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ABSTRACT

Master of Science Thesis
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TIME-DELAY SYSTEMS
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Electrical and Electronics Engineering Program

Supervisor : Prof. Dr. Altuğ İftar
Co-supervisor : Assist. Prof. Dr. Hakkı Ulaş Ünal

2014, 56 pages

In this thesis, decentralized controller design for time-delay systems is

considered. A necessary and sufficient condition, in terms of decentralized fixed

modes, for stabilizability of linear time-invariant (LTI) time-delay systems by

LTI time-delay controllers is given. Also, it is presented that a LTI time-delay

system can be stabilized by a LTI decentralized time-delay controller if and

only if it can be stabilized by a LTI decentralized finite-dimensional controller.

This condition extends a previously known fact for centralized control to de-

centralized control. Although stabilizability problem is considered in a large

perspective which includes neutral and retarded systems with commensurate-

and incommensurate-time-delays, decentralized controller design problem is

considered only for retarded commensurate-time-delay systems. At first, to be

used as a centralized controller design algorithm, the continuous pole assign-

ment algorithm is extended to design dynamic output feedback controllers.

Then, based on the decentralized pole placement algorithm, two decentral-

ized controller design algorithms are proposed. One of these algorithms is a

dynamic output feedback and the other algorithm is an observer based state

vector feedback design algorithm.

Keywords: Decentralized control; time-delay systems; dynamic out-

put feedback; decentralized fixed modes; pole placement.
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ÖZET

Yüksek Lisans Tezi

ZAMAN GECİKMELİ SİSTEMLERİN
MERKEZİ OLMAYAN DENETİMİ

Hüseyin Ersin Erol

Anadolu Üniversitesi
Fen Bilimleri Enstitüsü

Elektrik-Elektronik Mühendisliği Anabilim Dalı

Danışman : Prof. Dr. Altuğ İftar
İkinci Danışman : Yrd. Doç. Dr. Hakkı Ulaş Ünal

2014, 56 sayfa

Bu tezde, zaman gecikmeli sistemler için merkezi olmayan denetleyici

tasarımı ele alınmıştır. Doğrusal zamandan bağımsız (DZB) zaman gecikmeli

bir sistemin merkezi olmayan zaman gecikmeli denetleyiciler ile kararlı kılına-

bilmesi için merkezi olmayan sabit modlar cinsinden bir gerek ve yeter koşul

verilmiştir. Ayrıca, DZB zaman gecikmeli bir sistemin merkezi olmayan DZB

zaman gecikmeli denetleyiciler ile kararlılaştırılabilmesi için gerek ve yeter bir

koşulun sistemin DZB merkezi olmayan sonlu boyutlu bir denetleyici ile kararlı

kılınabilmesi olduğu gösterilmiştir. Bu koşul, merkezi denetlemede önceden

bilinen bir koşulun merkezi olmayan denetlemeye genişletilmesidir. Kararlılaş-

tırılabilirlik problemi daha geniş bir perspektifte ele alınmasına karşın, merkezi

olmayan denetleyici tasarımında sadece orantılı zaman gecikmeli geri-tipli sis-

temler ele alınmıştır. Öncelikle, merkezi denetleyici tasarımında kullanılmak

üzere, sürekli kutup atama algoritması dinamik çıktı geri beslemeli denetleyi-

ciler tasarlanacak şekilde genişletilmiştir. Sonrasında, merkezi olmayan kutup

yerleştirme algoritması temel alınarak iki merkezi olmayan denetleyici tasarım

algoritması önerilmiştir. Bu algoritmalardan biri dinamik çıktı geri besleme,

diğeri ise gözlemci tabanlı durum vektörü geri besleme tasarım algoritmasıdır.

Anahtar Kelimeler: Merkezi olmayan denetleme; zaman gecikmeli

sistemler; dinamik çıktı geri beslemesi; merkezi olmayan sabit modlar; kutup

atama.
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NOTATION

R Real numbers

C Complex numbers

N Natural numbers with zero

Rn Space of n-dimensional real vectors

Cn Space of n-dimensional complex vectors

Rk×l Space of k × l-dimensional real matrices

Ck×l Space of k × l-dimensional complex matrices

R[·] Ring of polynomials in · with real coefficients

Rk×l[·] Ring of k × l dimensional polynomial matrices in · with re-

al coefficients

Re(s) Real part of s ∈ C

Im(s) Imaginary part of s ∈ C

Ω̄ Closure of a set Ω

C−µ {s ∈ C | Re(s) < µ} for µ ∈ R

C+
µ {s ∈ C | Re(s) > µ} for µ ∈ R

C̄+
µ {s ∈ C | Re(s) ≥ µ} for µ ∈ R

i Imaginary unit, i2 = −1

I Identity matrix of appropriate dimensions

Ik k × k identity matrix

0 Zero matrix of appropriate dimensions

0k k × k zero matrix

0k×l k × l zero matrix

rank(Γ) Rank of a matrix Γ

det(Γ) Determinant of a matrix Γ

ΓT Transpose of a matrix or vector Γ

||Γ|| 2-norm of a vector Γ

||Γ|| Induced 2-norm of a matrix Γ

‖·‖s Supremum norm

Γ∗ Complex-conjugate transpose of a matrix or vector Γ
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Γ−1 Inverse of a matrix Γ

ν̄ {1, . . . , ν} for a positive integer ν

bdiag[· · · ] A block diagonal matrix with blocks · · · on its diagonal

C([a, b],Rn) Banach space of continuous functions mapping the inter-

val [a, b] into Rn and equipped with ‖·‖s
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1. INTRODUCTION

1.1. Overview and Motivation

Many control systems may include time-delays due to the required

time to acquire information needed for decision making, to create and execute

control decisions, etc. [1–3]. Such systems, which involve time-delays in their

dynamics, inputs, and/or outputs, are generally called time-delay systems.

It is well known that the presence of time-delays may be detrimental

to the stability of systems, for instance, communication systems, biological

systems, mechanical systems, etc. (see [3] and reference therein). On the other

hand, the presence of time-delays may also be beneficial to the stability of some

unstable systems [4, 5]. Therefore, in the controller design for a given system,

the existing time-delays, whether small or not, should be taken into account,

otherwise, the designed controller may not be successful in the stabilization of

the actual system or may exhibit poor performance. However, the controller

design problem for time-delay systems is a difficult task since these systems

are infinite-dimensional [1, 6, 7].

