds can be

called as

>> DDAE c = getcentralizedtds(openDDAE, agentno)

where openDDAE is a centralized system object and agentno specifies s. Then,

the TFM of the system Σc
s must be obtained as in (3.30). In order to construct

TFM, a MATLAB function tds evaltf has been developed. This function is called

as

>> TFM = tds evaltf(DDAE c)

51

where ddae c is the centralized system object and TFM is a symbolic representation

of (3.30).

Once the TFM is obtained, the ε-blocking zeros can be computed by calling

>> bzeros = computebzeros(TFM, region)

where TFM is a symbolic representation of (3.30) and region is a vector, whose

elements specify the boundaries of the region where the first two elements indicate

the left and right hand side boundaries, respectively, and the last two elements

indicate the lower and upper boundaries, respectively.

The real ε-blocking zeros of (3.30) can be calculated by computing the

common real ε-blocking zeros of the elements of (3.30) which are quasi-polynomials.

In order to compute the roots of a quasi-polynomial, we use a MATLAB based quasi-

polynomial mapping based root-finder (QPmR) algorithm [50]. It should be noted

that, if Σc
s is a single-input single-output system, then there is only one element

of (3.30). However, if Σc
s is a multi-input multi-output system, then there will be

more than one elements of (3.30). In the latter case, first the real ε-blocking zeros of

one of the elements of (3.30) are computed. Then, each of these blocking zeros are

substituted in the other elements of (3.30) to test whether it is a common blocking

zero of all the elements of (3.30), and hence whether it is actually a blocking zero

of (3.30).

5.7. Controller Structure

To form the controller matrices in one of the forms described in Section 3.1,

a MATLAB function named as cont form has been developed. This function is

called as

>> [GFKHtemp, free index] = controller form(m, q, l)

where p, q, and l are the number of output, input, and dimension of the controller,

respectively. The function returns GFKHtemp, which contains the controller ma-

trices in the form

GFKHtemp =

G F

K H

 (5.6)

52

where F , G, H, and K are in one of (determined by m, q, and l as explained) the

canonical forms (3.14)–(3.17), where all the free parameters are zero. The function

also returns free index, which is a l̃×2 dimensional matrix, whose kth row contains

the row and column index of the kth free parameter (i.e., the kth element of the

parameter vector p of Section 3.1) in the matrix GFKHtemp. For example, if the

form in (3.14) is used, then the first row of free index is
[
q + 1 q + 1

]
, which

gives the row and column index of the first free parameter, a1,1, in GFKHtemp

and the last row of free index is
[
l +m l + q

]
, which gives the row and column

index of the last free parameter, cm,l, in GFKHtemp.

Once GFKHtemp and free index are obtained, (5.6) can be formed by

calling

>> GFKH = p2GFKH(GFKHtemp, free index, p)

where p is a free parameter vector, and GFKHtemp and free index can be ob-

tained as explained above. Likewise, the free parameters of (5.6) can be formed as

a free parameter vector by calling

>> p = GFKH2p(GFKHtemp, free index,GFKH)

Furthermore, once the closed-loop system object is obtained by using the

function getclosedDDAE (see Section 5.1), where all the entries of the controller

matrices are zero, then, the closed-loop system matrices can be updated by calling

>> closedDDAE up = updateclosedDDAE(closedDDAE,GFKH)

where GFKH can be obtained bt using the function p2GFKH given above.

5.8. Initialization of Controller Matrices

In order to initialize the controller matrices with respect to the initialization

procedure given in Section 3.4, first, the desired eigenvalues of the F matrix must

be determined. In this respect, a MATLAB function, named as computepipmodes,

has been developed. This function is called as

>> dcm = computepipmodes(ddae c, options)

53

where ddae c is a centralized system object (which corresponds to Σc
s) and dcm is

the vector which contains the desired initial controller modes. Besides the options

given for the other functions of the software, options contain the following variables:

• udcm is a vector which contains the user-defined initial controller modes. It

is an empty vector as a default value.

• delta is a non-negative real number which determines the imaginary bound-

aries of the region D used in the root finding algorithm QPmR. When this

option is set to δ, the lower and upper imaginary boundaries of the region D

are respectively set to −δ and δ. The default value is 0.1.

The function computepipmodes first computes the ε-modes of the system

using compute roots DDAE (see Section 5.3), for some ε < µ, which is given by

the option minimal real part.

Note that, if the system is a part of a decentralized system, i.e., it may

have ε-CFM(s), then, each of ε-modes must be checked whether it is a ε-CFM (see

Section 5.4). By eliminating the fixed modes, only the non-fixed ε-modes will be

considered, hereafter.

Then, a vector, called tds real modes, containing the real ε-modes is created.

If there are any real user-defined controller modes with real part greater than or

equal to ε, these are also concatenated onto tds real modes. By treating such user-

defined controller modes as a system mode, we avoid to break PIP because of these

modes. Then, the transfer function matrix is obtained by using tds evaltf and the

real ε-blocking zeros located in the region D, with the boundaries ε ≤ Re(D) ≤ ξ

and −δ ≤ Im(D) ≤ δ are computed by using computebzeros (see Section 5.6 above).

