

DESIGN AND IMPLEMENTATION

OF A UDP/IP OFFLOAD ENGINE

Burak BATMAZ
Master of Science Thesis

Electrical and Electronics Engineering Program

August, 2015

JÜRİ VE ENSTİTÜ ONAYI

Burak Batmaz’ın “Design and Implementation of a UDP/IP Offload

Engine” başlıklı Elektrik-Elektronik Anabilim Dalı Elektronik Bilim Dalındaki,

Yüksek Lisans Tezi 24.08.2015 tarihinde, aşağıdaki jüri tarafından Anadolu

Üniversitesi Lisansüstü Eğitim-Öğretim ve Sınav Yönetmeliğinin ilgili maddeleri

uyarınca değerlendirilerek kabul edilmiştir.

 Adı Soyadı İmza

Üye (Tez Danışmanı) : Doç. Dr. Atakan DOĞAN …………..

Üye : Doç. Dr. Hakan Güray ŞENEL …………..

Üye : Yrd. Doç. Dr. M. Mustafa ATANAK …………..

Anadolu Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu’nun ……………..

tarih ve …………….. sayılı kararıyla onaylanmıştır.

Enstitü Müdürü

ABSTRACT

Master of Science Thesis

DESIGN AND IMPLEMENTATION OF A UDP/IP OFFLOAD ENGINE

 Burak BATMAZ

Anadolu University

Graduate School of Sciences

Electrical and Electronics Engineering Program

Supervisor: Assoc. Prof. Dr. Atakan DOĞAN

2015, 66 pages

Network packet processing in high data rates has become a major problem

especially for the processors. Fortunately, this thesis offers a solution to this

problem by means of an IP core that provides the hardware acceleration of

UDP/IP protocol stack together with few other network protocols. Furthermore,

the IP core is equipped with PCI Express (PCIe) interface so as to communicate

with applications running on PC. Consequently, a processor core deals with only

the data processing, while the IP core takes care of the packet processing as per

the protocol. The design and implementation of the IP core are verified and tested

on a Xilinx XUVP5-LX110T board. Moreover, its area utilization and supported

features are compared against several competitive designs from the literature.

According to these results, the proposed IP core is proved to be a usefull one for

those applications that require a hardware-accelerated network protocol stack for

data communication.

Keywords: FPGA, UDP/IP, PCIe, Network Protocols, Digital Design

 i

ÖZET

 Yüksek Lisans Tezi

UDP/IP OFFLOAD ENGINE TASARIMI VE GERÇEKLENMESİ

Burak BATMAZ

Anadolu Üniversitesi

Fen Bilimleri Enstitüsü

Elektrik-Elektronik Mühendisliği Anabilim Dalı

Danışman: Doç. Dr. Atakan DOĞAN

2015, 66 sayfa

Yüksek hızlarda ağ paketlerinin işlenmesi özellikle işlemciler için bir

problem haline gelmeye başlamıştır. Bu tez bu probleme UDP/IP protocol

yığınıyla birlikte diğer birkaç ağ protokolünün donanım ile hızlandırılmasını

sağlayan bir IP çekidek vasıtasıyla çözüm sunmaktadır. Ayrıca, IP çekidek

bilgisayarda çalışan uygulamalarla haberleşebilmesi için PCI Express (PCIe)

arayüzü ile donatılmıştır. Sonuç olarak, IP çekidek ilgili protokol gereğince paket

işleme ile ilgilenirken, işlemci çekirdeği sadece veri işleme ile ilgilenir. IP

çekirdeğin tasarımı ve gerçeklemesi Xilinx XUVP5-LX110T kartı üzerinde

doğrulanmış ve test edilmiştir. Ayrıca, alan kullanımı ve desteklenen özellikleri,

literatürde yer edinmiş benzer çalışmalarla karşılaştırılmıştır. Bu sonuçlara göre,

sunulan IP çekirdeğin veri iletişimi için donanım ile hızlandırılmış ağ protokol

yığını gerektiren uygulamalar için kullanışlı olduğu kanıtlanmıştır.

Anahtar Kelimeler: FPGA, UDP/IP, PCIe, Ağ protokolleri, Sayısal Tasarım

 ii

ACKNOWLEDGEMENTS

I would like to thank my advisor Assoc. Prof. Dr. Atakan DOĞAN for his

guidence and support during my study.

I would like to thank love of my life Zeynep for her support,

encouragement, patience and unwavering love. I thank my parents for their

endless support.

 Burak Batmaz

 August, 2015

 iii

TABLE OF CONTENTS

ABSTRACT ...i

ÖZET .. ii

ACKNOWLEDGEMENTS .. . iii

TABLE OF CONTENTS ... iv

LIST OF FIGURES ... vii

LIST OF TABLES ...ix

ABBREVIATIONS ... x

1. INTRODUCTION .. 1

1.1. Motivation .. 1

1.2. Thesis Goals and Contributions .. 1

1.3. Thesis Organization .. 2

2. BACKGROUND ... 3

2.1. OSI Layers .. 3

2.1.1. Physical layer... 3

2.1.2. Data link layer ... 4

 2.1.2.1. Media access control ... 4

 2.1.2.2. Logical link control ... 4

2.1.3. Network layer .. 4

2.1.4. Transport layer... 5

2.1.5. Session layer .. 5

2.1.6. Presentation layer .. 5

2.1.7. Application layer ... 6

2.2. User Datagram Protocol ... 6

2.3. Internet Protocol ... 7

2.4. Dynamic Host Configuration Protocol ... 10

2.5. Internet Control Message Protocol ... 13

2.6. Address Resolution Protocol .. 14

2.7. Ethernet ... 16

iv

2.8. PCI Express .. 17

2.9. Network Packet Processing Overview ... 18

2.10. Related Work .. 22

3. SYSTEM DESIGN .. 25

3.1. Overall System Architecture .. 25

3.2. Xillybus .. 26

3.2.1. PCIe Interface IP core ... 26

3.2.2. Xillybus IP core ... 27

3.2.3. Xilinx FIFOs .. 28

3.3. MAC IP Core .. 28

3.4. Custom FIFOs .. 30

3.5. API for Offload Engine .. 30

4. OFFLOAD ENGINE .. 33

4.1. Channel Selector ... 36

4.2. UDP Tx ... 38

4.3. IP Tx ... 41

4.4. Arbitrator .. 43

4.5. IP Rx ... 44

4.6. UDP Rx .. 46

4.7. DHCP IP Core .. 47

4.8. ICMP IP Core ... 49

4.9. ARP IP Core ... 50

4.10. Configuration Component ... 51

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 52

5.1. Implementation Results .. 52

5.2. Experimental Results .. 53

5.2.1. Throughput results ... 54

5.2.2. ICMP verification .. 57

5.2.3. DHCP verification ... 58

5.2.1. ARP verification .. 59

 v

6. CONCLUSIONS ... 61

REFERENCES .. 63

 vi

LIST OF FIGURES

2.1. OSI and TCP/IP reference models ... 3

2.2. UDP header structure ... 6

2.3. Pseudo-header for UDP checksum computing .. 7

2.4. IPv4 header structure.. 8

2.5. DHCP packet format .. 11

2.6. DHCP message types ... 12

2.7. DHCP state diagram ... 13

2.8. ICMP header structure for the ping messages.. 13

2.9. ARP packet structure.. 15

2.10. Ethernet packet structure .. 16

2.11. PCIe layers ... 18

2.12. Operational structure of the network stack .. 19

2.13. CPU load and throughput comparison between Latona and GNIC 20

2.14. CPU Utilization of Tx and Rx sides at 2.4 GHz system 20

2.15. CPU Utilization of network stack processing at 1 Gbps 21

2.16. Operational structure of our design .. 21

3.1. System architecture of the IP core proposed .. 25

3.2. Overview of Xillybus architecture ... 26

3.3. MAC IP core architecture .. 29

3.4. API implementation architecture ... 31

4.1. Offload Engine architecture ... 33

4.2. Alachiotis et al. IP core architecture .. 34

4.3. Löfgren et al. IP core architecture .. 35

4.4. Herrmann et al. IP core architecture .. 35

4.5. Channel Selector architecture .. 36

4.6. FSM state diagram of Channel Select .. 37

4.7. Host data format ... 38

4.8. UDP Tx architecture .. 39

4.9. FSM state diagram of UDP Tx... 40

4.10. IP Tx architecture ... 41

4.11. FSM state diagram of IP Tx ... 42

 vii

4.12. Arbitrator architecture .. 44

4.13. IP Rx architecture ... 45

4.14. FSM state diagram of IP Rx ... 46

4.15. UDP Rx architecture .. 47

4.16. FSM state diagram of UDP Rx .. 47

4.17. FSM state diagram of DHCP ... 48

4.18. ICMP architecture .. 49

4.19. ARP architecture .. 51

4.20. Configuration architecture ... 51

5.1. Experimental setup for the system tests ... 54

5.2. Command window output - an example throughput test 55

5.3. The impact of packet size on throughput ... 55

5.4. Wireshark output of an example throughput test ... 57

5.5. ICMP functionality verification command window output 57

5.6. ICMP functionality verification wireshark output ... 58

5.7. Packet transmission with no IP configuration .. 59

5.8. Packet transmission with manual IP configuration .. 59

5.9. Packet transmission with DHCP configuration.. 59

 viii

LIST OF TABLES

4.1. Implemented protocols in our design and related works 34

5.1. Synthesis results of the design ... 52

5.2. Implementation details comparison ... 53

 ix

ABBREVIATIONS

API : Application programming interface

ARP : Address Resolution Protocol

BOOTP : Bootstrap Protocol

CPU : Central processing unit

CRC : Cyclic redundancy check

CSMA/CD : Carrier Sense Multiple Access with Collision Detection

DHCP : Dynamic Host Configuration Protocol

Din : Data input

DLLP : Data Link Layer Packet

DNS : Domain Name System

ECRC : End-to-end CRC

EMAC : Ethernet MAC

FPGA : Field Programmable Gate Array

FSM : Finite State Machine

FSMD : Finite State Machine with Datapath

HTTP : Hyper-Text Transfer Protocol

ICMP : Internet Control Message Protocol

IFG : Inter-frame Gap

IHL : Internet Header Length

IP : Internet Protocol

IP Core : Intellectual Property Core

LAN : Local Area Network

LCRC : Link CRC

LLC : Logical Link Control

LUT : Look-up Table

MAC : Media Access Control

MTU : Maximum Transmission Unit

NIC : Network Interface Card

OS : Operating system

OSI : Open System Interconnection

PCIe : PCI Express

 x

RARP : Reverse Address Resolution Protocol

SFD : Start of Frame Delimiter

SMTP : Simple Mail Transfer Protocol

TCP : Transmission Control Protocol

TLP : Transaction Layer Packet

TOE : TCP Offload Engine

TOS : Type of Service

TTL : Time to Live

UDP : User Datagram Protocol

UOE : UDP Offload Engine

VoIP : Voice over IP

 xi

1. INTRODUCTION

 Motivation

Nowadays many applications need high-speed data transfers which are

enabled by a stack of network protocols. These protocols are traditionally

implemented by means of a software running on the host central processing unit

(CPU); and they may require encapsulation, decapsulation, checksum computing,

memory copying, etc., all of which are briefly called as packet processing. In

high-speed networks, on the other hand, the packet processing requires an

extensive amount of CPU power, which results in less CPU cycles for

applications running on the host. Fortunately, the computing power of CPU

spared for the packet processing can be saved provided that the packet processing

tasks are delagated to a so-called offload engine that can perform them on the

network adapter. An offload engine can be implemented with a network processor

and firmware, ASICs or FPGAs, or a mixture of these. Within the scope of thesis,

a set of network protocols that are enough to provide data communication in

Internet will be offloaded to hardware on a FPGA.