Some practical control problems may not be solved by conventional

methods in control theory, since the systems to be controlled may become too

large and the problems to be solved may become too complex [8]. Hence, the

notion of large-scale systems was required to be introduced. Since the notion of

large-scale is very subjective, more pragmatic views have been adopted instead

of formal definitions. From one point of view, a system is considered large-scale

if it is necessary to partition the given analysis or synthesis into manageable

subproblems for either computational or practical reasons [9]. From another

point of view, simply, a system is large when it requires more than one con-

troller [10]. As a result of both views, for many large-scale systems, decentral-

ized control is either preferable or necessary [11–15]. Decentralized controller

design problems for finite-dimensional systems have been studied in the past

four decades [16–29]. In decentralized control, the overall plant is controlled by
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several local control stations, i.e., control agents, which all together represent

a decentralized controller. In many applications, there are some constraints on

transfer of information between control agents and a full information access

is rarely possible for all the agents. In some cases, a total decentralization

is assumed where every control agent observes only local system outputs and

controls only local inputs [12]. Also, the effects of the time-delays are quite no-

ticeable in the control of large-scale systems where multiple time-delays can be

introduced by multiple sensors, actuators and controllers. Therefore, alongside

of the studies on decentralized control of finite-dimensional systems, problem

of decentralized control of large-scale time-delay systems is attracting attention

recently [8, 30–39].

In the stabilization and mode placement of control systems the notion

of fixed modes plays a central role. A mode of a LTI dynamic system which

remains fixed in the complex plane for all LTI static output feedback controllers

under given information constraints, is called as a fixed mode.

In centralized case, it was shown by Kamen et. al. [40] that a LTI re-

tarded time-delay system can be stabilized by a LTI dynamic controller (with

sufficiently large dimension) if and only if the system does not have any CFMs

in C̄+
0 . In decentralized case, DFM notion was first introduced in [16] and

according to this notion, it was established that a necessary and sufficient

condition for stabilizability of a LTI decentralized finite-dimensional dynamic

system by LTI decentralized finite-dimensional dynamic controllers is that it

should not have any DFMs in C̄+
0 . Furthermore, the notion of µ-DFM, which

corresponds to a DFM with real part greater than or equal to µ, was intro-

duced in [37] where µ defines the border of the relative stability region C−µ .

According to the relative stability region defined by µ, a LTI dynamic system

is said to be stable or µ-stable if all of its modes are in C−µ . Considering the

µ-DFM notion, it was established in [37] that a LTI decentralized retarded

time-delay system with commensurate-time-delays can be µ-stabilized by LTI

decentralized finite-dimensional dynamic controllers if and only if the system

does not have any µ-DFMs in C̄+
µ . This result was a generalization of the

2



result in [16] to retarded commensurate-time-delay systems. The same result

was generalized to retarded systems with incommensurate-time-delays in [38].

In [39], it was shown that the same condition is also necessary and sufficient for

µ-stabilization of retarded time-delay systems by decentralized dynamic time-

delay controllers and it is also a necessary condition for the µ-stabilization

of neutral time-delay systems. Furthermore, in the same work, it was shown

that sufficiency also continues to hold under some additional conditions. As

a well known result of Kamen et. al. [40], a LTI centralized retarded time-

delay system can be stabilized by a LTI time-delay controller if and only if

it can be stabilized by a LTI finite-dimensional controller. Extension of this

result to the decentralized case was given in [39]. In this thesis, based on

the given results in [39], studies will be carried on stabilizability of neutral

incommensurate-time-delay systems.

As a result of many studies on the control of time-delay systems, there

are many stabilization methods for centralized time-delay systems in the liter-

ature (see [5] and references therein for a wide survey). However, stabilization

methods for decentralized time-delay systems are relatively few. In [22], the

decentralized pole assignment algorithm was proposed for decentralized finite-

dimensional systems. In this algorithm, control synthesis proceeds in the con-

trol agent order and a centralized controller is designed for each control agent

sequentially. In this thesis, by utilizing this algorithm, decentralized controller

synthesis procedures for LTI retarded commensurate-time-delay systems will

be introduced. In these procedures, in order to design a centralized controller

for each control agent two different methods, which are based on continuous

pole placement algorithm [41], will be used. One of these methods is the exten-

sion of the continuous pole placement algorithm, which was proposed for static

state vector feedback controllers, to the dynamic output feedback controllers.

The other method is an implementation of the observer based continuous pole

placement algorithm.

3



1.2. Thesis Outline

In Chapter 2, important background material and definitions are pre-

sented. In Section 2.1, an overview of the centralized neutral and retarded

time-delay systems is provided. In Section 2.2, the continuous pole placement

algorithm of Michiels et. al. [41], which is a centralized controller design proce-

dure, is introduced. In Section 2.3, the finite-dimensional decentralized system

and controller structures are presented and some required definitions are given.

Also, in this section, the decentralized pole assignment algorithm of Davison

and Chang [22], which is a decentralized controller synthesis algorithm for

finite-dimensional systems, is introduced.

In Chapter 3, representations and important properties of decentral-

ized neutral and retarded time-delay systems are given. Then the DFMs of

these time-delay systems with respect to different controller classes are char-

acterized and stabilizability of LTI decentralized time-delay systems by means

of decentralized LTI output feedback controllers is considered and the results

obtained in this regard are given.

In Chapter 4, decentralized controller design problem for LTI retarded

commensurate-time-delay systems is considered. In Section 4.1, a centralized

dynamic output feedback controller synthesis procedure is introduced. In Sec-

tion 4.2, a decentralized controller synthesis procedure, based on decentralized

pole assignment algorithm and the centralized controller synthesis procedure

introduced in Section 4.1, for LTI retarded commensurate-time-delay systems

is introduced. In addition to these procedures, in Section 4.3, an observer

based decentralized controller synthesis procedure, based on decentralized pole

assignment algorithm and the continuous pole placement algorithm, for LTI

retarded commensurate-time-delay systems is proposed.

In Chapter 5, two examples are presented in order to illustrate the

design approaches proposed in Sections 4.2 and 4.3.

In Chapter 6, the concluding remarks are given.
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2. BACKGROUND

In this chapter, background information and definitions to be used

in the subsequent chapters are presented. In Section 2.1, representation and

important properties of neutral and retarded time-delay systems are given. In

Section 2.2, the continuous pole placement algorithm of Michiels et. al. [41],

which is a centralized controller design procedure, is introduced. In Section

2.3, finite-dimensional decentralized controller structures are defined, some

required definitions are given, and, at the end of the section, the decentral-

ized pole assignment algorithm of Davison and Chang [22], which is a decen-

tralized finite-dimensional controller synthesis algorithm for finite-dimensional

systems, is introduced.

2.1. Time-Delay Systems

Consider a LTI time-delay system Σ, which can be defined as

ẋ(t) +
σ∑
i=1

Eiẋ(t− hi) =
σ∑
i=0

(
Aix(t− hi) +Biu(t− hi)

)
y(t) =

σ∑
i=0

Cix(t− hi)
, (2.1)

where x(t) ∈ Rn, u(t) ∈ Rp and y(t) ∈ Rq are, respectively, the state vector,

the input and the output vectors at time t, 0 = h0 < h1 < · · · < hσ are time-

delays where σ is the number of distinct time-delays involved, and Ei ∈ Rn×n

(i ∈ σ̄), Ai ∈ Rn×n, Bi ∈ Rn×p and Ci ∈ Rq×n (i ∈ {0} ∪ σ̄) are constant

matrices. When the time-delays are integer multiplies of a common divisor

h > 0, i.e., hi := ih, i ∈ σ̄, then the delays are said to be commensurate.

