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Network packet processing in high data rates has become a major problem 

especially for the processors. Fortunately, this thesis offers a solution to this 

problem by means of an IP core that provides the hardware acceleration of 

UDP/IP protocol stack together with few other network protocols. Furthermore, 

the IP core is equipped with PCI Express (PCIe) interface so as to communicate 

with applications running on PC. Consequently, a processor core deals with only 

the data processing, while the IP core takes care of the packet processing as per 

the protocol. The design and implementation of the IP core are verified and tested 

on a Xilinx XUVP5-LX110T board. Moreover, its area utilization and supported 

features are compared against several competitive designs from the literature. 

According to these results, the proposed IP core is proved to be a usefull one for 

those applications that require a hardware-accelerated network protocol stack for 

data communication. 
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UDP/IP OFFLOAD ENGINE TASARIMI VE GERÇEKLENMESİ 
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Fen Bilimleri Enstitüsü 

Elektrik-Elektronik Mühendisliği Anabilim Dalı 

Danışman: Doç. Dr. Atakan DOĞAN 

2015, 66 sayfa 

 
 

Yüksek hızlarda ağ paketlerinin işlenmesi özellikle işlemciler için bir 

problem haline gelmeye başlamıştır. Bu tez bu probleme UDP/IP protocol 

yığınıyla birlikte diğer birkaç ağ protokolünün donanım ile hızlandırılmasını 

sağlayan bir IP çekidek vasıtasıyla çözüm sunmaktadır. Ayrıca, IP çekidek 

bilgisayarda çalışan uygulamalarla haberleşebilmesi için PCI Express (PCIe) 

arayüzü ile donatılmıştır. Sonuç olarak, IP çekidek ilgili protokol gereğince paket 

işleme ile ilgilenirken, işlemci çekirdeği sadece veri işleme ile ilgilenir. IP 

çekirdeğin tasarımı ve gerçeklemesi Xilinx XUVP5-LX110T kartı üzerinde 

doğrulanmış ve test edilmiştir. Ayrıca, alan kullanımı ve desteklenen özellikleri, 

literatürde yer edinmiş benzer çalışmalarla karşılaştırılmıştır. Bu sonuçlara göre, 

sunulan IP çekirdeğin veri iletişimi için donanım ile hızlandırılmış ağ protokol 

yığını gerektiren uygulamalar için kullanışlı olduğu kanıtlanmıştır. 

 

Anahtar Kelimeler: FPGA, UDP/IP, PCIe, Ağ protokolleri, Sayısal Tasarım 
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1. INTRODUCTION 

 

 Motivation 

 

Nowadays many applications need high-speed data transfers which are 

enabled by a stack of network protocols. These protocols are traditionally 

implemented by means of a software running on the host central processing unit 

(CPU); and they may require encapsulation, decapsulation, checksum computing, 

memory copying, etc., all of which are briefly called as packet processing. In 

high-speed networks, on the other hand, the packet processing requires an 

extensive amount of CPU power, which results in less CPU cycles for 

applications running on the host. Fortunately, the computing power of CPU 

spared for the packet processing can be saved provided that the packet processing 

tasks are delagated to a so-called offload engine that can perform them on the 

network adapter. An offload engine can be implemented with a network processor 

and firmware, ASICs or FPGAs, or a mixture of these. Within the scope of thesis, 

a set of network protocols that are enough to provide data communication in 

Internet will be offloaded to hardware on a FPGA. 

An offload engine purely implemented in hardware is usefull for system-on-

chip (SoC) systems as well. A processor or an application logic in a SoC system 

can exploit a hardware-based offload engine for the data communication without 

the neeed for running the software-implemented network processes.  

 

 Thesis Goals and Contributions 

 

Motivated by aferomentined facts, the main goals of this thesis are 

designing a gigabit speed Offload Engine for the network protocol stack which 

includes User Datagram Protocol (UDP) [1], Internet Protocol (IPv4) [2], Internet 

Control Message Protocol (ICMP) [3], Dynamic Host Configuration Protocol 

(DHCP) [4] and Address Resolution Protocol (ARP) [5], equipping this Offload 

Engine with a PCIe [6] interface for those applications running on a PC and with 
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Ethernet [7] for the network connection and implementing and verifying it on 

Virtex 5 FPGA-based development board.  

Different from the previous studies, this thesis contributes to the literature in 

a few dimensions: 

• Offload Engine is the first to use a third party PCIe IP core to interface 

with user applications. 

• It is the first to implement DHCP protocol on hardware.  

• It can simultaneously support multiple data streams from different 

applications. 

• It has a pipelined design for achieving higher data througputs and clock 

rates. 

 

 Thesis Organization 

 

Organization of the thesis is as follows: Section 2 gives the background 

information about the implemented protocols in Offload Engine, Ethernet and 

PCIe interface. In Section 3, the overall system design is given, a few thirdy party 

IP cores used in the design are introduced and an application programming 

interface for the design is presented. In Section 4, Offload Engine is described in 

detail. Section 5 presents the synthesis results of Offload Engine, compares them 

with the previous designs from the literature. It further includes the functional 

verification of the implemented network protocols and the experimental results for 

the achieved data throughputs under different scenarios. In Section 6, conclusions 

and future avenues of research are given.  
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2. BACKGROUND 

 

 OSI Layers 

 

International Standards Organization published Open System 

Interconnection Reference Model in 1984. This model has introduced seven 

layers, each of which has different responsibilities and functionalities. These 

layers are further elaborated by Open System Interconnection (OSI) and TCP/IP 

reference models in [8]. Figure 2.1 shows the layered architecture of these 

reference models. The layers are briefly explained in the following sections. 

 

2.1.1. Physical layer  

 

Physical layer is the bottom layer of the OSI reference model and every 

network device has this layer. The layer is concerned with transmission and 

reception of electrical or optical signals over a physical medium. Messages reach 

this layer as electrical or optical signals, they are converted to data bits and finally 

delivered to upper layers, or vice versa. Furthermore, the specifications of 

connectors, physical medium, network topology, etc. are defined in this layer. 

 

 
 
Figure 2.1. OSI and TCP/IP reference models 
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2.1.2. Data link layer  

 

Data Link layer is the second layer of the OSI reference model, and it is 

composed of two sublayers, namely Media Access Control and Logical Link 

Control.  

 

2.1.2.1. Media access control  

 

Media Access Control (MAC) sublayer is placed between Physical layer 

and Logical Link Control sublayers. This layer is primarily responsible for 

providing a data communication channel among the network nodes that share a 

common medium. In order to avoid collisions in the shared medium, MAC 

sublayer runs a medium access control algorithm such as Carrier Sense Multiple 

Access with Collision Detection (CSMA/CD). In addition, MAC sublayer deals 

with framing as well. Before sending a packet, MAC layer appends a preamble, 

MAC source and destination addresses, etc. at the head of packet and a cyclic 

redundancy check (CRC) at the tail of packet. While receiving packets, their 

CRCs are calculated and checked for possible errors.   

 

2.1.2.2. Logical link control  

 

Logical Link Control (LLC) sublayer is a bridge between Network layer and 

Media Access Control sublayer. LLC adds two bytes to the head of any packet 

received from Network layer to specify the packet type (IP or ARP). These two 

bytes are known as LLC header. For the packets that are received from MAC 

sublayer, LLC header field is controlled and they are delivered to the appropriate 

protocol.  

 

2.1.3. Network layer  

 

Network layer is the third layer of the OSI reference model. The most 

commonly used network protocol is IPv4, and also preferred in this study. Its 
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main tasks include forwarding, routing, and logical addressing, fragmentation of 

those packets bigger than the maximum transmission unit (MTU) and 

defragmentation of the received fragmented packets.  

 

2.1.4. Transport layer 

 

Transport layer is the fourth layer of OSI reference model. Mostly used 

transport layer protocols are Transmission Control Protocol (TCP) and User 

Datagram Protocol (UDP). TCP [9] is a reliable and connection oriented protocol. 

It can provide end-to-end reliable packet transmission, end-to-end flow control 

and end-to-end congestion control. Unlike TCP, UDP [1] is an unreliable protocol 

and does not guarantee that packets will be delivered to their destination hosts. 

Applications that require low latency packet transmission such as Domain Name 

System (DNS), Voice over IP (VoIP) use UDP protocol. Both TCP and UDP need 

to deal with multiplexing/demultiplexing of packets as well. In this study, UDP is 

implemented as Transport layer protocol. 

 

2.1.5. Session layer 

 

Session layer is the fifth layer of the OSI reference model. As the name 

implies, this layer is responsible for establishing, managing and terminating 

sessions between application processes on the same or different machines. Sockets 

are placed in this layer. A network socket is an application programming interface 

(API) that helps network programmers to start sessions between applications and 

use the lower layer protocols without knowing their implementation details. 

 

2.1.6. Presentation layer 

 

Presentation layer is the sixth layer of the OSI reference model. 

Applications can use different syntaxes and this layer transforms them to a 

common format. When receiving data, it transforms the data back to the format 
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that application uses. Data compression and encryption are also handled by this 

layer. 

 

2.1.7. Application layer 

 

Application layer is the highest layer of the OSI reference model. This layer 

offers several protocols to applications to use the network. For example, web 

browser applications use Hyper-Text Transfer Protocol (HTTP) [10] and e-mail 

applications use Simple Mail Transfer Protocol (SMTP) [11] in this layer. 

