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In this dissertation, various novel stochastic and deterministic nonlinear 

data models are proposed for the analysis of the discrete signals that are defined 

in multidimensional spaces. The purpose of choosing the multidimensional 

space is to analyze the data according to multiparameters at the same time. The 

reason of analysing nonlinear methods is their compatibility with chaotic and 

nonlinear behaviour of the data which are measured for natural events and in this 

thesis natural events are taken as case study. The comparison of stochastic and 

deterministic methods gives the opportunity to choose the most suitable model 

for the data of handled problem. As stochastic models, one and multidimensional 

versions of Mycielski method and different versions of Markov Chain Models 

are proposed. As deterministic models, multidimensional polynoms, 

multidimensional splines, multidimensional Empirical Mode Decomposition 

and Wavelets are chosen. In addition a Markovian error tuning model is designed 

as an infrastructure to test these models, which is inspired from time varying and 

time invariant versions of the Hidden Markov Model. These comparative works 

try to reveals the phenomenon underlies the natural events as wind speed, solar 

radiation, temperature which are taken as case study in this work. 

Keywords:  Data Modeling, Time Varying Models, Time Invariant Models, 

Mycielski, Markov Chains, Hidden Markov Models 
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ÖZET 

 

Doktora Tezi 

 

Çok Boyutlu İşaretlerin Analizi için Doğrusal 

Olmayan Veri Modelleme Yöntemleri 

 

Mehmet FİDAN 

 

Anadolu Üniversitesi 

Fen Bilimleri Enstitüsü 

Elektrik-Elektronik Mühendisliği Anabilim Dalı 

 

Danışman: Prof. Dr. Ömer Nezih GEREK 

2015, 80 Sayfa  

 

Bu tezde, çok boyutlu uzaylarda tanımlanmış ayrık işaretler için çeşitli 

yenilikçi olasılıksal ve belirlenimci veri modelleme yöntemleri önerilmiştir. Çok 

boyutlu uzayın seçilmesinin amacı, ilgili veriyi aynı anda birden fazla 

parametreye bağlı olarak inceleyebilmektir. Doğrusal olmayan modellerin 

incelenmesinin nedeni, bu modellerin gerçek hayat için ölçülmüş verilerin 

karmaşık ve doğrusal olmayan davranışıyla uyumudur ve bu tezde de bu tür 

gerçek olay davranışları örnek olay incelemesi olarak ele alınmıştır.  Olasılıksal 

modeller olarak Mycielski yönteminin tek ve çok boyutlu varyasyonları ve 

Markov zincir modelinin çeşitli sürümleri önerilmiştir. Belirlenimci yöntemler 

olarak çok boyutlu polinomlar, çok boyutlu kobra eğrileri, çok boyutlu görgül 

kip ayrışımı ve dalgacıklar incelenmiştir. Ele alınan yöntemler, Saklı Markov 

Modelin zaman değişimli ve zaman değişimsiz varyasyonlarından esinlenerek 

geliştirilmiş bir hata düzeltme modelinin tahminci bileşeninde kullanılmıştır. Bu 

sayede farklı olasılıksal ve belirlenimci yöntemlerin geliştirilen hibrit modele 

katkısı karşılaştırmalı olarak ortaya konmuştur. Bu karşılaştırmalı çalışma, tez 

için örnek olay incelemesi olarak seçilen rüzgar hızı, güneş ışıması ve sıcaklık 

gibi olayların altında yatan olguyu açığa çıkarmaya çalışmaktadır.   

Anahtar Kelimeler: Veri Modelleme, Zaman Değişimli Modeller, Zaman 

Değişimsiz Modeller, Mycielski, Markov Zincirleri, Saklı 

Markov Modeller 
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1. INTRODUCTION 

 

 Discrete data sets, which are collected from natural or human related 

events with a specific sampling rate, can be inspected in either linear or nonlinear 

perspective. Least-squares regression (Moser, 1996a), maximum likelihood 

estimation (Moser, 1996b), autoregressive model(Hayes, 1996) and 

autoregressive moving average model(Hayes, 1996) can be mentioned as most 

common linear models.   Since the dependence of multi-parameters cause 

nonlinear behavior in time or frequency domain (which can not be expressed 

explicitly with linear models) on these data sets, nonlinear perspective is more 

convenient for obtaining beneficial information from data of real life problems.  

In the previous works nonlinear models like Markov Chains (Sahin and 

Sen, 2001; Shamshad et al., 2005; Hocaoglu et al., 2008; Hayes and Djokic, 

2013) and Hidden Markov Models (Hocaoğlu et al., 2010) were used for 

prediction and modeling of wind speed data. In addition Wavelet based models 

were used for prediction of Solar radiation (Cao and Cao, 2005; Cao and Cao, 

2006; Mellit et al., 2006). Wavelet methods are also used for modeling some 

energy related data (Ece and Gerek, 2004; Gerek and Ece, 2004). Empirical 

Mode Decomposition is one of the nonlinear methods which was used for data 

analysis and modeling purpose (Huang et al., 1998; Huang et al., 2003; Lei et 

al., 2013; Jiang et al., 2014). Mycielski based Wind Speed data analysis can also 

be mentioned for nonlinear data analysis (Hocaoglu et al., 2009; Fidan et al., 

2012).  Spline method is one of the methods that was used for solar radiation 

data (Childs et al., 1984; Genç et al., 2002). In addition Fourier series based solar 

radiation analysis is one of the way in the literature (Fidan et al., 2009; Hocaoğlu 

et al., 2009b; Fidan et al., 2014) 

In addition the dependence of multi-parameters can cause a requirement 

of multidimensional analysis. Moreover a simultaneous analysis for multi-

periods (for example a simultaneous hourly, daily, monthly and yearly analysis) 

can be necessary for a sophisticated comprehension about the phenomenon 

underlies the case study.  Due to the multi-parameters and multi-periods cases, 
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the multidimensional analysis becomes crucial for an advanced data research. 2d 

linear filters can be examples for multidimensional data analysis methods 

(Marzetta, 1980; Hocaoğlu et al., 2008). In addition multidimensional Wavelet 

analysis were used for modeling electrical power data(Ece and Gerek, 2004) and 

sound and vibration data taken from electrical motors (Germen et al., 2014). 

Multifractal analysis is one of the multidimensional data analysis method that 

should be mentioned (Lopes and Betrouni, 2009; Pal et al., 2014). Bidimensional 

Empirical Mode Decomposition method is one of the multidimensional data 

analysis method that was used for modeling and analysis of various type of data 

(Nunes et al., 2005; Fauchereau et al., 2008; WU et al., 2009; Islam et al., 2012).  

 In this thesis a Markov transition supported error tuning model is 

proposed.  This model has a structure which permits to be combined with 

different kinds of one and multi-dimensional nonlinear data models. This 

proposed model is inspired by Hidden Markov Model(Rabiner and Juang, 1986) 

which is explained in Section 1.1. The model has variations according to the 

time-varying and time invariant cases. These variations are explained in detail 

in Chapter 4. 

Through the proposed error tuning model, behavior of the data are 

explained by the combination of a nonlinear model and Markovian model. Basic 

properties of nonlinear models used in this thesis are explained in Section 1.2 

and each single nonlinear method are explained in Chapter 2 in detail. The types 

of Markovian Models, which are used in the variations of the error tuning model, 

are handled in Chapter 3. 

In Chapter 5, multidimensional representation of one dimensional data is 

explained. The purpose and advantages of multidimensional representation are 

stated and the methodology of multidimensional representation are expressed by 

the steps in Chapter 5. 

The case studies of the thesis are selected as wind speed prediction, solar 

radiation modeling, prediction of energy demand and motor fault diagnosis and 

these case studies are explained and illustrated with comparative modeling 

results in Chapter 6. 
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The different types of data handled in the case studies give the 

opportunity to make a brief conclusion about the proposed models. These 

comparative results are also helpful to obtain some opinions about the 

convienience of hybrid model with selected nonlinear models. This brief 

conclusion and the opinions are stated in Chapter 7. The possible future works 

are also mentioned in Chapter 7. 

1.1.  Markov Transition Supported Error Tuning Model 

 

 Even if the selected model is stochastic or deterministic for the data of 

real life problem, the selected model probably will not fit the data perfectly. The 

reason of imperfect fitting is the data itself which consists both deterministic and 

stochastic components. In addition, although the selected problem consists 

purely stochastic process, the process may not be a stationary process, which 

shows time varying statistical characteristics. To achieve these problems, an 

error tuning model is proposed which is inspired by Hidden Markov Model 

(HMM). HMM is a stochastic model which is developed for unobservable 

stochastic processes, which can only be observed by the relation of another 

stochastic process that is observable (Rabiner and Juang, 1986). Hidden 

Markov models are used in various areas including speech recognition(Ferreiros 

et al., 1995; Russell et al., 1996; Gales, 1998; Takiguchi et al., 2001), 

handwriting recognition(Bengio et al., 1995; Jianying et al., 1996; Schlapbach 

and Bunke, 2004), gesture recognition(Hyeon-Kyu and Kim, 1999; Deng and 

Tsui, 2000; Yang et al., 2007) and applications in bioinformatics(Delorenzi and 

Speed, 2002; Kall et al., 2005; Shah et al., 2006; Xu et al., 2008). Moreover there 

are new generalization methods for hidden Markov models, which are pairwise 

Markov models and triplet Markov models, that permit inspecting complex data 

structures (Pieczynski, 2010; Boudaren et al., 2014) and the modeling of non-

stationary data(Duanchao et al., 2012; Li, 2012) 

In the original HMM, there are two processes. First one is hidden process 

and second one is observable process. The hidden process is measured by means 

of observable variable. In the proposed error tuning model, a predictor model is 

used as observable process. 
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Predictor Model: This process is defined by selected nonlinear 

prediction model (predictor).  The selected prediction model obtains its output 

by using finite or infinite history. However this is not the ultimate prediction. 

This prediction is fitted on the center of a Gaussian (Normal) distribution(Dixon 

and Massey, 1969) with the root mean square error of the previous predictions 

as variance of the distribution and by the sampling of continuous distribution, 

finite number of candidate values for the prediction with their possibilities are 

obtained. This process is determined in detail in Section 1.1.1 and the selected 

prediction models (predictors) Chapter 2. 

Markov Process:  According to the nature of hidden process, there is no 

observation for the next sample. However there are data for the counts of the 

transitions between previous and next samples according to the history data. 

These data are used to construct Markov transition matrix which is used in 

discrete time Markov chains (DTMC). DTMC is explained in detail in Section 

1.1.2 and its variations are explained in Chapter 4. 

 

Figure 1.1. General structure of Markov transition supported error tuning model 
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1.1.1. Predictor 

 

In this thesis, predictor is an operator which estimates future values of a 

discrete-time signal with a specific function of previous samples. This function 

can use whole previous samples (infinite history) or a specific portion of 

previous samples (finite history). 

The predictor that is used in the hybrid model will produce a prediction 

for the next data sample. However this prediction will not be the ultimate 

prediction of the hybrid model. Depending to the prediction value and the 

prediction errors of the previous predictions, a Gaussian distribution will be 

produced. The midpoint of the distribution will be the prediction value. The 

standard deviation of the distribution will be changed depending to the RMSE 

of the prediction model. This RMSE is taken as time-varying and time-invariant 

in different hybrid models which is explained in Chapter 4 in details. The 

Gaussian distribution can be explained with Equation (1.1) and illustrated as 

Figure 1.2 (Dixon and Massey, 1969): 

 

𝑓(𝑥, 𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒−(𝑥−𝜇)2 2𝜎2⁄                                      (1.1) 

 

Figure 1.2. Graph of the prediction error centered Gaussian distribution 
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1.1.2. Discrete Time Markov Chain for State Transition Probabilities 

 

A stochastic process {𝑋𝑛, 𝑛 ≥ 0} on state space S is said to be a discrete-

time Markov chain (DTMC) if Equation (1.2) is satisfied for all states 𝑆𝑖 and 

𝑆𝑗  in S . 