Otherwise, they are called incommensurate. When there is no time-delay in

the derivative of the state vector, i.e., when Ei = 0, ∀i ∈ σ̄, the system (2.1) is

said to be retarded. Otherwise, it is called neutral. Different from Σ, retarded

time-delay systems will be indicated by Σr.

As in [1], let x(t; ξ) be the unique forward solution of the system Σ,

with initial condition ξ ∈ C([−hσ, 0],Rn), i.e., x(θ; ξ) = ξ(θ) for all θ ∈ [−hσ, 0].

5



Then, the state of the system Σ at time t is given by the function segment

xt(ξ) ∈ C([−hσ, 0],Rn) defined as xt(ξ)(θ) = x(t+ θ; ξ), θ ∈ [−hσ, 0].

Definition 2.1. For any given µ ∈ R, the set of µ-modes of the system Σ,

described by (2.1), is defined as

Ωµ (Σ) := {s ∈ C | Re(s) ≥ µ and φΣ(s) = 0} (2.2)

where φΣ(s) := det
(
∆N(s)

)
is the characteristic function of the system Σ,

where ∆N(s) := sĒ(s)− Ā(s) is the characteristic matrix of the system Σ and

Ē(s) := I +
σ∑
i=1

Eie
−shi , Ā(s) :=

σ∑
i=0

Aie
−shi . (2.3)

For retarded time-delay systems, Σr, this characteristic equation can be written

as φΣr := det
(
∆R(s)

)
where ∆R(s) := sI − Ā(s) is the characteristic matrix

of the system Σr.

An important difference between Σ and Σr is that, for any given finite

real µ, Ωµ(Σr) is a finite set, whereas Ωµ(Σ) may have infinitely many elements

[2].

Now, we define µ-stability.

Definition 2.2. For any given µ ∈ R, the system Σ is said to be µ-stable if

Ωµ−ε (Σ) = ∅ for some ε > 0. Furthermore, a controller K is said to µ-stabilize

the system Σ, if the closed-loop system obtained by applying the controller K

to system Σ is µ-stable.

For µ ≤ 0, the µ-stability can be related with the exponential stability

of the system Σ. System Σ is said to be exponentially stable if and only if

there exist constants β > 0 and γ < 0 such that for all ξ ∈ C([−hσ, 0],Rn),

‖xt(ξ)‖s ≤ βeγt ‖ξ‖s [1]. By using arguments similar to those in [1], it can be

shown that the system Σ is µ-stable if and only if there exist constants β > 0

and γ < µ such that for all ξ ∈ C([−hσ, 0],Rn), ‖xt(ξ)‖s ≤ βeγt ‖ξ‖s.

Definition 2.3. Spectral abscissa for the system Σ is defined as follows

cΣ := sup {Re(s) | φΣ(s) = 0} . (2.4)

6



For neutral and retarded time-delay systems, respectively, Σ and Σr, the spec-

tral abscissa always exists and is finite. Furthermore, for retarded time-delay

systems, there always exists (rightmost) modes such that the real parts of the

modes are equal to cΣr [1].

Now, define the associated delay-difference equation of the system Σ,

as follows

x(t) +
σ∑
i=1

Eix(t− hi) = 0 . (2.5)

The characteristic equation of the associated delay-difference equation is given

by det(∆D(s)) = 0, where

∆D(s) := I +
σ∑
i=1

Eie
−shi . (2.6)

The zeros of this equation are called the modes of the delay-difference equation

(2.5) and if all the modes are in C−µ , the delay-difference equation (2.5) is said

to be µ-stable. Then, define the collection of the real parts of all the modes of

(2.5) as

ΩD := {Re(s) | det(∆D(s)) = 0} (2.7)

and let the spectral abscissa cD be its supremum

cD := sup {Re(s) | det(∆D(s)) = 0} . (2.8)

The following result, obtained in [1], shows that the system Σ fea-

tures chains of modes, whose position is determined by the associated delay-

difference equation.

Lemma 2.1. If α ∈ ΩD, with ΩD defined by (2.7), then there is a sequence

of modes {sn}n≥1 of Σ satisfying

lim
n→∞

Re(sn) = α, lim
n→∞

Im(sn) =∞ . (2.9)

Proof. See Proposition 1.26 in [1].

As indicated in [1], according to Lemma 2.1, a necessary condition

for the µ-stability of the system Σ, is the µ-stability of the delay-difference

7



equation (2.5). In the half-plane Re(s) > cD, the set of the modes of the

neutral systems has many properties similar to the retarded case. This can be

seen in the following lemma.

Lemma 2.2. For any ε > 0, the system Σ has only a finite number of modes

in C̄+
cD+ε.

Proof. See Proposition 1.27 in [1].

Using Lemmas 2.1 and 2.2, the following theorem can be concluded.

Theorem 2.1. For any a ∈ R, the system Σ has only a finite number of modes

in C̄+
a+ε for any ε > 0, if and only if the associated delay-difference equation

(2.5) does not have any modes in C̄+
a .

Proof. If part of the proof follows from Lemma 2.2. To show the only if part,

assume that s0 ∈ C̄+
a is a mode of the associated delay-difference equation (2.5).

Then, by Lemma 2.1, there is a sequence of modes {sn}n≥1 of Σ satisfying (2.9)

with α = Re(s0), which means that for any ε > 0, there exists an N such that

sn ∈ C̄+
a+ε for any n ≥ N . This proves the only if part.

Before ending this section, let us also present the following definition,

which was given in [5], to be used in the sequel.

Definition 2.4. For any given µ ∈ R, s0 ∈ Ωµ(Σ) is said to be controllable if

rank
[
s0Ē(s0)− Ā(s0) B̄(s0)

]
= n

and is said to be observable if

rank

 s0Ē(s0)− Ā(s0)

C̄(s0)

 = n

where

B̄(s) :=
σ∑
i=0

Bie
−shi , C̄(s) :=

σ∑
i=0

Cie
−shi . (2.10)

8



2.2. Continuous Pole Placement Algorithm

The main idea of continuous pole placement algorithm proposed by

Michiels et. al. in [41] is to shift the unstable modes (in C̄+
0 ) of a retarded time-

delay system to C−0 in a quasi-continuous way by applying small changes to

the static state vector feedback controller parameters. Applied small changes

to the controller parameters depend on the sensitivity of the rightmost modes,

which are desired to be shifted, with respect to the controller parameters. Con-

sider retarded time-delay system Σr which is defined in the previous section.