Here, δ is defined by the option delta and ξ is the largest element in tds real modes.

Here, we take into account, not only the real ε-blocking zeros, but also complex-

conjugate pairs of blocking zeros with a fairly small (i.e., less than or equal to δ)

imaginary part. Thus, we treat the real part of such a couple also as a real blocking

zero and form the vector tds real zeros which contains the real blocking zeros and

the real parts of the complex-conjugate pairs of blocking zeros in the region D. The

elements of tds real zeros are sorted in an ascending order. The maximum real part

of D is chosen as ξ, since the real zeros to the right of ξ are irrelevant (see [17]). Let

54

ξrm denote the rightmost element of tds real zeros. If there are an odd number of

elements in tds real modes between ξrm and ξ (including ξ), a real controller mode

should be added between ξrm and the next real blocking zero to the right of it (if

there is one) or anywhere to the right of ξrm (if there are no real blocking zeros to

the right of it). In both cases, we can satisfy this requirement by simply adding one

real controller mode between ξrm and ξ.

Let nrz be the number of elements in tds real zeros and ci, i ∈ nrz, be the

ith element of tds real zeros. Then, for i = 1, . . . , nrz − 1, the software identifies the

number of elements of tds real modes between ci and ci+1. If there is an odd number

of such elements, then a real number in the range
(
ci + (ci+1− ci)/3 , ci+1− (ci+1−

ci)/3
)

is randomly chosen and added to the vector dcm. The software also identifies

the number of elements of tds real modes between cnrz and ξ. If this number is odd,

then a real number in the range
(
cnrz + (ξ − cnrz)/3 , ξ − (ξ − cnrz)/3

)
is randomly

chosen and added to the vector dcm. Finally, the user-defined initial controller

modes, specified by the option udcm (if any), are also added to form the vector

dcm.

Once the desired initial controller modes are determined as above, the

function inital cont initializes the controller matrices. This function is called as

>> GFKH = initial cont(GFKHtemp,m, q, l, dcm)

where GFKH is the controller matrix structured as in (5.6) with all free param-

eters set to zero (e.g., created by controller form), m, q, and l are as defined in

Section 5.7, and dcm is the vector containing the desired initial controller modes

(e.g., as determined by initial modes).

If the size of dcm (call it ldcm) is less than l, then the function init cont

first determines, randomly, l − ldcm number of additional initial controller modes

with real part less than ε (i.e., the additional initial controller modes are chosen

ε-stable; see [52] for details). Then, using symbolic and numeric computation, the

free parameters of the controller dynamics matrix, F , are determined so that F

(which is in one of the canonical forms described in Subsection 3.1) has the desired

initial controller modes as its eigenvalues.

55

Then, the elements of the K matrix are chosen randomly according to a

normal distribution centered at zero. It is then checked whether γψ(pK) < 1. If

this condition is not satisfied, the magnitude of all the elements of K are divided

by two until this condition is satisfied.

Finally, the free parameters of H and G are chosen randomly according

to a normal distribution centered at zero. Finally, inital cont forms the controller

matrix GFKH, which is structured as in (5.6), and returns it.

5.9. Graphical User Interface

Once, the system object is created by using the tds create function, all

of the features of DCD-TDS can be utilized by using the Graphical-User-Interface

(GUI) which employs the developed functions given in the previous sections. The

associated GUI of DCD-TDS is developed in [53] and introduced in [54]. Further-

more an illustration of this tool can be found in [35].

There are two separate GUI panels where the first one, which is shown in

Figure 5.1., is used to analyze the spectral characteristic of a given decentralized (or

centralized) time-delay system, and the second one, which is shown in Figure 5.2.,

is used to manage the design of a decentralized (or centralized) controller in the

form of (2.30) (or (3.3)).

In the next two subsections, for a given time-delay system, analysis and

design facilities of the developed GUI panels are introduced.

5.9.1. Analysis Phase

The GUI panel used for the analysis phase, which is shown in Figure 5.1.,

has several sub-panels so that each one can be used to carry out different tasks,

separately. For each sub-panel, an input (i.e., system object) must be loaded,

beforehand. At the end, the output, which may be a system object or a variable

with an appropriate data type, is exported to the MATLAB Workspace.

Besides the modules of the GUI, which are introduced in the previous

sections, there is also a visualization tool embedded. By using this tool, user can

obtain plots (e.g., the plots shown in Chapter 6) of modes and/or zeros of any

56

Figure 5.1.Analysis panel of the GUI

system. Furthermore, animated plots, which monitor the evolutions of spectral

abscissa, safe upper bound, system modes, and the controller modes during the

process of optimization can also be displayed.

5.9.2. Design Phase

The design phase of the GUI panel is shown in Figure 5.2.. This panel

has three main sub-panels. The user should begin with entering a decentralized

or centralized system. Once the system object is loaded, program will recognize

whether it is centralized or decentralized. If the system is centralized, then the

decentralized controller design sub-panel will be blocked out. However, if the system

is decentralized, then, the first sub-panel is used. We begin with uploading the

object of the system, which is in the form of (5.2), obtained by using the function

tds2DDAE.