An offload engine purely implemented in hardware is usefull for system-on-

chip (SoC) systems as well. A processor or an application logic in a SoC system

can exploit a hardware-based offload engine for the data communication without

the neeed for running the software-implemented network processes.

 Thesis Goals and Contributions

Motivated by aferomentined facts, the main goals of this thesis are

designing a gigabit speed Offload Engine for the network protocol stack which

includes User Datagram Protocol (UDP) [1], Internet Protocol (IPv4) [2], Internet

Control Message Protocol (ICMP) [3], Dynamic Host Configuration Protocol

(DHCP) [4] and Address Resolution Protocol (ARP) [5], equipping this Offload

Engine with a PCIe [6] interface for those applications running on a PC and with

 1

Ethernet [7] for the network connection and implementing and verifying it on

Virtex 5 FPGA-based development board.

Different from the previous studies, this thesis contributes to the literature in

a few dimensions:

• Offload Engine is the first to use a third party PCIe IP core to interface

with user applications.

• It is the first to implement DHCP protocol on hardware.

• It can simultaneously support multiple data streams from different

applications.

• It has a pipelined design for achieving higher data througputs and clock

rates.

 Thesis Organization

Organization of the thesis is as follows: Section 2 gives the background

information about the implemented protocols in Offload Engine, Ethernet and

PCIe interface. In Section 3, the overall system design is given, a few thirdy party

IP cores used in the design are introduced and an application programming

interface for the design is presented. In Section 4, Offload Engine is described in

detail. Section 5 presents the synthesis results of Offload Engine, compares them

with the previous designs from the literature. It further includes the functional

verification of the implemented network protocols and the experimental results for

the achieved data throughputs under different scenarios. In Section 6, conclusions

and future avenues of research are given.

 2

2. BACKGROUND

 OSI Layers

International Standards Organization published Open System

Interconnection Reference Model in 1984. This model has introduced seven

layers, each of which has different responsibilities and functionalities. These

layers are further elaborated by Open System Interconnection (OSI) and TCP/IP

reference models in [8]. Figure 2.1 shows the layered architecture of these

reference models. The layers are briefly explained in the following sections.

2.1.1. Physical layer

Physical layer is the bottom layer of the OSI reference model and every

network device has this layer. The layer is concerned with transmission and

reception of electrical or optical signals over a physical medium. Messages reach

this layer as electrical or optical signals, they are converted to data bits and finally

delivered to upper layers, or vice versa. Furthermore, the specifications of

connectors, physical medium, network topology, etc. are defined in this layer.

Figure 2.1. OSI and TCP/IP reference models

 3

2.1.2. Data link layer

Data Link layer is the second layer of the OSI reference model, and it is

composed of two sublayers, namely Media Access Control and Logical Link

Control.

2.1.2.1. Media access control

Media Access Control (MAC) sublayer is placed between Physical layer

and Logical Link Control sublayers. This layer is primarily responsible for

providing a data communication channel among the network nodes that share a

common medium. In order to avoid collisions in the shared medium, MAC

sublayer runs a medium access control algorithm such as Carrier Sense Multiple

Access with Collision Detection (CSMA/CD). In addition, MAC sublayer deals

with framing as well. Before sending a packet, MAC layer appends a preamble,

MAC source and destination addresses, etc. at the head of packet and a cyclic

redundancy check (CRC) at the tail of packet. While receiving packets, their

CRCs are calculated and checked for possible errors.

2.1.2.2. Logical link control

Logical Link Control (LLC) sublayer is a bridge between Network layer and

Media Access Control sublayer. LLC adds two bytes to the head of any packet

received from Network layer to specify the packet type (IP or ARP). These two

bytes are known as LLC header. For the packets that are received from MAC

sublayer, LLC header field is controlled and they are delivered to the appropriate

protocol.

2.1.3. Network layer

Network layer is the third layer of the OSI reference model. The most

commonly used network protocol is IPv4, and also preferred in this study. Its

 4

main tasks include forwarding, routing, and logical addressing, fragmentation of

those packets bigger than the maximum transmission unit (MTU) and

defragmentation of the received fragmented packets.

2.1.4. Transport layer

Transport layer is the fourth layer of OSI reference model. Mostly used

transport layer protocols are Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP). TCP [9] is a reliable and connection oriented protocol.

It can provide end-to-end reliable packet transmission, end-to-end flow control

and end-to-end congestion control. Unlike TCP, UDP [1] is an unreliable protocol

and does not guarantee that packets will be delivered to their destination hosts.

Applications that require low latency packet transmission such as Domain Name

System (DNS), Voice over IP (VoIP) use UDP protocol. Both TCP and UDP need

to deal with multiplexing/demultiplexing of packets as well. In this study, UDP is

implemented as Transport layer protocol.

2.1.5. Session layer

Session layer is the fifth layer of the OSI reference model. As the name

implies, this layer is responsible for establishing, managing and terminating

sessions between application processes on the same or different machines. Sockets

are placed in this layer. A network socket is an application programming interface

(API) that helps network programmers to start sessions between applications and

use the lower layer protocols without knowing their implementation details.

2.1.6. Presentation layer

Presentation layer is the sixth layer of the OSI reference model.

Applications can use different syntaxes and this layer transforms them to a

common format. When receiving data, it transforms the data back to the format

 5

that application uses. Data compression and encryption are also handled by this

layer.

2.1.7. Application layer

Application layer is the highest layer of the OSI reference model. This layer

offers several protocols to applications to use the network. For example, web

browser applications use Hyper-Text Transfer Protocol (HTTP) [10] and e-mail

applications use Simple Mail Transfer Protocol (SMTP) [11] in this layer.

 User Datagram Protocol

User Datagram Protocol (UDP) is a connectionless, unreliable transport

layer protocol [1]. UDP does not establish a connection between hosts, so there is

no packets for setting up a connection or closing it. UDP is an unreliable protocol

and it gives no guarantee for packet delivery. Thus, applications are responsible

for detecting duplicate packets. UDP has no congestion control or flow control

either. Therefore, applications need to keep their sending rate under control so that

they will not congest the network or overwhelm the receiver side. Because of

these inherent features, UDP is preferred by applications that are time critical and

do not require reliability.

Each protocol in the network stack encapsulates the data with a header.

Similarly, UDP header structure is in Figure 2.2 [1].

According to Figure 2.2, UDP header consists of four fields, each of which

is 16-bit long:

Figure 2.2. UDP header structure [1]

 6

• Source Port: Each application on a computer has a port number that is

associated with it so that different applications can send and receive data

at the same time. Transport layer protocols multiplex outgoing packets

and demultiplex incoming packets according to these port numbers. So,

this defines the port number of a sender application.

• Destination Port: This defines the port number of a receiver application.

If a client is sending UDP packets to a server, destination port numbers

are usually well known.

• Length: This field carries the length in bytes of UDP header (8 byte) and

Application Data.

• Checksum: Checksum is the 16-bit one's complement of the one's

complement 16-bit sum of a pseudo-header of information from IP

header, which is shown in Figure 2.3, UDP header, and Application Data.

This field is used for error checking of the received packets by a

receiving host. However, the checksum field does not have to be filled,

and it can be filled all zeros.

In this study, UDP will be implemented as an IP core in which UDP header

is added to or removed from packets, and the checksum calculation during

sending and the checksum verification during receiving are not supported.

 Internet Protocol

Internet Protocol (IP) is the network layer protocol of the network protocol

stack. IP is a connectionless and unreliable protocol such as UDP, and upper layer

protocols have to deal with reliability. IP is mainly responsible for addressing

hosts using IP addresses and routing datagrams based on the host IP addresses.

Figure 2.3. Pseudo-header for UDP checksum computing [1]

 7

Each device connected to a network has a unique IP address, which is 32-bit

for IPv4 and 128-bit long for IPv6. Since IPv4 is the most commonly used

Internet protocol in today’s network [2], it is chosen to be implemented on

hardware by this thesis. Figure 2.5 shows the IPv4 header structure, and its fields

are explained below:

• Version: It is 4-bit field that specifies the version of IP protocol. For our

design, this field is fixed to 4 since it supports only IPv4.

• Internet Header Length (IHL): It is 4-bit field that indicates the total

length of IP header. This number must be multiplied by four to find out

the header byte count in bytes. If Options field is not used, this field is set

to 5 since the standard IPv4 header is 20 bytes long, which is the case in

our design.

• Total Length: This 16-bit field represents the total number of data bytes

in IP datagram, which results in the maximum data size of 64 Kbytes.

However, if the maximum transfer unit (MTU) of network does not

support such big datagrams, IP has to fragment them into smaller chunks.

In our design, IP fragmentation is not supported, which requires that

upper layer protocol need to send smaller packets than the MTU of

network. Furthermore, if a fragmented packet is received by our receiver,

it will be dropped.

Figure 2.4. IPv4 header structure [2]

 8

• Type of Service (TOS): This 8-bit field is used to specify the quality of

service desired, such as low latency, high throughput or high reliability

for IP datagrams. In our design, TOS field is not used and set to zero.

• Identification: This 16-bit field is used for identifying the fragmented IP

datagrams. In our study, this field is also set to 0 when sending and

ignored when receiving a datagram because of the lack of the

fragmentation support.

• Flags: It is a 3-bit field related to the datagram fragmentation. Thus,

Flags field is set to 0 in our design.

• Fragment Offset: It is 13 bits long field and carries an offset value if

datagram is fragmented. This field is set to 0 as well.

• Time to Live (TTL): This 8-bit field determines the lifetime of a

datagram. It is set by the sender and is decremented by one every time it

traverses a hop. When TTL value becomes zero, datagram is discarded

and an ICMP massage is sent back to the sender of this datagram, which

prevents them to get stuck in the network indefinitely. TTL is set to 128

by default in our design.

• Protocol: IP provides IP level demultiplexing through this 8-bit field that

indicates which protocol is used in the upper layer. In our design, only

two upper layer protocols exist: Code 1 tells IP to deliver this message to

ICMP and code 17 to UDP.

• Header Checksum: This field is 16 bits long and used for error checking.

In our design, it is calculated and placed in IP header when sending

datagrams; but, Header Checksum is not checked by our receiver, since

MAC Layer checks the CRC of all received frames.

• Source Address: This 32-bit field represents the IP address of the sender.

• Destination Address: This 32-bit field represents the IP address of the

receiver. In our design, IP receiver checks this field of any datagram, and

if it is not equal to the IP address of receiver, incoming datagrams are

simply discarded. However, the broadcast packets will not be dropped.

 9

• Options: This field is variable length and not present in every datagram,

since it is optional. It represents a list of options such as security or

record route. It is not used in our design.

In this study, IPv4 will be implemented as an IP core in which IP header is

added to or removed from UDP and ICMP packets.