 

 User Datagram Protocol 

 

User Datagram Protocol (UDP) is a connectionless, unreliable transport 

layer protocol [1]. UDP does not establish a connection between hosts, so there is 

no packets for setting up a connection or closing it. UDP is an unreliable protocol 

and it gives no guarantee for packet delivery. Thus, applications are responsible 

for detecting duplicate packets. UDP has no congestion control or flow control 

either. Therefore, applications need to keep their sending rate under control so that 

they will not congest the network or overwhelm the receiver side. Because of 

these inherent features, UDP is preferred by applications that are time critical and 

do not require reliability. 

Each protocol in the network stack encapsulates the data with a header. 

Similarly, UDP header structure is in Figure 2.2 [1]. 

According to Figure 2.2, UDP header consists of four fields, each of which 

is 16-bit long: 

 

 
 
Figure 2.2. UDP header structure [1] 
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• Source Port: Each application on a computer has a port number that is 

associated with it so that different applications can send and receive data 

at the same time. Transport layer protocols multiplex outgoing packets 

and demultiplex incoming packets according to these port numbers. So, 

this defines the port number of a sender application. 

• Destination Port: This defines the port number of a receiver application. 

If a client is sending UDP packets to a server, destination port numbers 

are usually well known.  

• Length: This field carries the length in bytes of UDP header (8 byte) and 

Application Data. 

• Checksum: Checksum is the 16-bit one's complement of the one's 

complement 16-bit sum of a pseudo-header of information from IP 

header, which is shown in Figure 2.3, UDP header, and Application Data. 

This field is used for error checking of the received packets by a 

receiving host. However, the checksum field does not have to be filled, 

and it can be filled all zeros. 

In this study, UDP will be implemented as an IP core in which UDP header 

is added to or removed from packets, and the checksum calculation during 

sending and the checksum verification during receiving are not supported. 

 

 Internet Protocol  

 

Internet Protocol (IP) is the network layer protocol of the network protocol 

stack. IP is a connectionless and unreliable protocol such as UDP, and upper layer 

protocols have to deal with reliability. IP is mainly responsible for addressing 

hosts using IP addresses and routing datagrams based on the host IP addresses.  

 

 
 
Figure 2.3. Pseudo-header for UDP checksum computing [1] 

 7   
 



Each device connected to a network has a unique IP address, which is 32-bit 

for IPv4 and 128-bit long for IPv6. Since IPv4 is the most commonly used 

Internet protocol in today’s network [2], it is chosen to be implemented on 

hardware by this thesis. Figure 2.5 shows the IPv4 header structure, and its fields 

are explained below: 

• Version: It is 4-bit field that specifies the version of IP protocol. For our 

design, this field is fixed to 4 since it supports only IPv4. 

• Internet Header Length (IHL): It is 4-bit field that indicates the total 

length of IP header. This number must be multiplied by four to find out 

the header byte count in bytes. If Options field is not used, this field is set 

to 5 since the standard IPv4 header is 20 bytes long, which is the case in 

our design. 

• Total Length: This 16-bit field represents the total number of data bytes 

in IP datagram, which results in the maximum data size of 64 Kbytes. 

However, if the maximum transfer unit (MTU) of network does not 

support such big datagrams, IP has to fragment them into smaller chunks. 

In our design, IP fragmentation is not supported, which requires that 

upper layer protocol need to send smaller packets than the MTU of 

network. Furthermore, if a fragmented packet is received by our receiver, 

it will be dropped. 

 

 

 
Figure 2.4. IPv4 header structure [2] 
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• Type of Service (TOS): This 8-bit field is used to specify the quality of 

service desired, such as low latency, high throughput or high reliability 

for IP datagrams. In our design, TOS field is not used and set to zero. 

• Identification: This 16-bit field is used for identifying the fragmented IP 

datagrams. In our study, this field is also set to 0 when sending and 

ignored when receiving a datagram because of the lack of the 

fragmentation support. 

• Flags: It is a 3-bit field related to the datagram fragmentation. Thus, 

Flags field is set to 0 in our design. 

• Fragment Offset: It is 13 bits long field and carries an offset value if 

datagram is fragmented. This field is set to 0 as well. 

• Time to Live (TTL): This 8-bit field determines the lifetime of a 

datagram. It is set by the sender and is decremented by one every time it 

traverses a hop. When TTL value becomes zero, datagram is discarded 

and an ICMP massage is sent back to the sender of this datagram, which 

prevents them to get stuck in the network indefinitely. TTL is set to 128 

by default in our design. 

• Protocol: IP provides IP level demultiplexing through this 8-bit field that 

indicates which protocol is used in the upper layer. In our design, only 

two upper layer protocols exist: Code 1 tells IP to deliver this message to 

ICMP and code 17 to UDP. 

• Header Checksum: This field is 16 bits long and used for error checking. 

In our design, it is calculated and placed in IP header when sending 

datagrams; but, Header Checksum is not checked by our receiver, since 

MAC Layer checks the CRC of all received frames. 

• Source Address: This 32-bit field represents the IP address of the sender. 

• Destination Address: This 32-bit field represents the IP address of the 

receiver. In our design, IP receiver checks this field of any datagram, and 

if it is not equal to the IP address of receiver, incoming datagrams are 

simply discarded. However, the broadcast packets will not be dropped. 

 9   
 



• Options: This field is variable length and not present in every datagram, 

since it is optional. It represents a list of options such as security or 

record route. It is not used in our design. 

In this study, IPv4 will be implemented as an IP core in which IP header is 

added to or removed from UDP and ICMP packets. 

 

 Dynamic Host Configuration Protocol  

 

Dynamic Host Configuration Protocol (DHCP) [4] which runs over UDP is 

a network protocol that provides static or dynamic IP addresses from a DHCP 

server to DHCP clients on the network. A DHCP client is a user that requests an 

IP address from a DHCP server when it connects to the network or boots its 

computer. This protocol was first released in 1993, and then, the current DHCP 

definition for IPv4 was released in 1997. DHCP is built on Bootstrap Protocol 

(BOOTP) [12] which was the protocol that had taken the place of Reverse 

Address Resolution Protocol (RARP).  

DHCP packet format is shown in Figure 2.5. DHCP has a standard format 

except for Options field. The fields of DHCP packet are explained below. 

• Operation Code: This is an 8-bit field to indicate the type of packets. 

Clients send request packets with code 1 and server sends reply packets 

with code 2. Since our design implements a DHCP client, it is code 1. 

• Hardware Type: This 8-bit field is set to 1 for Ethernet. 

• Hardware Address Length: It specifies the length of MAC address in 8-

bit field and is fixed at 6 by default. 

• Hop Count: This field is set to 0 by client. 

• Transaction Identifier: This field holds a 32-bit number defined by client 

to identify the packets that belong to different DHCP transactions. This 

field is set to Hexadecimal 000000BB in our design. 

• Number of Seconds: It is filled by clients and represents the seconds 

passed from the beginning of the request process. This field is set to zero 

in our design. 
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Figure 2.5. DHCP packet format [4] 

 

• Flags: This 16-bit field is set 0 or 1 by a client while sending a request if 

it expects a broadcast reply or unicast reply from the server, respectively. 

In our design, it is fixed at 0 for the unicast reply. 

• Client IP Address: If client has already taken an IP address and now 

renewing or rebinding it, it fills this 32-bit field with its own IP address. 

Otherwise, it fills with zeros even if it is requesting a specific IP address.  

• Your IP Address: Server fills this 32-bit field with the IP address that has 

been assigned to a client. 

• Server IP Address: This 32-bit field holds the IP address of the server 

that client will use for the renewing and rebinding processes. This field is 

not used and set to zero in our design. 

• Gateway IP Address: This 32-bit field holds the IP address of a relay 

agent. A relay agent is required if a client and server are placed on 

different networks. It is not used and fixed at zero in our design. 

• Client Hardware Address: It represents the MAC address of a client. 

Since this field is 16 bytes long and MAC address is 6 bytes long, it is 

padded with zeroes. 

 11   
 



• Server Name: This 64-byte field is usually not used, but server can put its 

name here. It is not used and set to zero in our design. 

• Boot File Name: This 128-byte field is usually not used. It is filled with 

zeros in our design. 

• Options: This variable length field is used for basic DHCP operations. 

There are over 100 different DHCP options, and some of them are 

included in most of DHCP messages. For example, Option 53 is included 

in every DHCP message since it represents the message type. In our 

design, DHCP Message Type, Client Identifier and Requested IP Address 

options are used.  

There are 8 different DHCP message types as shown in Figure 2.6. These 

messages are used in the DHCP state diagram [4] in Figure 2.7 in order to show 

how a client obtains an IP address, and renews or releases an already-taken IP 

address. According to this state diagram, for example, the initial IP assignment to 

a client is achieved by means of traversing the states from INITILAZE, SELECT, 

REQUEST to BOUND and using messages DHCPDISCOVER, DHCPOFFER, 

DHCPREQUEST and DHCPACK. 

 

 
 

Figure 2.6. DHCP message types 
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Figure 2.7. DHCP state diagram [13]   

 

In this study, DHCP will be implemented as an IP core that handles only the 

IP address leasing process by sending and receiving the aferomentioned DHCP 

packets. 

 

 Internet Control Message Protocol  

 

Internet Control Message Protocol (ICMP) [3] is a protocol used for 

checking the condition of a host or reporting errors in datagram transfers so as to 

provide feedback about communication problems. ICMP messages are sent over 

IP protocol. ICMP message consists of header and data fields where ICMP header 

structure is given in Figure 2.9. 

 

 
 

Figure 2.8. ICMP header structure for the ping messages [3] 
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• Type: This field is 8 bits long and specifies the type of ICMP message. 

Our design supports two types of ICMP messages, namely Echo (Ping) 

Request and Reply. That is, it can receive ping requests and generate a 

ping reply, but cannot generate a ping request. 