In the decentralized controller design algorithm, one of the important points

is the design order for the control agents. Since, there is no structural restriction

on the design order of each control agent, it can be the same as the order of the

agents as defined in the system object. However, empirical evidence has shown

that, it may be better to use a different design order to obtain lower dimensional

57

Figure 5.2.Design panel of the GUI

controllers. Thus, the program allows the user to provide a design order by entering

a 1× ν-dimensional vector.

As it is stated in the Chapter 4, the decentralized controller design algo-

rithm starts with the minimum possible controller dimension, which is determined

at the beginning, and increases the dimension when the controller with current di-

mension fails. However, increasing the dimension of the lower-indexed controllers

may sometimes be unnecessary, since those modes which can not be stabilized by

a low order lower-indexed controller can be stabilized at the further stages of the

algorithm. Therefore, the software also offers the option to define upper bounds

for the dimension of each controller by entering a 1× ν-dimensional vector. Alter-

natively, user can also design local controllers with specified orders by entering a

1× ν-dimensional vector.

The controller design algorithm also allows to predefine the controller struc-

ture. Thus, some entries of each controller matrices can be defined as fixed param-

eters. By this way, only the free parameters will be tuned during the optimization.

Here, the program offers three options. The first one is to let all the entries of the

controller matrices be free parameters. The second option is to define a specific

controller structure. To use this option, however, the controller dimensions must

also be prespecified by the user. The third option, which we find most useful as

58

stated in Chapter 3, is to use one of the canonical forms given in Section 3.1.

Once the controller structure is defined, the initial controller (i.e., initial

values of the free parameters) must be determined. These parameters can be chosen

randomly according to a normal distribution, or can be specified by the user, or the

initialization procedure described in Section 3.4 and associated functions introduced

in Section 5.8 can be used.

As a final step, user should specify the options of the optimization package

HANSO. As it was mentioned in Section 2.2, HANSO has two main optimization

algorithms, GS and BFGS, and a hybrid code which uses the main algorithms

consecutively. In fact, there are several options for parameters of the optimization

algorithms. Therefore, it is advised to use the default options.

59

6. EXAMPLES

6.1. Centralized Controller Design

Let us consider a LTI neutral time-delay system, described in the form of

(3.2) as

˙̃x(t) + Ẽ3
˙̃x(t− 0.7) + Ẽ4

˙̃x(t− 1.7) = Ã0x̃(t) + B̃2u(t− 0.5)

y(t) = C̃1x̃(t− 0.1) + 2.4u(t− 2)
(6.1)

where

Ẽ3 =


0 −0.2 0.4

0.5 −0.3 0

−0.2 −0.7 0

 , Ẽ4 =


0.3 0.1 0

0 −0.2 0

−0.1 0 −0.4

 ,

Ã0 =


−4.8 4.7 3

0.1 1.4 −0.4

0.7 3.1 −1.5

 ,
B̃2 =

[
0.3 0.7 0.1

]T
, and C̃1 =

[
0.5 −0.8 0.01

]
,

which is obtained by modifying the example in [9] (since state vector feedback,

rather than output feedback, was considered in [9], the example in [9] has only

dynamic equations, therefore, an arbitrary output equation is added).

In order to create the system object, we use the function tds create which

is introduced in Section 5.1. Before calling this function, some properties of the

system must be predefined as

>> metadata.Nagent =1;

>> metadata.systype =′neutral′;

Now, the system object can be created as

>> tds c = tds create({eye(3), Ẽ3, Ẽ4}, [0, 0.7, 1.7] , {Ã0}, 0,

{B̃2}, 0.5, {C̃1}, 0.1, 2.4, 2,metadata);

Once, the system object is created, analysis and controller design features of DCD-

TDS can be utilized by using the GUI panels given in Section 5.9.

60

To analyze the spectral properties of the system (6.1), the associated system

object in the form of (3.1) must first be obtained by using the first sub-panel which

uses the function tds2DDAE. By defining

δ(t) := x̃(t) + Ẽ3x̃(t− 0.7) + Ẽ4x̃(t− 1.7)

and x(t) :=
[
δ(t)T x̃(t)T

]T
, the system (6.1) can be rewritten in the form of

(3.1), where h1 = 0.1, h2 = 0.5, h3 = 0.7, h4 = 1.7, h5 = 2,

E =

I3 0

0 03×3

 , A0 =

 0 Ã0

−I3 I3

 , A3 =

03×3 0

0 Ẽ3

 , A4 =

03×3 0

0 Ẽ4

 ,
B2 =

[
B̃T

2 01×3

]T
, C1 =

[
01×3 C̃1

]
, D5 = 1 ,

and all other matrices being zero. Let us denote this system by Σc. From hereafter,

the new system object, which corresponds to Σc, will be considered.

Our aim is to design a controller of the form (3.3) to strongly µ-stabilize

Σc, for µ = 0. We also aim CD(Σcl) < ψ for ψ = −0.1.