 Dynamic Host Configuration Protocol

Dynamic Host Configuration Protocol (DHCP) [4] which runs over UDP is

a network protocol that provides static or dynamic IP addresses from a DHCP

server to DHCP clients on the network. A DHCP client is a user that requests an

IP address from a DHCP server when it connects to the network or boots its

computer. This protocol was first released in 1993, and then, the current DHCP

definition for IPv4 was released in 1997. DHCP is built on Bootstrap Protocol

(BOOTP) [12] which was the protocol that had taken the place of Reverse

Address Resolution Protocol (RARP).

DHCP packet format is shown in Figure 2.5. DHCP has a standard format

except for Options field. The fields of DHCP packet are explained below.

• Operation Code: This is an 8-bit field to indicate the type of packets.

Clients send request packets with code 1 and server sends reply packets

with code 2. Since our design implements a DHCP client, it is code 1.

• Hardware Type: This 8-bit field is set to 1 for Ethernet.

• Hardware Address Length: It specifies the length of MAC address in 8-

bit field and is fixed at 6 by default.

• Hop Count: This field is set to 0 by client.

• Transaction Identifier: This field holds a 32-bit number defined by client

to identify the packets that belong to different DHCP transactions. This

field is set to Hexadecimal 000000BB in our design.

• Number of Seconds: It is filled by clients and represents the seconds

passed from the beginning of the request process. This field is set to zero

in our design.

 10

Figure 2.5. DHCP packet format [4]

• Flags: This 16-bit field is set 0 or 1 by a client while sending a request if

it expects a broadcast reply or unicast reply from the server, respectively.

In our design, it is fixed at 0 for the unicast reply.

• Client IP Address: If client has already taken an IP address and now

renewing or rebinding it, it fills this 32-bit field with its own IP address.

Otherwise, it fills with zeros even if it is requesting a specific IP address.

• Your IP Address: Server fills this 32-bit field with the IP address that has

been assigned to a client.

• Server IP Address: This 32-bit field holds the IP address of the server

that client will use for the renewing and rebinding processes. This field is

not used and set to zero in our design.

• Gateway IP Address: This 32-bit field holds the IP address of a relay

agent. A relay agent is required if a client and server are placed on

different networks. It is not used and fixed at zero in our design.

• Client Hardware Address: It represents the MAC address of a client.

Since this field is 16 bytes long and MAC address is 6 bytes long, it is

padded with zeroes.

 11

• Server Name: This 64-byte field is usually not used, but server can put its

name here. It is not used and set to zero in our design.

• Boot File Name: This 128-byte field is usually not used. It is filled with

zeros in our design.

• Options: This variable length field is used for basic DHCP operations.

There are over 100 different DHCP options, and some of them are

included in most of DHCP messages. For example, Option 53 is included

in every DHCP message since it represents the message type. In our

design, DHCP Message Type, Client Identifier and Requested IP Address

options are used.

There are 8 different DHCP message types as shown in Figure 2.6. These

messages are used in the DHCP state diagram [4] in Figure 2.7 in order to show

how a client obtains an IP address, and renews or releases an already-taken IP

address. According to this state diagram, for example, the initial IP assignment to

a client is achieved by means of traversing the states from INITILAZE, SELECT,

REQUEST to BOUND and using messages DHCPDISCOVER, DHCPOFFER,

DHCPREQUEST and DHCPACK.

Figure 2.6. DHCP message types

 12

Figure 2.7. DHCP state diagram [13]

In this study, DHCP will be implemented as an IP core that handles only the

IP address leasing process by sending and receiving the aferomentioned DHCP

packets.

 Internet Control Message Protocol

Internet Control Message Protocol (ICMP) [3] is a protocol used for

checking the condition of a host or reporting errors in datagram transfers so as to

provide feedback about communication problems. ICMP messages are sent over

IP protocol. ICMP message consists of header and data fields where ICMP header

structure is given in Figure 2.9.

Figure 2.8. ICMP header structure for the ping messages [3]

 13

• Type: This field is 8 bits long and specifies the type of ICMP message.

Our design supports two types of ICMP messages, namely Echo (Ping)

Request and Reply. That is, it can receive ping requests and generate a

ping reply, but cannot generate a ping request.

• Code: This 8-bit field is an extension of Type field. For Echo Request

and Reply messages, it is set to 0. On the other hand, if a datagram

cannot be delivered to its destination for some reason, Type field is set to

3 and Code field takes a value from 0 to 15 depending on the reason,

such as destination network unreachable, destination node unreachable,

etc.

• Checksum: This 16-bit field is defined in RFC792 [3] as the 16-bit one’s

complement of the one’s complement sum of the ICMP message starting

with the ICMP type. Only one field is different in the ping reply packet

and the ping request packet. In our design, checksum in the ping reply is

caculated by a simple substraction from checksum value in the received

ping request packet.

• Identifier: This field is 16 bits long and present only in echo request/reply

messages. It is used for matching the request and reply packets.

• Sequence Number: This 16-bit field is also present only in echo

request/reply messages, and is used for keeping the count of the echo

request messages.

• Data: It may be present in an ICMP message. In our design, the data in

this field of the received ping request is saved into a FIFO and placed in

the ping reply message. This field is used for validating the ICMP packet

on the receiver side.

In this study, ICMP will be implemented as an IP core that can receive ping

request packets and generates ping reply packets in return.

 Address Resolution Protocol

Address Resolution Protocol (ARP) [5] is a bridge between the network and

the data link layers of the OSI reference model, and runs on top of MAC layer in

 14

order to map IP addresses to physical hardware addresses. According to ARP, a

host broadcasts a message that asks for the MAC address for an IP address to all

computers on the network; the host which uses that IP address sends its MAC

address in another message to the requester host. ARP packet structure is given in

Figure 2.9.

• Hardware Type: This field is 16-bit for specifying the network protocol

type and it is set to 1 for Ethernet.

• Protocol Type: This 16-bit field is set to 2048 for IPv4.

• Hardware Length: It is 8-bit field and fixed at 6 to represent the length of

MAC address.

• Address Length: This field is 8-bit and set to 4 to indicate the leght of IP

address.

• ARP Operation: This 16-bit field specifies the message type, where ARP

Request and ARP Reply are represented by 1 and 2, respectively.

• Sender MAC Address: In ARP Request, this field is used to indicate the

address of the host sending the request. In ARP Reply, it represents the

address of the host that the request was looking for.

• Source IP Address: This is 32-bit IP address of the sender.

• Destination MAC Address: It is set to the MAC address who made the

request in ARP Reply and it is ignored in ARP Request messages.

• Destination IP Address: This is 32-bit IP address of the intended receiver.

Figure 2.9. ARP packet structure [5]

 15

ARP keeps a table which saves the IP addresses and their corresponding

MAC addresses. By this way, host does not send an ARP request for every packet,

which reduces the network traffic and speeds up the data transfers. If ARP cache

becomes full and a new ARP Reply is received, then the least recently used IP and

MAC address couple is replaced with the new one.

In this study, ARP will be implemented as an IP core in which ARP Request

and ARP Reply packets are both received and sent, ARP cache is saved for the

MAC addresses. ARP Request and ARP Reply packets are received, processed

and delivered to the related component by ARP receive sub component. ARP

requests are created in ARP sender by an order from the IP Tx component and

ARP replies are created for received ARP requests. The received MAC addresses

are kept in a cache in the ARP control&cache sub component to prevent sending

ARP request for each IP packet.

 Ethernet

Ethernet is the most widely used Local Area Network (LAN) protocol [7]. It

was originally developed in 1980 and standardized by IEEE as IEEE 802.3 in

1983. A standard Ethernet packet structure is given in Figure 2.10.

• Preamble: It is 7 bytes of bit sequence of “10101010” for the

synchronization on the receiver side.

• Start of Frame Delimiter (SFD): This is 1 byte bit sequence of

“10101011”. It tells the receiver that the part coming after this byte is the

actual frame.

• Destination/Source MAC Address: It represents the hardware address of

the receiver and sender, respectively.

Figure 2.10. Ethernet packet structure [7]

 16

• Ether Type: This field represents the protocol that is included in the

Ethernet frame. Hexadecimal 0800 specifies an IP datagram and 0806

specifies an ARP packet.

• Data: This field carries a packet of upper layer protocol. This field needs

to be minimum 46 bytes. As a result, if data is smaller than 46 bytes,

Data field is padded with zeros.

• Cyclic Redundancy Check (CRC): This 32-bit checksum is calculated by

means of the 32-bit cyclic redundancy check algorithm, and it is used for

error detection on the receiver side. The CRC computation includes the

destination and source MAC addresses, ether type and data fields.

It is required that idle time called as Inter-frame Gap (IFG) between two

successive frames must be present. The standard minimum IFG is 96 “bit times”.

This time gap naturally changes with the Ethernet line speed, e.g., 9.6 µs for 10

Mbit/s, 0.96 µs for 100 Mbit/s and 96 ns for the Gigabit Ethernet.

Ethernet uses Carrier Sense Multiple Access/Collision Detection

(CSMA/CD) protocol to physically monitor the traffic on the channel and prevent

any possible collision. CSMA/CD is placed on the Media Access Control (MAC)

sub-layer of the Ethernet. This protocol allows multiple computers to share a

channel. If two computer try to send packets at the same time, this causes a

collision. If a collision occurs, computers try to send again after a randomly

selected time, which is known as the exponential back-off.

In this study, Ethernet will be implemented by a third party IP core in which

preamble, SFD and CRC are added to the packets to be sent and received packets

are checked for error and delivered to upper layers.

 PCI Express

PCI Express (PCIe) is the third generation I/O bus used to interconnect

peripheral devices in computing or communication systems [6]. PCIe has replaced

the second generation buses PCI, AGP and PCI-X, and it is backward compatible

with PCI and PCI-X. In PCIe jargon, a connection between two devices over PCIe

is called a link, and a pair of signals in both directions is called a lane. A link can

 17

consist of either x1, x2, x4, x8, x16 or x32 lanes. The transmission rate of a lane is

5 Gbits/s (2.5 Gbits/s in each direction). PCIe uses the 8B/10B encoding, which

results in the fact that 250 Mbytes/s (2 Gbits/s) per lane is the highest achievable

throughput in a direction.

PCIe uses Transaction Layer Packets (TLPs) to accomplish data transfers,

and has a layered architecture. Figure 2.11 shows the layers of PCIe [6].

• Transaction Layer: The top layer of PCIe is responsible for creating

TLPs and resolving them. This layer adds a header and end-to-end CRC

(ECRC) to the data.

• Data Link Layer: Placed between Transaction and Physical layers, it is

mainly responsible for the link management and error handling. The

packets generated for the link management by this layer are called Data

Link Layer Packets (DLLPs). Data Link Layer appends a sequence

number to the head of TLP and Link CRC (LCRC) to the tail of TLP.

• Physical Layer: This layer takes care of serializing the information that

is received from Data Link layer and sending over a link at a width and

frequency compatible with the receiver, or vice versa.

Figure 2.11. PCIe layers [6]

 Network Packet Processing Overview

There are many layers involved in the network packet processing and most

of them are currenntly handled by CPU. Figure 2.12 shows a simplified structure

 18

Figure 2.12. Operational structure of the network stack [14]

of the packet processing [14], where it is run in three different system mode of

operation, namely user, kernel and device. User and kernel modes together are

called host and device is a Network Interface Card (NIC).