At first assume that the full state vector x(t) is available for measurement at

time t.

The characteristic function of the closed-loop system, obtained by ap-

plying the static state vector feedback controller u(t) = Kx(t), K ∈ Rp×n, to

the system Σr, is obtained as

φΣ,K(s) = det
[
sI − Ā(s)− B̄(s)K

]
where Ā(s) is defined in (2.3) and B̄(s) is defined in (2.10). Now let si ∈ C be

a solution of the closed-loop characteristic equation φΣ,K(s) = 0. Then,(
siI − Ā(si)− B̄(si)K

)
vi = 0

N(vi) = 1
(2.11)

where vi ∈ Cn is a non-zero vector and N(·) is a normalizing function, for

example one can choose N(v) = v∗v. Let K̃ ∈ Rn̂ be the vector of n̂ :=

pn parameters, k̃1, . . . , k̃n̂, of the static state vector feedback controller K.

Differentiating (2.11) with respect to ψth component k̃ψ (ψ = 1, . . . , n̂) of K̃,

a linear system of n + 1 equations is obtained in the n + 1 unknowns, which

are ∂si/∂kψ and the n components of ∂vi/∂k̃ψ, as follows siI − Ā(si)− B̄(si)K

(
I − ∂Ā(si)

∂si
− ∂B̄(si)

∂si
K

)
vi

∂N(vi)

∂vi
0




∂vi

∂k̃ψ
∂si

∂k̃ψ



=

 B̄(si)
∂K

∂k̃ψ
vi

0

 .
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Assume that k ≤ n̂ modes, s1, . . . , sk, which will be referred to as the

controlled modes, are desired to be shifted towards C−0 . Let Θk be

Θk := [θi,ψ] ∈ Ck×n̂ where θi,ψ :=
∂si

∂k̃ψ
,

which is called sensitivity matrix. Also, let ∆Sdk :=
[
∆sd1 . . . ∆sdk

]T ∈ Ck be

the desired displacement of the k controlled modes. Assuming that ∆Sdk is in

the range space of Θk, the corresponding change ∆K for K can be computed

such that

Θk∆K = ∆Sdk . (2.12)

All elements of ∆K become real by choosing ∆Sdk such that complex-conjugate

modes remain as complex-conjugate pairs or both become real and no real

mode becomes a complex mode unless another real mode becomes its complex-

conjugate. When rank(Θk) = k, a solution to (2.12), with minimal ‖∆K‖, can

be given by

∆K = Θ†k∆S
d
k , (2.13)

where Θ†k is the Moore-Penrose inverse of Θk [42]. In [41], it is indicated that,

with the new controller K + ∆K, the displacement of the controlled modes

will generically not be equal to ∆Sdk , since (2.12) is obtained by linearization.

However, since it is also desirable to have modes close to the desired modes,

(2.13) is generally a good solution of (2.12) for a small ∆Sdk . Furthermore,

when stabilization is of main concern, only the real parts of the complex pairs

need to be controlled. This leads to the modified formula of (2.13),

∆K = Re
(
Θk

)†
Re
(
∆Sdk

)
, (2.14)

where Re
(
∆Sdk

)
is the desired displacement of the real parts of the controlled

modes.

Secondly, assume that not the full state vector x(t), but only the

output y(t) of the system Σr is available for measurement and the µ-modes in

Ωµ(Σr) are observable according to Definition 2.4. As indicated in [1], in order

10



to apply the continuous pole placement method, an observer can be used. It

can be constructed as follows

˙̂x(t) =
σ∑
i=0

(
Aix̂(t− hi) +Biu(t− hi)

)
+ LT

(
σ∑
i=0

(
Cix̂(t− hi)

)
− y(t)

)
where L ∈ Rq×n is the observer gain. Then, by defining the observer error

e(t) := x(t) − x̂(t) and by applying estimated state vector feedback u(t) =

Kx̂(t), K ∈ Rp×n, following equations can be obtained

ẋ(t) =
σ∑
i=0

((
Ai +BiK

)
x(t− hi)−BiKe(t− hi)

)
ė(t) =

σ∑
i=0

((
Ai + LTCi

)
e(t− hi)

) . (2.15)

Characteristic equation of the closed-loop system (2.15) is

det

 sI − Ā(s)− B̄(s)K B̄(s)K

0 sI − Ā(s)− LT C̄(s)

 = 0 .

Because of the block-triangular structure, the separation principle is valid and

the modes of the system (2.15) consist of the controller modes which are the

solutions of

det
(
sI − Ā(s)− B̄(s)K

)
= 0 , (2.16)

and the observer modes which are the solutions of

det
(
sI − Ā(s)− LT C̄(s)

)
= det

(
sI − ĀT (s)− C̄T (s)L

)
= 0 . (2.17)

Thus the continuous pole placement method can be applied once to (2.16) to

obtain the controller gain K and once to (2.17) to obtain the observer gain L.

2.3. Decentralized Control

Contrary to a centralized control system, a decentralized control sys-

tem consists of several independent control agents, each of which measures only

a subset of all the outputs and decides only a subset of all the inputs, so that

the closed-loop system is µ-stable, for some µ ∈ R (normally µ ≤ 0). Back-

ground information and definitions in the area of finite-dimensional systems

decentralized control are stated here.
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Consider stabilizability of a decentralized LTI finite-dimensional sys-

tem Σ with ν control agents which is described as,

ẋ(t) =Ax(t) +
ν∑
j=1

Bjuj(t)

yj(t) =Cjx(t), j ∈ ν̄

(2.18)

where x(t) ∈ Rn is the state vector at time t and uj(t) ∈ Rpj and yj(t) ∈ Rqj

are, respectively, the input and the output vectors at time t, accessible by the

jth control agent (j ∈ ν̄).

Definition 2.5. Consider the decentralized finite-dimensional systemΣ. Finite-

dimensional controller classes of interest are as follows:

1) Kc : the class of centralized static LTI controllers is all the controllers of

the form:

u(t) = Ky(t) , (2.19)

where K ∈ Rp×q for p :=
∑ν

j=1 pj, q :=
∑ν

j=1 qj, and

u(t) :=
[
uT1 (t) · · · uTν (t)

]T
∈ Rp

y(t) :=
[
yT1 (t) · · · yTν (t)

]T
∈ Rq

. (2.20)

2) Ks : the class of decentralized static LTI controllers is all the controllers

of the form:

uj(t) = Kjyj(t) , j ∈ ν̄ , (2.21)

where Kj ∈ Rpj×qj .