 

𝑃(𝑋𝑛+1 = 𝑆𝑗|𝑋𝑛 = 𝑆𝑖, 𝑋𝑛−1,⋯ ,𝑋0) = 𝑃(𝑋𝑛+1 = 𝑆𝑗|𝑋𝑛 = 𝑆𝑖)      (1.2)  

 

A DTMC {𝑋𝑛, 𝑛 ≥ 0} is said to be time invariant if Equation (1.3) is satisfied. 

 

𝑃(𝑋𝑛+1 = 𝑆𝑗|𝑋𝑛 = 𝑆𝑖) = 𝑃(𝑋1 = 𝑆𝑗|𝑋0 =

𝑆𝑖)                    (1.3) 

 

If the transition probability from 𝑆𝑖 to 𝑆𝑗 is taken as Equation (1.4), then the state 

transition probability matrix A is obtained as Equation (1.5) for N number of 

states. 

 

  𝑎𝑖𝑗 = 𝑃(𝑋𝑛+1 = 𝑆𝑗|𝑋𝑛 = 𝑆𝑖)                               (1.4) 

 

𝐴 = [

𝑎11 ⋯ 𝑎1𝑁

⋮ ⋱ ⋮
𝑎𝑁1 ⋯ 𝑎𝑁𝑁

]                                   (1.5) 

 

In order to obtain the state transition probabilities with the two samples of 

the discrete data with m number of sample distance from each other, the state 

transition probability matrix is obtained as Equation (1.6). 

 

𝐴𝑚 = [

𝑎11 ⋯ 𝑎1𝑁

⋮ ⋱ ⋮
𝑎𝑁1 ⋯ 𝑎𝑁𝑁

]

𝑚

                                   (1.6) 
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According to distributions obtained from predictor and DTMC the decision 

of the ultimate prediction is obtained as shown in Figure 1.3. 

 

Figure 1.3. Ultimate decision of the Markov transition supported error tuning model 

 

1.2.  Overview to Nonlinear Data Models 

 The superposition property is the necessary condition of the linear 

models. However, the data taken from a real-life event does not show the 

superposition mostly. Therefore alternative models are needed which are 

nonlinear. These nonlinear models can be separated as deterministic and 

stochastic nonlinear models inside. The deterministic models are used for the 

systems which does not consist randomness. On the other hand, the stochastic 

models are defined by random variables.  

1.2.1. Stochastic Models 

 An estimation process which is depending to the probability distributions 

of the potential candidates for the prediction can be called stochastic model 

(Pinsky and Karlin, 2010). These probability distributions or probabilistic 

definitions are obtained from the observations for the statistical characteristics 

of the historical data with suitable time series techniques. In order to get more 

reliable predictions, longer historical data should be observed with more repeats. 

These models are the methods of measuring dynamic correlations of the series 

of the random events. 

A stochastic process in discrete state space, which is modelled by a 

stochastic model, is represented by the set of random variables {𝑋𝑛} where the 

n∈ ℤ denotes time. A modellable random variable 𝑋𝑛 is expected to be 
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dependent to past random variables {𝑋𝑛−𝑖} where i∈ ℤ+. These dependencies 

can be expressed by Equation (1.2) and Equation (1.3) for a standard Markovian 

model.  

In this thesis Markov and Mycielski based methods are held as stochastic 

models, explained in Chapter 2 with details. 

1.2.2. Deterministic Models 

 

 Mathematical models, which are expressed by means of well-defined 

relationships among states and events and do not include any component for 

random variation, are called deterministic models  (Heinz, 2011). In such 

models, a given input will always cause the same output. On the other hand, 

stochastic models use ranges of values for variables in the form of probability 

distributions. 

 In this thesis, polynomials, wavelets, splines and empirical mode 

decomposition are chosen as deterministic models.  
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2. SELECTED METHODS FOR PREDICTOR  

 

2.1.Mycielski Based Methods 

 

Mycielski algorirthm is designed for 1d data, which has the advantage 

using infinite history rule (Jacquet et al., 2002). Mycielski algorithm makes its 

prediction by finding the longest pattern that is repeated at the end of the infinite 

history. Infinite history means the whole past samples of the data. Depending on 

its strong prediction capability, Mycieslki algorithm can be used in different 

applications. Some of these applications can  be listed as wind speed prediction 

(Hocaoğlu et al., 2009a), synthetic wind speed data generation (Fidan et al., 

2012), pseudo-random number generator(Ehrenfeucht and Mycielski, 1992) and 

cyphering by using pseudo-random number generator(Fidan and Gerek, 2008). 

In this thesis, different bidimensional variations of the Mycielski Algorithms are 

developed. These developed bidimensional versions of the Mycielski algorithm 

will be expected to obtain better prediction values than the original one 

dimensional Mycielski algorithm when they are applied on bidimensional real-

life data or images. The reason of this expectation is the 2d pattern detection 

ability of bidimensional versions which does not exist on the original version. 

These novel algorithms are applied for the prediction of hourly energy demand 

in a city, prediction of wind energy and also predictive coding and compression 

of 2d images and the comparative of the algorithms are illustrated in Chapter 6.  

 

2.1.1. 1d-Mycielski Algorithm 

 

The Mycielski algorithm performs a prediction using the total exact 

history of the data samples. The basic idea of the algorithm is to search for the 

longest suffix string at the end of the data sequence which had been repeated at 

least once in the history of the sequence. The search starts with a short (length = 

1) template size and continues increasing the template length as long as matches 

are found in the history. When the longest repeating sequence is determined, the 
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value of the sample right after the longest repeating template is assigned as the 

prediction value. The rule estimates that if this pattern had appeared like this in 

the past, then it is supposed to behave the same now. This predictor can be 

generalized with the expression in Equation (2.1). 

 

𝑥̂[𝑛 + 1] = 𝑓𝑛+1(𝑥[1],⋯ , 𝑥[𝑛])                                (2.1) 

                                                   

The function f (.) performs an iterative algorithm that starts from the 

shortest data segment at the end (i.e. length one sample: x[n]), then one by one 

increases the data segment length to the left side as (𝑥[𝑛 − 1], 𝑥[𝑛]), (𝑥[𝑛 −

2], 𝑥[𝑛 − 1], 𝑥[𝑛]), etc. Meanwhile, the segments are searched from the end 

point to the start point by sliding over the samples. Several matches could be 

found during the algorithm run. At a point of a ‘‘no-match”, a probably longer 

segment will not be encountered anywhere in the past sequence. At that point, 

the prediction is made as the next sample value of the latest encountered (1 

shorter) matching string. Naturally, the algorithm searches through the whole 

data sequence repeatedly for each prediction step, and it has high computational 

requirements. The overall scheme can be analytically expressed as Equation 

(2.2). 

 

     𝑚 = 𝑎𝑟𝑔 max
𝐿

{
𝑥[𝑘] = 𝑥[𝑛], 𝑥[𝑘 − 1] = 𝑥[𝑛 − 1]

,⋯ , 𝑥[𝑘 − 𝐿 + 1] = 𝑥[𝑘 − 𝐿 + 1]
}

𝑓𝑛+1 = 𝑥̂[𝑛 + 1] = 𝑥[𝑚]
                     (2.2) 

 

The above predictor can be re-described in words as an attempt to estimate the 

next sample in the currently ongoing random process as the most probable 

sample that had occurred in the history of the data sequence. The most probable 

is taken as the longest repeating chain of data samples. 
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2.1.2. 2d-Mycielski Algorithm 

 

First step of the developing two dimensional version of the Mycielski 

algorithm is identifying the shape of the searched pattern and how it will be 

widened for the next search step.  The widening routine is shown for original 

Mycielski and 2d-Mycielski in Figure 2.1. 

 

Figure 2.1. Widening iterations of (a) 1d, and (b) 2d-Mycielski algorithms 

 

 

Second step is identifying the history which is the region that the 

searched pattern can be repeated. In this thesis, the limits of the history is 

identified with the index values of the sample that will be predicted. In other 

words the history is the full region which stands left upper side of the sample. 

However, the searched pattern is excluded from that region to avoid the 

intersection of searched pattern and probable repeated version of it in the past. 

Depending to these explanations the infinite history where the searched pattern 

is excluded can be illustrated as Figure 2.2.  
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Figure 2.2. Infinite history rules of (a)1d, and (b)2d-Mycielski algorithms 

 

Any 2d predictor depending to infinite history can be expressed as Equation 

(2.3). 

 

𝑥̂[𝑛 + 1,𝑚 + 1] = 𝑓 (
𝑥[1,1], 𝑥[1,2], 𝑥[2,1], 𝑥[2,2],

⋯ , 𝑥[𝑛 + 1,𝑚], 𝑥[𝑛,𝑚 + 1]
)               (2.3) 

 

Due to the eqution above, the bidimensional Mycielski algorithm can be 

generalized as Equation (2.4). 

 

(𝑖, 𝑗) =                                                                                                                                

𝑎𝑟𝑔 max
{𝑘,𝑙}

𝐿 ≔ {{𝑘, 𝑙} |
𝑥[𝑘 + 1, 𝑙] = 𝑥[𝑛 + 1,𝑚],

𝑥[𝑘, 𝑙 + 1] = 𝑥[𝑛,𝑚 + 1], 𝑥[𝑘, 𝑙] = 𝑥[𝑛,𝑚],⋯ ,
𝑥[𝑘 − 𝐿 + 1, 𝑙 − 𝐿 + 1] = 𝑥[𝑛 − 𝐿 + 1,𝑚 − 𝐿 + 1]

} ,

𝑓𝑛+1,𝑚+1 = 𝑥̂[𝑛 + 1,𝑚 + 1] = 𝑥[𝑖, 𝑗]

 

(2.4) 

 

Depending to (2.4), the prediction value is the sample at the right lower 

corner of the found largest repeated pattern. If there are more than one repeat for 

the largest searched pattern, the closest one should be taken as default repeat. In 

other words the scanning procedure should be than in a direction from closer 

sample to the farrest sample. 

There is only one single choice for the scanning direction of orginal 

Mycielski Algorithm. Since the distance between two points in one dimension is 
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exactly the same for all possible dp metrics that use LP norm, the direction from 

closer point to farest point is single. In other words, the variation of p in the dp 

metric does not cause any change the measurement of the distance. According 

to these explanations, the single scanning direction which can be expressed by 

the simplest d1 Manhattan metric and the other complicated metrics, which is 

from right to left side of the searched pattern is the single choice for orginal 

Mycielski algorithm. 

Nevertheless for the two dimensions, the measured distance will be 

changed when the p in the dp norm is changed. Therefore there are infinite 

number of choices for the scanning direction. In this thesis, the scanning 

directions defined by d1(Manhattan), d2(Euclidean) and d∞(Chebyshev) metrics 

are chosen(Shannon, 2007). In addition the performances of these three 

algorithms are compared. 

LP or p norm are used to define the spaces with finite number of 

dimensions. dP metrics are the metrics which define the distance between two 

points in the space with LP norm. These dP metrics are also named as Minkowski 

distance. For the real valued Rn vector space, the dP metric between two points 

can be defined as in Equation (2.5). 

 

𝑑𝑝(𝑥, 𝑦) = (∑ |𝑥𝑖 − 𝑦𝑖|
𝑃𝑛

𝑖=1 )1/𝑃                               (2.5) 

 

In Manhattan metric the p value in the equation above is taken as 1. For 

the two dimensional real valued R2 space, the distance between any two points 

is expressed with Manhattan metric as in Equation (2.6).  

𝑑1(𝑥, 𝑦) = |𝑥1 − 𝑦1| + |𝑥2 − 𝑦2|                           (2.6) 

 

According to Manhattan metric, the unit circle can be shown as in the Figure 2.3. 
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Figure 2.3.  The Unit Circle defined by Manhattan metric 

 

The scanning direction has a similar shape with unit circle of Manhattan metric 

which can be shown as in the following Figure 2.4. 