We calculate CD(Σc) = −0.2751 and γ−0.1(Σc) = 0.8312. Thus, we can

calculate Ωϕ(Σc) by the method of [49], for any ϕ > −0.2751. We choose ϕ = −0.25

and determine Ω−0.25(Σ) = {0.2180, 0.0976 ± 1.0396j}. Hence, the given system is

not 0-stable, since there exist 0-modes at s1 = 0.2180 and s2,3 = 0.0976 ± 1.0396j.

As it is emphasized in Section 5.3, there are finitely many ϕ̄-modes inside any finite

region. Relying on that, we choose ϕ̄ = −2. Then, by using the QPmR tool of [50],

we calculate all the −2-modes of Σc with imaginary part between −50 and 50 and

plot those in Figure 6.1. using red stars. Also, we calculate the roots of the DDE

inside the same region, which are also shown in Figure 6.1. using blue pluses.

Next, we consider the region D := {s | ε ≤ Re(s) ≤ ξ = 0.2180 ,

−δ ≤ Im(s) ≤ δ}, where we choose ε = −0.05 and δ = 0.1, and, using func-

tion computebzeros, we determine that there is a blocking zero, λ1 = 0.0413, which

is shown in Figure 6.1. using blue circles, inside D. Since there is one real mode

of Σc, s1 = 0.2180, located to the right hand side of λ1, a real controller mode is

needed anywhere to the right of that zero. In this regard, the minimum dimension

of the controller is predetermined as lmin = 1.

61

−2 −1.5 −1 −0.5 0 0.5
−50

−40

−30

−20

−10

0

10

20

30

40

50

Re(s)

Im
(s

)

s
1

s
2,3λ

1

Figure 6.1.−2-modes of Σc (red stars), −2-modes of the associated DDE of Σc (blue

pluses), blocking zero of Σc (blue circle), and CD(Σc) (magenta dashed line).

According to the initialization procedure, the initial controller mode is cho-

sen as s∗ = 0.1448. In here, the controller is structured as in (3.14), i.e., controllable

canonical form. Thus, G ≡ 1 and the initial H value is chosen as 0.7269, randomly

according to a normal distribution centered at zero. Then, the initial value of K

is chosen as 0.063 which ensures γ−0.1(pK) = 0.8312 < 1. Then, starting with

the initial controller and by using the BFGS algorithm, given in Section 2.2.2, the

program solves (3.18) with r = 0.001. Hence, the controller

ż(t) = 0.1332z(t) + y(t)

u(t) = −0.2097z(t)− 0.0621y(t)

which strongly 0-stabilizes the system Σc, is obtained. The rightmost modes of the

closed-loop system are calculated as −0.0077±0.8222j, thus, c(Σcl) = −0.0077. We

calculate γ−0.1(Σcl) = 0.8312 and CD(Σcl) = −0.2751. The −2-modes of both the

closed-loop system and the associated DDE with imaginary part between −50 and

50 are shown in Figure 6.2..

62

−2 −1.5 −1 −0.5 0 0.5
−50

−40

−30

−20

−10

0

10

20

30

40

50

Re(s)

Im
(s

)

−8 −6 −4 −2 0 2

x 10
−3

−1

0

1

Figure 6.2.−2-modes of Σcl (red stars), −2-modes of the associated DDE of Σcl (blue

pluses), and CD(Σcl) (magenta dashed line).

6.2. Decentralized Controller Design

Let us consider a LTI decentralized retarded time-delay system, described

in the form of (2.24) as

ẋ(t) = A0x(t) + A1x(t− 1) +B1,0u1(t) +B1,1u1(t− 1)

+B2,0u2(t) +B2,1u2(t− 1)

y1(t) = C1,0x(t) + C1,1x(t− 1) + u1(t− 2)

y2(t) = C2,0x(t) + C2,1x(t− 1)− u2(t− 2)

(6.2)

where

A0 =


7 9 7 9

0 −1 4 −2

−11 −6 −7 −11

−22 −12 −4 −27

 , A1 =


4 6 −8 −1

0 4 0 0

5 −3 9 1

10 −6 6 8

 ,

B1,0 =


−4

−3

2

4

 , B1,1 =


2

1

−1

−2

 , B2,0 =


3

0

−3

−5

 , B2,1 =


1

0

−1

−1

 ,

C1,0 =
[
0 1 4 −2

]
, C1,1 =

[
1 −1 1 0

]
,

63

C2,0 =
[
1 −1 2 −0.5

]
, C2,1 =

[
1 0 0 1

]
.

This example is obtained by modifying the example in [55]. Here, the delayed

direct feedthrough terms are added so that, although the given system is retarded,

the closed-loop system becomes neutral. The original example is, first, solved by

using continuous pole placement algorithm in [55], and then, it is solved by using

nonsmooth optimization based fixed-order controller design method in [22].