3) Kf : the class of decentralized finite-dimensional dynamic LTI controllers

is all the controllers of the form:

żj(t) = Fjzj(t) +Gjyj(t)

uj(t) = Hjzj(t) +Kjyj(t)
, j ∈ ν̄ , (2.22)

where zj(t) ∈ Rmj is the state vector of the jth controller at time t and

Fj, Gj, Hj, and Kj are appropriately sized real constant matrices. When

mj = 0, for all j ∈ ν̄, such a controller reduces to a decentralized static

LTI controller; thus, Ks ⊂ Kf .
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In the stabilization and mode placement, an important notion, that

of fixed modes, play an important role. Set of the fixed modes of the system

Σ with respect to a given controller class is defined as follows.

Definition 2.6. For any given µ ∈ R, the set of µ-fixed modes of the system

Σ with respect to the class of controllers K (where K may be Kc, Ks or Kf )

is defined as

Λµ (Σ,K) := {s ∈ C | Re(s) ≥ µ and φΣ,K(s) = 0, ∀K ∈ K} (2.23)

where φΣ,K(·) is the characteristic function of the closed-loop system obtained

by applying controller K to system Σ defined in (2.18).

For any class of controllers K which includes the zero controller,

Λµ(Σ,K) ⊂ Ωµ(Σ) for any µ ∈ R. Here the zero controller is the controller

which applies uj(t) = 0 (j ∈ ν̄), for all t, independently of yi(t) (i ∈ ν̄). It can

be seen that each of the controller classes, Kc, Ks and Kf , includes the zero

controller. When considering the controller class Kc, these modes are called

µ-centralized fixed modes (µ-CFMs). As for controller classes Ks and Kf , they

are called µ-decentralized fixed modes (µ-DFMs). It was shown in [16] that

Λµ(Σ,Ks) = Λµ(Σ,Kf ). In addition, a necessary and sufficient condition for

µ-stabilizability of the system Σ, is given by the following theorem, which was

presented in [16].

Theorem 2.2. For any µ ∈ R, there exists a decentralized finite-dimensional

LTI dynamic controller, i.e., a controller in class Kf , for the system Σ such

that all the modes of the closed-loop system are contained in C−µ if and only if

Λµ(Σ,Ks) ⊂ C−µ .

Decentralized controller design problem is based on separating the

overall problem into subproblems, where each problem is designing a controller

where only feedback from yj to uj is allowed, j ∈ ν̄. Under this approach,

in the decentralized pole assignment algorithm given in [22], a centralized

controller is designed for each control agent sequentially. Before giving this

13



algorithm, which utilizes Theorem 2.2, let us define the following closed-loop

system structure.

Consider a LTI finite-dimensional decentralized system Σ, which has

ν control agents, S1, . . . , Sν . Suppose that decentralized controllers of the form

(2.22) has been designed for the first k control agents, where k < ν. Define

now the resultant system Σk for the local control agent Sk+1 with input uk+1

and output yk+1 as follows

η̇k(t) = ∆̄kηk(t) + B̄k+1uk+1(t)

yk+1(t) = C̄k+1ηk(t)
(2.24)

where ηk(t) =
[
xT (t) zT1 (t) . . . zTk (t)

]T
∈ Rn+mk with mk =

∑k
j=1 mj,

∆̄k :=


A+

k∑
j=1

BjKjCj B1H1 . . . BkHk

G1C1 F1 . . . 0
...

...
. . .

...

GkCk 0 . . . Fk


,

and

B̄k+1 :=

 Bk+1

0mk×pk+1

 , C̄k+1 :=
[
Ck+1 0qk+1×mk

]
. (2.25)

Main idea of the decentralized pole assignment algorithm is to design

stabilizing agents sequentially for assigning as many modes to C−µ as possible

[22]. Assume that the DFMs of the system Σ are contained in C−µ . Decentra-

lized pole assignment algorithm in [22] is as follows:

Algorithm 2.1. Assume that the control synthesis proceeds in the control

agent order 1, 2, . . . , ν.

1) Using centralized synthesis, design the stabilizing agent S1 for Σ0 so that

all modes of the closed-loop system matrix ∆̄1, except the CFMs of Σ0,

are in C−µ .

2) Using centralized synthesis, design the stabilizing agent S2 for Σ1 so that

all modes of the closed-loop system matrix ∆̄2, except the CFMs of Σ1,

are in C−µ .
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...

κ) Using centralized synthesis, design the stabilizing agent Sκ for Σκ−1 so

that all modes of the closed-loop system matrix ∆̄κ, except the CFMs of

Σκ−1, are in C−µ .

...

ν) Using centralized synthesis, design the stabilizing agent Sν for Σν−1 so

that all modes of the closed-loop system matrix ∆̄ν, except the CFMs of

Σν−1, are in C−µ .

It was proved in [22] that, for almost all control agents S1, . . . , Sν−1,

it is possible to design an agent Sν in step ν, so that the overall system Σν

is µ-stable if and only if the original system Σ does not have any µ-DFMs.

In addition, as remarked in [22], whenever Σκ−1 is µ-stable at step κ, it is

essential for the progress of the algorithm that a stabilizing static LTI controller

uκ(t) = Kκyκ(t), still be applied, where Kκ ∈ Rpκ×qκ . The reason for applying

a static output feedback controller is to make sure that any µ-modes of Σ,

which is not a µ-DFM, is a controllable and observable mode of Σs, for some

s > κ. If such a feedback loop is not closed, some µ-modes may appear as a

CFM in all the remaining steps so that they can not be moved towards C−µ .

Also, in general, the required order of the stabilizing agent Sκ increases as κ

increases [22].

Based on this algorithm, decentralized controller synthesis procedures

for LTI retarded commensurate-time-delay systems will be proposed in Chap-

ter 4.
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3. CHARACTERIZATION OF DFMs FOR

TIME-DELAY SYSTEMS

In this chapter, representation and important properties of decentral-

ized neutral and retarded time-delay systems are given. Then, the DFMs of

considered time-delay systems with respect to different controller classes are

characterized and a necessary and sufficient condition for stabilizability of de-

centralized time-delay systems is presented. Then, the extension of the main

result of [40] to the decentralized case is given.

Consider the stabilization problem of a decentralized LTI neutral time-

delay system Σd with ν control agents described as,

ẋ(t) +
σ∑
i=1

Eiẋ(t− hi) =
σ∑
i=0

(
Aix(t− hi) +

ν∑
j=1

Bj,iuj(t− hi)

)

yj(t) =
σ∑
i=0

Cj,ix(t− hi), j = 1, . . . , ν

(3.1)

where x(t) ∈ Rn is the state vector at time t,, uj(t) ∈ Rpj and yj(t) ∈ Rqj are,

respectively, the input and the output vectors at time t, accessible by the jth

control agent (j ∈ ν̄). Also, Ei (i ∈ σ̄), Ai, Bj,i and Cj,i (i ∈ {0} ∪ σ̄, j ∈ ν̄)

are appropriately sized constant real matrices and 0 = h0 < h1 < · · · < hσ are

time-delays, where σ is the number of distinct time-delays involved. Some of

these delays may be commensurate, while others are incommensurate. When

Ei = 0, for all i ∈ σ̄, the resulting retarded time-delay system will be denoted

by Σd
r .