 

Figure 2.4.  Scanning direction defined by Manhattan distance 

In Euclidean metric the p value in Equation (2.5) is taken as 2. For the 

two dimensional real valued R2 space, the distance between any two points is 

expressed with Manhattan metric as in Equation (2.7).  

 

𝑑2(𝑥, 𝑦) = (|𝑥1 − 𝑦1|
2 + |𝑥2 − 𝑦2|

2)1/2                               (2.7) 

 

According to Euclidean metric, the unit circle can be shown as in the Figure 2.5 
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Figure 2.5.  The unit circle defined by Euclidean metric 

 

The scanning direction has a similar shape with unit circle of Euclidean metric 

which can be shown as in the Figure 2.6. 

 

Figure 2.6.  Scanning direction defined by Euclidean distance 

 

To define a perfect circle scanning order, the index values of samples 

which are defined Cartesian coordinates should be converted to polar 

coordinates with Equation (2.8). 

𝑣(𝑚+1,𝑛+1)(𝑘+1,𝑙+1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝑚 − 𝑘, 𝑛 − 𝑙) = (𝑟, 𝜃) 

𝑟 = √[(𝑚 − 𝑘)2 + (𝑛 − 𝑙)2], 𝜃 = arctan (
𝑛−𝑙

𝑚−𝑘
)         

(2.8) 

For obtaining a perfect circle shaped scanning direction, samples of the 

infinite history should be ordered depending to their polar coordinates. This 
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ordering scheme has two steps. In first step samples should be ordered according 

to radius r component. In the second step, the samples which have the same 

radius should be ordered according to angle θ component. Therefore scanning 

scheme will be started from smallest radius to largest radius, and in the group of 

samples which have same radius scanning scheme will be from smallest angle 

to largest in the first circle, then will be swapped to the order from largest to 

smallest angle for second circle, and swapped to the order from smallest to 

largest angle and swapping will be continued for the following circles. 

Euclidean based scanning direction is the exact method to find the closest 

repeated pattern. However due to the computation of polar coordinates this is the 

most complex search scheme which increases the complexity of search 

algorithm exponentially. 

The Chebyshev metric is calculated by taking limit of (2.5), when the p 

goes to infinity. For the two dimensional real valued R2 space, the distance 

between any two points is expressed with Chebyshev metric as in Equation (2.9).  

 

𝑑∞(𝑥, 𝑦) = lim
𝑝→∞

(|𝑥1 − 𝑦1|
𝑃 + |𝑥2 − 𝑦2|

𝑃)1/𝑃 = 𝑚𝑎𝑥{|𝑥1 − 𝑦1|, |𝑥2 − 𝑦2|}    

(2.9) 

 

According to Chebyshev metric, the unit circle can be shown as in Figure 2.7. 

 

Figure 2.7.  The unit circle defined by Chebyshev metric 
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The scanning direction has a similar shape with unit circle of Chebyshev metric 

which can be shown as in Figure 2.8. 

 

Figure 2.8.  Scanning direction defined by Chebyshev distance 

 

In the Chebyshev based scanning scheme, the scanning scheme is going 

to be similar to original one dimensional Mycielski algorithm, while the distance 

is becoming larger. For the purpose of catching the repeated patterns in the 

infinite history, a similary test should be applied between searched pattern and 

the candidate for the repeat in the history. In the original Mycielski Algorithm 

this similarity test is applied with using Hamming distance (Forney Jr, 1966). 

For the binary valued two different series the Hamming distance can be 

calculated as Equation (2.10). 

 

𝑑𝐻𝑎𝑚𝑚𝑖𝑛𝑔 = (𝑐1, 𝑐2) = ∑ [𝑐1(𝑖) ⊕ 𝑐2(𝑖)]               
𝑛
𝑖=1            (2.10) 

 

If the Hamming distance is 0, then the compared series will be assumed 

as the same. On the other case, they will be assumed different. Hamming 

distance is the simplest distance that can be applied to binary valued series. 

However, in the real valued series the algorithm will probably fail to catch 

similar patterns with Hamming distance, because of impossibility of repeating a 

real value. In the previous work, a tolerated distance is suggested to use instead 
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of Hamming distance(Hocaoglu et al., 2009). This tolerated distance is also used 

in this thesis also, which can be defined as Equation (2.11). 

𝑓𝑡𝑜𝑙𝑒𝑟𝑎𝑡𝑒𝑑(𝑥1, 𝑥2) = {
0, |𝑥1 − 𝑥2| <

𝑚𝑎𝑥{|𝑥1|, |𝑥2|}

10

1, |𝑥1 − 𝑥2| ≥
𝑚𝑎𝑥{|𝑥1|, |𝑥2|}

10

 

𝑑𝑡𝑜𝑙𝑒𝑟𝑎𝑡𝑒𝑑(𝑐1, 𝑐2) = ∑ ∑ 𝑓𝑡𝑜𝑙𝑒𝑟𝑎𝑡𝑒𝑑(𝑐1(𝑖, 𝑗), 𝑐2(𝑖, 𝑗))𝑗𝑖        (2.11) 

 

As in the Hamming distance, if the tolerated distance is 0, then the 

compared series will be assumed as the same. On the other case, they will be 

assumed different.This tolerated distance allows max 10% RMSE between 

searched pattern and the found repeated pattern.  

 

 

2.1.3. Mycielski Algorithm for 2d-Pattern Search In A Spiral Plane 

 

In the previous section the 2d-Mycielski Model is constructed. In this 

section data will be converted into 2d spaces from 1d space. However the 

continuity property of 1d will not be lost. For conservation of continuity 

property, representation in archimedian spiral coordinate system is proposed 

(Curtis, 1960; Benedetto and Wu, 2000). This spiral coordinate system satisfies 

to search 2d patterns in 1d order. This model is constructed for real-life events 

like wind speed for catching 2d patterns (hour and day are the two dimensions) 

without loosing continuity of sequential days.  

 

 

Figure 2.9.  A symbolic illustration of spiral coordinate system 
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Figure 2.10. A symbolic illustration of scanning direction in the spiral coordinate system 

2.1.4. Mycielski Decomposition 

 

 This method is inspired by the idea of iterative combinations of residual 

prediction. Predictions are started for longest period (least sampling frequency). 

For each step prediction errors are calculated. In the next step the prediction 

period is shortened and new predictions are made on residual data (prediction 

error of first iteration). This iterative prediction steps are continued until the 

smallest prediction period is reached. A four-level Mycielski decomposition can 

be illustrated as Figure 2.11.  As a result of application of N-level Mycieslki 

decomposition, N+1 number of components are constructed.  

 



20 

 

 

Figure 2.11. Four-level Mycielski decomposition 

 

By means of Mycielski decomposition, the predictability of the data for 

long term and short term can be observed. In addition, the statistics of the 

unpredictable component give some opinions about randomness and 

nonlinearity of the inspected data. The constructed decomposition model is a 

suitable model for energy demand data, which have monotonicly increasing 

components and fluctuating components as seen from EMD analysis in Section. 

 

2.2.Wavelet Based Methods      

 

In this section, data is modelled by using Wavelet decomposition. The 

wavelet decomposition seperates the signal into its low and high energy 

components and gives the opportunity to inspect energy component and detail 

component individually.  This model is chosen for modeling and prediction of 

solar radiation.  

The energy component of solar radiation can be simple modelled by 2d- 

cosine function which is depending to hour and day variables. The other 

component of the signal is modelled as following.  
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In this application the main purpose is construct a one year 

approximation from applying inverse Wavelet transform to the mathematical 

models of energy and detail componenets of the solar radiation data.  

 

Figure 2.12. 2d representation of one year solar radiation data 

 

Figure 2.13. The components of the solar radiation data after the single layered Haar 

Wavelet transform CA, CH, CV, CD 
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Figure 2.14.  The components of the solar radiation data after the application of second 

layer of the Haar Wavelet transform CAA, CAH, CAV, CAD 

 

CAA and CAH component in the figure above are defined with polynomials in 

5th degrees whose coefficients are also polynomials in 5th degrees which can be 

shown as below. 

 

Figure 2.15.  CAA and CAH constructed by polynomials with polynomial valued varying 

coefficients 
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Figure 2.16.  CH constructed by polynomials with polynomial valued varying coefficients 

 

 
 
Figure 2.17.  General solar radiation model constructed by obtained CAA, CAH and CH 

components 

 

 

2.3.  Linear Predictors 

 

Linear prediction is a mathematical operation where future values of a 

discrete-time signal are estimated as a linear function of previous samples. In 

digital signal processing, linear prediction is often called linear predictive coding 

(LPC) and can thus be viewed as a subset of filter theory. In system analysis (a 
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subfield of mathematics), linear prediction can be viewed as a part of 

mathematical modeling or optimization. 

A linear system is such that produces its output as a linear combination of its 

current and previous inputs and its previous outputs (Parsons, 1987). It can be 

described as time-invariant if the system parameters do not change with time. 

Mathematically, linear time-invariant (LTI) systems can be represented by 

Equation (2.12) (Makhoul, 1975). 

 

𝑦(𝑛) = ∑ 𝑏𝑗𝑥(𝑛 − 𝑗)𝑞
𝑗=0 − ∑ 𝑎𝑘𝑦(𝑛 − 𝑘)𝑝

𝑘=1                          (2.12) 

 

This is the general difference equation for any linear system, with output signal 

y and input signal x, and scalars bj and ak, where j changes from 1 to q and k 

changes from 1 to p where the p and q identify the order of the system.  

 

2.3.1. 1d Linear Predictor  

 

In this thesis all-pole model and least-squares model are taken as 1d 

linear predictor. The all-pole model, which is also mentioned as autoregressive 

model and explained with details in the research article of Weruaga (Weruaga, 

2007), can be expressed with Equation (2.13).  

 

𝑥[𝑛] = (∑ 𝑎𝑘𝑥[𝑛 − 𝑘]𝑃
𝑘=1 ) + 𝑒[𝑛]                                      (2.13) 

 

In the equation P denotes the model order and 𝑎𝑘  are the autoregressive 

coefficients. The most popular method for estimation of autoregressive 

coefficients is the Yule-Walker method(Yule, 1927; Walker, 1931). 

If the P is taken as 3 then (2.13) can be written as Equation (2.14). 

 

𝑥[𝑛] = 𝑎1𝑥[𝑛 − 1] + 𝑎2𝑥[𝑛 − 2] + 𝑎3𝑥[𝑛 − 3] + 𝑒[𝑛]                    (2.14) 

 

The coefficients 𝑎1, 𝑎2 and 𝑎3 have the relation defined in Equation (2.15) with 

the correlation values 𝑅𝑋𝑋 . 
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[

𝑅𝑋𝑋(0) 𝑅𝑋𝑋(−1) 𝑅𝑋𝑋(−2)

𝑅𝑋𝑋(1) 𝑅𝑋𝑋(0) 𝑅𝑋𝑋(−1)

𝑅𝑋𝑋(2) 𝑅𝑋𝑋(1) 𝑅𝑋𝑋(0)
] [

𝑎1

𝑎2

𝑎3

] = [

𝑅𝑋𝑋(−1)

𝑅𝑋𝑋(−2)

𝑅𝑋𝑋(−3)
]                   (2.15) 

 

The relation in Equation (2.15) can be represented as Equation (2.16). 

 

𝑹 ∙ 𝒂⃗⃗ = 𝒓⃗                                                               (2.16) 

Therefore the 𝑎𝑘 coefficients can be obtained by Equation (2.17). 

  

                                  𝑹−𝟏 ∙ 𝒓⃗ = 𝒂⃗⃗                                                             (2.17) 

2.3.2. 2d Linear Predictor  

  

Due to predictive image coding literature, it is known that a 2d-matrix 

can be efficiently modeled by linear predictive filters(Maragos et al., 1984). An 

other work shows that solar radiation data can be modelled by 2d linear 

predictor(Hocaoğlu et al., 2008).  