• Code: This 8-bit field is an extension of Type field. For Echo Request 

and Reply messages, it is set to 0. On the other hand, if a datagram 

cannot be delivered to its destination for some reason, Type field is set to 

3 and Code field takes a value from 0 to 15 depending on the reason, 

such as destination network unreachable, destination node unreachable, 

etc.  

• Checksum: This 16-bit field is defined in RFC792 [3] as the 16-bit one’s 

complement of the one’s complement sum of the ICMP message starting 

with the ICMP type. Only one field is different in the ping reply packet 

and the ping request packet. In our design, checksum in the ping reply is 

caculated by a simple substraction from checksum value in the received 

ping request packet. 

• Identifier: This field is 16 bits long and present only in echo request/reply 

messages. It is used for matching the request and reply packets. 

• Sequence Number: This 16-bit field is also present only in echo 

request/reply messages, and is used for keeping the count of the echo 

request messages. 

• Data: It may be present in an ICMP message. In our design, the data in 

this field of the received ping request is saved into a FIFO and placed in 

the ping reply message. This field is used for validating the ICMP packet 

on the receiver side. 

In this study, ICMP will be implemented as an IP core that can receive ping 

request packets and generates ping reply packets in return. 

 

  Address Resolution Protocol  

 

Address Resolution Protocol (ARP) [5] is a bridge between the network and 

the data link layers of the OSI reference model, and runs on top of MAC layer in 
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order to map IP addresses to physical hardware addresses. According to ARP, a 

host broadcasts a message that asks for the MAC address for an IP address to all 

computers on the network; the host which uses that IP address sends its MAC 

address in another message to the requester host. ARP packet structure is given in 

Figure 2.9. 

• Hardware Type: This field is 16-bit for specifying the network protocol 

type and it is set to 1 for Ethernet. 

• Protocol Type: This 16-bit field is set to 2048 for IPv4. 

• Hardware Length: It is 8-bit field and fixed at 6 to represent the length of 

MAC address. 

• Address Length: This field is 8-bit and set to 4 to indicate the leght of IP 

address. 

• ARP Operation: This 16-bit field specifies the message type, where ARP 

Request and ARP Reply are represented by 1 and 2, respectively. 

• Sender MAC Address: In ARP Request, this field is used to indicate the 

address of the host sending the request. In ARP Reply, it represents the 

address of the host that the request was looking for.  

• Source IP Address: This is 32-bit IP address of the sender. 

• Destination MAC Address: It is set to the MAC address who made the 

request in ARP Reply and it is ignored in ARP Request messages. 

• Destination IP Address: This is 32-bit IP address of the intended receiver. 

 

 
 
Figure 2.9. ARP packet structure [5] 
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ARP keeps a table which saves the IP addresses and their corresponding 

MAC addresses. By this way, host does not send an ARP request for every packet, 

which reduces the network traffic and speeds up the data transfers. If ARP cache 

becomes full and a new ARP Reply is received, then the least recently used IP and 

MAC address couple is replaced with the new one. 

In this study, ARP will be implemented as an IP core in which ARP Request 

and ARP Reply packets are both received and sent, ARP cache is saved for the 

MAC addresses. ARP Request and ARP Reply packets are received, processed 

and delivered to the related component by ARP receive sub component. ARP 

requests are created in ARP sender by an order from the IP Tx component and 

ARP replies are created for received ARP requests. The received MAC addresses 

are kept in a cache in the ARP control&cache sub component to prevent sending 

ARP request for each IP packet. 

 

  Ethernet  

 

Ethernet is the most widely used Local Area Network (LAN) protocol [7]. It 

was originally developed in 1980 and standardized by IEEE as IEEE 802.3 in 

1983. A standard Ethernet packet structure is given in Figure 2.10.  

• Preamble: It is 7 bytes of bit sequence of “10101010” for the 

synchronization on the receiver side. 

• Start of Frame Delimiter (SFD): This is 1 byte bit sequence of 

“10101011”. It tells the receiver that the part coming after this byte is the 

actual frame. 

• Destination/Source MAC Address: It represents the hardware address of 

the receiver and sender, respectively.   

 

 
 
Figure 2.10. Ethernet packet structure [7]  
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• Ether Type: This field represents the protocol that is included in the 

Ethernet frame. Hexadecimal 0800 specifies an IP datagram and 0806 

specifies an ARP packet. 

• Data: This field carries a packet of upper layer protocol. This field needs 

to be minimum 46 bytes. As a result, if data is smaller than 46 bytes, 

Data field is padded with zeros. 

• Cyclic Redundancy Check (CRC): This 32-bit checksum is calculated by 

means of the 32-bit cyclic redundancy check algorithm, and it is used for 

error detection on the receiver side. The CRC computation includes the 

destination and source MAC addresses, ether type and data fields. 

It is required that idle time called as Inter-frame Gap (IFG) between two 

successive frames must be present. The standard minimum IFG is 96 “bit times”. 

This time gap naturally changes with the Ethernet line speed, e.g., 9.6 µs for 10 

Mbit/s, 0.96 µs for 100 Mbit/s and 96 ns for the Gigabit Ethernet. 

Ethernet uses Carrier Sense Multiple Access/Collision Detection 

(CSMA/CD) protocol to physically monitor the traffic on the channel and prevent 

any possible collision.  CSMA/CD is placed on the Media Access Control (MAC) 

sub-layer of the Ethernet. This protocol allows multiple computers to share a 

channel. If two computer try to send packets at the same time, this causes a 

collision. If a collision occurs, computers try to send again after a randomly 

selected time, which is known as the exponential back-off. 

In this study, Ethernet will be implemented by a third party IP core in which 

preamble, SFD and CRC are added to the packets to be sent and received packets 

are checked for error and delivered to upper layers. 

 

  PCI Express  

 

PCI Express (PCIe) is the third generation I/O bus used to interconnect 

peripheral devices in computing or communication systems [6]. PCIe has replaced 

the second generation buses PCI, AGP and PCI-X, and it is backward compatible 

with PCI and PCI-X. In PCIe jargon, a connection between two devices over PCIe 

is called a link, and a pair of signals in both directions is called a lane. A link can 
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consist of either x1, x2, x4, x8, x16 or x32 lanes. The transmission rate of a lane is 

5 Gbits/s (2.5 Gbits/s in each direction). PCIe uses the 8B/10B encoding, which 

results in the fact that 250 Mbytes/s (2 Gbits/s) per lane is the highest achievable 

throughput in a direction. 

PCIe uses Transaction Layer Packets (TLPs) to accomplish data transfers, 

and has a layered architecture. Figure 2.11 shows the layers of PCIe [6]. 

• Transaction Layer: The top layer of PCIe is responsible for creating 

TLPs and resolving them. This layer adds a header and end-to-end CRC 

(ECRC) to the data. 

• Data Link Layer: Placed between Transaction and Physical layers, it is 

mainly responsible for the link management and error handling. The 

packets generated for the link management by this layer are called Data 

Link Layer Packets (DLLPs). Data Link Layer appends a sequence 

number to the head of TLP and Link CRC (LCRC) to the tail of TLP. 

• Physical Layer: This layer takes care of serializing the information that 

is received from Data Link layer and sending over a link at a width and 

frequency compatible with the receiver, or vice versa. 

 

 
 

Figure 2.11. PCIe layers [6] 

 

 Network Packet Processing Overview 

 

There are many layers involved in the network packet processing and most 

of them are currenntly handled by CPU. Figure 2.12 shows a simplified structure  

 18   
 



 
 
Figure 2.12. Operational structure of the network stack [14] 

 

of the packet processing [14], where it is run in three different system mode of 

operation, namely user, kernel and device. User and kernel modes together are 

called host and device is a Network Interface Card (NIC). 

Applications use sockets that are placed in the kernel space to send data. A 

socket is equipped with sending and receiving buffers. When an application wants 

to send data, it calls a system call which results in a change in the system mode 

from user to kernel, and then, data in the user space is copied to the sending buffer 

of the related socket in the kernel space. When data is copied to the socket buffer, 

a transport layer protocol is called to encapsulate it by the related protocol header. 

The same procedure is applied by the network and data link layer protocols as 

well. After an Ethernet frame is partially formed, NIC driver is called upon in 

order to copy frames from the main memory to the NIC memory. Finally, NIC 

adds preamble, CRC and Interframe Gap to every frame and sends them to the 

network. 

The data receiving process is similar to the data transmitting one. When an 

Ethernet frame is received, NIC writes it into its memory. It checks its CRC, and 

if it is valid, NIC copies it to the main memory. After copying, NIC sends an 

interrupt request to the host operating system (OS). It should be noted here that 

nearly 60 packets are processed per interrupt for 10 GbE and 7 packets for 1 GbE 

[15]. A driver changes these frames to a form that OS can understand. Ethernet, 

network and transport layers process the related header field, respectively, and 
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then, each layer removes it. Finally, the received data is written to the receive 

buffer of the socket. When application calls the read system call, data is copied 

from the kermel to to user space and removed from the socket buffer. 

This network stack processing puts a large amount of load on CPU. In [15], 

the core utilization related to the network packet processing for 10 Gbps was 

studied. The experiments in [15] showed that two cores of Quad-Core Intel Xeon 

5355 processor which are running at 2.66 GHz are saturated in order to reach the 

line rate throughput. The amount of core utilization was about 225%.  

In addition to [15], the core utilization of network packet processing for 1 

Gbps is presented in several studies [16,17,18] as well. The core utilization values 

measured by these works are given below in Figure 2.13, 2.14 and 2.15. 