Definition 3.1. Consider the decentralized neutral time-delay system Σd. De-

fine the class of decentralized LTI time-delay controllers, Kd, which is all the

controllers of the form:

żj(t) =
ρj∑
i=0

(
Fj,izj(t− h̃j,i) +Gj,iyj(t− h̃j,i)

)
uj(t) =

ρj∑
i=0

(
Hj,izj(t− h̃j,i) +Kj,iyj(t− h̃j,i)

) , j ∈ ν̄, (3.2)

where zj(t) ∈ Rmj is the state vector at time t and 0 = h̃j,0 < h̃j,1 < . . . < h̃j,ρj

are the time-delays of the jth controller where ρj ∈ N is the number of distinct
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time-delays involved in the jth controller. Also, Fj,i, Gj,i, Hj,i, and Kj,i are

appropriately sized real constant matrices. When ρj = 0, for all j ∈ ν̄, such a

controller reduces to a decentralized finite-dimensional dynamic LTI controller;

thus, Kf ⊂ Kd where Kf is defined in Definition 2.5.

Similar to the finite-dimensional control classes Ks and Kf which are

defined in Definition 2.5, for any given µ ∈ R, the set of µ-DFMs of the system

Σd with respect to Kd is defined as

Λµ

(
Σd,Kd

)
:=
{
s ∈ C | Re(s) ≥ µ and φΣd,K(s) = 0, ∀K ∈ Kd

}
. (3.3)

Also, for the controller class Kd, Λµ(Σd,Kd) ⊂ Ωµ(Σd) for any µ ∈ R.

For a retarded time-delay system Σd
r , it is indicated in [38] that s0 ∈

Ωµ(Σd
r) is not a µ-CFM if and only if it is both controllable and observable.

Although the proof of this result was presented only for retarded time-delay

systems, it is also valid for neutral time-delay systems as Σd. In order to deter-

mine Λµ(Σd
r ,Ks), a numerical procedure, which was originally proposed in [16]

for finite-dimensional systems and presented for retarded time-delay systems

in [38], may be used. This procedure gives the desired set with probability

1. As an alternative, an algebraic test, which was originally proposed in [19]

for finite-dimensional systems and presented for retarded time-delay systems

in [38], may also be used to determine Λµ(Σd
r ,Ks). Advantage of this test over

the numerical procedure is the certainty of the given set. Also, in [39], it is

stated that this test can also be used for neutral time-delay systems at least

in the case when Ωµ(Σd) is a finite set. The algebraic test is given by the

following lemma.

Lemma 3.1. Let Re(s0) ≥ µ. s0 ∈ Λµ

(
Σd,Ks

)
if and only if there exists k ∈

{0} ∪ ν̄ and {i1, . . . , ik} ⊂ ν̄, where i1, . . . , ik are distinct, such that

rank


Ā(s0)− s0Ē(s0) B̄i1(s0) · · · B̄ik(s0)

C̄ik+1
(s0) 0 · · · 0

...
...

. . .
...

C̄iν (s0) 0 · · · 0

 < n (3.4)
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where {ik+1, . . . , iν} := ν̄ \ {i1, . . . , ik} and

B̄j(s) :=
σ∑
i=0

Bj,ie
−shi , C̄j(s) :=

σ∑
i=0

Cj,ie
−shi . (3.5)

It should be noted that, when k = ν (in which case {i1, . . . , ik} = ν̄

and {ik+1, . . . , iν} = ∅) this test becomes a test for controllability and when

k = 0 (in which case {i1, . . . , ik} = ∅ and {ik+1, . . . , iν} = ν̄), it becomes a test

for observability of a mode which were given in Definition 2.4. It is also worth

to note that, since Λµ(Σd,Ks) ⊂ Ωµ(Σd), this test need to be applied only for

s0 ∈ Ωµ(Σd). For Σd
r , Ωµ(Σd

r) is a finite set and this test need to be applied for

finitely many s0. However, for Σd, if Ωµ(Σd) is not a finite set, this test need

to be applied for infinitely many s0 to determine Λµ(Σd,Ks).

Now some important lemmas are presented below.

Lemma 3.2. For any given µ ∈ R, Λµ

(
Σd,Ks

)
= Λµ

(
Σd,Kf

)
.

Proof. Λµ

(
Σd
r ,Ks

)
⊂ Λµ

(
Σd
r ,Kf

)
was proved in [38] and the proof for the

system Σd is similar and it is as follows.

Let s0 ∈ Λµ(Σd,Ks). Then, from Lemma 3.1, there exists k ∈ {0} ∪ ν̄

and {i1, . . . , ik} ⊂ ν̄ such that

rank


Ā(s0)− s0Ē(s0) B̄i1(s0) · · · B̄ik(s0)

C̄ik+1
(s0) 0 · · · 0

...
...

. . .
...

C̄iν (s0) 0 · · · 0

 < n (3.6)

where {ik+1, . . . , iν} := ν̄ \ {i1, . . . , ik}. Then, consider a controller K̃ ∈ Kf ,

described as in (2.22). Characteristic function of the closed-loop system is

given by φΣd,K̃(s) = det(Φ(s)) = 0 where Φ(s) is the the characteristic matrix

of the closed-loop system given as

Φ(s) =



sĒ(s)− Ā(s)−
ν∑
j=1

B̄j(s)KjC̄j(s) −B̄1(s)H1 . . . −B̄ν(s)Hν

−G1C̄1(s) sIm1 − F1

...
. . .

−GνC̄ν(s) sImν − Fν


.
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Now, assume that s0 /∈ Λµ(Σd,Kf ) which means that, φΣd,K̃(s0) 6= 0 for some

K̃ ∈ Kf . By arranging the rows and columns of Φ(s), this means that, for

some K̃ ∈ Kf ,

rank
(

Φ(s0)
)

= rank





M̄(s0) −B̄i1(s0)Hi1 · · · −B̄ik(s0)Hik

−Gik+1
C̄ik+1

(s0) 0 · · · 0
...

...
. . .

...

−Giν C̄iν (s0) 0 · · · 0

−Gi1C̄i1(s0) sImi1 − Fi1 0
...

. . .

−GikC̄ik(s0) 0 sImik − Fik

−B̄ik+1
(s0)Hik+1

. . . −B̄iν (s0)Hiν

sImik+1
− Fik+1

0
. . .

0 sImiν − Fiν
0 . . . 0
...

. . .
...

0 . . . 0




= n+m

where m =
∑ν

j=1mij and M̄(s) := sĒ(s) − Ā(s) −
∑ν

j=1 B̄j(s)KjC̄j(s). By

deleting last mi1 + · · ·+mik rows and last mik+1
+ · · ·+miν columns, following

inequality can be written

rank
(

Φ(s0)
)
≤ m

+ rank




M̄(s0) −B̄i1(s0)Hi1 · · · −B̄ik(s0)Hik

−Gik+1
C̄ik+1

(s0) 0 · · · 0
...