The structure of the 2d linear predictor is similar to 1d linear predictor. 

However the difference is the identification of the neighbourhood of the 

unknown value which is used for prediction. In order to obtain a simple 2d linear 

predictor with 3 coefficients, the neighbourhood is defined as in Figure 2.18. 

 

Figure 2.18. Neighbourhood of unknown value Xi+1,j+1 for 2d linear prediction 

 

According to Figure 2.18, 2d linear predictor defined as Equation (2.18). 
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𝑋𝑖+1,𝑗+1 = 𝑎1𝑋𝑖,𝑗 + 𝑎2𝑋𝑖,𝑗+1 + 𝑎3𝑋𝑖+1,𝑗 + 𝑒𝑖+1,𝑗+1                                        (2.18) 

 

The coefficients 𝑎1, 𝑎2 and 𝑎3 have the relation defined in Equation (2.19) with 

the correlation values 𝑅𝑋𝑋 . 

 

[

𝑅𝑋𝑋(0,0) 𝑅𝑋𝑋(−1,−1) 𝑅𝑋𝑋(−1,0)

𝑅𝑋𝑋(1,1) 𝑅𝑋𝑋(0,0) 𝑅𝑋𝑋(0,1)

𝑅𝑋𝑋(1,0) 𝑅𝑋𝑋(0,−1) 𝑅𝑋𝑋(0,0)
] [

𝑎1

𝑎2

𝑎3

] = [

𝑅𝑋𝑋(−1,−1)

𝑅𝑋𝑋(−1,0)

𝑅𝑋𝑋(0, −1)
]          (2.19) 

 

 

The relation in (2.19) can be represented as Equation (2.20). 

 

𝑹 ∙ 𝒂⃗⃗ = 𝒓⃗                                                               (2.20) 

 

Therefore the 𝑎𝑘 coefficients can be obtained by Equation (2.21). 

  

                                   𝑹−𝟏 ∙ 𝒓⃗ = 𝒂⃗⃗                                                            (2.21) 

 

 

2.4.  Splines 

 

In mathematics, a spline is a numeric function that is piecewise-defined 

by polynomial functions, and which possesses a sufficiently high degree of 

smoothness at the places where the polynomial pieces connect (which are known 

as knots)(Judd, 1998; Chen, 2009) 

In interpolating problems, spline interpolation is often preferred to 

polynomial interpolation because it yields similar results to interpolating with 

higher degree polynomials while avoiding instability due to Runge's 

phenomenon. In computer graphics, parametric curves whose coordinates are 

given by splines are popular because of the simplicity of their construction, their 

ease and accuracy of evaluation, and their capacity to approximate complex 

shapes through curve fitting and interactive curve design. 
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The most commonly used splines are cubic spline, cubic B-spline and 

cubic Bézier spline.  

B-splines were investigated as early as the nineteenth century by Nikolai 

Lobachevsky. The term "B-spline" was coined by Isaac Jacob Schoenberg and 

is short for basis spline. A spline function is a piecewise polynomial function of 

degree k in a variable x. The places where the pieces meet are known as knots. 

The number of knots must be equal to, or greater than k+1. Thus the spline 

function has limited support. The key property of spline functions is that they 

are continuous at the knots. Some derivatives of the spline function may also be 

continuous, depending on whether the knots are distinct or not. A fundamental 

theorem states that every spline function of a given degree, smoothness, and 

domain partition, can be uniquely represented as a linear combination of B-

splines of that same degree and smoothness, and over that same partition. 

 

2.5.  Empirical Mode Decomposition 

 

EMD is a method of breaking down a signal without leaving the time 

domain (Huang et al., 1998). It can be compared to other analysis methods like 

Fourier Transforms and wavelet decomposition. The process is useful for 

analyzing natural signals, which are most often non-linear and non-stationary. 

This parts from the assumptions of the methods we have thus far learned (namely 

that the systems in question be LTI, at least in approximation). 

EMD filters out functions which form a complete and nearly orthogonal 

basis for the original signal. Completeness is based on the method of the EMD; 

the way it is decomposed implies completeness. The functions, known as 

Intrinsic Mode Functions (IMFs), are therefore sufficient to describe the signal, 

even though they are not necessarily orthogonal.  

The fact that the functions into which a signal is decomposed are all in 

the time-domain and of the same length as the original signal allows for varying 

frequency in time to be preserved. Obtaining IMFs from real world signals is 

important because natural processes often have multiple causes, and each of 

these causes may happen at specific time intervals. This type of data is evident 
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in an EMD analysis, but quite hidden in the Fourier domain or in wavelet 

coefficients.  

 

 

2.5.1. 1d Empirical Mode Decomposition  

 

1d Empirical Mode Decomposition is method which express a signal in 

terms of its component Intrinsic Mode Functions (IMF). An IMF is a function 

which has only one extreme between zero crossings, and has a mean value of 

zero.  The process of obtaining IMF is called as sifting process. In addition there 

is a locality parameter in EMD, which controls number of iteration and number 

of IMFs of EMD. This parameter also identifies the calculation time and the 

effectiveness of the EMD. According to locality parameter the sifting parameter 

is repeated k times. 

In the sifting process, firstly upper and lower envelopes of   a signal x(t) 

are calculated. Upper envelope is obtained from cubic-spline interpolation of 

local maxima of x(t). As similar lower envelope is obtained from cubic-spline 

interpolation of local minima of x(t). The mean of upper and lower envelopes 

gives the local mean function m1(t). 

  The first component h1(t)is calculated as Equation (2.22). 

 

h1(t) = x(t) − m1(t)                                                      (2.22) 

 

In the second sifting step, h1(t) is handled as the original signal and  

the local mean function m11(t) is obtained from h1(t) with the same way of 

obtaining m1(t)   

from x(t).  h11(t) is calculated as Equation (2.23). 

 

h11(t) = h1(t) − m11(t)                                                      (2.23) 

 

This sifting procedure is repeated k times, until h1k(t) which is an IMF is 

obtained as Equation (2.24). 
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h1k(t) = h1k−1(t) − m1k(t)                                                      (2.24) 

 

In the inverse order h1k(t) = c1(t) is accepted as first IMF component, which 

has highest frequency (shortest period) in all IMFs. Therefore the last IMF is 

h11(t) = ck(t) which has the lowest frequency. In addition there is residual 

component, which can be thought as noise of the data. This residual component 

does not give any information about the frequency of the harmonics of the data. 

According to these obtained IMFs x(t) can be expressed as Equation (2.25). 

 

x(t) = c1(t) + c2(t) + ⋯+ ck(t) + rk(t)                            (2.25) 

 

 

2.5.2. 2d Empirical Mode Decomposition      

 

The ability to effectively classify and segment images based on textural 

features is of key importance in scene analysis, medical image analysis, remote 

sensing and many other application areas. Feature extraction is the first stage of 

image texture analysis. To extract the 2d-IMF during the sifting process, we have 

used morphological reconstruction to detect the image extrema and RBF to 

compute the surface interpolation. A 2d-IMF is a zero-mean 2d AM–FM 

component. The image AM–FM decomposition is partially unsupervised feature 

based segmentation algorithm, whereas the EMD is fully unsupervised.  The 2d 

sifting process is started by finding the maxima and the minima of the 2d data 

by morphological reconstruction based on geodesic operators and the upper and 

lower 2d envelopes are constructed by radial bias functions.  After this choices 

for construction envelopes, the similar sifting process is applied on the data two 

obtain 2d-IMFs. 
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2.6.  Polynomial Methods 

 

Polynomials are the most popular deterministic methods for explanation 

of the real life data. The following proposed methods are constructed for 2d data. 

Each two methods are constructed by the least squares method based polynomial 

regression of the local extrema (Gergonne, 1974). The polynomial regression 

with mth degree polynomial is defined as Equation (2.26), where the 𝑥𝑖′s are 

coordinates of the extrema and 𝑦𝑖s  are the values of extrema. 

 

𝑦𝑖 = [∑ 𝑎𝑘(𝑥𝑖)
𝑘𝑚

𝑘=0 ] + 𝜀𝑖                                                         (2.26) 

 

Matrix notation of n number of extrema with mth degree polynomial is 

shown in Equation (2.27). 

 

[
 
 
 
 
   𝑦1

  𝑦2

  𝑦3

  ⋮
  𝑦𝑛 ]

 
 
 
 
 

=

[
 
 
 
 
 1
1
1
⋮
1

𝑥1

𝑥2

𝑥3

⋮
𝑥𝑛

𝑥1
2

𝑥2
2

𝑥3
2

⋮
𝑥𝑛

2

⋯
⋯
⋯
⋱
⋯

𝑥1
𝑚

𝑥2
𝑚

𝑥3
𝑚

⋮
𝑥𝑛

𝑚
]
 
 
 
 
 

[
 
 
 
 
   𝑎0

  𝑎1

  𝑎2

  ⋮
  𝑎𝑚 ]

 
 
 
 
 

+

[
 
 
 
 
   𝜀1

  𝜀2

  𝜀3

  ⋮
  𝜀𝑛 ]

 
 
 
 
 

          (2.27) 

 

Equation (2.27) can be represented as Equation (2.28). 

 

𝑦 = 𝑋𝑎 + 𝜀                                                              (2.28) 

 

According to Equation (2.28) 𝑎𝑘 coefficients can be estimated as Equation 

(2.29). 

 

𝑎 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦                                                        (2.29) 
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2.6.1. Multiplication of polynomials under the assumption of seperability 

 

In this method firstly local extremum points are found. After that step, 

projections on x axis of these extremum points are defined with a single 

polynomial fuction f(x) and projections of these extremums on y axis are defined 

with single polynomial function g(y). According to select appropriate f(x) and 

g(y) functions least square method is applied to the projections. After that the 

function that express whole data S(x,y) is found from the multiplication of these 

two polynomial functions as in Equation (2.30). 

 

𝑆(𝑥, 𝑦) =
𝑓(𝑥) 𝑔(𝑦)

√|𝑓(𝑥)||𝑔(𝑦)|
                                          (2.30) 

 

 

2.6.2. Polynomials with polynomial valued varying coefficients  

 

In this method, the local extrema are detected in all of the rows(x axis) 

of the 2d data. Then these extrema are fitted to Nth degree polynomials by least 

squares method. The ak coefficients of each rows construct kth column. 

Afterward local extrema of the each constructed column are found. These local 

extrema are fitted to Mth degree polynomials by least squares method. Obtained 

polynomial model is represented by Equation (2.31).  

 

                                             𝑆(𝑥, 𝑦) = ∑ 𝑔𝑖(𝑦)𝑁
𝑖=0 𝑥𝑖 

   𝑔𝑖(𝑦) = ∑ 𝑎𝑗𝑦
𝑗                                             𝑀

𝑗=1 (2.31) 

 

2.7.  Fourier Series Method 

 

The model illustration is carried out over the data acquired in Izmir 

region of Turkey between years 2004 and 2005. The harmonic analysis enables 

us to construct the daily solar radiation data model in a unified and compact 

form. The idea is inspired from the fact that, the Discrete Fourier Transform of 
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hourly solar variation in a day can be easily modeled by few simple harmonic 

components superimposed by a hard-to-predict random noise. Therefore, the 

approach deals with the general behavior of the data using Fourier analysis.  

The literature survey about hourly solar radiation of a specific region 

yields the existence of various mathematical models. The classical model for 

hourly solar radiation was presented by S. N. Kaplanis (Kaplanis, 2006), which 

is also shown in Equation (2.32). 