Applications use sockets that are placed in the kernel space to send data. A

socket is equipped with sending and receiving buffers. When an application wants

to send data, it calls a system call which results in a change in the system mode

from user to kernel, and then, data in the user space is copied to the sending buffer

of the related socket in the kernel space. When data is copied to the socket buffer,

a transport layer protocol is called to encapsulate it by the related protocol header.

The same procedure is applied by the network and data link layer protocols as

well. After an Ethernet frame is partially formed, NIC driver is called upon in

order to copy frames from the main memory to the NIC memory. Finally, NIC

adds preamble, CRC and Interframe Gap to every frame and sends them to the

network.

The data receiving process is similar to the data transmitting one. When an

Ethernet frame is received, NIC writes it into its memory. It checks its CRC, and

if it is valid, NIC copies it to the main memory. After copying, NIC sends an

interrupt request to the host operating system (OS). It should be noted here that

nearly 60 packets are processed per interrupt for 10 GbE and 7 packets for 1 GbE

[15]. A driver changes these frames to a form that OS can understand. Ethernet,

network and transport layers process the related header field, respectively, and

 19

then, each layer removes it. Finally, the received data is written to the receive

buffer of the socket. When application calls the read system call, data is copied

from the kermel to to user space and removed from the socket buffer.

This network stack processing puts a large amount of load on CPU. In [15],

the core utilization related to the network packet processing for 10 Gbps was

studied. The experiments in [15] showed that two cores of Quad-Core Intel Xeon

5355 processor which are running at 2.66 GHz are saturated in order to reach the

line rate throughput. The amount of core utilization was about 225%.

In addition to [15], the core utilization of network packet processing for 1

Gbps is presented in several studies [16,17,18] as well. The core utilization values

measured by these works are given below in Figure 2.13, 2.14 and 2.15.

Figure 2.13. CPU load and throughput comparison between Latona and GNIC [16]

Figure 2.14. CPU Utilization of Tx and Rx sides at 2.4 GHz system [17]

 20

Figure 2.15. CPU Utilization of network stack processing at 1 Gbps [18]

It can be seen in these figures that the average CPU utilization for 1 Gbps is

about 35%. There are different studies to reduce the load on CPU caused by

network packet processing. Motivated by these studies, we present an Offload

Engine that takes the most of the packet processing tasks from CPU to hardware.

Figure 2.16 shows the overall structure of our system: (i) The tasks related to

UDP and IP are moved to the hardware. (ii) The socket buffers are implemented

on the hardware. The driver in the kernel space returns a file descriptor to

applications to read or write. This file descriptor, on the other hand, is a device

file that is connected to the socket buffers on the hardware. In this way, data is

copied only once from the user space to the socket buffers on the hardware. This

design reduces the system load and relieves the CPU to spend more clock cycles

on application processes.

Figure 2.16. Operational structure of our design

 21

 Related Work

In the literature, there are several examples of design and implementation of

UDP/IP and TCP/IP protocol stacks on hardware. Löfgren et al. [19] presented

three cores as minimum, medium, and advanced for different network system

requirements. All of these three cores are based on the same architecture. The

minimum core is designed mostly for one way network traffic, either send or

receive. Since it is designed for minimal systems, it is very area effective but not

flexible. Medium core is based on the Minimum core implementation. ARP and

ICMP functionalities are included in this design, and it offers higher flexibility

than Minimum. This is a mediocre core between Minimum and Advanced cores.

Advanced core can operate at gigabit speed and can handle packets with the

length of 1518 bytes (1472 bytes of application data). Minimum and Medium

designs can handle packet sizes up to 256 bytes. Additionally, Reverse Address

Resolution Protocol (RARP) is implemented by Advanced core.

In [20], an efficient communication between PC and FPGA is aimed. In

order to minimize the I/O operation for the data transmission between PC-FPGA,

they present a core design. PC and FPGA are connected with an Ethernet cable.

This design contains an Ethernet MAC (EMAC) core for Ethernet connection.

Their design has components that handles transport layer and internet layer

level packets encapsulation and decapsulation processes. UDP and IPv4 protocols

are used for the transport and internet layers. A look up table (LUT) is used for the

static fields of the UDP and IPv4 protocols.

Alachiotis et al. [21] proposed an extended version of their previous work

which takes more area in exchange for a better performance and flexibility. The

main difference is that the static header field is controlled by an initialization

packet from PC. The extended version also offers a communication protocol and

provides a sortware/hardware interface and communication library

implementation for the use of design.

Herrmann et al. [22] present a UDP/IP stack on FPGA. Transport, network

and link layers are implemented on hardware, and UDP, IPv4 and Ethernet

protocols are used for these layers respectively. Different from our work, this

 22

study does not use a provided IP core for the ethernet connectivity, and it is based

on its IP component that is designed to handle the MAC layer processes. This

design offers a theoretical 1960 Mbps of full duplex throughput.

Dollas et al. [23] present a TCP/IP stack on FPGA. This is one of the most

comprehensive works in the literature and it implements TCP, UDP, IP, ARP

ICMP protocols. Virtex 2 FPGA is used for the implementation of the system.

Overall design has a 37.5 MHz maximum working frequency and an 8-bit

datapath, so the system can achieve 350 Mbps throughput. TCP is the slowest

component in this design. If TCP is removed and UDP is kept as the only protocol

in the transport layer, the system frequency would go higher and a better

throughput would be achieved.

Vishwanath et al. [24] combine the better sides of TCP and UDP protocols

and offer an emulated UDP Offload Engine (UOE). This design is based on the

Chelsio T110 TCP Offload Engine (TOE) [25], and it implements high

performance UDP/IP sockets for applications to use the design.

In [26], two different versions of a UDP/IP core are presented. The only

difference between two versions is UDP checksum calculation. This core can

operate at gigabit speed and implements UDP, IP and ARP protocols. The core

implementation is realized on Spartan 6 FPGA.

In [27], the socket processing in addition to the TCP/IP processing is

offloaded to the hardware to reduce the system overhead. A software-hardware

codesign on system-on-chip is presented in [28] to improve the performance of

the network protocol processing and provide quality of service functionality for

the real-time applications. This core can operate at 100 Mbps. In [29], ARP

protocol is implemented on Virtex 5 FPGA. In [30], a minimal UDP/IP stack on

FPGA is presented so that it can be used for the real-time transmission of sensor

data in sonar systems. In [31], a 10 G TOE with low latency is proposed, and it is

implemented on several FPGAs such as Virtex 5, Virtex 6, Spartan 6 and Zynq

platforms. In [32], the network stack processing is offloaded to a dedicated

processor core. Only one core deals with the protocol stack tasks and other cores

deal with other system tasks. In [33], a UDP/IP ASIC is used to accelerate

 23

multimedia transmission. The design uses jumbo frames to reduce the packet

number and interrupt durations.

 24

3. SYSTEM DESIGN

In this chapter, we present the system architecture of the IP core proposed,

introduce a few third party IP components and an API in order for the network

applications to use Offload Engine.

 Overall System Architecture

The system architecture of the IP core proposed consists of three main

components, namely Xillybus, Offload Engine and EMAC Core, as shown in

Figure 3.1. Each of these components is responsible for different tasks. For

example, Xillybus provides PC-FPGA communication over PCIe interface;

Offload Engine handles full-duplex UDP/IP packet processing; EMAC Core is

responsible for MAC layer packet processing, sending and receiving packets from

and to the network.

It should be emphasized here that Xillybus and EMAC Core are the third

party components from different IP core companies, while the design and

implementation of Offload Engine and its interfaces to Xillybus and EMAC Core

are the subject of this thesis. In the following, Xillybus and EMAC Core are

described in some detail, while Section 4 is devoted to Offload Engine.

Figure 3.1. System architecture of the IP core proposed

 25

 Xillybus

This third-party component deals with PC-FPGA data communication. It is

composed of three components, namely PCIe Interface, Xillybus IP and Tx/Rx

FIFO, as shown in Figure 3.2. Each of these components is described in detail

below.

3.2.1. PCIe Interface IP core

Xilinx Endpoint Block Plus 1.14 [34] is a hard IP by Xilinx and it is used

for PCIe Interface IP core in our design. The latest version of this core is 1.15.

However, since Xillybus IP core is working only with version 1.14, our design is

based on version 1.14. Xilinx Endpoint Block Plus is for use with the family of

Virtex-5 FPGAs. Note that our design is implemented on Virtex5-LX110T [35].

This core compliant with the PCIe Base 1.1 Specification [6] provides the

full functionality of the all three layers of PCIe as follows: Its implementation of

Transaction layer, which is the highest layer, takes TLPs from user logic and

sends them to Data Link layer. Furthermore, it implements a flow control

mechanism which ensures not to overwhelm the receiver side. However, it does

not support ECRC. Its Data Link layer implementation sends TLPs with sequence

number and LCRC; receives TLPs, checks their integrity, and then deliver them to

Figure 3.2. Overview of Xillybus architecture

 26

Transaction layer. It can also handle error detection and correction, and request

retransmissions for the corrupted packets. Its Physical layer implementation is

responsible for transmitting, receiving the packets to and from the link.

There are seven signals for PCIe Interface core in Figure 3.2: PCIe_B_LS is

a reset signal, PCIE_REFCLK_N and PCIE_REFCLK_P are 100 MHz

differential clock signals. Other four differential signals are used for the data

communication, where TX and RX are for transmitting and receiving, respectively.

3.2.2. Xillybus IP core

Xilinx Endpoint Block Plus alone is too primitve in nature to harness the

power of PCIe interface immediately. Consequently, a user must still encode or

decode data to form packets while obeying the many rules of the PCIe

specification for addressing, packet size, etc. [6]. Once packets have been created,

there are still several design hurdles and a great deal of effort that must be spent in

order to turn these primitive interfaces into a useful one. Fortunetely, Xillybus

[36] provides a soft IP core that offers an immediate solution to the adoption of

PCIe interface in custom designs.

Xillybus provides host-FPGA data communication over PCIe interface,

where it uses simple FIFO interfaces for the communication with user logic on

FPGA and basic file descriptors for the interaction with user applications running

on host. Furthermore, this IP core can be built with the selected features such as

channel count, channel width and maximum throughput through Xillybus IP

factory from Xillybus web page [37].

Xillybus works with a 100 MHz clock and the rest of the system must be

designed according to this. Xillybus has three different data widths as 8 bits, 16

bits and 32 bits. Higher data widths allow higher performance. However, Xillybus

does not guarantee a continuous data flow, and there may be gaps between data

blocks in any time during the data transmission. In our design, a Xillybus IP core

with 32-bit send and receive interfaces is used for achieving 1 Gbit/s data

throughput. Furthermore, as shown in Figure 3.2, Xillybus has two read (Rx

FIFO) and two write (Tx FIFO) interfaces. Beside these interfaces, it has also a

 27

memory interface for the configuration of Offload Engine, which is not shown in

Figure 3.2.

3.2.3. Xilinx FIFOs

Offload Engine provides two independent transmission channels in each

direction. As a result, two different applications running on a host can send and

receive data at the same time. Since there are two channels, Xillybus must be

interfaced with two Tx FIFOs and two Rx FIFOs as shown in Figure 3.2.

Tx and Rx FIFOs in Figure 3.2 are 2 Kbyte buffers generated using Xilinx

FIFO generator IP core, where Tx FIFOs are wrapped with a First Word Fall

Through (FWFT) wrapper and Rx FIFOs, on the other hand, are standard ones.