 

 
 
Figure 2.13. CPU load and throughput comparison between Latona and GNIC [16] 

 

 
 

Figure 2.14. CPU Utilization of Tx and Rx sides at 2.4 GHz system [17] 
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Figure 2.15. CPU Utilization of network stack processing at 1 Gbps [18] 

 

It can be seen in these figures that the average CPU utilization for 1 Gbps is 

about 35%. There are different studies to reduce the load on CPU caused by 

network packet processing. Motivated by these studies, we present an Offload 

Engine that takes the most of the packet processing tasks from CPU to hardware. 

Figure 2.16 shows the overall structure of our system: (i) The tasks related to 

UDP and IP are moved to the hardware. (ii) The socket buffers are implemented 

on the hardware. The driver in the kernel space returns a file descriptor to 

applications to read or write. This file descriptor, on the other hand, is a device 

file that is connected to the socket buffers on the hardware. In this way, data is 

copied only once from the user space to the socket buffers on the hardware. This 

design reduces the system load and relieves the CPU to spend more clock cycles 

on application processes. 

 

 
 

Figure 2.16. Operational structure of our design 

 21   
 



 Related Work 

 

In the literature, there are several examples of design and implementation of 

UDP/IP and TCP/IP protocol stacks on hardware. Löfgren et al. [19] presented 

three cores as minimum, medium, and advanced for different network system 

requirements. All of these three cores are based on the same architecture. The 

minimum core is designed mostly for one way network traffic, either send or 

receive. Since it is designed for minimal systems, it is very area effective but not 

flexible. Medium core is based on the Minimum core implementation. ARP and 

ICMP functionalities are included in this design, and it offers higher flexibility 

than Minimum. This is a mediocre core between Minimum and Advanced cores. 

Advanced core can operate at gigabit speed and can handle packets with the 

length of 1518 bytes (1472 bytes of application data). Minimum and Medium 

designs can handle packet sizes up to 256 bytes. Additionally, Reverse Address 

Resolution Protocol (RARP) is implemented by Advanced core. 

In [20], an efficient communication between PC and FPGA is aimed. In 

order to minimize the I/O operation for the data transmission between PC-FPGA, 

they present a core design. PC and FPGA are connected with an Ethernet cable. 

This design contains an Ethernet MAC (EMAC) core for Ethernet connection. 

Their design has components that handles transport layer and internet layer 

level packets encapsulation and decapsulation processes. UDP and IPv4 protocols 

are used for the transport and internet layers. A look up table (LUT) is used for the 

static fields of the UDP and IPv4 protocols. 

Alachiotis et al. [21] proposed an extended version of their previous work 

which takes more area in exchange for a better performance and flexibility. The 

main difference is that the static header field is controlled by an initialization 

packet from PC. The extended version also offers a communication protocol and 

provides a sortware/hardware interface and communication library 

implementation for the use of design. 

Herrmann et al. [22] present a UDP/IP stack on FPGA. Transport, network 

and link layers are implemented on hardware, and UDP, IPv4 and Ethernet 

protocols are used for these layers respectively. Different from our work, this 
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study does not use a provided IP core for the ethernet connectivity, and it is based 

on its IP component that is designed to handle the MAC layer processes. This 

design offers a theoretical 1960 Mbps of full duplex throughput. 

Dollas et al. [23] present a TCP/IP stack on FPGA. This is one of the most 

comprehensive works in the literature and it implements TCP, UDP, IP, ARP 

ICMP protocols. Virtex 2 FPGA is used for the implementation of the system. 

Overall design has a 37.5 MHz maximum working frequency and an 8-bit 

datapath, so the system can achieve 350 Mbps throughput. TCP is the slowest 

component in this design. If TCP is removed and UDP is kept as the only protocol 

in the transport layer, the system frequency would go higher and a better 

throughput would be achieved.  

Vishwanath et al. [24] combine the better sides of TCP and UDP protocols 

and offer an emulated UDP Offload Engine (UOE). This design is based on the 

Chelsio T110 TCP Offload Engine (TOE) [25], and it implements high 

performance UDP/IP sockets for applications to use the design. 

In [26], two different versions of a UDP/IP core are presented. The only 

difference between two versions is UDP checksum calculation. This core can 

operate at gigabit speed and implements UDP, IP and ARP protocols. The core 

implementation is realized on Spartan 6 FPGA. 

In [27], the socket processing in addition to the TCP/IP processing is 

offloaded to the hardware to reduce the system overhead. A software-hardware 

codesign on system-on-chip is presented in [28] to improve the performance of 

the network protocol processing and provide quality of service functionality for 

the real-time applications. This core can operate at 100 Mbps. In [29], ARP 

protocol is implemented on Virtex 5 FPGA. In [30], a minimal UDP/IP stack on 

FPGA is presented so that it can be used for the real-time transmission of sensor 

data in sonar systems. In [31], a 10 G TOE with low latency is proposed, and it is 

implemented on several FPGAs such as Virtex 5, Virtex 6, Spartan 6 and Zynq 

platforms. In [32], the network stack processing is offloaded to a dedicated 

processor core. Only one core deals with the protocol stack tasks and other cores 

deal with other system tasks. In [33], a UDP/IP ASIC is used to accelerate 
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multimedia transmission. The design uses jumbo frames to reduce the packet 

number and interrupt durations. 
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3. SYSTEM DESIGN 

 

In this chapter, we present the system architecture of the IP core proposed, 

introduce a few third party IP components and an API in order for the network 

applications to use Offload Engine. 

 

 Overall System Architecture 

 

The system architecture of the IP core proposed consists of three main 

components, namely Xillybus, Offload Engine and EMAC Core, as shown in 

Figure 3.1. Each of these components is responsible for different tasks. For 

example, Xillybus provides PC-FPGA communication over PCIe interface; 

Offload Engine handles full-duplex UDP/IP packet processing; EMAC Core is 

responsible for MAC layer packet processing, sending and receiving packets from 

and to the network.  

It should be emphasized here that Xillybus and EMAC Core are the third 

party components from different IP core companies, while the design and 

implementation of Offload Engine and its interfaces to Xillybus and EMAC Core 

are the subject of this thesis. In the following, Xillybus and EMAC Core are 

described in some detail, while Section 4 is devoted to Offload Engine. 

 

 
 

Figure 3.1. System architecture of the IP core proposed 
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 Xillybus 

 

This third-party component deals with PC-FPGA data communication. It is 

composed of three components, namely PCIe Interface, Xillybus IP and Tx/Rx 

FIFO, as shown in Figure 3.2. Each of these components is described in detail 

below. 
 

3.2.1. PCIe Interface IP core 

 

Xilinx Endpoint Block Plus 1.14 [34] is a hard IP by Xilinx and it is used 

for PCIe Interface IP core in our design. The latest version of this core is 1.15. 

However, since Xillybus IP core is working only with version 1.14, our design is 

based on version 1.14. Xilinx Endpoint Block Plus is for use with the family of 

Virtex-5 FPGAs. Note that our design is implemented on Virtex5-LX110T [35]. 

This core compliant with the PCIe Base 1.1 Specification [6] provides the 

full functionality of the all three layers of PCIe as follows: Its implementation of 

Transaction layer, which is the highest layer, takes TLPs from user logic and 

sends them to Data Link layer. Furthermore, it implements a flow control 

mechanism which ensures not to overwhelm the receiver side. However, it does 

not support ECRC. Its Data Link layer implementation sends TLPs with sequence 

number and LCRC; receives TLPs, checks their integrity, and then deliver them to  

 

 
 
Figure 3.2. Overview of Xillybus architecture 
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Transaction layer. It can also handle error detection and correction, and request 

retransmissions for the corrupted packets. Its Physical layer implementation is 

responsible for transmitting, receiving the packets to and from the link. 

There are seven signals for PCIe Interface core in Figure 3.2: PCIe_B_LS is 

a reset signal, PCIE_REFCLK_N and PCIE_REFCLK_P are 100 MHz 

differential clock signals. Other four differential signals are used for the data 

communication, where TX and RX are for transmitting and receiving, respectively. 

 

3.2.2. Xillybus IP core 

 

Xilinx Endpoint Block Plus alone is too primitve in nature to harness the 

power of PCIe interface immediately. Consequently, a user must still encode or 

decode data to form packets while obeying the many rules of the PCIe 

specification for addressing, packet size, etc. [6]. Once packets have been created, 

there are still several design hurdles and a great deal of effort that must be spent in 

order to turn these primitive interfaces into a useful one. Fortunetely, Xillybus 

[36] provides a soft IP core that offers an immediate solution to the adoption of 

PCIe interface in custom designs.  

Xillybus provides host-FPGA data communication over PCIe interface, 

where it uses simple FIFO interfaces for the communication with user logic on 

FPGA and basic file descriptors for the interaction with user applications running 

on host. Furthermore, this IP core can be built with the selected features such as 

channel count, channel width and maximum throughput through Xillybus IP 

factory from Xillybus web page [37]. 

Xillybus works with a 100 MHz clock and the rest of the system must be 

designed according to this. Xillybus has three different data widths as 8 bits, 16 

bits and 32 bits. Higher data widths allow higher performance. However, Xillybus 

does not guarantee a continuous data flow, and there may be gaps between data 

blocks in any time during the data transmission. In our design, a Xillybus IP core 

with 32-bit send and receive interfaces is used for achieving 1 Gbit/s data 

throughput. Furthermore, as shown in Figure 3.2, Xillybus has two read (Rx 

FIFO) and two write (Tx FIFO) interfaces. Beside these interfaces, it has also a 
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memory interface for the configuration of Offload Engine, which is not shown in 

Figure 3.2.  