 

                                       𝐼(ℎ, 𝑛𝑗) = 𝑎(𝑛𝑗) + 𝑏(𝑛𝑗) ∙ cos (
2𝜋ℎ

24
)                   (2.32) 

 

The classical model has one DC and one cosine component for expressing the 

hourly behavior of solar radiation in a day. The coefficients    andj ja n b n  

vary according to the day, ni
. This model is altered in another work as in 

Equation (2.33)  (Kaplanis and Kaplani, 2007). 

 

                          𝐼(ℎ, 𝑛𝑗) = 𝐴(𝑛𝑗) + 𝐵(𝑛𝑗) ∙
𝑒

−𝜇(𝑛𝑗)𝑥(ℎ)
cos(

2𝜋ℎ

24
)

𝑒
−𝜇(𝑛𝑗)𝑥(ℎ=12)

                         (2.33) 

 

This model has an additional exponential term that depends on
 
m n

j( ) , which is 

the solar beam attenuation coefficient that is modeled using extra-terrestrial 

radiation and daily global solar radiation. 

In this thesis, the proposed model is inspired by the above classical 

models. The model in Equation (2.32) considers only one harmonic term, and 

Equation (2.33)  contains nonlinearities. In that aspect, our proposal is an 

extension of Equation (2.32) to multiple harmonics, avoiding nonlinearities. 

Naturally, the incorporation of harmonics indicates the utilization of FS 

coefficients. It must be noted that some previous researches about solar radiation 

modeling also include FS theory (Dorvlo, 2000; Rahoma and Hassan, 2007; 

Fidan et al., 2009; Hocaoğlu et al., 2009b). However, in those works, the Fourier 

series expansion was used for modeling daily solar radiation (instead of hourly 

solar radiation data).  
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As indicated above, the classical model shown in Equation (2.32) can be 

thought as a Fourier series with one cosine harmonic. Here, the classical model 

is expanded using other cosine and sine harmonics as in Equation (2.34).  

 

        𝐼(ℎ, 𝑛𝑗) = 𝑎𝑛𝑗,0
+ ∑ [𝑎𝑛𝑗,𝑖

∙ cos (
2𝜋𝑖ℎ

24
) + 𝑏𝑛𝑗,𝑖

∙ sin (
2𝜋𝑖ℎ

24
)]𝑁

𝑖=1               (2.34) 

 

The main goal of this expansion is to improve the accuracy of the model. If one-

day data is modeled with Equation (2.34), one-year data can be notated in a 

matrix, which is constructed from FS coefficients, as shown in Equation (2.35). 

 

[
 
 
 
 

𝑎1,0 𝑎1,1

⋮

⋯ 𝑎1,𝑁 𝑏1,1 ⋯ 𝑏1,𝑁

𝑎𝑛𝑗,0
𝑎𝑛𝑗,1

⋮

⋯ 𝑎𝑛𝑗,0 𝑏𝑛𝑗,1
⋯ 𝑏𝑛𝑗,𝑁

𝑎365,0 𝑎365,1 ⋯ 𝑎365,𝑁 𝑏365,1 ⋯ 𝑏365,𝑁]
 
 
 
 

                        (2.35) 

 

Given the hourly solar radiation for a day as 𝐼(ℎ, 𝑛𝑗), where h stands for the hour 

of day 𝑛𝑗 , the FS coefficients, , 0 ,,
j jn n ia a and ,jn ib  can be calculated as shown 

in Equations (2.36), (2.37) and (2.38), respectively. 

                                               𝑎𝑛𝑗,0
=

∑ 𝐼(ℎ,𝑛𝑗)
12
ℎ=−11

24
                                     (2.36) 

 

                                  𝑎𝑛𝑗,𝑖
=

∑ [𝐼(ℎ,𝑛𝑗) cos(
2𝜋𝑖ℎ

24
)]12

ℎ=−11

∑ [cos(
2𝜋𝑖ℎ

24
)]

2
12
ℎ=−11

                                    (2.37) 

 

                                 𝑏𝑛𝑗,𝑖
=

∑ [𝐼(ℎ,𝑛𝑗) sin(
2𝜋𝑖ℎ

24
)]12

ℎ=−11

∑ [sin(
2𝜋𝑖ℎ

24
)]

2
12
ℎ=−11

                                      (2.38) 

 

These parameters will be used in the NN model as input/output data. The 

recovery of the hourly information is obtained by the inverse Fourier transform. 

Starting with the Fourier model of the hourly solar radiation in Equation 

(2.34) , the coefficient, ,0jn
a , corresponds to the mean (average) of the values 
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for day nj. Experimentally, it was observed that the relation between , 1jn
a  and 

,0jn
a  fits to a simple linear model in the form of , 1jn

a =m ,0jn
a +n. Consequently, 

a coarse inter-coefficient model is obtained as: 

 

                               
𝑎𝑛𝑗,0

= 𝐼(𝑛𝑗),

𝑎𝑛𝑗,1
= 𝑚𝐼(𝑛𝑗) + 𝑛

                                               (2.39) 

 

In Kaplanis et al, H(nj), which is the daily solar radiation at surface, was defined 

as: 

 

                  𝐻(𝑛𝑗) = 𝑐1 + 𝑐2 cos (
2𝜋𝑛𝑗

364
+ 𝑐3)                                 (2.40) 

 

Experimentally, the equivalence of  jI n  to the above expression is confirmed, 

thus we have: 

 

𝐼(𝑛𝑗) = 𝑐1 + 𝑐2 cos (
2𝜋𝑛𝑗

364
+ 𝑐3)                                                                                 (2.41) 

 

as well. According to the dependence of , 1jn
a  and ,0jn

a , we have: 

𝑎𝑛𝑗,1
= 𝑚 ∙ [𝑐1 + 𝑐2 cos (

2𝜋𝑛𝑗

364
+ 𝑐3)] + 𝑛,

                      = 𝑑1 + 𝑑2 cos (
2𝜋𝑛𝑗

364
+ 𝑑3)  where 𝑑3 ≅ 𝑐3

              (2.42) 

 

 

The coefficients c1, c2 and c3, can be calculated as in Equations (2.43-2.45). 

 

                                    𝑐1 =
∑ 𝐼(𝑛𝑗)

182
𝑛𝑗=−181

364
                                                    (2.43) 
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𝑐2 = max(

∑ 𝐼(𝑛𝑗) cos(2𝜋(𝑛𝑗+𝑘))182
𝑛𝑗=−181

∑ [cos(2𝜋(𝑛𝑗+𝑘))]
2

182
𝑛𝑗=−181

) ,

𝑘 = −181,−180,⋯ ,181,182.

                       (2.44) 

 

    

    

   

182

181

182 2
3

181

cos 2

,2
argmax

cos 2364

181, 180,...181,182.

j

j

j j

n

M j

n

I n n k

M
c

n k

k











 
 

 
    
 
   




                           (2.45)       
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3. DISCRETE TIME MARKOV CHAINS 

 

3.1.  Time-Invariant Markov Chains  

 

 The time-invariant Markov Chain model is the model explained in 

Section 1.1.2, which assumes that state transition probabilities will not be 

changed over time. According to calculate heathy transition probabilities, there 

should be enough number observations about the signal which could be take a 

long period. Therefore there should enough history data to calculate sufficient 

transition matrix. 

  

3.2.  Piecewise Time-Invariant Markov Chains      

 

 In some kind of data, the statistical characteristics can show seasonal 

changes. However, these characteristics does not change inside that seasons. For 

example, the wind speed shows different state transitions in winter and summer 

seasons. However the same seasons can have the same statistical charateristics. 

Therefore transition matrix can show piecewise time invariant property. This 

model is thought for the signals which do not have a stable statistical 

characteristics. Therefore state transition matrix should be updated over time. In 

this kind of Markov Chain models, the size of sliding window should be enough 

to calculate meaningful transition probabilities. This model also shows 

randomness of the signal. This model was mentioned in a previous 

research(Hosseini et al., 2012).  The transition probability in piecwise-time 

invariant case can be shown as Equation (3.1). 

 

𝑃(𝑋𝑛+1(𝑇𝑘) = 𝑆𝑗|𝑋𝑛(𝑇𝑘) = 𝑆𝑖, 𝑋𝑛−1(𝑇𝑘),⋯ ,𝑋0(𝑇𝑘)) 

= 𝑃(𝑋𝑛+1(𝑇𝑘) = 𝑆𝑗|𝑋𝑛(𝑇𝑘) = 𝑆𝑖)                       (3.1)  

 

𝑇𝑘  is the specific time period. k denotes the transition probaility is determined 

for which time period. For instance if the wind speed model is handled, 𝑇1 shows 
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the winter period and 𝑇2 shows the summer period. Therefore transition 

probabilities show variations in different time periods. However it is invariant in 

every single time periods. According to this property, A DTMC {𝑋𝑛, 𝑛 ≥ 0} is 

said to be piecewise time-invariant if Equation (3.2) is satisfied. 

 

𝑃(𝑋𝑛+1(𝑇𝑘) = 𝑆𝑗|𝑋𝑛(𝑇𝑘) = 𝑆𝑖) = 𝑃(𝑋1(𝑇𝑘) = 𝑆𝑗|𝑋0(𝑇𝑘) = 𝑆𝑖)      (3.2) 

 

If the transition probability from 𝑆𝑖 to 𝑆𝑗 is taken as Equation (3.3), then the state 

transition probability matrix A is obtained as Equation (3.4) for N number of 

states. 

 

  𝑎𝑖𝑗(𝑇𝑘) = 𝑃(𝑋𝑛+1(𝑇𝑘) = 𝑆𝑗|𝑋𝑛(𝑇𝑘) = 𝑆𝑖)                               (3.3) 

 

𝐴(𝑇𝑘) = [
𝑎11(𝑇𝑘) ⋯ 𝑎1𝑁(𝑇𝑘)

⋮ ⋱ ⋮
𝑎𝑁1(𝑇𝑘) ⋯ 𝑎𝑁𝑁(𝑇𝑘)

]                                   (3.4) 
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4. VARIATIONS OF ERROR TUNING MODEL 

  

4.1.  Time-Invariant Markov Chains with the Predictor Error Defined by 

Time-Invariant PDF  (TIMTIP)   

 

 If the signal shows a stable correlation with the chosen predictor model, 

predictor error which will be used for Gaussian distribution can be calculated as 

constant. The 3d representation of Gaussian distribution shown in Figure 4.1 

illustrates that, however the center of the Gaussian distributions changes due to 

time, the standard deviation and the maximum state probability do not change.  

In addition if the signal itself is also statistically stable, a time invariant model 

can be used for the calculation of state transition matrix. This hybrid model is 

expected to more useful for stochastic signals, which are tried to be predicted by 

stochastic prediction models. 

 

 

Figure 4.1. Example of Gaussian distribution fitting with time invariant RMSE of 

predictor 
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4.2.Time-Invariant Markov Chains with the Predictor Error Defined by 

Time-Varying PDF   (TIMTVP) 

 

If the performance of the predictor is changing over time, the prediction 

error, which will be used for Gaussian distribution, should be thought as time 

varying. The 3d representation of Gaussian distribution shown in Figure 4.2 

illustrates that, both the center of the Gaussian distributions, the standard 

deviation and the maximum state probability changes due to time.  

 

 

Figure 4.2.   Example of Gaussian distribution fitting with time varying RMSE of 

predictor 

 

On the other hand if the signal itself is statistically stable a time invariant 

model can be used for the calculation of state transition matrix. This hybrid 

model is expected to more useful for stochastic signals, which are tried to be 

predicted by deterministic prediction models. 
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4.3.  Piecewise Time-Invariant Markov Chains with the Predictor Error 

Defined by Time-Invariant PDF   (PTIMTIP) 

 

If the signal shows a stable correlation with the chosen predictor model, 

predictor error which will be used for Gaussian distribution can be calculated as 

constant. On the other hand if the signal itself is statistically unstable, a time 

varying model can be used for the calculation of state transition matrix. This 

hybrid model is expected to more useful for deterministic signals, which are 

predicted by deterministic prediction models.  