In order to create the decentralized system object, we use the function

tds create. Before calling this function, some properties of the system must be

predefined as

>> metadata.Nagent =2;

>> metadata.systype =′retarded′;

where the first field of metadata specifies the number of control agents (i.e., ν) and

the second one is used as an identifier of the system type. Now, the decentralized

system object can be created as

>> tds = tds create({A0, A1}, [0, 1], {B1,0, B1,1}, [0, 1], {B2,0, B2,1}, [0, 1],

{C1,0, C1,1}, [0, 1], {C2,0, C2,1}, [0, 1], {1}, 2, {}, {}, {−1}, 2,metadata);

where the two empty fields correspond to D1,2,i and D2,1,i, which do not exist in our

example. Now, analysis and controller design features of DCD-TDS can be utilized

by using the GUI panels.

Let Σ0 indicate the system (6.2). By specifying the control agent numbers,

we can obtain the corresponding centralized system objects, which will be denoted

by Σc1
0 and Σc2

0 , which have only {u1, y1} and {u2, y2} as input-output pairs, respec-

tively.

Our aim is to design a decentralized controller of the form (2.30) to µ-

stabilize Σ0, for µ = −0.1. However, even though Σ0 is retarded type, because of the

delayed direct feed-through terms, Σ1 and Σ2 will be neutral type. Therefore, our

aim should be extended to design a strongly µ-stabilizing decentralized controller.

Thus, we also aim CD(Σ2) < ψ for ψ = −0.3.

Since, Σ0 is retarded type, thus, CD(Σ0) = −∞, we can calculate Ωϕ(Σ0)

by the method of [49], for any finite ϕ. We choose ϕ = −0.2 and determine

64

−2 −1.5 −1 −0.5 0 0.5 1
−50

−40

−30

−20

−10

0

10

20

30

40

50

Re(s)

Im
(s

)

s
2

s
1

Figure 6.3.−2-modes of Σ0 (red stars).

Ω−0.2(Σ) = {0.7990, 0.1523,−0.1904 ± 5.4367j}. Hence, the given system is not

−0.1-stable, since there exist −0.1-modes at s1 = 0.7990 and s2 = 0.1523. We also

calculate all the −2-modes of Σ0 and plot those in Figure 6.3. using red stars.

Furthermore, we determine that s2 is a −0.1-CFM for control agent 1, and

s1 is a −0.1-CFM for control agent 2. Hence, the system is not −0.1-stabilizable

by only one control agent. However, we see that there are no −0.1-DFMs. Hence,

it is possible to design a strongly −0.1-stabilizing decentralized controller for Σ0.

Now, we can perform the controller design. First, we choose the design

order as defined in the system object, thus, we enter design order = [1, 2]. Fur-

thermore, we define the upper bounds for the dimension of each controller by en-

tering upperbounds = [3, 3]. Also, we choose to design each controller in a suitable

canonical form (see Section 3.1).

First, a controller for the first control agent is designed. Since, there exist no

−0.2-blocking zeros in the region D := {s | ε = −0.2 ≤ Re(s) ≤ ξ = 0.7990 , −δ ≤

Im(s) ≤ δ}, where we choose δ = 0.1, there is no need to choose a particular initial

controller mode. Therefore, we let lmin1 = 0. However, the algorithm fails to design

a strongly −0.1-stabilizing controller with dimension l1 = 0 and l1 = 1. Finally, by

65

−2 −1.5 −1 −0.5 0 0.5
−50

−40

−30

−20

−10

0

10

20

30

40

50

Re(s)

Im
(s

)

s
2

Figure 6.4.−2-modes of Σ1 (red stars), −2-modes of the associated DDE of Σ1 (blue

pluses), and CD(Σ1) (magenta dashed line).

choosing the initial controller modes as s∗1,2 = −0.6140± 1.3666j, the controller

ż1(t) =

 0 1

−1.3862 0.0198

 z1(t) +

0

1

 y1(t)

u1(t) =
[
0.0954 0.8849

]
z1(t) + 0.5087y1(t)

which strongly −0.1-stabilizes the system Σc
0 (except for its CFM), is obtained. By

applying this controller to Σ0 the system Σ1 is obtained. The−2-modes of Σ1 and its

associated DDE are shown in Figure 6.4. with red stars and blue pluses, respectively.

It is seen that the only unstable mode of Σ1 is s2 = 0.1523, which was the CFM of

Σc
0. Furthermore, it is calculated that c̄(Σ1) = −0.1904, CD(Σ1) = −0.3379, and

γ−0.3(Σ1) = 0.9269.

Since, there is no −2-blocking zeros of Σ1 in the region D := {s | ε =

−0.2 ≤ Re(s) ≤ ξ = 0.1523 , −0.1 ≤ Im(s) ≤ 0.1}, we let lmin = 0. However,

the algorithm fails to design a strongly −0.1-stabilizing controller for the second

control agent, with dimension l2 = 0, l2 = 1, and l2 = 2. However, with l2 = 3, the

66

−2 −1.5 −1 −0.5 0 0.5
−50

−40

−30

−20

−10

0

10

20

30

40

50

Re(s)

Im
(s

)

−0.184 −0.1835 −0.183 −0.1825
−6

−4

−2

0

2

4

6

Figure 6.5.−2-modes of Σ2 (red stars), −2-modes of the associated DDE of Σ2 (blue

pluses), and CD(Σ2) (magenta dashed line).