...
. . .

...

−Giν C̄iν (s0) 0 · · · 0



 .

This inequality can also be written as follows

rank
(

Φ(s0)
)
≤ m+ rank




In −B̄ik+1

Kik+1
. . . −B̄iνKiν

0 −Gik+1
0

...
. . .

0 0 −Giν


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
s0Ē(s0)− Ā(s0) B̄i1(s0) · · · B̄ik(s0)

C̄ik+1
(s0) 0 · · · 0

...
...

. . .
...

C̄iν (s0) 0 · · · 0




In 0 . . . 0

−Ki1C̄i1(s0) −Hi1 0
...

. . .

−Kik C̄ik(s0) 0 −Hik




and this yields

rank
(

Φ(s0)
)
≤ m+ rank




s0Ē(s0)− Ā(s0) B̄i1(s0) · · · B̄ik(s0)

C̄ik+1
(s0) 0 · · · 0

...
...

. . .
...

C̄iν (s0) 0 · · · 0



 .

Then, from (3.6), for all K̃ ∈ Kf , rank (Φ(s0)) < n + m. This result is in

contradiction with (3.7). So, by contradiction, Λµ(Σd,Ks) ⊂ Λµ(Σd,Kf ).

Also, since Ks ⊂ Kf , a mode which can not be moved by any con-

troller in Kf , can not be moved by any controller in Ks. Thus, Λµ

(
Σd,Ks

)
⊃

Λµ

(
Σd,Kf

)
.

Lemma 3.3. For any given µ ∈ R, Λµ

(
Σd,Kf

)
= Λµ

(
Σd,Kd

)
.

Proof. Consider the system Σd and a controller K ∈ Kd, described as in (3.2).

Let m =
∑ν

j=1 mj and define

{ĥ0, . . . , ĥρ} :=
ν⋃
j=1

{h̃j,0, . . . , h̃j,ρj} ,

where ĥ0 = 0 and ĥ1, . . . , ĥρ are all non-zero and distinct, and ρ is the number

of distinct time-delays involved in all control agents. Next define

F̂j,i :=

 Fj,k , if ĥi = h̃j,k

0mj , if ĥi 6∈ {h̃j,0, . . . , h̃j,ρj}

and

F̂i = bdiag
[
F̂1,i, . . . , F̂ν,i

]
, i ∈ {0} ∪ ρ̄ .

Ĝi, Ĥi, and K̂i can be defined similarly. Then, let

K̂e
i :=

 K̂i Ĥi

Ĝi F̂i


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and K̂e(s) :=
∑ρ

i=0 e
−sĥiK̂e

i . Also, define

Êe(s) :=

 Ē(s) 0

0 0m

 , Âe(s) :=

 Ā(s) 0

0 0m

 ,

and

Ĉe(s) :=

 C̄(s) 0

0 Im

 , B̂e(s) :=

 B̄(s) 0

0 Im

 ,

where Ē(s), Ā(s) are defined in (2.3) and

B̄(s) :=
[
B̄1(s) . . . B̄ν(s)

]
, C̄(s) :=

[
C̄T

1 (s) . . . C̄T
ν (s)

]T
where B̄j(s) and C̄j(s) (j ∈ ν̄) are defined in (3.5). Then, the characteristic

function of the closed-loop system is given by

φΣd,K(s) = det
[
sÊe(s)− Âe(s)− B̂e(s)K̂e(s)Ĉe(s)

]
.

Now, consider s0 ∈ Λµ

(
Σd,Kf

)
. Then,

det
[
s0Ê

e(s0)− Âe(s0)− B̂e(s0)K̂e
0Ĉ

e(s0)
]

= 0 (3.7)

for any K̂e
0 ∈ R(m+p)×(m+q) with the above defined structure. However, since

s0 is fixed, K̂e(s0) is also a fixed matrix which has the same structure as K̂0,

except that K̂e
0 is assumed to be real, whereas K̂e(s0) may be non-real for a

non-real s0. However, if (3.7) holds for all real K̂0 with a given structure, then

it should also hold for all complex K̂0 with the same structure. This implies

that φΣd,K(s0) = 0. Thus Λµ

(
Σd,Kf

)
⊂ Λµ

(
Σd,Kd

)
. On the other hand,

since Kf ⊂ Kd, a mode which can not be moved by any controller in Kd, can

not be moved by any controller in Kf . Thus, Λµ

(
Σd,Kf

)
⊃ Λµ

(
Σd,Kd

)
.

Lemma 3.4. For any given µ ∈ R, Λµ

(
Σd,Ks

)
= Λµ

(
Σd,Kf

)
= Λµ

(
Σd,Kd

)
.

Proof. Follows from Lemmas 3.2 and 3.3.

It was established in [16] that a necessary and sufficient condition

for stabilizability of a LTI decentralized finite-dimensional dynamic system

by controllers in Kf is that the system should not have any DFMs in C̄+
0 .
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Also, it was shown in [38] that a necessary and sufficient condition for µ-

stabilizability of a LTI retarded time-delay system Σd
r , by controllers in Kf is

that the system should not have µ-DFMs with respect to the controller class

Ks. This condition was generalized for time-delay controllers characterized by

Kd in [39] and it was shown that the necessity of this condition also continues

to hold for LTI neutral time-delay systems as Σd. For the sufficiency of this

condition, the proposed border of the stability region on the complex plane µ

must be greater than or equal to cD + ε for some ε > 0 where cD is defined in

(2.8). Under this assumption, the LTI neutral time-delay system has only a

finite number of modes in C̄+
µ and sufficiency also continuous to hold.

According to these results, the following theorem can be concluded.

Theorem 3.1. For a given µ ∈ R, there exists a µ-stabilizing controller K ∈

Kd for the system Σd if and only if µ ≥ cD+ε for some ε > 0 and Λµ(Σd,Ks) =

∅.

Proof. First consider the closed-loop system obtained by applying a controller

in Kd to Σd. Characteristic equation of the associated delay-difference equa-

tion of the closed-loop system can be given as

det


 In +

σ∑
i=1

Eie
−shi 0

0 Im


 = det

(
In +

σ∑
i=1

Eie
−shi

)
= 0 . (3.8)

Since the modes of the associated delay-difference equations of Σd and of

the closed-loop system are equal, µ-stability of the associated delay-difference

equation of the closed-loop system is equivalent to the µ-stability of the the as-

sociated delay-difference equation of Σd. Then, from Lemma 2.1, there exits a

controller K ∈ Kd which µ-stabilizes the system Σd only if µ ≥ cD+ε for some

ε > 0 where cD is the spectral abscissa, i.e., supremum of of the real parts of the

roots of (3.8). Given this is true, assume that Λµ

(
Σd,Ks

)
6= ∅, so there exists

s0 ∈ Λµ

(
Σd,Ks

)
. Then, according to Lemma 3.4, s0 is also in Λµ

(
Σd,Kd

)
.