 

4.4.Piecewise Time-Invariant Markov Chains with the Predictor Error 

Defined by Time-Varying PDF (PTIMTVP) 

 

If the performance of the predictor is changing over time, the prediction 

error, which will be used for Gaussian distribution, should be thought as time 

varying. On the other hand if the signal itself is statistically unstable, a time 

varying model can be used for the calculation of state transition matrix. This 

hybrid model can be useful for deterministic signals that are tried to be predicted 

by stochastic prediction models. 
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5. INCREASING NUMBER OF DIMENSIONS FOR 

MULTIDIMENSIONAL ANALYSIS 

 

 In some one dimensional signals, the behaviour of the signal can changes 

with a meaningful period. According to illustrate this kind of changes, 

multidimensional analysis is a more suitable way than one dimensional analysis. 

However to increase the number of dimensions, a meaningful period should be 

used. For example, for solar radiation if we take hour as a first dimension, day 

is a good choice for second dimension. Since the solar mnovements have the 

similarities in the same hours of different days, day is the best choice for second 

dimension. However choosing the second dimension can not be as trivial as solar 

radiation data. For example, for financial data this period can be changed. To 

choose the best candidate for second dimension, two diferent ways can be 

applied. Firstly signal will be low pass filterred for noise deletion than the poer 

spectral density will be analyzed. The maximum value of power spectral density 

shows the frequence of strongest harmonic of the signal which gives the most 

suitable period for second dimension. In second way signal will also be low pass 

filterred. Then the autocorrelation of low-pass filtered signal will be analyzed. 

The second larger local maxima of the autocorrelation will give us the best 

candidate for the second dimension. The autocorrelation is calculated by  

Pearson product-moment correlation coefficient which can be defined as 

Equation (5.1) (Rodgers and Nicewander, 1988). 

 

𝑟𝜒𝑖𝜒𝑗
=

∑ [(𝜒𝑖(𝑛)−𝜒𝑖)(𝜒𝑗(𝑛)−𝜒𝑗)]
𝑁−1
𝑛=0

√[∑ (𝜒𝑖(𝑛)−𝜒𝑖)
2𝑁−1

𝑛=0 ][∑ (𝜒𝑗(𝑛)−𝜒𝑗)
2𝑁−1

𝑛=0 ]

                                  (5.1) 

 

For instance the 1d-autocorrelation of the 4 years long hourly wind speed data 

of İzmir is plotted as Figure 5.1. 
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Figure 5.1.  One dimensional autocorrelation of 4 years long hourly wind  speed data of 

İzmir 

 

According to Figure 5.1. the maximum correlation after Rxx(0) is Rxx(24). That 

means 24 hours is most suitable period for first dimension. Therefore the second 

dimension shows the day of the year. According to this selections wind speed 

can be represented as Figure 5.2. 

 

 

Figure 5.2.  Two dimensional representation of 4 years long hourly wind speed data of 

İzmir 

 

In other example, motor sound data taken by a microphone which is specified in 

Section 6.4 is given as Figure 5.3. The autocorrelation and 2d image 

representation according to the period found in autocorrelation are shown as 

Figure 5.4 and Figure 5.5 respectively. 
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Figure 5.3.     Sound data taken by a microphone 

 

 

Figure 5.4.  1d autocorrelation of the sound data 

 

 

 

 

Figure 5.5.   2d image representation of sound data recorded from first microphone over  

Motor1 
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6. CASE STUDIES AND COMPARATIVE RESULTS 

   

6.1.Wind Speed Prediction 

 

Wind speed data modeling and prediction remains an important subject 

for energy planning. Specifically, the prediction of general statistics and the 

distribution of the wind data are of vital importance for determining the wind 

regime of a region on earth. Generally, a Weibull distribution and its parameters 

are used for wind regime studies because it gives a fair (but coarse) information 

regarding the overall wind potential of a site (Ulgen and Hepbasli, 2002; Ettoumi 

et al., 2003; Celik, 2004). More specific modeling and time variation analysis of 

wind speed data was examined in relatively fewer works. Because of the 

transitional behavior of wind speed, Markov models became popular in that area. 

As examples, Sahin and Sen have modeled the wind speed data measured from 

the Marmara region of Turkey using first order Markov chains (Sahin and Sen, 

2001). In one of the previous studies, first order Markov chain models were used 

for synthetic generation of hourly wind speed time series in the Corsica region 

(Torre et al., 2001). Shamshad et al. have generated hourly wind speed data using 

first and second order Markov chains and compared the first and second order 

Markov chains using wind speed data measured from two different regions in 

Malaysia (Shamshad et al., 2005). In their study, it was concluded that the wind 

speed behavior slightly improves by increasing the Markov model order. 

Recently, Hocaoglu et al. also modeled the wind speed data using Markov 

chains. It is presented in that study that increasing the state size of Markov has 

important effects for the quality of generated data from a Markov process 

(Hocaoglu et al., 2008). 

This study presents a different and novel approach to the analysis of time 

variations in wind speed data by means of short term prediction. The prediction 

approach utilizes the Mycielski algorithm, which is occasionally used for 

communication applications. The underlying flavor of Markov modeling 

consists of constructing a value transition probability table using a training set 

of recorded wind speed samples. Although the idea of the Mycielski algorithm 
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also depends on learning from past samples, unlike the Markov approach of 

building transition probabilities, it considers the past data samples as a whole 

during the prediction.   

In this case study, in order to show the efficiency of the Mycielski 

approach in wind speed data modeling, the data belonging to different 

geographical regions of Turkey (Kayseri, Izmir and Antalya) are distinctively 

selected. The data were recorded in the year 2005, and were in the ranges of 0–

11.5, 0.1–13.6 and 0–15.3 for the Kayseri, Izmir and Antalya regions, 

respectively. Since the model requires integer values (so that exact comparisons 

can be made), the data is first converted to wind speed states basically by 

rounding to the nearest integers. These integerized values will be notated as 

‘‘rounded measurements”.  

After the wind speed values are converted to wind states by rounding, the 

Mycielski prediction is applied throughout the available data. As suggested by 

the Mycielski prediction method, the wind states data sequence is examined by 

looking for the longest template ending at the end of the sequence which had 

appeared in the history of the wind state sequence. The prediction procedure is 

applied for each wind state. The main motive in applying the Mycielski 

algorithm to wind speed data was the relatively stationary behavior of wind data. 

As a matter of fact, the prediction methods that depend on Markov models also 

rely on this assumption. The stationary behavior can be illustrated by the 

following example. Let m indicate a wind state within a time interval, t. It is 

expected that, in the next time interval, the wind speed state will most probably 

be within the same state (m), or near to this state (m+1 or m-1). Large deviations 

from the state value of m are rare. Another assumption of the Mycielski predictor 

is the ‘‘repeated” behavior of the data. This behavior is found to be reasonable 

considering the short term cyclic pattern corresponding to day-night transitions, 

and longer term patterns corresponding to seasonal weather variations. 

Therefore, it is assumed that there should be some sequences (long or short) that 

repeat themselves in the history of the data. This idea was translated into forms 

of transition probabilities in Markov models. Here, the idea is tested in its 

absolute repeating structure. 
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The wind speed behavior consists both deterministic and probabilistic 

processes. Therefore combination of a stochastic and deterministic models is 

assumed to fit the wind speed data. In the previous studies Markov and Mycielski 

based methods are used for prediction of wind speed which are both stochastic 

models. In this novel approach deterministic part of the wind is attempted to be 

more distinguishable. The wind speed data for 4 hours with substraction of daily 

means can be represented as Figure 6.1 in 2d and oly for winter seasons it can 

be represented as Figure 6.2. 

 

 

Figure 6.1.  4 year wind speed data with substraction of means of days 

 

 
 
Figure 6.2. 4 year wind speed data with substraction of daily means for only  winter 

seasons 
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Figure 6.3.  2d representation of 4 year long daily wind speed data with arbitrary selected 

period 

 

Figure 6.4.  2d representation of 4 year long daily wind speed data for winter seasons with 

arbitrary selected period 

 

As a result of the illustrations above, daily means of the wind speed shows 

stochastic behavior. However hourly residues (especially for seasonal 

illustrations) have a deterministic behavior. That shows a hybrid stochastic and 

deterministic approach is more suitable for wind speed. 
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Figure 6.5.  One dimensional representation of 4 year long daily wind speed data for winter 

seasons  

 

The daily wind speed data which is shown in Figure 6.5 has the autocorrelation 

shown in Figure 6.6. 

 

Figure 6.6.  Autocorrelation of daily wind speed data 

 

In order to found period in Figure 6.6 the daily wind speed data is represented in 

two dimensions as Figure 6.7 with 96 day long time period selection in one 

dimension.  
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Figure 6.7.  2d representation of daily wind speed data with the selected period of  96 

days long  

 

 

The daily data is supposed to be modelled by Markovian , 1d-Mycielski, 

spiral Mycielski (for 2d representation) or another stochastic model.  

 

Table 6.1.  Comparative RMSE (m/sec) results of Mycielski based prediction methods 

and their prediction error tuned versions 

 

Wind 

Speed 

Locations 

 

1d-Myc 

Spherical Myc TIMTIP 

of 

Spherical 

Myc 

PTIMTIP 

Of 

Spherical 

Myc 

Kayseri  1.09 0.98 1.02 0.94 

Antalya 1.37 1.28 1.20 1.12 

İzmir 1.52 1.48 1.52 1.30 

 

 

 

 



50 

 

Table 6.2.  Comparative RMSE (m/sec) results of  linear prediction(LP) based prediction 

methods and their prediction error tuned versions 

 

Wind 

Speed 

Locations 

 

1d-LP 

2d-LP TIMTIP 

of 2d-LP 

PTIMTIP 

Of 

2d-LP 

Kayseri  1.02 0.99 0.96 0.89 

Antalya 1.25 1.20 1.18 1.15 

İzmir 1.36 1.28 1.30 1.27 

 

 

6.2.  Solar Radiation Prediction 

 

 

Forecasting and accurate modeling of solar radiation in a particular 

region remains to be an important engineering problem. Efficiency of solar 

energy generators, solar heat systems, or even the architectural design 

applications depends on the robust solar radiation model. In a recent study the 

importance of monthly, daily and hourly solar radiation for the sizing of solar 

systems is analyzed (Khare and Rangnekar, 2014). In another study the crucial 

role of the solar radiation model on a solar chimney power plant is explained 

(Guo et al., 2014). The radiation data is naturally stochastic due to atmospheric 

effects. The eminent randomness makes it difficult to forecast the solar radiation 

in any hour of the day accurately. Consequently, many researchers deal with the 

solar radiation forecasting or modeling issue from a wide scale of mathematical 

and practical approaches. The approaches range from the correlation behavior 

(spectral density) of the data, to more adaptive methods, including neural 

networks (NNs). Typical studies are summarized below. Several studies are 

carried out using Markov models (Aguiar et al., 1988; Maafi and Adane, 1989). 
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Kaplanis and Kaplani developed a stochastic simulation model for PV sizing 

(Kaplani and Kaplanis, 2012). A different stochastic model based on hidden 

Markov model is developed in a previous study (Hocaoğlu, 2011). A model is 

constructed using a novel visualization method by Hocaoglu et al. (Hocaoğlu et 

al., 2008). In that study, the sequential solar radiation data are rendered in a 2-

dimensional (2d) matrix to utilize image-processing methods such as optimal 

coefficient linear prediction filters with Neural Networks. Almorox et al. 

employed air temperature data to predict daily solar radiations in Madrid 

(Almorox et al., 2011). There are some more examples for utilization of NNs in 

both daily and hourly solar radiation data prediction models (Mellit et al., 2005; 

Mellit et al., 2006; Moghaddam and Seifi, 2011).  In another recent study 

principal component analysis is applied to model the variability of solar radiation 

data (Zarzo and Marti, 2011). Yang et al. use Support Vector Machines for short-

term solar radiation prediction(Xiyun et al., 2013). An alternative approach for 

the solar radiation data analysis is the harmonic (Fourier) analysis. In such a 

study, harmonic analysis is performed over the daily solar radiation data belong 

to different regions of Turkey (Fidan et al., 2009; Hocaoğlu et al., 2009b). A 

similar study is also presented for Seeb region (Dorvlo, 2000). Harmonic 

analysis is performed for seven different regions in Oman in another study 

(Dorvlo and Ampratwum, 2000).  