controller

ż2(t) =


0 1 0

0 0 1

−0.9732 −1.88 −4.9083

 z2(t) +


0

0

1

 y2(t)

u2(t) =
[
−0.3123 −0.8292 −1.9493

]
z2(t) + 0.0909y2(t)

which strongly −0.1-stabilizes the system Σc
1, is obtained. By applying this con-

troller to Σ1 the system Σ2 is obtained. It is calculated that c(Σ2) = −0.1829. The

−2-modes of Σ2 and its associated DDE are shown in Figure 6.5. with red stars

and blue pluses, respectively. Furthermore, strong −0.1-stability is also achieved,

since, CD(Σ2) = −0.3379 and γ−0.3(Σ2) = 0.9269.

67

7. CONCLUSION

In this thesis, both centralized and decentralized controller design for LTI

time-delay systems has been considered. The main objective was to design a finite

dimensional centralized/decentralized output feedback controller which strongly µ-

stabilizes the centralized/decentralized TDS, for a given stability and strong stabil-

ity boundaries µ and ψ, respectively.

In this respect, first attempt has been made to design a strongly µ-stabilizing

centralized output feedback controller for a given centralized TDS whose autonomous

part can be described by DDAEs. In order to design such a controller, a nonsmooth

optimization based fixed-order controller design method, introduced in [13], has

been used. Since, this method is eigenvalue-based, the stability conditions, given

in [4], have been considered. The proposed method of [13] have been enhanced

by making two main contributions. First, the controllers are structured in certain

canonical forms. By this way, the number of free parameters of the controller ma-

trices are reduced, so, the computational burden of the optimization is reduced.

Second, considering the nonconvexity of the optimization problem, an initialization

procedure has been proposed as a novel contribution of this thesis to the nonsmooth

optimization based fixed-order controller design method for both finite-dimensional

and infinite dimensional systems. By choosing the most favorable initial controller,

the convergence of the optimization algorithm has been facilitated.

In order to design a decentralized controller for a LTI time-delay system,

the stabilizability conditions of decentralized LTI time-delay systems, given in [26],

has been considered. In this respect, a design algorithm, which utilizes decentralized

pole assignment algorithm of Davison and Chang [34], has been proposed. In the

proposed algorithm, a finite-dimensional output feedback dynamic controller was

designed by using the proposed nonsmooth optimization based centralized controller

design algorithm, for each control agent, sequentially. One of the important points

in this algorithm was the controller design order of the control agents. This design

order may be the same as the order of the control agents as defined beforehand.

However, it may be better to use a different design order to obtain lower dimensional

controllers and/or to move all the modes further to the left. Unfortunately, there

68

is no any certain rule to decide which design order is better. In this respect, the

developed software was extended so that controllers are designed with respect to

a given order by the user. One way to achieve designing controllers according to

a given order is to change the definition of the given system object so that in the

new object the order of the control agents is same as the desired order for controller

design.

Furthermore, a new software package DCD-TDS, which makes use of the

slightly customized version of related functions in the software package

TDS STABIL [13] has been developed. DCD-TDS enables to analyze both cen-

tralized and decentralized TDSs. Furthermore, DCD-TDS is able to design both

centralized and decentralized controllers by using the developed controller design

algorithms. In the controller design part, the MATLAB based software package

named HANSO is employed to solve nonsmooth optimization problems. Consider-

ing the complexity of the software, a GUI, which provides an efficient utilization,

has been developed.

As a possible future work, infinite-dimensional, besides finite-dimensional,

centralized/decentralized controller design for centralized/decentralized TDSs can

be considered. It was proved in [26] that, provided that µ > cD, the system Σ (and

Σc) can be µ-stabilized by a LTI time-delay output feedback controller if and only if

it can be ¯µ-stabilized by a LTI finite-dimensional output feedback controller. It is

well-known that a very high dimensional controller may be needed to µ-stabilize a

TDS, if the controllers are restricted to be finite-dimensional. Therefore, designing

a time-delay controller, rather than a finite-dimensional controller, may be advanta-

geous. Furthermore, DCD-TDS is still open for improvement. Therefore, DCD-TDS

can be enhanced in the near future. Moreover, DCD-TDS can be extended in the

light of the above mentioned future works.

69

REFERENCES

[1] R. Sipahi, S. I. Niculescu, C. T. Abdallah, W. Michiels, and K. Gu. Stability

and stabilization of systems with time delay. Control Systems, IEEE, 31(1):38–

65, 2011.

[2] S.-I. Niculescu. Delay Effects on Stability: A Robust Control Approach, Lecture

Notes in Control and Information Sciences, No. 269. Springer-Verlag, London,

2001.

[3] J.-P. Richard. Time-delay systems: An overview of some recent advances and

open problems. Automatica, 39:1667–1694, 2003.

[4] W. Michiels and S. I. Niculescu. Stability and Stabilization of Time-Delay

Systems. SIAM, Philadelphia, PA, 2007.

[5] J.K. Hale and S.M. Verduyn-Lunel. Introduction to functional differential equa-

tions. Springer, New York, USA, 1993.