 

3.2.3. Xilinx FIFOs 

 

Offload Engine provides two independent transmission channels in each 

direction. As a result, two different applications running on a host can send and 

receive data at the same time. Since there are two channels, Xillybus must be 

interfaced with two Tx FIFOs and two Rx FIFOs as shown in Figure 3.2.  

Tx and Rx FIFOs in Figure 3.2 are 2 Kbyte buffers generated using Xilinx 

FIFO generator IP core, where Tx FIFOs are wrapped with a First Word Fall 

Through (FWFT) wrapper and Rx FIFOs, on the other hand, are standard ones. 

Since Xillybus works with 100 MHz and the rest of the system is designed to use 

a 125 MHz clock signal, these FIFOs are chosen to have independent read and 

write clock signals so as to alleviate clock domain crossing problems. 

Furthermore, FIFOs provide data width conversion as well, where Xillybus-FIFO 

data bus interface is 32-bit, while Offload Engine-FIFO one is 8-bit.  

With respect to Figure 3.2, a standard or FWFT FIFO has three signals in 

each side: Write Enable, Data Input and Full signals are available for the write 

interface, while Read Enable (Read_En), Data Output (Dout) and Empty signals 

are present for the read interface. It should be noted here that the difference 

between a standard FIFO and FWFT FIFO is only about reading data from FIFO. 

Standard FIFOs have a read latency of one clock cycle, whereas FWFT FIFOs can 

provide data in the same clock cycle in which Read_En is asserted. 

 

 MAC IP Core 

 

MAC IP core [38] is from Xilinx and it is responsible for MAC layer 

encapsulation, sending and receiving packets to and from the network over the 

PHY chip on the board. MAC IP core has three components: Tx/Rx FIFOs, 

EMAC core and GMII physical interface. Figure 3.3 shows the architecture of 

MAC IP core. 
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EMAC Core has two FIFOs connected to it. These FIFOs work with active 

low signals. As far as Tx FIFO is concerned, the first byte of data should be sent 

while src_rdy (write enable) and i_sof signals are both set to zero. If dst_rdy 

(FIFO is not full) signal is zero, then data is accepted by FIFO and the next byte 

of data can be sent in the next clock cycle. Note that the last byte of data should be 

sent while src_rdy and i_eof signals are both set to zero. In a similar manner to Tx 

FIFO, Rx FIFO provides o_sof signal for the first byte of a received packet and 

o_eof signal for the last one.  

EMAC core is the main part of MAC IP core. This core handles the 

encapsulation and decapsulation of packets. For the encapsulation, for example, it 

takes a data fragment, which is marked with start of frame (i_sof) and end of 

frame (i_eof) signals, and encapsulates it with preamble and start of frame 

delimiter. Furthermore, it computes the 32-bit CRC and adds it to end of the 

fragment. Finally, it leaves a 12-cycle Inter Frame Gap between successive 

Ethernet frames. 

GMII is the interface component between EMAC core and the PHY chip on 

the board. This component provides physical data transactions over an Ethernet 

socket. There are four signals for both transmitting and receiving packets:  

 

 
 

Figure 3.3. MAC IP core architecture 
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GMII_TXD is 8-bit data out bus. When the data on GMII_TXD is valid, 

GMII_TX_EN is set to 1. GMII_TX_ER is used for error cases. GMII_TX_CLK 

is used for the synchronization of data on the receiver. The receiver signals are 

basically the counterparts of these transmit signals. 

It should be emphasized that the sender and receiver functionalities of MAC 

IP core are mostly independent and the IP can work in full-duplex mode. Since the 

IP is designed for gigabit speed communication, 2 Gbit/s is the theoretically 

achievable throughput in full-duplex mode. 

 

3.4. Custom FIFOs 

 

In addition to Xilinx FIFOs used by Xillybus, the design of Offload Engine 

relies on custom FWFT FIFO buffers as well. These FWFT FIFOs in Offload 

Engine are generated by means of a generic FWFT FIFO design, which is 

configurable according to its width and depth parameters, developed within the 

scope of the thesis. Furthermore, their write and read interfaces are similar to 

Xilinx FIFOs.   

In Offload Engine, all components except for the ICMP use two-entry, 

custom design FWFT FIFOs. ICMP has an extra 128-entry FWFT FIFO for 

saving the data in a ping request. 

 

3.5. API for Offload Engine 

 

An application programming interface (API) is designed for applications 

running on a host to exploit Offload Engine. This API has 4 different functions: 

udp_offload_send, udp_offload_receive, udp_offload_config and 

udp_offload_socket. Each of these functions have a udp_offload prefix to prevent 

mixing these functions with  sendto and recvfrom functions that are normally used 

for sending and receiving data using network protocols available in the operating 

system. Applications can send data to FPGA and receive data from it using these 

API functions. These functions are explained in detail below. 
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• udp_offload_socket (int pnum): This function returns an integer that 

represents the socket number to application. Application then can send 

and receive data using this socket number. Application can select the 

source port number by specifying pnum parameter. If the parameter is not 

used, then API assigns a random source port number for the socket. 

• udp_offload_send (int snum, int dip, int port, int len, const char *buf): 

This is used for sending data to FPGA and takes five parameters: socket 

number (snum), destination IP address (dip), destination port number 

(port), data length in bytes (len) and character pointer to data (*buf) 

respectively. Note that API zero-extends 16-bit destination port number 

to 32-bit so that 32-bit Xillybus driver can be used by default. 

• udp_offload_receive (int snum, int len, char *buf): This function takes 

three parameters and is used for receiving data from FPGA. When 

application calls this function and if there is received data in FPGA, API 

writes the data to the given buffer parameter and returns the amount of 

the written data. 

 
 

Figure 3.4. API implementation architecture 
 

• udp_offload_config (int mip, int dhcpon): This function is used for 

controlling the IP address assignment. Mip parameter represents a 
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manual IP address that is given by a user. Dhcpon parameter activates or 

deactivates the DHCP component in Offload Engine.  

Figure 3.4 shows how this API helps applications to use Offload Engine. 

Applications send and receive data using the aferomentioned API functions. Once 

an application calls udp_offload_send API function to send data, API writes the 

data to the device file created by the Xillybus driver. Then, the driver copies the 

device file to FPGA over PCIe channel. When FPGA sends data to host, it is 

taken by the Xillybus device file and the API reads the data from this device file, 

then delivers it to the appropriate application. 
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4. OFFLOAD ENGINE 

 

Offload Engine is the IP core that has been fully designed and implemented 

in this thesis. The architecture of Offload Engine is given in Figure 4.1, where it 

comprises ten different components. All of these components except for 

Configuration have a similar architecture and they consist of a Finite State 

Machine with Datapath (FSMD) [39] and a FWFT FIFO. Furthermore, these they 

all have sender side (Tx) and receiver side (Rx).  

Channel Selector, Configuration and UDP Rx components are connected to 

Xillybus, whereas Arbitrator, ARP and IP Rx components are interfaced with 

MAC IP core. As far as the connection between two Offload Engine components 

is concerned, they all expect FWFT FIFO behavior for a seamless integration. 

Implemented protocols can be different depending on the purpose of the 

design. Our design includes UDP, IP, ARP, ICMP and DHCP protocols. 

Compared to the similar works in the literature, DHCP protocol has not been 

implemented in any of the previous designs. The implemented protocols in our 

design and related works are given in Table 4.1. 

 

 
 
Figure 4.1. Offload Engine architecture 
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Table 4.1. Implemented protocols in our design and related works 
 

Minimum Medium Advanced
UDP       

IP       
ARP x   x   
ICMP x   x x  
DHCP x x x(RARP) x x x 

Löfgren Alachiotis Herrmann Dollas Our IP core

 

Overall design architectures of different offload engines can be very 

different. However, they are usually connected to the application logic on one side 

and an EMAC core or PHY chip on the other side. The design architectures of 

some of the similar works are given below.   

Alachiotis et al. design [20] is given in Figure 4.2. It is similar to our design 

in terms of using a provided EMAC core for the link layer. A single component is 

designed for UDP and IP encapsulation and decapsulation. Since a minimal 

design is aimed for PC-FPGA communication, ARP, ICMP and DHCP protocols 

are not included in the design. 

 

 
 

Figure 4.2. Alachiotis et al. IP core architecture [20] 
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Figure 4.3. Löfgren et al. IP core architecture [19] 

 

 
 

Figure 4.4. Herrmann et al. IP core architecture [22] 
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Löfgren et al. design [19] is given in Figure 4.3. They used the same 

architecture for all of the three cores in [9]. This design, different from ours, does 

not include a provided EMAC core, instead four components as Transmitter, 

Receiver, CRC Generator and CRC Checker does the link layer processes. The 

Advanced core includes UDP, IP, ARP, ICMP and RARP protocols. 

Herrmann et al. design [22] is given in Figure 4.4. This design is very 

similar to [9] in terms of its overall design. This one neither includes a provided 

EMAC core nor ICMP and DHCP protocols. The design, however, implements 

ARP protocol. 

 

 Channel Selector 

 

Channel Selector is the first component in the Tx path of Offload Engine, 

and it is employed to select one of the two channels connected to it. The 

architecture of Channel Selector is given in Figure 4.5, in which the main 

components are 8-bit two entry FIFO buffer and a finite state machine (FSM). The 

FSM whose state diagram is given in Figure 4.6 controls the operation of Channel 

Selector as follows: 

 

 
 

Figure 4.5. Channel Selector architecture 
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Figure 4.6. FSM state diagram of Channel Select 

 

• IDLE: After reset, FSM goes into this state and stays here as long as both 

channels are empty (both w_empty signals are set to 1). If only one of the 

channels makes a request to send data, the selector picks that channel and 

goes to Header Send state. If both channels have data to send, there are 

two cases: (i) If this is the first request for both channels after reset, FSM 

picks channel-1, which is connected to w_empty(0), Din(7:0) and 

w_rd_en(0). (ii) Otherwise, FSM chooses the least recently used channel 

in order to provide fairness. In both cases, after the selection of a 

channel, the selector makes a transition to Header Send state. 