In this thesis, Izmir, Turkey is selected as the sample region. Using the 

methodology in Section 2.7 over the hourly solar radiation values in 2004, the 
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The coefficients, c3 and d3 were naturally found the same, with a value difference 

within a small error limit of 0.0346 radians. 



52 

 

The daily calculated ,0jn
a  values and the corresponding model values 

(derived from Equation (6.1) and (6.2)) for the years 2004 and 2005 are shown 

in Figure 6.8. 

 

                            

Figure 6.8.  Actual and model values of a0 in year (a) 2004 and (b) 2005 

 

Figures 6.8 indicates that there is a reasonable resemblance between the model 

and the actual values, which verifies the efficiency of the proposed model. The 

sample-wise error between actual and model values for ,0jn
a  in year 2004 and 

2005 is shown in Figure 6.9.  

 

Figure 6.9.  Sample difference between actual and model values of a0 in year (a) 2004  

and  (b) 2005 

 

Here, the average error between the ,0jn
a  model and ,0jn

a  calculated from the 

2004 radiation data is -7.8082x10-16, the root mean square error (RMSE) is 

43.61. Comparing this error to the root mean energy of ,0jn
a  (for the same year, 
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2004), which is 230.545; the model is visibly capable of accurately estimating 

the radiation pattern. Similarly, the average error between actual and model 

generated ,0jn
a  values for year 2005 is 8.5609, and the RMSE is 42.67, compared 

to the root mean energy of ,0jn
a , which is 222.627. Achievement of fair model 

accuracy for two separate years indicates that the proposed model for the ,0jn
a  

coefficient is pretty robust. 

The same comparison suit is carried out over the ,1jn
a  values for 2004 

and 2005. The model-versus-actual value comparisons are shown in Figure 6.10 

and Figure 6.11. 

 

 

Figure 6.10.  Actual and model values of a1 in year (a) 2004 and (b) 2005 

 

 

 

Figure 6.11.  Sample difference between actual and model values of a1 in year (a) 2004 and 

(b) 2005 
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The quantitative analysis of the model generated and actual values of the ,1jn
a  

coefficient yield that, similar to the previous coefficient, the average value 

between the value and the model output is negligible, whereas the RMSE value 

causes an energy decrease by a factor over 5 (69.21 versus 343.380 for year 2004 

and 66.88 versus 334.036 for year 2005).  

 

6.3.  Energy Demand Prediction 

 

 

In this thesis daily energy demand data is attempted to be modelled. The 

energy demand prediction is a crucial problem for identifying future energy 

needs of cities and countries. According to this prediction, the size of necessary 

power plants are determining.  The 4 year hourly power consumption of whole 

Turkey can be shown as Figure 6.12. The daily mean of the 4 year consumption 

data is shown in Figure 6.13. 

 

Figure 6.12.  The four years long hourly power consumption of Turkey 
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Figure 6.13.  Daily mean of the four years long hourly data  

 

As seen in Figure 6.13, The moving average of the energy demand shows 

and monotonic incremental behavior because of increasing population and 

consuming. If the EMD is applied to this daily mean data, the 3 modes can be 

plotted as Figure 6.14. 

 

Figure 6.14.  Three modes of daily meaned energy consumption data after EMD 

 The component C3 is monotonicly increasing; therefore it can be 

modelled by a polynomial or another deterministic model. In addition for C1 and 

C2, Mycielski algorithm can be applied because of the repeated behavior. The 

experiment shows that the energy demand behavior can also be inspected by 

Mycielski decomposition which gives an opportunity for displaying long term 

and short term behavior at the same time. 

 

6.4.Motor Fault Diagnosis 

 

Due to their simple construction, cost effective pricing and easy 

maintenance, the squirrel cage induction motors are the most preferable 

electrical motors in industry. In order not the interrupt the industrial processes 
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with unexpected failures, which cause downtime and repair costs, preventive 

maintenance strategies are essential for electric motors. Early diagnostics of 

incipient faults in induction motors are important to ensure safe operation and 

help to recognize and fix the problems with low costs and time. 

Significant amount of research have been focused on the methods for the 

early detection of the mechanical and electrical faults in induction motors (Nandi 

et al., 2005). Among all the methods in literature, motor current signature 

analysis (MCSA) is one the most popular one, which provides an effective way 

to detect incipient faults. MCSA is mainly focuses on the analysis of the current 

data that supplied from the ac network to the induction motor with time-

frequency analysis techniques like Fast Fourier Transform (FFT), Short Time 

Fourier Transform (STFT), Wavelet Transform or Wavelet Packet Transform 

(Benbouzid, 2000). However there is a bottleneck to apply this technique to 

induction motors in their working environment since in most cases obtaining 

data is a cumbersome process because additional circuitry like isolators or data 

acquisition cards and interface should be added between the supply and the test 

motors. Also it may not be possible to detach load from motor and run motor 

under no load condition. In order to get rid of disadvantages of current based 

techniques like MCSA, the acoustic and vibrational methods are getting popular 

since those approaches do not need detaching the motor from their working 

environment. Fault diagnosis methods based on vibration analysis has been 

applied for many years using the methods such like Fourier and Wavelet 

Transforms and showed significant success especially on detecting faulty 

bearing detection (Ocak and Loparo, 2004).  

Vibration signal can be obtained via a contact device such as 

accelerometers, however in some specials cases it may be a little difficult. For 

example the surface of the test motor may be irregular and the device can’t be 

located properly on the test motors. Also the surface may be greasy or humid 

due to the hard operating conditions like high temperature or humidity (Lu et al., 

2012). On the other hand, sound based fault diagnosis of motors offers a great 

advantage that solves all these problems is being contactless. Only external 

microphones located around the operating motor are enough to record the 
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information. Unlike vibration based analysis, there is very limited literature on 

fault diagnosis of induction motors which based on techniques of sound analysis. 

Also some of the works analyze the sound data which is recorded in an echo-

free silent environment, which seems impractical for the real life applications, 

especially in industrial processes (Benko et al., 2004).  

In this case study, sound data is collected from six different induction 

motors, first five of them having specific incipient mechanical or electrical 

faults, via five microphones surrounding the test rig. Sound data can be analyzed 

like current or vibration data and can possibly contain many fault related 

information for diagnosis. Therefore this part of the thesis aims to extract the 

useful information which can classify the healthy mode from the faulty modes, 

and distinguish the fault types between the faulty modes. This work has two main 

strategies for extracting necessary features from sound data that used to express 

motor fault type. In the first strategy, features obtained directly by calculating 

cross correlation coefficients of the sound data recorded by the microphone 

pairs. Ten different correlation coefficients are calculated for each motor for 

every trial, in other words, all possible pair combinations of five different 

microphones are used to extract features.  In the second strategy additional 

features are extracted by using 2d wavelet decomposition of the grayscale 

images which are obtained by converting one dimensional sound data which are 

recorded by each separate microphone to 2d grayscale images. 2d representation 

is more convenient for feature extraction because there are many image 

processing tools in literature. The 2d representation of the sound data has many 

advantages over the regular one dimensional data such that useful data can be 

extracted that we couldn’t have from regular data (Do and Chong, 2011). These 

two dimensional images are expected to show different type of textures and in 

past works for texture analysis, basically Wavelet based methods were used 

(Chang and Kuo, 1993; Laine and Fan, 1993; Unser, 1995; Fukuda and 

Hirosawa, 1999; Sebe and Lew, 2000; Arivazhagan and Ganesan, 2003; Hsieh 

et al., 2003; Ece and Gerek, 2004; Gerek and Ece, 2004; Semler et al., 2005; 

Dettori and Semler, 2007; Younus and Yang, 2012). These wavelet based texture 

analysis methods are applied on different kind of research areas including 
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classification of tomography images (Semler et al., 2005; Dettori and Semler, 

2007), finger-print classification (Hsieh et al., 2003), analysis of SAR images 

(Fukuda and Hirosawa, 1999), power quality analysis from 2d represented power 

quality event data (Ece and Gerek, 2004; Gerek and Ece, 2004) and fault analysis 

of rotating machinery by using data obtained from infrared thermography 

(Younus and Yang, 2012).  

 

 

 

6.4.1. Fault Types and Experimental Setup 

 

In this work, six induction motors are used for obtaining the acoustic 

data. Motors are driven directly from AC network. A 3-phase, 25 kVA, Δ-Υ 

connected isolation transformer is located between laboratory setup and the 

network and the motors are supplied with the output of this transformer. Test 

motors are 3-phase and 2-pole squirrel cage induction motors rated at 2.2 kW 

and 380-V line to line.  

Some commonly encountered mechanical and electrical faults are created 

synthetically on the five of these motors. The first of these identical motors is 

left healthy as being a reference to others. In two of these motors, broken rotor 

bar fault realized by drilling holes to 3 and 5 rotor bars respectively over 18 bars. 

This type of faults cause a rise in magnitude at adjacent side band frequency 

components at the twice of the slip frequency sidebands located symmetrically 

at around the main frequency which the stator coils are supplied by. However, 

monitoring the increase in magnitude at the predicted sideband frequencies alone 

may mislead the classification because different types of faults may give rise to 

same frequencies. Also when the slip is small, these sidebands come close to the 

main frequency and it becomes very difficult to see them by inspecting the 

spectral information due the dominancy of the fundamental component.  

Bearing deficiencies are another commonly encountered mechanical 

fault type in induction motors. Due to improper lubrication, corrosion and 

contamination, the bearing surfaces and balls inside the inner and outer races 
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may lose their perfection. Those types of faults cause abnormal noise and 

vibration during operation.  Even the operation of the motor is not affected 

seriously; these incipient faults may deteriorate fast. Only considering current as 

fault diagnostic criteria it is not possible to track the acoustical traces of faults 

due to the noise and vibration, and may seriously leads ineffective classification. 

In the test bed, the bearings of two test motors are replaced with defective ball 

bearings of the motors that had been used for plenty many hours in industry. One 

of these two used bearings has problem with alignment and the other bearing has 

ball defect complication. Last type of fault, shorted stator winding problem, is 

generated to another motor with pealing the insulation of two adjacent coils for 

a few millimeters and soldering them together. The Table 6.3 shows the fault 

types of the setup. 

 

Table 6.3.  Table of faulty motors in experimental setup 

Motor # Fault Type 

M1 Healthy Motor 

M2 Bearing Fault (misalignment) 

M3 Broken Rotor Bars (5 over 18) 

M4 Bearing Fault (ball defect) 

M5 Broken Rotor Bars (3 over 18) 

M6 Short Circuit in Stator Winding 

 

 

 

Figure 6.15.  Laboratory setup 
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The resistor values on load banks are adjusted to six different values such that 

the motors are driven 3.6, 4.1, 4.7, 4.9, 5 and 5.4 Amperes stator current.  

Actually, these levels represent the conditions that motors run under different 

loads. First, motors start to operate and left for a few minutes before loading and 

then, resistor values changed consecutively to the levels given above. At each 

current level approximately 30 seconds of sound data is collected via a full 

transparent analog amplifier and through 5 microphones which are located 

around the test rig. One of these microphones is located approximately more than 

a half meter above the center of the test rig. Other remaining 4 microphones are 

set to construct the edges of a square which surrounds the test rig and located at 

a little lower height compared to the microphone at the center. The locations of 

the microphones are very important when constructing the cross correlation 

between them. This settlement of microphone array gives as a virtual hemisphere 

which covers all the experimental setup which can be seen in the Figure 6.16.  