[6] J. J. Loiseau, M. Cardelli, and X. Dusser. Neutral-type time-delay systems

that are not formally stable are not BIBO stabilizable. IMA Journal of Math-

ematical Control and Information, 19:217–227, 2002.

[7] W. Michiels and S.-I. Niculescu. Stability, Control, and Computation for Time-

Delay Systems: An Eigenvalue-Based Approach. SIAM, Philadelphia, PA,

2014.

[8] W. Michiels, K. Engelborghs, P. Vansevenant, and D. Roose. Continuous pole

placement for delay equations. Automatica, 38(5):747 – 761, 2002.

[9] W. Michiels and T. Vyhlidal. An eigenvalue based approach to the robust

stabilization of linear time delay systems of neutral type. Automatica, 41:991–

998, 2005.

[10] J. V. Burke, D. Henrion, A. S. Lewis, and M. L. Overton. Stabilization via non-

smooth, nonconvex optimization. IEEE Transactions on Automatic Control,

51:1760–1769, 2006.

[11] J. Vanbiervliet, K. Verheyden, W. Michiels, and S. Vandewalle. A nonsmooth

optimization approach for the stabilization of time-delay systems. ESAIM

Control, Optimisation, and Calculus of Variations, 14:478–493, 2008.

[12] T. Vyhlidal, W. Michiels, and P. Mcgahan. Synthesis of strongly stable state-

70

derivative controllers for a time-delay system using constrained non-smooth

optimization. IMA Journal of Mathematical Control and Information, 27:437–

455, 2011.

[13] W. Michiels. Spectrum based stability analysis and stabilisation of systems

described by delay differential algebraic equations. IET Control Theory and

Applications, 5:1829–1842, 2011.

[14] S. Gumussoy and W. Michiels. Fixed-order H-infinity control for intercon-

nected systems using delay differential algebraic equations. SIAM Journal on

Control and Optimization, 49:2212–2238, 2011.

[15] W. Michiels, T. Vyhlidal, and P. Zitek. Control design for time-delay systems

based on quasi-direct pole placement. 27:337–343, 2010.

[16] D. Pilbauer, T. Vyhlidal, and W. Michiels. Spectral design of output feedback

controllers for systems pre-compensated by input shapers. In Preprints of the

12th IFAC Workshop on Time-delay Systems, Ann Arbor, MI, USA, June 2015.

[17] S. M. Özer and A. İftar. Controller design for neutral time-delay systems by

nonsmooth optimization. In Preprints of the 13th IFAC Workshop on Time-

delay Systems, Istanbul, Turkey, June 2016.

[18] A. S. Lewis. Nonsmooth optimization and robust control. Annual Reviews in

Control, 31(2):167 – 177, 2007.

[19] J. V. Burke, A. S. Lewis, and M. L. Overton. A robust gradient sampling

algorithm for nonsmooth, nonconvex optimization. SIAM Journal on Opti-

mization, 15(3):751–779, 2005.

[20] A. S. Lewis and M. L. Overton. Nonsmooth optimization via BFGS. SIAM

Journal on Optimization, 2009. Submitted.

[21] M. L. Overton. HANSO: A hybrid algorithm for nonsmooth optimization.

Technical report. http://cs.nyu.edu/overton/software/hanso.

[22] S. M. Özer and A.İftar. Decentralized controller design for time-delay sys-

tems by optimization. In Preprints of the 12th IFAC Workshop on Time-delay

Systems, Ann Arbor, MI, USA, June 2015.

[23] D. D. Šiljak. Decentralized Control of Complex Systems. Academic Press, San

Diego, 1991.

[24] J. Lunze. Feedback Control of Large Scale Systems. Prentice Hall, New York,

71

1992.

[25] L. Bakule. Decentralized control: An overview. Annual Reviews in Control,

32:87–98, 2008.

[26] H. E. Erol and A. İftar. Stabilization of decentralized descriptor-type neutral

time-delay systems by time-delay controllers. Automatica, 64:262–269, 2016.

[27] M. S. Mahmoud. Decentralized stabilization of interconnected systems with

time-variyng delays. IEEE Transactions on Automatic Control, 54:2663–2668,

2009.

[28] H. E. Erol. Decentralized control of time-delay systems. Master’s thesis,

Anadolu University, Eskişehir, Turkey, January 2014.

[29] S. H. Wang and E. J. Davison. On the stabilization of decentralized control

systems. IEEE Transactions on Automatic Control, 18:473–478, 1973.

[30] E. Kamen, P. Khargonekar, and A. Tannenbaum. Stabilization of time-delay

systems using finite-dimensional compensators. IEEE Transactions on Auto-

matic Control, 30:75–78, 1985.

[31] A. Momeni and A. G. Aghdam. A necessary and sufficient condtion for sta-

bilization of decentralized time-delay systems with commensurate delays. In

Proceedings of the 47th IEEE Conference on Decision and Control, pages 5022–

5029, Cancun, Mexico, 2008.