In IDLE state, FIFO is empty, so r_empty is 1 and r_rd_en is ignored. 

Furthermore, FIFO is simply disconnected from the input. That is, wr and 

rd signals are both set to 0 in order to mask w_empty signal for ff_wr_en 

and mask ff_full signal for w_rd_en.   

• Header Send: The data format received from the host is shown in Figure 

4.7 where its header consists of three 4-byte parts, namely Destination 

IP, Destination Port and Data Length. FSM copies Data Length field into 

a register and zero-extend 16-bit Destination Port field to 32-bit while 

writing the header into FIFO. While the last byte of the header is being 

put into FIFO, FSM goes to Data Send state. In Header Send state, both 

wr and rd signals are set to 1. As a result, a new word is written into 

FIFO when w_empty is 1 and ff_full is 0. Note that Actv_Port signal is 

provided to indicate the currently selected channel as well.  
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Figure 4.7. Host data format 

 

• Data Send: FSM counts the number of data bytes that are put into FIFO 

by a counter, waits for the counter to reach Data Length value kept in the 

register, and then, makes a transition to IDLE state. Note that data may 

come in an on-and-off fashion, which will be nicely handled by FSM. 

According to the aferomentioned FSM operation, it takes at least N+13 

clock cycles to write header and N-byte of data into FIFO. After the first word is 

written into FIFO, it will take N+12 clock cycles to read them. 

 

  UDP Tx 

 

UDP Tx component is the sender implemetation of UDP protocol, and its 

architecure is given in Figure 4.8. According to Figure 4.8, two different 

components, namely Channel Selector or DHCP IP core, can be a source of data. 

As a result, UDP Tx is responsible for encapsulating the data that are received 

from either Channel Selector or DHCP IP core with UDP header and sending 

UDP datagrams to IP Tx component. Note that DHCP IP core has the priority 

over Channel Selector in our design and these two components are not usually 

active at the same time.  

UDP Tx further relies on Configuration IP to provide a UDP source port 

number related to the chosen channel by Channel Selector. Thus, Configuration IP 

provides two 16-bit UDP source port numbers, each of which is exclusively 

assigned to a channel, through 32-bit Cfg_Ports signal. According to Actv_Port 

signal coming from Channel Selector, UDP Tx inserts the correct source port 

number into UDP datagrams. For DHCP packets, however, the source port 

number is fixed at Hexadecimal 0044 and it is chosen by setting src_sel signal to 

one.  
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Figure 4.8. UDP Tx architecture  

 

In addition to the encapsulation, UDP Tx does a kind of packet 

fragmentation as well. That is, it splits data whose size is bigger than MTU into 

separate UDP datagrams and sends them accordingly. Figure 4.9 shows the FSM 

state diagram of UDP Tx component.  

• IDLE: When a channel or DHCP makes a request for sending data, state 

goes to Header Take state. 

• Header Take: Twelve byte header in Figure 4.7 is taken and saved to 

several registers in twelve clock cycles, then FSM goes to Length 

Calculation state. Note that DHCP IP core will send the same twelve 

byte header as well.  

• Length Calculation: It checks the 32-bit register (app_data_length) that 

keeps Data Length field of the header. If app_data_length register is 

zero, FSM goes to IDLE state. If the non-zero value in app_data_length 

is smaller than or equal to the MTU, FSM copies this register to 16-bit 
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udp_data_length register and sets app_data_length to zero. Otherwise, it 

subtracts the MTU value from the content of app_data_length and writes 

the result back into app_data_length register. In addition, FSM sets 

udp_data_length register to MTU. Then, it goes to Header Send state. 

• Header Send: In this state, UDP header is written FIFO in eight clock 

cycles, in which UDP source port number is set as follows: If this is a 

DHCP packet, src_sel signal is set to 1 so that Hexadecimal 44 is used. 

Otherwise, this is an UDP packet and Actv_Port signal selects between 

two source port numbers available from Configuration IP core. In 

addition, UDP destination port number is copied from the register which 

it was written in Header Take state; UDP length is obtained from 

udp_data_length register. Since UDP checksum is not supported and this 

field is filled with zeros. Then, it goes to Data Send state. 

• Data Send: UDP Tx receives 8-bit data input from either Channel 

Selector or DHCP IP core and writes into FIFO until the number of data 

bytes copied into FIFO reaches the value of udp_data_length register, 

and it makes a transition to Length Calculation state. 

According to the FSM operation in Figure 4.9, if a single UDP datagram 

will be sent, it takes at least N+23 clock cycles for N-byte of application data. If 

multiple UDP datagrams will be send due to the fragmentation of application data, 

the first UDP datagram takes N+23 clock cycles, while the following ones require 

N+2 clock cycles. 

 
 

Figure 4.9. FSM state diagram of UDP Tx 
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  IP Tx 

 

IP Tx component is the sender implemetation of IPv4 protocol. This 

component is responsible for encapsulating the UDP datagrams that are received 

from UDP Tx or the ICMP messages from ICMP IP core with IPv4 header and 

sending the IP datagrams to Arbitrator component. The architecture of IP Tx is 

given in Figure 4.10 and its FSM state diagram in Figure 4.11. 

• IDLE: Initially, FSM is on the IDLE state. If UDP Tx or ICMP component 

makes request for sending data, it goes to UDP Send or ICMP Send 

respectively. ICMP messages has priority since they need to be replied as 

soon as possible. 

• UDP Send: UDP packet is received until the UDP length field of UDP 

header is completely received in six clock cycles. It goes to MAC Request 

state. 

 

 
 

Figure 4.10. IP Tx architecture 
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Figure 4.11. FSM state diagram of IP Tx 

 

• ICMP Send: The length of upcoming ICMP packet is received from ICMP 

IP core in two clock cycles, and goes to MAC Request state. 

• MAC Request: A destination IP address is provided by either UDP Tx or 

ICMP IP core together with their respective request. IP Tx asks ARP IP 

core for the associated MAC address with the destination IP address, and 

makes a transition to MAC Wait state.  

• MAC Wait: FSM stalls in this state until a reply is received from ARP IP 

core. Then, it goes to MAC&Type Send state. Note that if the requested 

MAC address is in ARP cache, the stall lasts for just two clock cycles.  

• MAC&Type Send: The source and destination MAC addresses, and Ether 

Type (Hexadecimal 0800 for IP datagram) are written into FIFO in 

fourteen clock cycles, and it goes to IP Header Send state. 

• IP Header Send: In this state, IP header is written to the FIFO in twenty 

clock cycles, in which some of the IP header fields are already predefined. 

Some of them are unused, and thus, they are filled with zeros. Version, 

Header Length and Time to Live fields are predefined as Hexadecimal 4, 

5, 80, respectively. Type of Service, Identification, Flags and Fragment 

Offset fields are filled with zeros. Total Length field is calculated by 
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adding 20 to the length of data received from either ICMP IP core or UDP 

Tx in ICMP_Send or UDP_Send states, respectively. Protocol field is 

selected with src_sel signal as Hexadecimal 1 for ICMP and Hexadecimal 

11 for UDP. Header Checksum is calculated dynamically from the header 

fields. Source IP and destination IP addressed are obtained from Src_IP 

and Dest_IP registers, respectively. After an IP header is sent, FSM goes 

to Payload Send state.  

• Payload Send: IP Tx receives 8-bit data input from either UDP Tx or 

ICMP IP core and writes into FIFO until the number of data bytes copied 

into FIFO reaches the length value that received on the UDP send or 

ICMP send respectively and then, FSM goes to IDLE state. 

The FIFO used in this component is slightly different from the standard 

FIFO structure. It uses two extra signals (sof and eof signals) to mark the 

beginning and the ending of a packet. These signals are required for the FIFOs 

that MAC component use. 

IP Tx component has a eleven clock cycle latency for the UDP packets and 

seven for the ICMP packets. ARP cache is assumed to have the requested MAC 

address for this latency.  

 

  Arbitrator 

 

Arbitrator component is the last component on the Tx path of Offload 

Engine. It is basically a multiplexer with FIFO that selects between the outputs of 

IP Tx and ARP IP core. The architecture of Arbitrator is given in Figure 4.12.  

According to Figure 4.12, Arbitrator uses two extra signals for receiving and 

sending packets, which is different from the other components. These are start of 

frame (sof) and end of frame (eof) signals. Note that they are supplied by either IP 

Tx or ARP IP core accordingly and written into FIFO as if they were data signals 

so as to associate them with the right data packets. The output of Arbitrator is also 

the output of Offload Engine. Thus, Arbitrator is interfaced with MAC IP core. 

Since MAC IP core works with active-low signals, a few output signals need to be 

driven over not gates.  
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Figure 4.12. Arbitrator architecture 

 

There is no need to draw a FSM state diagram for  Arbitrator, since it 

consist of only two states as IDLE and SEND. Arbitrator waits in IDLE state. 

When IP Tx or ARP IP makes a request, it goes to SEND state, where it stays until 

the end of packet that will be marked by an end of frame signal. Then, it return to 

IDLE state.   