 

 

Figure 6.16.  The settlement of the microphones over the test motor 

 

The sound data is collected from this microphone array.  The microphones are 

connected to an analog amplifier and approximately 20 to 30 seconds of sound 

data is collected for six motors under 6 different loading conditions. 
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Figure 6.17.  Sound data recorded by first microphone for Motor1 

 

The sound data is digitized with a sampling frequency of 44.1 kHz which gives 

us digitized files of length approximately 1 million samples for each 

microphone. These procedures are repeated 3 times for each test motor by 

dissembling the motor from the test bad and reattaching it in order to obtain 

different types of working conditions. It was necessary because in every trail, 

the operator may place the motor slightly different from the previous trail and 

these small discrepancies create different artifacts in sound data. Since the test 

rig has mechanical parts like screws and wrenches, which fixes the motor to the 

metal test rig assembly, it is important to find features which are independent 

from operator related differences.  

 

𝑟𝜒𝑖𝜒𝑗
=

∑ [(𝜒𝑖(𝑛)−𝜒𝑖)(𝜒𝑗(𝑛)−𝜒𝑗)]
𝑁−1
𝑛=0

√[∑ (𝜒𝑖(𝑛)−𝜒𝑖)
2𝑁−1

𝑛=0 ][∑ (𝜒𝑗(𝑛)−𝜒𝑗)
2𝑁−1

𝑛=0 ]

                                  (6.3) 

 

In the Equation (6.3) 𝜒𝑖 and 𝜒𝑗 denote array data taken from different 

microphones (channels) where i and j denote different microphones. Here N is 

the number of samples in these arrays which is taken as 800000 in this work. 

Since 5 channels are used, there are (
5
2
) in other words 10 coefficients to 

calculate. Therefore first 10 features of the feature set are obtained from these 

cross correlation coefficients. 
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Second strategy is an indirect method which uses 2d grayscale images 

obtained from sound data for feature extraction instead of using the data itself. 

While converting the one dimensional sound data to grayscale image, the 

amplitude of each sound data samples are normalized between 0 and 255, which 

is the pixel intensity range for grayscale. After normalization process, square 

shaped grayscale images are obtained by using this normalized data. 2d image 

representation is new in this area and has great potential in detecting power 

quality related events (Ece and Gerek, 2004; Gerek and Ece, 2004).    

When driven directly from ac network, induction machines revolve very 

close but a little slower than the synchronous speed even under no load. It is 

impossible to reach synchronous speed unless a frequency invertor is located 

between the motor and the network. Also under loading conditions, the 

revolution speed of the motor decrease slowly. Because of these reasons, 

determination of the exact real rotor frequency is a cumbersome process and vital 

importance for constructing 2d images from sound data. The widths of the 

images are determined due to the length of a complete period of the power signal. 

Since the sampling frequency is 44.1 kHz, and motor fundamental frequency is 

50 Hz, for each complete cycle, 882 samples are necessary. However in practice 

the fundamental frequency comprises fluctuations and in general less than 50 

cycles, the 882 samples includes more samples than one cycle data.   In these 

situations, in order to construct the 2d grayscale image with non-overlapping 

period segments, determination of the sample size of a complete period is 

crucial. Here the autocorrelation can solve this problematic issue. In order to 

determine the exact frequency, 1d autocorrelation sequence of each trial is 

analyzed. This autocorrelation sequence for motor1 under 3.6A is represented as 

in Figure 6.18.  
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Figure 6.18.  1d Autocorrelation of Motor1 under 3.6 A 

 

The values under other loading conditions are also calculated in the same manner 

and they are rounded to the nearest integer because the autocorrelation sequence 

gives non integer values. Rounded results for sample sizes of a single period for 

each loading conditions are given in tabular form in Table 6.4. 

 

Table 6.4.  Sample size of a period of the noise data collected from motors run under 

different loads 

  

 3.6 A 4.1 A 4.7 A 4.9 A 5.0 A 5.4 A 

M1 900 906 912 914 916 919 

M2 905 910 914 917 918 921 

M3 902 908 915 917 919 923 

M4 901 907 908 916 919 923 

M5 903 910 912 919 922 926 

M6 901 906 913 914 915 920 

 

First element of normalized data is assigned as first pixel value and assigned to 

the top-left corner of the image. The succeeding element is assigned to the right 

of first pixel and this procedure continues till the number of element that we 

determined by autocorrelation. After the last pixel assigned the first row, we 

continue these same procedure for second row and repeat the same procedure 

until we reach a square image whose width is the value calculated by 
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autocorrelation. The ultimate image representation of the data recorded by the 

first microphone over Motor1 can be shown as Figure 6.19.   

 

Figure 6.19.   2d Image Representation of Sound Data Recorded from first microphone 

over   Motor1 

 

Figure 6.20.  Wavelet decomposition of the 2d Image Representation given in Figure 6.16. 

 

Images are obtained for each data for the recordings every separate five 

microphones for 6 test motors under 6 different loads for 3 different trials. 

Therefore, image database consist of 540 grayscale images, whose widths are 

ranging from 900 to 926 according to their autocorrelation value. In order to 

extract third group of features, single level 2d wavelet transformation is applied 

to these images. In 2d wavelet transform first, each row of the image is filtered 

by low-pass and high-pass filters. Then, outputs of both low-pass and high-pass 

filters are downsampled by 2 in order to obtain middle images L and H 

Energy Image Horizontal Image

Vertical Image Diagonal Image

Energy Image Horizontal Image

Vertical Image Diagonal Image



65 

 

respectively. L is the low-pass filtered and downsampled version and H is the 

high-pass filtered and downsampled versions of the original image on the 

vertical direction. Then, each column of these new images, L and H, are again 

filtered on the horizontal direction by low-pass and high-pass filters. Outputs of 

every filter are again downsampled by 2 in order to obtain four sub-band (LL, 

LH, HL, HH) images. In here, LL is the low-pass filtered version of the original 

image on vertical and horizontal directions and called as approximation image. 

Approximation image is also called the energy image. HL, named as vertical 

image, is vertically high-pass and horizontally low-pass filtered, LH, named as 

horizontal image, is vertically low-pass and horizontally high-pass filtered, and 

HH, named as diagonal image, is both horizontally and vertically high-pass 

filtered and downsampled versions of the original image. The wavelet 

decomposition of the image shown in Figure 6.19 can be demonstrated as in 

Figure 6.20. 

By combining these 4 sub-band images, an image that has equal samples to the 

original can be obtained. When carefully inspecting these images, different 

textures which may be indicators of features related to certain faults can be seen 

even by eye as seen in Figure 6.21. The Figure 6.21 consists of diagonal (detail) 

images of the 6 different motor types. 
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Figure 6.21.  Diagonal image for different motor types 

 

After one level 2d wavelet transform, 6 different features are extracted from 

these 4 sub-band images. First and second features are the root mean square 

energy of the vertical and diagonal images. Remaining features are related to the 

correlation. The row correlation of the horizontal image and the column 

correlations of the approximation, vertical, diagonal and energy images are used. 

In this selection, column correlation is more important because rows correspond 

to periods, but in columns it is possible to detect different type of patterns 

according to the type of the fault. In this work, the correlations between two 

adjacent rows or columns are calculated over the sub-images and the mean of 

these calculated values are taken as feature.    

In the vertical and diagonal images there is strong information in their 

texture. These images have the distinguishable information mostly in their 

columns instead of rows. The main cause of this situation in the vertical image 

is the type of filter that is applied at the Wavelet decomposition to obtain this 
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vertical component. In addition, rows are approximately one period of the sound. 

Therefore there are no distinguishable differences between rows. According to 

this periodicity situation, the column information is also more dominant than the 

row information in the diagonal image. However the energy image is lack of 

texture information, the same situation of the diagonal image is also valid for the 

energy image. Therefore the column correlation is also used for energy image. 

The texture differences which are dependent to fault type can be identified by 

the relationship between neighbor columns of the images.  For the calculation of 

column correlation Equation (6.4) is used, which is the mean of the cross-

correlation coefficients of neighbor columns of the images. 

 

                 𝑟𝑐𝑜𝑙𝑢𝑚𝑛 =
∑ 𝑟𝐼(⋯,𝑗)𝐼(⋯,𝑗+1)

𝑁−2
𝑗=0

𝑁−1
=

                                     

∑

(

 
 ∑ [(𝐼(𝑖,𝑗)−𝐼(⋯,𝑗))(𝐼(𝑖,𝑗+1)−𝐼(⋯,𝑗+1))]𝑀−1

𝑖=0

√[∑ (𝐼(𝑖,𝑗)−𝐼(⋯,𝑗))
2𝑀−1

𝑖=0 ][∑ (𝐼(𝑖,𝑗+1)−𝐼(⋯,𝑗+1))
2𝑀−1

𝑛=0 ]
)

 
 𝑁−2

𝑗=0

𝑁−1
                 (6.4) 

N:Number of Columns; M:Number of Rows 

 

In spite of the dominance of the column information in texture, rows of 

the horizontal image also have some distinguishable information because of 

changes in the duration of one period of the sound. These periodicity changes 

cause some inconsistent shifting effects which can only be analyzed with 

relationship between neighbor columns of the horizontal image. For the row 

correlation Equation (6.5) is used, which is the mean of the cross-correlation 

coefficients of neighbor rows of the image. 

 

𝑟𝑟𝑜𝑤 =
∑ 𝑟𝐼(𝑖,⋯ )𝐼(𝑖+1,⋯ )

𝑀−2
𝑖=0

𝑀−1
=

                             

∑

(

 
 ∑ [(𝐼(𝑖,𝑗)−𝐼(𝑖,⋯ ))(𝐼(𝑖+1,𝑗)−𝐼(𝑖+1,⋯ ))]𝑁−1

𝑖=0

√[∑ (𝐼(𝑖,𝑗)−𝐼(𝑖,⋯ ))
2𝑁−1

𝑖=0 ][∑ (𝐼(𝑖+1,𝑗)−𝐼(𝑖+1,⋯ ))
2𝑁−1

𝑛=0 ]
)

 
 𝑀−2

𝑗=0

𝑀−1
                        (6.5) 

N:Number of Columns; M:Number of Rows 
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7. CONCLUSIONS 

 

In this thesis, several stochastic and deterministic models are handled for 

generalization of real life data in one and multidimensional approach. According 

to express both deterministic and stochastic components of a unique real life 

problem as wind speed prediction, am novel error tuning model is improved. 

This novel model does not only combined stochastic and deterministic models, 

but also give the opportunity of inspecting in time varying case.  

Time varying and piecewise-time invariant researches on the data give 

some alternative solutions for modeling non-stationary data, which is also the 

contribution of the proposed error tuning model. 

In addition wavelet decomposition of solar radiation shows that high 

frequency and low frequency components of the solar radiation can be modelled 

in various models. 

Fourier series approach shows also a similar result, which is naturally expected. 

A similar result is also obtained by empirical mode decomposition of the energy 

consumption data. 

 According to experiments of period estimation on motor sound and wind 

speed data, estimation of exact period can be said crucial for multidimensional 

nonlinear analysis. If the true period is estimated for the data, the 

multidimensional representation of the data according to this period gives a 

meaningful information.  

The other contribution of the thesis is exhibition of the advantages of 

multidimensional versions of one dimensional methods like Mycielski and linear 

prediction methods. Multidimensional approach proves the information of the 

multidimensional patterns in the data. In addition using cylindrical coordinate 

system gives both advantage of continuity of one dimensional approach and 

advantage of multidimensional approach. 

Finally, according to the results of the thesis it can be pointed that 

dividing a complex nonlinear real life problem into its atoms or its components 

and using a different model for each component depending to its own 
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characteristics, can be a more efficient strategy than using a single model for the 

whole problem.   
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