Since Xillybus works with 100 MHz and the rest of the system is designed to use

a 125 MHz clock signal, these FIFOs are chosen to have independent read and

write clock signals so as to alleviate clock domain crossing problems.

Furthermore, FIFOs provide data width conversion as well, where Xillybus-FIFO

data bus interface is 32-bit, while Offload Engine-FIFO one is 8-bit.

With respect to Figure 3.2, a standard or FWFT FIFO has three signals in

each side: Write Enable, Data Input and Full signals are available for the write

interface, while Read Enable (Read_En), Data Output (Dout) and Empty signals

are present for the read interface. It should be noted here that the difference

between a standard FIFO and FWFT FIFO is only about reading data from FIFO.

Standard FIFOs have a read latency of one clock cycle, whereas FWFT FIFOs can

provide data in the same clock cycle in which Read_En is asserted.

 MAC IP Core

MAC IP core [38] is from Xilinx and it is responsible for MAC layer

encapsulation, sending and receiving packets to and from the network over the

PHY chip on the board. MAC IP core has three components: Tx/Rx FIFOs,

EMAC core and GMII physical interface. Figure 3.3 shows the architecture of

MAC IP core.

 28

EMAC Core has two FIFOs connected to it. These FIFOs work with active

low signals. As far as Tx FIFO is concerned, the first byte of data should be sent

while src_rdy (write enable) and i_sof signals are both set to zero. If dst_rdy

(FIFO is not full) signal is zero, then data is accepted by FIFO and the next byte

of data can be sent in the next clock cycle. Note that the last byte of data should be

sent while src_rdy and i_eof signals are both set to zero. In a similar manner to Tx

FIFO, Rx FIFO provides o_sof signal for the first byte of a received packet and

o_eof signal for the last one.

EMAC core is the main part of MAC IP core. This core handles the

encapsulation and decapsulation of packets. For the encapsulation, for example, it

takes a data fragment, which is marked with start of frame (i_sof) and end of

frame (i_eof) signals, and encapsulates it with preamble and start of frame

delimiter. Furthermore, it computes the 32-bit CRC and adds it to end of the

fragment. Finally, it leaves a 12-cycle Inter Frame Gap between successive

Ethernet frames.

GMII is the interface component between EMAC core and the PHY chip on

the board. This component provides physical data transactions over an Ethernet

socket. There are four signals for both transmitting and receiving packets:

Figure 3.3. MAC IP core architecture

 29

GMII_TXD is 8-bit data out bus. When the data on GMII_TXD is valid,

GMII_TX_EN is set to 1. GMII_TX_ER is used for error cases. GMII_TX_CLK

is used for the synchronization of data on the receiver. The receiver signals are

basically the counterparts of these transmit signals.

It should be emphasized that the sender and receiver functionalities of MAC

IP core are mostly independent and the IP can work in full-duplex mode. Since the

IP is designed for gigabit speed communication, 2 Gbit/s is the theoretically

achievable throughput in full-duplex mode.

3.4. Custom FIFOs

In addition to Xilinx FIFOs used by Xillybus, the design of Offload Engine

relies on custom FWFT FIFO buffers as well. These FWFT FIFOs in Offload

Engine are generated by means of a generic FWFT FIFO design, which is

configurable according to its width and depth parameters, developed within the

scope of the thesis. Furthermore, their write and read interfaces are similar to

Xilinx FIFOs.

In Offload Engine, all components except for the ICMP use two-entry,

custom design FWFT FIFOs. ICMP has an extra 128-entry FWFT FIFO for

saving the data in a ping request.

3.5. API for Offload Engine

An application programming interface (API) is designed for applications

running on a host to exploit Offload Engine. This API has 4 different functions:

udp_offload_send, udp_offload_receive, udp_offload_config and

udp_offload_socket. Each of these functions have a udp_offload prefix to prevent

mixing these functions with sendto and recvfrom functions that are normally used

for sending and receiving data using network protocols available in the operating

system. Applications can send data to FPGA and receive data from it using these

API functions. These functions are explained in detail below.

 30

• udp_offload_socket (int pnum): This function returns an integer that

represents the socket number to application. Application then can send

and receive data using this socket number. Application can select the

source port number by specifying pnum parameter. If the parameter is not

used, then API assigns a random source port number for the socket.

• udp_offload_send (int snum, int dip, int port, int len, const char *buf):

This is used for sending data to FPGA and takes five parameters: socket

number (snum), destination IP address (dip), destination port number

(port), data length in bytes (len) and character pointer to data (*buf)

respectively. Note that API zero-extends 16-bit destination port number

to 32-bit so that 32-bit Xillybus driver can be used by default.

• udp_offload_receive (int snum, int len, char *buf): This function takes

three parameters and is used for receiving data from FPGA. When

application calls this function and if there is received data in FPGA, API

writes the data to the given buffer parameter and returns the amount of

the written data.

Figure 3.4. API implementation architecture

• udp_offload_config (int mip, int dhcpon): This function is used for

controlling the IP address assignment. Mip parameter represents a

 31

manual IP address that is given by a user. Dhcpon parameter activates or

deactivates the DHCP component in Offload Engine.

Figure 3.4 shows how this API helps applications to use Offload Engine.

Applications send and receive data using the aferomentioned API functions. Once

an application calls udp_offload_send API function to send data, API writes the

data to the device file created by the Xillybus driver. Then, the driver copies the

device file to FPGA over PCIe channel. When FPGA sends data to host, it is

taken by the Xillybus device file and the API reads the data from this device file,

then delivers it to the appropriate application.

 32

4. OFFLOAD ENGINE

Offload Engine is the IP core that has been fully designed and implemented

in this thesis. The architecture of Offload Engine is given in Figure 4.1, where it

comprises ten different components. All of these components except for

Configuration have a similar architecture and they consist of a Finite State

Machine with Datapath (FSMD) [39] and a FWFT FIFO. Furthermore, these they

all have sender side (Tx) and receiver side (Rx).

Channel Selector, Configuration and UDP Rx components are connected to

Xillybus, whereas Arbitrator, ARP and IP Rx components are interfaced with

MAC IP core. As far as the connection between two Offload Engine components

is concerned, they all expect FWFT FIFO behavior for a seamless integration.

Implemented protocols can be different depending on the purpose of the

design. Our design includes UDP, IP, ARP, ICMP and DHCP protocols.

Compared to the similar works in the literature, DHCP protocol has not been

implemented in any of the previous designs. The implemented protocols in our

design and related works are given in Table 4.1.

Figure 4.1. Offload Engine architecture

 33

Table 4.1. Implemented protocols in our design and related works

Minimum Medium Advanced
UDP       

IP       
ARP x   x   
ICMP x   x x  
DHCP x x x(RARP) x x x 

Löfgren Alachiotis Herrmann Dollas Our IP core

Overall design architectures of different offload engines can be very

different. However, they are usually connected to the application logic on one side

and an EMAC core or PHY chip on the other side. The design architectures of

some of the similar works are given below.

Alachiotis et al. design [20] is given in Figure 4.2. It is similar to our design

in terms of using a provided EMAC core for the link layer. A single component is

designed for UDP and IP encapsulation and decapsulation. Since a minimal

design is aimed for PC-FPGA communication, ARP, ICMP and DHCP protocols

are not included in the design.

Figure 4.2. Alachiotis et al. IP core architecture [20]

 34

Figure 4.3. Löfgren et al. IP core architecture [19]

Figure 4.4. Herrmann et al. IP core architecture [22]

 35

Löfgren et al. design [19] is given in Figure 4.3. They used the same

architecture for all of the three cores in [9]. This design, different from ours, does

not include a provided EMAC core, instead four components as Transmitter,

Receiver, CRC Generator and CRC Checker does the link layer processes. The

Advanced core includes UDP, IP, ARP, ICMP and RARP protocols.

Herrmann et al. design [22] is given in Figure 4.4. This design is very

similar to [9] in terms of its overall design. This one neither includes a provided

EMAC core nor ICMP and DHCP protocols. The design, however, implements

ARP protocol.

 Channel Selector

Channel Selector is the first component in the Tx path of Offload Engine,

and it is employed to select one of the two channels connected to it. The

architecture of Channel Selector is given in Figure 4.5, in which the main

components are 8-bit two entry FIFO buffer and a finite state machine (FSM). The

FSM whose state diagram is given in Figure 4.6 controls the operation of Channel

Selector as follows:

Figure 4.5. Channel Selector architecture

 36

Figure 4.6. FSM state diagram of Channel Select

• IDLE: After reset, FSM goes into this state and stays here as long as both

channels are empty (both w_empty signals are set to 1). If only one of the

channels makes a request to send data, the selector picks that channel and

goes to Header Send state. If both channels have data to send, there are

two cases: (i) If this is the first request for both channels after reset, FSM

picks channel-1, which is connected to w_empty(0), Din(7:0) and

w_rd_en(0). (ii) Otherwise, FSM chooses the least recently used channel

in order to provide fairness. In both cases, after the selection of a

channel, the selector makes a transition to Header Send state.

In IDLE state, FIFO is empty, so r_empty is 1 and r_rd_en is ignored.

Furthermore, FIFO is simply disconnected from the input. That is, wr and

rd signals are both set to 0 in order to mask w_empty signal for ff_wr_en

and mask ff_full signal for w_rd_en.

• Header Send: The data format received from the host is shown in Figure

4.7 where its header consists of three 4-byte parts, namely Destination

IP, Destination Port and Data Length. FSM copies Data Length field into

a register and zero-extend 16-bit Destination Port field to 32-bit while

writing the header into FIFO. While the last byte of the header is being

put into FIFO, FSM goes to Data Send state. In Header Send state, both

wr and rd signals are set to 1. As a result, a new word is written into

FIFO when w_empty is 1 and ff_full is 0. Note that Actv_Port signal is

provided to indicate the currently selected channel as well.

 37

Figure 4.7. Host data format

• Data Send: FSM counts the number of data bytes that are put into FIFO

by a counter, waits for the counter to reach Data Length value kept in the

register, and then, makes a transition to IDLE state. Note that data may

come in an on-and-off fashion, which will be nicely handled by FSM.

According to the aferomentioned FSM operation, it takes at least N+13

clock cycles to write header and N-byte of data into FIFO. After the first word is

written into FIFO, it will take N+12 clock cycles to read them.

 UDP Tx

UDP Tx component is the sender implemetation of UDP protocol, and its

architecure is given in Figure 4.8. According to Figure 4.8, two different

components, namely Channel Selector or DHCP IP core, can be a source of data.

As a result, UDP Tx is responsible for encapsulating the data that are received

from either Channel Selector or DHCP IP core with UDP header and sending

UDP datagrams to IP Tx component. Note that DHCP IP core has the priority

over Channel Selector in our design and these two components are not usually

active at the same time.

UDP Tx further relies on Configuration IP to provide a UDP source port

number related to the chosen channel by Channel Selector. Thus, Configuration IP

provides two 16-bit UDP source port numbers, each of which is exclusively

assigned to a channel, through 32-bit Cfg_Ports signal. According to Actv_Port

signal coming from Channel Selector, UDP Tx inserts the correct source port

number into UDP datagrams. For DHCP packets, however, the source port

number is fixed at Hexadecimal 0044 and it is chosen by setting src_sel signal to

one.