[32] A. Momeni, A. G. Aghdam, and E. J. Davison. Decentralized fixed modes for

LTI time-delay systems. In Proceedings of the American Control Conference,

pages 6593–6599, Baltimore, USA, 2010.

[33] H. E. Erol and A. İftar. A necessary and sufficient condition for the stabiliza-

tion of decentralized time-delay systems by time-delay controllers. In Preprints

of the 13th IFAC Symposium on Large Scale Complex Systems, pages 62–67,

Shanghai, China, July 2013.

[34] E. J. Davison and T. N. Chang. Decentralized stabilization and pole assign-

ment for general proper systems. IEEE Transactions on Automatic Control,

35:6:652–664, 1990.

[35] S. M. Özer, G. Gülmez, and A. İftar. A software to design decentralized

controllers for time-delay systems. In Proceedings of the IEEE Conference on

Computer Aided Control System Design, Buenos Aires, Argentina, September

72

2016. To appear.

[36] F. Khorrami, S. Tien, and Ü. Özgüner. DOLORES: a software package for

analysis and design of optimal decentralized control. In Proceedings of the

40th National Aerospace and Electronics Conf., pages 434–441, Dayton, USA,

May 1988.

[37] J. Nocedal and S. Wright. Numerical Optimization. Springer, 2006.

[38] J. V. Burke, A. S. Lewis, and M. L. Overton. Approximating subdifferentials by

random sampling of gradients. Mathematics of Operations Research, 27:567–

584, 2002.

[39] K. C. Kiwiel. Convergence of the gradient sampling algorithm for nonsmooth

nonconvex optimization. SIAM Journal on Optimization, 18(2):379–388, 2007.

[40] C. G. Broyden. The convergence of a class of double-rank minimization al-

gorithms 1. general considerations. IMA Journal of Applied Mathematics,

6(1):76–90, 1970.

[41] R. Fletcher. A new approach to variable metric algorithms. The Computer

Journal, 13(3):317–322, 1970.

[42] D. Goldfarb. A family of variable-metric methods derived by variational means.

Mathematics of Computation, 24(109):23–26, 1970.

[43] D. F. Shanno. Conditioning of quasi-newton methods for function minimiza-

tion. Mathematics of Computation, 24:647–656, 1970.

[44] A. S. Lewis and M. L. Overton. Nonsmooth optimization via quasi-newton

methods. Mathematical Programming, 141(1):135–163, 2012.

[45] A. Skajaa. Limited memory BFGS for nonsmooth optimization. Master’s

thesis, New York University, January 2010.

[46] J.K. Hale and S.M. Verduyn-Lunel. Effects of small delays on stability and

control. In Ran A. C. M. Bart, H. and I. Gohberg, editors, Operator Theory and

Analysis: The M.A. Kaashoek Anniversary Volume Workshop in Amsterdam,

November 12–14, 1997, pages 275–301. Birkhäuser Basel, Basel, 2001.

[47] M. Vidyasagar. Control System synthesis: A Factorization approach. M.I.T.

Press, Cambridge, MA, 1985.

[48] A. Momeni and A. G. Aghdam. On the stabilization of decentralized time-

delay systems. Technical report, Conordia University, Montréal, Canada, 2008.

73

http://www.ece.concordia .ca/˜aghdam/TechnicalReports/techrep2008 1.pdf.

(Accessed November 2012).

[49] Z. Wu and W. Michiels. Reliably computing all characteristic roots of de-

lay differential equations in a given right half plane using a spectral method.

Journal of Computational and Applied Mathematics, 236:2499–2514, 2012.

[50] T. Vyhlidal and P. Zitek. QPmR - Quasi-polynomial root-finder: Algorithm

update and examples. In Lafay J. F. Vyhlidal T. and Sipahi R., editors, Delay

Systems: From Theory to Numerics and Applications, chapter 10, pages 299–

312. Springer, New York, 2014.

[51] T. Vyhlidal and P. Zitek. Mapping based algorithm for large-scale compu-

tation of quasi-polynomial zeros. IEEE Transactions on Automatic Control,

54(1):171–177, 2009.

[52] S. M. Özer and A. İftar. A software to design decentralized controllers for time-

delay systems. In TOK Otomatik Kontrol Ulusal Toplantısı Bildiriler Kitabı,

pages 188–193, Denizli, Turkey, September 2015. In Turkish.

[53] G. Gülmez. A GUI for a software to design decentralized controllers for time-

delay systems and control of a coupled tank system. Technical report, Anadolu

University, Eskisehir, 2016.

[54] G. Gülmez, S. M. Özer, and A. İftar. A GUI for a software to design decen-

tralized controllers for time-delay systems. In TOK Otomatik Kontrol Ulusal

Toplantısı Bildiriler Kitabı, Eskisehir, Turkey, September 2016. In Turkish, To

Appear.

[55] H. E. Erol and A. İftar. Decentralized controller design by continuous pole

placement for commensurate-time-delay systems. In Proceedings of the 19th

IFAC World Congress, pages 9419–9424, Cape Town, South Africa, August

2014.

74

	suleyman_mert_ozer_tez
	CV_ing