Arbitrator has a two clock cycle latency. The total latency on the Tx path for 

an N-byte of application data is N+40 (12 clock cycles for application header + 28 

clock cycles for Offload Engine) clock cycles. 

 

  IP Rx 

 

IP Rx is the first component on the Rx path of Offload Engine. It accepts 

only those IP packets that are addressed to this host, and drops any multicast and 

broadcast packets. Furthermore, it delivers a received packet to either UDP Rx or 

ICMP IP core. Figure 4.13 shows the architecture of IP Rx component. Note that 

IP RX does not include a FIFO buffer, and it is basically an FSM together with a 
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couple of multiplexers and demultiplexers. This component has a simple FSM 

with five states as shown in Figure 4.14. 

• IDLE: When a new packet is received, MAC IP core starts to deliver it to 

Offload Engine. IP Rx is the first component to process a newly arriving 

packet. So, FSM goes to MAC Type In state to handle a new packet. 

• MAC Type In: The destination and source MAC address fields are 

ignored, but Ether Type field in the received Ethernet frame is checked. 

If this field is equal to Hexadecimal 0800 (IP datagram), the packet is 

accepted. Otherwise, it is dropped.  

• IP Header In: It checks some of the IP header fields: Protocol, Flags and 

Destination IP address. After checking theese fields, if the packet is 

approved, it is delivered either UDP Rx or ICMP IP core depending on 

Protocol field in the IP header, and FSM goes to Deliver Packet state. If 

it is disapproved, FSM goes to Drop state.  

 

 
 
Figure 4.13. IP Rx architecture 
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Figure 4.14. FSM state diagram of IP Rx 

 

• Deliver Packet: The received ICMP or UDP packet is delivered to the 

related component. Once it is compeletly received, FSM goes to IDLE 

state. 

• Drop: FSM stays in this state until the packet is fully received, and then 

it goes to IDLE state. 

 

  UDP Rx 

 

UDP Rx component is the second and the last component on the Rx path of 

Offload Engine. It is responsible for receiving the UDP datagrams from IP Rx and 

delivering them to either appropriate channel (channel demultiplexing) or DHCP 

IP core. Furthermore, UDP Rx drops those packets that are not addressed to one 

of its UDP source ports. Figure 4.15 shows architecture of UDP Rx component. 

Similar to IP Rx, UDP Rx is composed of an FSM and several multiplexers 

and demultiplexers. The FSM of UDP Rx is shown in Figure 4.16. FSM checks 

the Destination Port field of the UDP header and if the packet is addressed to 

DHCP or one of the applications running on the host, it delivers the packet to 

DHCP or Xillybus component respectively. 
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Figure 4.15. UDP Rx architecture 

 
 

 
 

Figure 4.16. FSM state diagram of UDP Rx 

 

 DHCP IP Core 

 

DHCP IP core is responsible for leasing an IP address. DHCP IP core makes 

use of UDP Tx and UDP Rx components in order to perform this leasing 

transaction. Note that DHCP is the highest level protocol implemented by Offload 

Engine. 

DHCP IP core is simply an FSMD, rather than a group of FIFOs, 

multiplexers and demultiplexers as in the other IP cores. Figure 4.17 shows the 
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simplified FSM state diagram of DHCP IP core for leasing an IP address. Note in 

this FSM that four types of DHCP packets are involved in the leasing transaction, 

two of which are from DHCP IP core (DHCP client) and two of which are from 

DHCP server.  

• IDLE: It is initially in this state. It is activated by a 1-bit flag signal 

(IP_select signal) supplied by Configuration IP core. When IP_select 

signal goes high, FSM goes to Send Discover state. 

• Send Discover: DHCP IP core makes a request to UDP Tx by setting 

DHCP_Send signal to 1. Once this request has been approved by UDP Tx, 

it sends a DHCP Discover packet, and then makes a transition to Take 

Offer state. 

• Take Offer: When a DHCP Offer packet is received through UDP Rx, it 

excracts the necessary information from this packet, creates a DHCP 

Request packet and goes to Send Request state. 

• Send Request: It makes a request to UDP Tx by setting DHCP_Send signal 

to 1. Once the request has been accepted, it sends a DHCP Request packet, 

and then goes to Take Ack state. 

• Take Ack: When DHCP IP core receives a DHCP Ack packet via UDP Rx, 

the IP leasing transaction finishes and FSM goes to a passive state called 

IP Taken. 

 

 
 

Figure 4.17. FSM state diagram of DHCP 
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• IP Taken: FSM stays here until either the host changes the IP address 

configuration or system is reset. DHCP IP core presents the leased IP 

address to IP Tx, IP Rx and ARP components. 

 

  ICMP IP Core 

 

ICMP IP core is responsible for sending ping replies to ping requests. It can 

neither send a ping request nor handle other types of ICMP messages. This 

component is placed between IP Tx and IP Rx components. Figure 4.18 shows the 

architecture of ICMP IP core. 

When IP Rx component receives an ICMP packet, it writes the Source IP 

address field in the IP header to the DestIP_reg register in the ICMP IP core and 

delivers the packet to the ICMP IP core. ICMP IP core reads the ICMP header in 

the received packet and saves the data field of the packet into the FIFO on the left. 

Geneares an ICMP header for the reply and adds the data in the FIFO on the left 

to this header. It writes the packet length into the FIFO on the rigth and sets the 

ICMP req signal to 1. IP Tx component approves the request and ICMP writes the 

reply packet to the second FIFO after the length information. 

 

 
 

Figure 4.18. ICMP architecture 
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  ARP IP Core 

 

ARP IP core is the lowest level protocol component of Offload Engine, and 

it consists of three components: ARP Control&Cache, ARP Send and ARP 

Receive. Figure 4.19 shows the architecture of ARP IP core and the 

interconnection among these components. How these components together 

implement ARP protocol is explained in the following. 

ARP Send is responsible for both sending ARP requests and ARP replies. 

ARP requests (inquiry for the MAC address of a given IP address) are created in 

response to ARP_req_snd and 32-bit ARP_req_DestIP signals from ARP 

Control&Cache; ARP replies (response with the MAC address of this host) are 

due to ARP_rep_snd, 32-bit ARP_rep_DestIP and 48-bit ARP_rep_MAC signals 

from ARP Receive component.  

ARP Receive deals with both ARP request and ARP reply messages. If the 

received message is an ARP request and the destination IP address in ARP request 

matches with the IP address of this host, then ARP Receive makes ARP Send to 

send an ARP reply message to the sender of ARP request. If it is an ARP reply, 

ARP Receive exracts the IP and MAC address couple from the reply and delivers 

them to ARP Control&Cache.  

ARP Control&Cache receives requests from IP Tx through ARP_req and 

32-bit IP_Addr signals, where IP_Addr signal carrries an IP address for which the 

related MAC address is sought. ARP Control&Cache first checks its four-entry 

ARP cache for the IP address. If it is found in the cache, the associated MAC 

address is delivered over 48-bit MAC_Addr signal to IP Tx. Otherwise, it issues a 

request to ARP Send to create an ARP request message for this IP address, and 

waits for ARP reply. When ARP Control&Cache gets a reply from ARP Receive, 

it first compares the IP address with the sender IP address in ARP reply message. 

If they match, then it writes the IP address and the received MAC address into 

ARP cache. Finally, it delivers the MAC address to IP Tx.  
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Figure 4.19. ARP architecture 

 

 Configuration Component 

 

Configuration component is simply a RAM like component. It is responsible 

for setting the configuration parameters entered by the host into some of the 

components. Figure 4.20 shows the Configuration component structure. 

Host writes the parameters to the RAM inside the component by setting 

write enable (Wr_En), data input (Din) and write address (Wr_Address). Manual 

IP address (Config_IP), source ports (Config_Ports) and the IP selection which 

decides if IP address will be taken by DHCP or manual IP will be used are outputs 

of the component. In other words, IP selection bit is an on-off button for the 

DHCP component. 

 
 
Figure 4.20. Configuration architecture 
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5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

 

In this chapter, implementation details of the design and a comparison with 

the related previous studies are given. Experimental test setup and results, 

functional verification of the protocols are also presented in this chapter. 

 

  Implementation Results 

 

The proposed design elaborated in Section 3 and 4 is described in VHDL 

hardware description language, and it is synthesized by means of Xilinx ISE 14.2 

[40] for the target FPGA device XUVP5-LX110T. The synthesis results are given 

in Table 5.1. 

According to Table 1, overall design has a 144 MHz and Offload Engine 

has a 198 MHz maximum achievable frequency on Virtex 5. Overall design 

oppupies 4700 slices for Virtex 5, which is about 25% of the available slices on 

Virtex 5. Our design is compared against the related work from the literature in 

Table 5.2. 

It is quite fair to say that, each design is created for different specific 

purposes, comparing them directly may not give us the true results. The important 

point is the systems can operate at gigabit speed theoretically and experimental 

results give near results. 

 
Table 5.1. Synthesis results of the design 
 

 Slices BRAMs Frequency 
(MHz) 

Latency 
(# cycles) 

Xillybus 2820 12 144 ? 
Offload Engine 1421 1 198 28 
EMAC Core 270 2 260 12+? 
Overall Design 4240 15 144 40+? 
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Table 5.2. Implementation details comparison 
 

 
Löfgren 

Advanced 
 [19] 

Alachiotis 
[21] 

Herrmann 
[22] 

Dollas 
[23] Our Design Our Design 

FPGA Spartan 3 Virtex 5 Spartan 3 Virtex 2 Virtex 5 Spartan 3 
Slices 1584 105 1321 10007 1424 2500 

BRAMs 5 - ? 10 1 1 
Fmax 105.6 262 122 37,5 198 102 
Packet 
Length 1518 ? ? 1518 

Speed 10/100/1000 10/100 10/100/1000 
 

According to Table 5.2, the resource utilization of our Offload Engine is 

more than [19] and [22], and it is clearly less than [23]. It should be recalled that 

[22] does not support ICMP and DHCP.  As compared to [19], on the other hand, 

Offload Engine uses less BRAM resources and it has a support for multiple data 

streams. It is not fair to compare Offload Engine with [21] that implements only 

UDP and IP, and aims for a fairly simple PC-FPGA communication. 