 38

Figure 4.8. UDP Tx architecture

In addition to the encapsulation, UDP Tx does a kind of packet

fragmentation as well. That is, it splits data whose size is bigger than MTU into

separate UDP datagrams and sends them accordingly. Figure 4.9 shows the FSM

state diagram of UDP Tx component.

• IDLE: When a channel or DHCP makes a request for sending data, state

goes to Header Take state.

• Header Take: Twelve byte header in Figure 4.7 is taken and saved to

several registers in twelve clock cycles, then FSM goes to Length

Calculation state. Note that DHCP IP core will send the same twelve

byte header as well.

• Length Calculation: It checks the 32-bit register (app_data_length) that

keeps Data Length field of the header. If app_data_length register is

zero, FSM goes to IDLE state. If the non-zero value in app_data_length

is smaller than or equal to the MTU, FSM copies this register to 16-bit

 39

udp_data_length register and sets app_data_length to zero. Otherwise, it

subtracts the MTU value from the content of app_data_length and writes

the result back into app_data_length register. In addition, FSM sets

udp_data_length register to MTU. Then, it goes to Header Send state.

• Header Send: In this state, UDP header is written FIFO in eight clock

cycles, in which UDP source port number is set as follows: If this is a

DHCP packet, src_sel signal is set to 1 so that Hexadecimal 44 is used.

Otherwise, this is an UDP packet and Actv_Port signal selects between

two source port numbers available from Configuration IP core. In

addition, UDP destination port number is copied from the register which

it was written in Header Take state; UDP length is obtained from

udp_data_length register. Since UDP checksum is not supported and this

field is filled with zeros. Then, it goes to Data Send state.

• Data Send: UDP Tx receives 8-bit data input from either Channel

Selector or DHCP IP core and writes into FIFO until the number of data

bytes copied into FIFO reaches the value of udp_data_length register,

and it makes a transition to Length Calculation state.

According to the FSM operation in Figure 4.9, if a single UDP datagram

will be sent, it takes at least N+23 clock cycles for N-byte of application data. If

multiple UDP datagrams will be send due to the fragmentation of application data,

the first UDP datagram takes N+23 clock cycles, while the following ones require

N+2 clock cycles.

Figure 4.9. FSM state diagram of UDP Tx

 40

 IP Tx

IP Tx component is the sender implemetation of IPv4 protocol. This

component is responsible for encapsulating the UDP datagrams that are received

from UDP Tx or the ICMP messages from ICMP IP core with IPv4 header and

sending the IP datagrams to Arbitrator component. The architecture of IP Tx is

given in Figure 4.10 and its FSM state diagram in Figure 4.11.

• IDLE: Initially, FSM is on the IDLE state. If UDP Tx or ICMP component

makes request for sending data, it goes to UDP Send or ICMP Send

respectively. ICMP messages has priority since they need to be replied as

soon as possible.

• UDP Send: UDP packet is received until the UDP length field of UDP

header is completely received in six clock cycles. It goes to MAC Request

state.

Figure 4.10. IP Tx architecture

 41

Figure 4.11. FSM state diagram of IP Tx

• ICMP Send: The length of upcoming ICMP packet is received from ICMP

IP core in two clock cycles, and goes to MAC Request state.

• MAC Request: A destination IP address is provided by either UDP Tx or

ICMP IP core together with their respective request. IP Tx asks ARP IP

core for the associated MAC address with the destination IP address, and

makes a transition to MAC Wait state.

• MAC Wait: FSM stalls in this state until a reply is received from ARP IP

core. Then, it goes to MAC&Type Send state. Note that if the requested

MAC address is in ARP cache, the stall lasts for just two clock cycles.

• MAC&Type Send: The source and destination MAC addresses, and Ether

Type (Hexadecimal 0800 for IP datagram) are written into FIFO in

fourteen clock cycles, and it goes to IP Header Send state.

• IP Header Send: In this state, IP header is written to the FIFO in twenty

clock cycles, in which some of the IP header fields are already predefined.

Some of them are unused, and thus, they are filled with zeros. Version,

Header Length and Time to Live fields are predefined as Hexadecimal 4,

5, 80, respectively. Type of Service, Identification, Flags and Fragment

Offset fields are filled with zeros. Total Length field is calculated by

 42

adding 20 to the length of data received from either ICMP IP core or UDP

Tx in ICMP_Send or UDP_Send states, respectively. Protocol field is

selected with src_sel signal as Hexadecimal 1 for ICMP and Hexadecimal

11 for UDP. Header Checksum is calculated dynamically from the header

fields. Source IP and destination IP addressed are obtained from Src_IP

and Dest_IP registers, respectively. After an IP header is sent, FSM goes

to Payload Send state.

• Payload Send: IP Tx receives 8-bit data input from either UDP Tx or

ICMP IP core and writes into FIFO until the number of data bytes copied

into FIFO reaches the length value that received on the UDP send or

ICMP send respectively and then, FSM goes to IDLE state.

The FIFO used in this component is slightly different from the standard

FIFO structure. It uses two extra signals (sof and eof signals) to mark the

beginning and the ending of a packet. These signals are required for the FIFOs

that MAC component use.

IP Tx component has a eleven clock cycle latency for the UDP packets and

seven for the ICMP packets. ARP cache is assumed to have the requested MAC

address for this latency.

 Arbitrator

Arbitrator component is the last component on the Tx path of Offload

Engine. It is basically a multiplexer with FIFO that selects between the outputs of

IP Tx and ARP IP core. The architecture of Arbitrator is given in Figure 4.12.

According to Figure 4.12, Arbitrator uses two extra signals for receiving and

sending packets, which is different from the other components. These are start of

frame (sof) and end of frame (eof) signals. Note that they are supplied by either IP

Tx or ARP IP core accordingly and written into FIFO as if they were data signals

so as to associate them with the right data packets. The output of Arbitrator is also

the output of Offload Engine. Thus, Arbitrator is interfaced with MAC IP core.

Since MAC IP core works with active-low signals, a few output signals need to be

driven over not gates.

 43

Figure 4.12. Arbitrator architecture

There is no need to draw a FSM state diagram for Arbitrator, since it

consist of only two states as IDLE and SEND. Arbitrator waits in IDLE state.

When IP Tx or ARP IP makes a request, it goes to SEND state, where it stays until

the end of packet that will be marked by an end of frame signal. Then, it return to

IDLE state.

Arbitrator has a two clock cycle latency. The total latency on the Tx path for

an N-byte of application data is N+40 (12 clock cycles for application header + 28

clock cycles for Offload Engine) clock cycles.

 IP Rx

IP Rx is the first component on the Rx path of Offload Engine. It accepts

only those IP packets that are addressed to this host, and drops any multicast and

broadcast packets. Furthermore, it delivers a received packet to either UDP Rx or

ICMP IP core. Figure 4.13 shows the architecture of IP Rx component. Note that

IP RX does not include a FIFO buffer, and it is basically an FSM together with a

 44

couple of multiplexers and demultiplexers. This component has a simple FSM

with five states as shown in Figure 4.14.

• IDLE: When a new packet is received, MAC IP core starts to deliver it to

Offload Engine. IP Rx is the first component to process a newly arriving

packet. So, FSM goes to MAC Type In state to handle a new packet.

• MAC Type In: The destination and source MAC address fields are

ignored, but Ether Type field in the received Ethernet frame is checked.

If this field is equal to Hexadecimal 0800 (IP datagram), the packet is

accepted. Otherwise, it is dropped.

• IP Header In: It checks some of the IP header fields: Protocol, Flags and

Destination IP address. After checking theese fields, if the packet is

approved, it is delivered either UDP Rx or ICMP IP core depending on

Protocol field in the IP header, and FSM goes to Deliver Packet state. If

it is disapproved, FSM goes to Drop state.

Figure 4.13. IP Rx architecture

 45

Figure 4.14. FSM state diagram of IP Rx

• Deliver Packet: The received ICMP or UDP packet is delivered to the

related component. Once it is compeletly received, FSM goes to IDLE

state.

• Drop: FSM stays in this state until the packet is fully received, and then

it goes to IDLE state.

 UDP Rx

UDP Rx component is the second and the last component on the Rx path of

Offload Engine. It is responsible for receiving the UDP datagrams from IP Rx and

delivering them to either appropriate channel (channel demultiplexing) or DHCP

IP core. Furthermore, UDP Rx drops those packets that are not addressed to one

of its UDP source ports. Figure 4.15 shows architecture of UDP Rx component.

Similar to IP Rx, UDP Rx is composed of an FSM and several multiplexers

and demultiplexers. The FSM of UDP Rx is shown in Figure 4.16. FSM checks

the Destination Port field of the UDP header and if the packet is addressed to

DHCP or one of the applications running on the host, it delivers the packet to

DHCP or Xillybus component respectively.

 46

Figure 4.15. UDP Rx architecture

Figure 4.16. FSM state diagram of UDP Rx

 DHCP IP Core

DHCP IP core is responsible for leasing an IP address. DHCP IP core makes

use of UDP Tx and UDP Rx components in order to perform this leasing

transaction. Note that DHCP is the highest level protocol implemented by Offload

Engine.

DHCP IP core is simply an FSMD, rather than a group of FIFOs,

multiplexers and demultiplexers as in the other IP cores. Figure 4.17 shows the

 47

simplified FSM state diagram of DHCP IP core for leasing an IP address. Note in

this FSM that four types of DHCP packets are involved in the leasing transaction,

two of which are from DHCP IP core (DHCP client) and two of which are from

DHCP server.

• IDLE: It is initially in this state. It is activated by a 1-bit flag signal

(IP_select signal) supplied by Configuration IP core. When IP_select

signal goes high, FSM goes to Send Discover state.

• Send Discover: DHCP IP core makes a request to UDP Tx by setting

DHCP_Send signal to 1. Once this request has been approved by UDP Tx,

it sends a DHCP Discover packet, and then makes a transition to Take

Offer state.

• Take Offer: When a DHCP Offer packet is received through UDP Rx, it

excracts the necessary information from this packet, creates a DHCP

Request packet and goes to Send Request state.

• Send Request: It makes a request to UDP Tx by setting DHCP_Send signal

to 1. Once the request has been accepted, it sends a DHCP Request packet,

and then goes to Take Ack state.

• Take Ack: When DHCP IP core receives a DHCP Ack packet via UDP Rx,

the IP leasing transaction finishes and FSM goes to a passive state called

IP Taken.

Figure 4.17. FSM state diagram of DHCP

 48

• IP Taken: FSM stays here until either the host changes the IP address

configuration or system is reset. DHCP IP core presents the leased IP

address to IP Tx, IP Rx and ARP components.

 ICMP IP Core

ICMP IP core is responsible for sending ping replies to ping requests. It can

neither send a ping request nor handle other types of ICMP messages. This

component is placed between IP Tx and IP Rx components. Figure 4.18 shows the

architecture of ICMP IP core.

When IP Rx component receives an ICMP packet, it writes the Source IP

address field in the IP header to the DestIP_reg register in the ICMP IP core and

delivers the packet to the ICMP IP core. ICMP IP core reads the ICMP header in

the received packet and saves the data field of the packet into the FIFO on the left.

Geneares an ICMP header for the reply and adds the data in the FIFO on the left

to this header. It writes the packet length into the FIFO on the rigth and sets the

ICMP req signal to 1. IP Tx component approves the request and ICMP writes the

reply packet to the second FIFO after the length information.

Figure 4.18. ICMP architecture

 49

 ARP IP Core

ARP IP core is the lowest level protocol component of Offload Engine, and

it consists of three components: ARP Control&Cache, ARP Send and ARP

Receive. Figure 4.19 shows the architecture of ARP IP core and the

interconnection among these components. How these components together

implement ARP protocol is explained in the following.

ARP Send is responsible for both sending ARP requests and ARP replies.

ARP requests (inquiry for the MAC address of a given IP address) are created in

response to ARP_req_snd and 32-bit ARP_req_DestIP signals from ARP

Control&Cache; ARP replies (response with the MAC address of this host) are

due to ARP_rep_snd, 32-bit ARP_rep_DestIP and 48-bit ARP_rep_MAC signals

from ARP Receive component.

ARP Receive deals with both ARP request and ARP reply messages. If the

received message is an ARP request and the destination IP address in ARP request

matches with the IP address of this host, then ARP Receive makes ARP Send to

send an ARP reply message to the sender of ARP request. If it is an ARP reply,

ARP Receive exracts the IP and MAC address couple from the reply and delivers

them to ARP Control&Cache.

ARP Control&Cache receives requests from IP Tx through ARP_req and

32-bit IP_Addr signals, where IP_Addr signal carrries an IP address for which the

related MAC address is sought. ARP Control&Cache first checks its four-entry

ARP cache for the IP address. If it is found in the cache, the associated MAC

address is delivered over 48-bit MAC_Addr signal to IP Tx. Otherwise, it issues a

request to ARP Send to create an ARP request message for this IP address, and

waits for ARP reply. When ARP Control&Cache gets a reply from ARP Receive,

it first compares the IP address with the sender IP address in ARP reply message.

If they match, then it writes the IP address and the received MAC address into

ARP cache. Finally, it delivers the MAC address to IP Tx.

 50

Figure 4.19. ARP architecture

 Configuration Component

Configuration component is simply a RAM like component. It is responsible

for setting the configuration parameters entered by the host into some of the

components. Figure 4.20 shows the Configuration component structure.

Host writes the parameters to the RAM inside the component by setting

write enable (Wr_En), data input (Din) and write address (Wr_Address). Manual

IP address (Config_IP), source ports (Config_Ports) and the IP selection which

decides if IP address will be taken by DHCP or manual IP will be used are outputs

of the component. In other words, IP selection bit is an on-off button for the

DHCP component.

Figure 4.20. Configuration architecture

 51

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this chapter, implementation details of the design and a comparison with

the related previous studies are given. Experimental test setup and results,

functional verification of the protocols are also presented in this chapter.

 Implementation Results

The proposed design elaborated in Section 3 and 4 is described in VHDL

hardware description language, and it is synthesized by means of Xilinx ISE 14.2

[40] for the target FPGA device XUVP5-LX110T. The synthesis results are given

in Table 5.1.

According to Table 1, overall design has a 144 MHz and Offload Engine

has a 198 MHz maximum achievable frequency on Virtex 5. Overall design

oppupies 4700 slices for Virtex 5, which is about 25% of the available slices on

Virtex 5. Our design is compared against the related work from the literature in

Table 5.2.

It is quite fair to say that, each design is created for different specific

purposes, comparing them directly may not give us the true results. The important

point is the systems can operate at gigabit speed theoretically and experimental

results give near results.

Table 5.1. Synthesis results of the design

 Slices BRAMs Frequency
(MHz)

Latency
(# cycles)

Xillybus 2820 12 144 ?
Offload Engine 1421 1 198 28
EMAC Core 270 2 260 12+?
Overall Design 4240 15 144 40+?

 52

Table 5.2. Implementation details comparison

Löfgren

Advanced
 [19]

Alachiotis
[21]

Herrmann
[22]

Dollas
[23] Our Design Our Design

FPGA Spartan 3 Virtex 5 Spartan 3 Virtex 2 Virtex 5 Spartan 3
Slices 1584 105 1321 10007 1424 2500

BRAMs 5 - ? 10 1 1
Fmax 105.6 262 122 37,5 198 102
Packet
Length 1518 ? ? 1518

Speed 10/100/1000 10/100 10/100/1000

According to Table 5.2, the resource utilization of our Offload Engine is

more than [19] and [22], and it is clearly less than [23]. It should be recalled that

[22] does not support ICMP and DHCP. As compared to [19], on the other hand,

Offload Engine uses less BRAM resources and it has a support for multiple data

streams. It is not fair to compare Offload Engine with [21] that implements only

UDP and IP, and aims for a fairly simple PC-FPGA communication.

 Experimental Results

After the implementation of the proposed IP core on Virtex 5 FPGA, a set of

experiments are conducted in order to verify its functionality and test its

achievable maximum data throughput. For these experiments, the FPGA board is

inserted into a PCIe slot of a desktop PC with i5 processor, and the PC is

connected to the network over the Ethernet port on the board. In addition, a laptop

with i5 processor is connected to the same network with the goals of measuring

data throughput, checking if the file transfers were successful and verifying the

operation of ARP, ICMP and DHCP protocols. Figure 5.1 shows the experimental

setup. In this setup, packets are transmitted over a network switch and Offload

Engine leases an IP address from a DHCP server on the network.

 53

Figure 5.1. Experimental setup for the system tests

Four different applications were run on two computers. Two of them were

run on the PC, where one is for configuring the IP core and pumping packets into

Offload Engine, and the other one is for receiving packets and verifying the

receive path of the IP core. Both of these applications are based on the API

presented in Section 3. The applications running on the laptop, on the other hand,

are simple client-server programs which use the network protocols available from

the host OS in order to perform the related measurements and controls.

5.2.1. Throughput results

During the throughput experiments, an application running on the PC uses

our API to transfer a predetermined file to the server application executing on the

laptop. With the end of a file transfer, the server application compares the newly

received file with its original version that has been copied there before the

transmission, and reports the measured throughput in addition to the elapsed time,

total number of received packets and total size of the received file. Figure 5.2

shows the results of an example throughput test. According to Figure 5.2, the

achieved throughput is about 528.5 Mbps, while 43625 packets are received in

0.927 sec for the transmission of a file with 64215140 bytes.

 54

Figure 5.2. Command window output - an example throughput test

 After testing the system with different file sizes up to 500 MByte over a

hundred times, the average throughput is obtained as 540 Mbps. Meanwhile, the

maximum achieved throughput is observed as 570 Mbps. In these tests, the MTU

was set to 1472 bytes to achieve the maximum throughput, which results in

splitting files into the MTU-sized packets by Offlad Engine. However, it is a

known fact that the packet size has an impact on the throughput as well.

Consequently, the tests are repeated for different MTU sizes, and the results are

presented in Figure 5.3.

Figure 5.3. The impact of packet size on throughput

0

100

200

300

400

500

600

100 500 1000 1472

Th
ro

ug
hp

ut
 (M

bi
t/

s)

Packet Size (Byte)

 55

The achieved throughput value of 540 Mbps by the IP core proposed can be

attributed to several facts: (i) The file transfer client application on the PC is still

running on the host OS and experiences the overhead related to the OS. (ii)

Xillybus can send data over gigabit speed with its 32-bit interface. But, because of

the uncontinious data provided by Xillybus, the clock domain crossing and data

with conversation by the Xilinx FIFOs, data reaches at a slower speed than the

gigabit speed to Offload Engine.

In order to prove that Offload Engine is capable of providing better data

throughputs than 540 Mbps, a different experimental setup is created. In this

setup, the IP core proposed is slightly modified to be composed of only Offlaoad

Engine and MAC IP core (Xillybus is removed). Then, a hardware application

module on the FPGA instead of an application running on the computer is

implemented to provide data with Offload Engine. In these tests, Offload Engine

achieves a maximum data throughput of 865 Mbps, which is clearly superior.

It should be noted here that actual throughput that can be achieved at gigabit

speed is slightly lower than 1 Gbps. That is, the maximum Ethernet packet size is

1518 bytes (1472 bytes application data, 8 bytes UDP header, 20 bytes IP header,

12 bytes MAC addresses, 2 bytes packet type, 4 bytes CRC). Furthermore, there is

8 bytes preamble and 12 bytes IFG. All of these overheads result in the maximum

achievable data throughput of 957 Mbps. Fortunately, 865 Mbps throughput of

Offload Engine is quite near to 957 Mbps and Offload Engine can be used for

those applications that seek for near-gigabit performance.

Finally, all of these throughput tests clearly prove that the IP core proposed

is working as expected, which further leads to the fact that the send and receive

functions of both UDP and IP protocols are correctly implemented in hardware.

Figure 5.4 shows a wireshark output obtained during a throughput test on the

laptop. According to Figure 5.4, the wireshark observes UDP packets coming

from the source (the PC) with IP address 10.10.96.100.

 56

Figure 5.4. Wireshark output of an example throughput test

5.2.2. ICMP verification

The verification of ICMP IP core is done by a simple ping request from the

command window as shown in Figure 5.5. Since the packets are transmitted over

a single switch, the ping reply from Offload Engine is received in less than 1 ms.

Figure 5.5. ICMP functionality verification command window output

 57

Figure 5.6. ICMP functionality verification wireshark output

According to Figure 5.6, source 10.10.96.106 (the laptop) sends a ping

request four times, and source 10.10.96.100 (the PC) sends a ping reply

successfully for each request. Based on Figure 5.5 and 5.6, it is concluded that

ICMP IP core is functioning correctly.

5.2.3. DHCP verification

DHCP verification is done by changing the IP address configuration of the

IP core and sending packets with each configuration. In the first case, DHCP is off

and a manual IP address is not given to the PC either. Figure 5.7 shows the packet

transmission under this configuration. It can be seen in Figure 5.7 that source IP

field is 0.0.0.0, which is the default IP address used by the IP core. Since this is

the first data transmission between two computers, there is an ARP request by the

PC before the start of data transmission.

In the second case, DHCP is still off, but a manual IP address

(10.10.96.100) is given to the PC. Figure 5.8 shows the packet transmission with

this configuration of the IP core. It is clear that the received IP packets are coming

from the PC.

 58

Figure 5.7. Packet transmission with no IP configuration

Figure 5.8. Packet transmission with manual IP configuration

In the third case, DHCP component is made on, which overrides a given

valid manual IP address (10.10.96.100) in the IP core. Under this scenario, it is

expected that DHCP IP core will lease a new IP address (different from

10.10.96.100) through a DHCP server, and use this address in the subsequent data

communication. Figure 5.8 shows that the packets are coming from a source with

IP address of 10.10.96.90, which is in fact the IP address leased by DHCP IP core

for the PC. Thus, DHCP IP core is proved to working as designed.

5.2.1. ARP verification

ARP packets can be observed in Figure 5.4 for the throughput tests, in

Figure 5.6 for the ICMP tests, and in Figure 5.7 and 5.9 in the DHCP tests. Based

on these figures, it is evident that ARP IP core can broadcast ARP requests to the

network.

Figure 5.9. Packet transmission with DHCP configuration

 59

In Figure 5.9, for example, after an ARP request and ARP reply are

observed before the first data transmission by the wireshark, there is no other ARP

request messages present during the transmission of other following packets. This

clearly shows that ARP IP core receives ARP reply messages, creates an entry in

its ARP cache and provides IP Tx with the correct MAC addresses for its inquries.

 60

6. CONCLUSIONS

The need for an offload engine in high-speed networks so as to relieve

CPUs from networking tasks has been the main motivation behind this thesis.