 

 Experimental Results 

 

After the implementation of the proposed IP core on Virtex 5 FPGA, a set of 

experiments are conducted in order to verify its functionality and test its 

achievable maximum data throughput. For these experiments, the FPGA board is 

inserted into a PCIe slot of a desktop PC with i5 processor, and the PC is 

connected to the network over the Ethernet port on the board. In addition, a laptop 

with i5 processor is connected to the same network with the goals of measuring 

data throughput, checking if the file transfers were successful and verifying the 

operation of ARP, ICMP and DHCP protocols. Figure 5.1 shows the experimental 

setup. In this setup, packets are transmitted over a network switch and Offload 

Engine leases an IP address from a DHCP server on the network. 
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Figure 5.1. Experimental setup for the system tests 

 

Four different applications were run on two computers. Two of them were 

run on the PC, where one is for configuring the IP core and pumping packets into 

Offload Engine, and the other one is for receiving packets and verifying the 

receive path of the IP core. Both of these applications are based on the API 

presented in Section 3. The applications running on the laptop, on the other hand, 

are simple client-server programs which use the network protocols available from 

the host OS in order to perform the related measurements and controls. 

 

5.2.1. Throughput results 

 

During the throughput experiments, an application running on the PC uses 

our API to transfer a predetermined file to the server application executing on the 

laptop. With the end of a file transfer, the server application compares the newly 

received file with its original version that has been copied there before the 

transmission, and reports the measured throughput in addition to the elapsed time, 

total number of received packets and total size of the received file. Figure 5.2 

shows the results of an example throughput test. According to Figure 5.2, the 

achieved throughput is about 528.5 Mbps, while 43625 packets are received in 

0.927 sec for the transmission of a file with 64215140 bytes. 
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Figure 5.2. Command window output - an example throughput test 
 

 After testing the system with different file sizes up to 500 MByte over a 

hundred times, the average throughput is obtained as 540 Mbps. Meanwhile, the 

maximum achieved throughput is observed as 570 Mbps. In these tests, the MTU 

was set to 1472 bytes to achieve the maximum throughput, which results in 

splitting files into the MTU-sized packets by Offlad Engine. However, it is a 

known fact that the packet size has an impact on the throughput as well. 

Consequently, the tests are repeated for different MTU sizes, and the results are 

presented in Figure 5.3. 

 

 
 
Figure 5.3. The impact of packet size on throughput 
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The achieved throughput value of 540 Mbps by the IP core proposed can be 

attributed to several facts: (i) The file transfer client application on the PC is still 

running on the host OS and experiences the overhead related to the OS. (ii)  

Xillybus can send data over gigabit speed with its 32-bit interface. But, because of 

the uncontinious data provided by Xillybus, the clock domain crossing and data 

with conversation by the Xilinx FIFOs, data reaches at a slower speed than the 

gigabit speed to Offload Engine.  

In order to prove that Offload Engine is capable of providing better data 

throughputs than 540 Mbps, a different experimental setup is created. In this 

setup, the IP core proposed is slightly modified to be composed of only Offlaoad 

Engine and MAC IP core (Xillybus is removed). Then, a hardware application 

module on the FPGA instead of an application running on the computer is 

implemented to provide data with Offload Engine. In these tests, Offload Engine 

achieves a maximum data throughput of 865 Mbps, which is clearly superior. 

It should be noted here that actual throughput that can be achieved at gigabit 

speed is slightly lower than 1 Gbps. That is, the maximum Ethernet packet size is 

1518 bytes (1472 bytes application data, 8 bytes UDP header, 20 bytes IP header, 

12 bytes MAC addresses, 2 bytes packet type, 4 bytes CRC). Furthermore, there is 

8 bytes preamble and 12 bytes IFG. All of these overheads result in the maximum 

achievable data throughput of 957 Mbps. Fortunately, 865 Mbps throughput of 

Offload Engine is quite near to 957 Mbps and Offload Engine can be used for 

those applications that seek for near-gigabit performance. 

Finally, all of these throughput tests clearly prove that the IP core proposed 

is working as expected, which further leads to the fact that the send and receive 

functions of both UDP and IP protocols are correctly implemented in hardware. 

Figure 5.4 shows a wireshark output obtained during a throughput test on the 

laptop. According to Figure 5.4, the wireshark observes UDP packets coming 

from the source (the PC) with IP address 10.10.96.100. 
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Figure 5.4. Wireshark output of an example throughput test 

 

5.2.2. ICMP verification 

 

The verification of ICMP IP core is done by a simple ping request from the 

command window as shown in Figure 5.5. Since the packets are transmitted over 

a single switch, the ping reply from Offload Engine is received in less than 1 ms. 

 

 
 
Figure 5.5. ICMP functionality verification command window output 
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Figure 5.6. ICMP functionality verification wireshark output 

 

According to Figure 5.6, source 10.10.96.106 (the laptop) sends a ping 

request four times, and source 10.10.96.100 (the PC) sends a ping reply 

successfully for each request. Based on Figure 5.5 and 5.6, it is concluded that 

ICMP IP core is functioning correctly. 

 

5.2.3. DHCP verification 

 

DHCP verification is done by changing the IP address configuration of the 

IP core and sending packets with each configuration. In the first case, DHCP is off 

and a manual IP address is not given to the PC either. Figure 5.7 shows the packet 

transmission under this configuration. It can be seen in Figure 5.7 that source IP 

field is 0.0.0.0, which is the default IP address used by the IP core. Since this is 

the first data transmission between two computers, there is an ARP request by the 

PC before the start of data transmission. 

In the second case, DHCP is still off, but a manual IP address 

(10.10.96.100) is given to the PC. Figure 5.8 shows the packet transmission with 

this configuration of the IP core. It is clear that the received IP packets are coming 

from the PC. 
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Figure 5.7. Packet transmission with no IP configuration 

 

 
 
Figure 5.8. Packet transmission with manual IP configuration 

 

In the third case, DHCP component is made on, which overrides a given 

valid manual IP address (10.10.96.100) in the IP core. Under this scenario, it is 

expected that DHCP IP core will lease a new IP address (different from 

10.10.96.100) through a DHCP server, and use this address in the subsequent data 

communication. Figure 5.8 shows that the packets are coming from a source with 

IP address of 10.10.96.90, which is in fact the IP address leased by DHCP IP core 

for the PC. Thus, DHCP IP core is proved to working as designed. 

 

5.2.1. ARP verification 

 

ARP packets can be observed in Figure 5.4 for the throughput tests, in 

Figure 5.6 for the ICMP tests, and in Figure 5.7 and 5.9 in the DHCP tests. Based 

on these figures, it is evident that ARP IP core can broadcast ARP requests to the 

network. 

 

 
 
Figure 5.9. Packet transmission with DHCP configuration 
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In Figure 5.9, for example, after an ARP request and ARP reply are 

observed before the first data transmission by the wireshark, there is no other ARP 

request messages present during the transmission of other following packets. This 

clearly shows that ARP IP core receives ARP reply messages, creates an entry in 

its ARP cache and provides IP Tx with the correct MAC addresses for its inquries. 
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6. CONCLUSIONS 

 

The need for an offload engine in high-speed networks so as to relieve 

CPUs from networking tasks has been the main motivation behind this thesis. 

Based on this motivation, the IP core with full hardware accelaration of UDP, IP, 

DHCP, ICMP and ARP protocols is designed and implemented on a Virtex 5 

FPGA, where the IP core is composed of three main components, namely 

Xillybus, Offload Engine and MAC IP. It is shown in the previous section that the 

IP core has relatively small resource utilization and can be implemented on most 

of the FPGAs. Furthermore, it is fast enough to handle gigabit speed data 

communication, and it has low latency to be used for real-time applications. On 

the other hand, Offload Engine is designed in a modular fashion so that the 

individual components can be reused or easily modified for new features.  

There are still further avenues of research that can be conducted in the 

future to extend the results of thesis as follows: 

• Offload Engine should be enhanced to handle 10 Gbit/s data 

communication. In order to achive 10 Gbit/s packet throughput, Offload 

Engine needs to be modified to have 64-bit datapath (instead of 8-bit 

datapath in the current design) and working clock frequency of about 250 

MHz (instead of 198 MHz). Furthermore, Xillybus and MAC IP core 

should be updated to support 10 Gbit/s packet throughput as well. 

• UDP should support cheksum calculation and cheksum verification. 

• IPv6 in addition to IPv4 should be implemented as the other network 

layer protocol. 

• ICMP IP core currently generates replies to only ping requests. This core 

can be modified so that it can handle the ICMP error messages as well. 

Furthemore, it can be further enhanced to be OS-aware. That is, upon 

receiving a ping request, a reply is returned only if the host OS is still up 

and running.  

• Four-entry ARP cache can be expanded and implemented on block 

RAMs. Furthermore, a timeout for the MAC addresses can be set and 

ARP IP core can automatically renew its ARP cache upon its expiry.  
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• Different virtual MAC addresses can be assigned to the channels and 

DHCP IP core can be changed to lease a unique IP address for each 

MAC address so as to create virtual network adapters. 
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