Based on this motivation, the IP core with full hardware accelaration of UDP, IP,

DHCP, ICMP and ARP protocols is designed and implemented on a Virtex 5

FPGA, where the IP core is composed of three main components, namely

Xillybus, Offload Engine and MAC IP. It is shown in the previous section that the

IP core has relatively small resource utilization and can be implemented on most

of the FPGAs. Furthermore, it is fast enough to handle gigabit speed data

communication, and it has low latency to be used for real-time applications. On

the other hand, Offload Engine is designed in a modular fashion so that the

individual components can be reused or easily modified for new features.

There are still further avenues of research that can be conducted in the

future to extend the results of thesis as follows:

• Offload Engine should be enhanced to handle 10 Gbit/s data

communication. In order to achive 10 Gbit/s packet throughput, Offload

Engine needs to be modified to have 64-bit datapath (instead of 8-bit

datapath in the current design) and working clock frequency of about 250

MHz (instead of 198 MHz). Furthermore, Xillybus and MAC IP core

should be updated to support 10 Gbit/s packet throughput as well.

• UDP should support cheksum calculation and cheksum verification.

• IPv6 in addition to IPv4 should be implemented as the other network

layer protocol.

• ICMP IP core currently generates replies to only ping requests. This core

can be modified so that it can handle the ICMP error messages as well.

Furthemore, it can be further enhanced to be OS-aware. That is, upon

receiving a ping request, a reply is returned only if the host OS is still up

and running.

• Four-entry ARP cache can be expanded and implemented on block

RAMs. Furthermore, a timeout for the MAC addresses can be set and

ARP IP core can automatically renew its ARP cache upon its expiry.

 61

• Different virtual MAC addresses can be assigned to the channels and

DHCP IP core can be changed to lease a unique IP address for each

MAC address so as to create virtual network adapters.

 62

REFERENCES

[1] Postel, J., "RFC 768: User Datagram Protocol," Request for Comments,

IETF, 1980.

[2] Postel, J., "RFC 791: Internet Protocol," Darpa Internet Protocol

Specification, 1990.

[3] Postel, J., "RFC 792: Internet control message protocol," InterNet Network

Working Group, 1981.

[4] Droms, R., "RFC 2131: Dynamic Host Configuration Protocol," 1997.

[5] Plummer, David C. "RFC 826: An ethernet address resolution protocol,"

InterNet Network Working Group (1982).

[6] Budruk, R., Anderson, D., and Shanley, T., PCI express system

architecture. Addison-Wesley Professional, 2004.

[7] Cunningham, D., Lane, B., and Lane, W., Gigabit Ethernet Networking.

Macmillan Publishing Co., Inc., 1999.

[8] Tanenbaum, A. S., Wetherall, D. J., Computer Networks: Pearson New

International Edition: University of Hertfordshire. Pearson Higher Ed,

2013.

[9] Postel, J., "RFC 793: Transmission control protocol," 1981.

[10] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and

Berners-Lee, T., "RFC 2616. Hypertext Transfer Protocol–HTTP/1.1,"

1999.

[11] Postel, J., "RFC 821: Simple Mail Tranfer Protocol," IETF Network

Working Group, 1982.

[12] Wimer, W., "Internet RFC 1542," Clarifications and Extensions for the

Bootstrap Protocol, 1993.

[13] Comer, D. and David L. S., Internetworking with TCP/IP, Englewood

Cliffs, NJ.: Prentice-Hall, 2003.

[14] Hyeongyeop, K., Understanding TCP/IP Network Stack & Writing Network

Apps, 2013, http://www.cubrid.org/blog/dev-platform/understanding-tcp-ip-

network-stack/

 63

[15] Liao, G., Zhu, X., and Bnuyan, L., "A new server I/O architecture for high

speed networks." High Performance Computer Architecture (HPCA), IEEE

17th International Symposium on. IEEE, 2011.

[16] Kim, S., Kim, S., Park, K., and Chung, Y., "Offloading Socket Processing

for Ubiquitous Services," J. Inf. Sci. Eng., 27(1), 19-33, 2011.

[17] Foong, A. P., Huff, T. R., Hum, H. H., Patwardhan, J. P., and Regnier, G. J.,

"TCP performance re-visited," In Performance Analysis of Systems and

Software, ISPASS. 2003 IEEE International Symposium on (pp. 70-79).

IEEE, 2003.

[18] Anonymous, “Using TCP/IP Offload Engine and Receive-Side Scaling to

Improve Performance and Efficiency on HP ProLiant Servers in Microsoft®

Windows® Environments”,

ftp://ftp.compaq.com/pub/products/servers/networking/techbrief-toe-rss.pdf

[19] Lofgren, A., Lodesten, L., Sjöholm, S., and Hansson, H., "An analysis of

FPGA-based UDP/IP stack parallelism for embedded Ethernet

connectivity," NORCHIP Conference, 23rd. IEEE, 94-97, 2005.

[20] Alachiotis, N., Berger, S., and Stamatakis, A., "Efficient pc-fpga

communication over gigabit Ethernet," Computer and Information

Technology (CIT), 2010 IEEE 10th International Conference on. IEEE,

1727-1734, 2010.

[21] Alachiotis, N., Berger, S. A., and Stamatakis, A., "A versatile UDP/IP based

PC↔ FPGA communication platform," Reconfigurable Computing and

FPGAs (ReConFig), 2012 International Conference on. IEEE, 1-6, 2012.

[22] Herrmann, F. L., Perin, G., de Freitas, J. P. J., Bertagnolli, R., and dos

Santos Martins, J. B., "A gigabit udp/ip network stack in fpga," Electronics,

Circuits, and Systems, ICECS, 16th IEEE International Conference on.

IEEE, 836-839, 2009.

[23] Dollas, A., Ermis, I., Koidis, I., Zisis, I., and Kachris, C., "An open tcp/ip

core for reconfigurable logic," null. IEEE, 297-298, 2005.

[24] Vishwanath, V., Balaji, P., Feng, W. C., Leigh, J., & Panda, D. K., "A case

for UDP offload engines in LambdaGrids," 4th international workshop on

protocols for fast long-distance networks, 5, 2006.

 64

[25] Feng, W. C., Balaji, P., Baron, C., Bhuyan, L. N., & Panda, D. K.,

"Performance characterization of a 10-Gigabit Ethernet TOE," High

Performance Interconnects, 2005. Proceedings. 13th Symposium on. IEEE,

58-63, 2005.

[26] Mahmoodi, M. R., Sayedi, S. M., and Mahmoodi, B., "Reconfigurable

hardware implementation of gigabit UDP/IP stack based on spartan-6

FPGA," Information Technology and Electrical Engineering, 2014 6th

International Conference on. IEEE, 1-6, 2014.

[27] Kim, S., Kim, S., Park, K., and Chung, Y. "Offloading Socket Processing

for Ubiquitous Services," J. Inf. Sci. Eng. 27.1, 19-33, 2011.

[28] Kim, Y., Kim, T., Park, E. K., and Tak, S., "A Novel Hardware-Software

Codesign of Network Protocol Stacks on a SoC Platform," Computer

Communications and Networks. ICCCN. Proceedings of 18th Internatonal

Conference on. IEEE, 1-6, 2009.

[29] Perrett, M. R. and Darwazeh, I., "A Simple Ethernet Stack Implementation

in VHDL to Enable FPGA Logic Reconfigurability," Reconfigurable

Computing and FPGAs, 2011 International Conference on. IEEE, 286-290,

2011.

[30] Sasi, A., Saravanan, S., Pandian, S. R., and Sundaram, R. S., "UDP/IP stack

in FPGA for hard real-time communication of Sonar sensor data," Ocean

Electronics (SYMPOL). IEEE, 1-6, 2013.

[31] Langenbach, U., Berthe, A., Traskov, B., Weide, S., Hofmann, K., and

Gregorius, P., "A 10 GbE TCP/IP hardware stack as part of a protocol

acceleration platform," Consumer Electronics?? Berlin (ICCE-Berlin),

ICCEBerlin. IEEE Third International Conference on. IEEE, 381-384,

2013.

[32] Shalev, L., Satran, J., Borovik, E., and Ben-Yehuda, M., "IsoStack-Highly

Efficient Network Processing on Dedicated Cores," USENIX Annual

Technical Conference, 5, 2010.

[33] Hsiao, Y. M., Chen, M. J., Huang, K. C., Chu, Y. S., and Yeh, C., "High

speed UDP/IP ASIC design," Intelligent Signal Processing and

 65

Communication Systems, 2009. ISPACS 2009. International Symposium on.

IEEE, 405-408, 2009.

[34] LogiCORE, I. P. "Endpoint Block Plus v1. 14 for PCI Express," 2011.

[35] Xilinx, "ML505/ML506 Evaluation Platform." UG347 (v2. 4) edn 176,

2007.

[36] Anonymous, "Xillybus Product Brief,"

http://xillybus.com/downloads/xillybus_product_brief.pdf, 2014.

[37] Xillybus, IP core factory, 2010. http://xillybus.com/ipfactory/

[38] Xilinx, "Virtex-5 FGPA Embedded Tri-Mode Ethernet MAC User Guide,"

2011, www.xilinx.com/support/documentation/user_guides/ug194.pdf

[39] Schaumont, P. A practical introduction to hardware/software codesign.

Springer Science & Business Media, 2012.

[40] Xilinx, I. S. E., "14.2 Software Manuals: Constraints Guide, and

Development System Reference Guide, Xilinx," 2012.

 66

	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABBREVIATIONS
	1. INTRODUCTION
	1.1. Motivation
	1.2. Thesis Goals and Contributions
	1.3. Thesis Organization

	2. BACKGROUND
	2.1. OSI Layers
	2.1.1. Physical layer
	2.1.2. Data link layer
	2.1.2.1. Media access control
	2.1.2.2. Logical link control
	2.1.3. Network layer
	2.1.4. Transport layer
	2.1.5. Session layer
	2.1.6. Presentation layer
	2.1.7. Application layer

	2.2. User Datagram Protocol
	2.3. Internet Protocol
	2.4. Dynamic Host Configuration Protocol
	2.5. Internet Control Message Protocol
	2.6. Address Resolution Protocol
	2.7. Ethernet
	2.8. PCI Express
	2.9. Network Packet Processing Overview
	2.10. Related Work

	3. SYSTEM DESIGN
	3.1. Overall System Architecture
	3.2. Xillybus
	3.2.1. PCIe Interface IP core
	3.2.2. Xillybus IP core
	3.2.3. Xilinx FIFOs

	3.3. MAC IP Core
	3.4. Custom FIFOs
	3.5. API for Offload Engine

	4. OFFLOAD ENGINE
	4.1. Channel Selector
	4.2. UDP Tx
	4.3. IP Tx
	4.4. Arbitrator
	4.5. IP Rx
	4.6. UDP Rx
	4.7. DHCP IP Core
	4.8. ICMP IP Core
	4.9. ARP IP Core
	4.10. Configuration Component

	5. IMPLEMENTATION AND EXPERIMENTAL RESULTS
	5.1. Implementation Results
	5.2. Experimental Results
	5.2.1. Throughput results
	5.2.2. ICMP verification
	5.2.3. DHCP verification
	5.2.1. ARP verification

	6. CONCLUSIONS
	REFERENCES