This implies that φΣd,K(s0) = 0 for all K ∈ Kd. This means that there is no

µ-stabilizing controller in Kd for the system Σd. Thus, Λµ

(
Σd,Ks

)
= ∅ is a
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necessary condition in order to find a µ-stabilizing controller K ∈ Kd for the

system Σd.

To prove the if part, first note that it was proved by Momeni et.

al. [38] that there exists a 0-stabilizing controller K ∈ Kf for the retarded

time-delay systems as Σd
r , if and only if Λµ(Σ,Ks) = ∅. This result is based

on the main result of Kamen et. al. [40] and also all the arguments there are

also valid for µ-stability instead of 0-stability for any finite real µ. In [40],

it has been shown that a LTI centralized retarded time-delay system can be

stabilized by a LTI time-delay controller if and only if it can be stabilized by a

LTI finite-dimensional controller. Using the results of Emre and Knowles [43]

for neutral time-delay systems, it can be shown that the main result of Kamen

et. al. [40] is also valid for neutral time-delay systems as Σd, which has finitely

many modes in C̄+
µ−ε for some ε > 0. Then, from Theorem 2.1, it can be said

that Σd has finitely many modes in C̄+
µ−ε for some ε > 0, if and only if the

associated delay difference equation (3.8) is µ-stable. This condition can be

achieved by choosing µ ≥ cD + ε for some ε > 0. Also, as it was mentioned

above, the set of the modes of neutral systems has many properties similar to

the retarded case. So under the assumption of µ ≥ cD + ε for some ε > 0,

the if part of the present theorem then follows from the result of Momeni et.

al. [38], since Kf ⊂ Kd.

Based on these results, decentralized counterpart of the main result

of [40] can be obtained as follows.

Corollary 3.1. For a given µ ∈ R, there exists a controller K ∈ Kd which

µ-stabilizes the system Σd, if and only if there exists a controller K ∈ Kf which

µ-stabilizes Σd.
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4. DECENTRALIZED CONTROLLER

DESIGN BY CONTINUOUS POLE

PLACEMENT METHOD

The objective in this chapter is to introduce controller synthesis tech-

niques to design decentralized controllers, so that the closed-loop system is

µ-stable, for some given real µ. In these methods, to remove the fixed-modes

stemming from structural reasons, which will be called as structural fixed

modes, the stabilization algorithms will be applied only to structurally con-

trollable and observable part of the systems. For this reason, all the methods

which will be introduced in this chapter, are for systems with commensurate-

time-delays because a decomposition which gives the structurally controllable

and observable part of a system with incommensurate-time-delays has not

been investigated in the literature. Also, only the stabilization of the retarded

time-delay systems are considered in this chapter. The reason behind this is

that the neutral time-delay systems may have infinitely many µ-modes and

this causes difficulties in finding the µ-modes of these systems. In Section 4.1,

a centralized dynamic output feedback controller synthesis procedure is pro-

posed. In Section 4.2, a decentralized controller synthesis procedure, based on

decentralized pole assignment algorithm and the centralized controller synthe-

sis procedure introduced in Section 4.1, is proposed. In Section 4.3, an observer

based decentralized controller synthesis procedure, based on decentralized pole

assignment algorithm and the continuous pole placement algorithm, for LTI

retarded commensurate-time-delay systems is proposed.

4.1. Centralized Dynamic Output Feedback Controller

Design

As it was mentioned in Section 2.2, continuous pole placement al-

gorithm was originally presented for static state vector feedback controllers.
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However, in decentralized control, the whole state vector is not generally avail-

able to any control agent. Furthermore, using static feedback almost never

produce useful results to control a decentralized time-delay system. The al-

gorithm introduced in the present section is the extension of the continuous

pole placement algorithm to the case of centralized dynamic output feedback

controllers.

Consider a centralized retarded commensurate-time-delay system de-

scribed as

ẋ(t) =
σ∑
i=0

(
Aix(t− hi) +Biu(t− hi)

)
y(t) =

σ∑
i=0

Cix(t− hi)
, (4.1)

where x(t) ∈ Rn, u(t) ∈ Rp and y(t) ∈ Rq are, respectively, the state, the input

and the output vectors at time t and, hi = ih (i ∈ {0}∪ σ̄) are commensurate-

time-delays with a common divisor h > 0. Also, Ai ∈ Rn×n, Bi ∈ Rn×p

and Ci ∈ Rq×n are constant real matrices. In order to obtain a more compact

representation of (4.1), a delay operator τ , can be defined as (τf)(t) := f(t−h)

for any real valued function f of time t. Then, the matrix operators with

elements in R[τ ] can be defined as

A(τ) :=
σ∑
i=0

Aiτ
i , B(τ) :=

σ∑
i=0

Biτ
i , C(τ) :=

σ∑
i=0

Ciτ
i . (4.2)

Then, using the delay operator τ , (4.1) can be compactly represented as

ẋ(t) = A(τ)x(t) +B(τ)u(t)

y(t) = C(τ)x(t)
. (4.3)

Then, consider the LTI centralized finite-dimensional dynamic con-

trollers of the following form:

ż(t) = Fz(t) +Gy(t)

u(t) = Hz(t) +Ky(t)
(4.4)

where z(t) ∈ Rm is the state vector of the controller at time t, and F ∈ Rm×m,

G ∈ Rm×q, H ∈ Rp×m, and K ∈ Rp×q are the matrices of the controller which
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are structured in a canonical form (e.g., see Chapter 6 of [44]). Note that when

the controller dimension m = 0, such a controller reduces to a centralized static

output feedback controller defined in class Kc. Also, by using the controller

matrices, define

Ke :=

 K H

G F

 ∈ R(m+p)×(m+q) .

In [40], it was shown that there exists a µ-stabilizing controller of the form

(4.4) (with sufficiently large dimension) for a system of the form (4.1) if and

only if the system does not have any µ-CFMs. However, in a decentralized

framework, even though the overall system does not have any µ-DFMs, the

system from a particular input channel to the corresponding output channel

may have µ-CFMs. In order to remove µ-CFMs which may be stemming from

structural reasons, this centralized stabilization algorithm should be applied

only to structurally controllable and observable part of the given system. To

identify the structurally controllable and observable part, it is required to

present the following definition and lemma from [45].

Definition 4.1. The system (4.3), equivalently the pair
(
A(·), B(·)

)
, is said

to be structurally controllable if the matrix

[
B(τ) A(τ)B(τ) . . . (A(τ))n−1 B(τ)

]
is full rank over R[τ ]. Also, the system (4.1), equivalently the pair

(
C(·), A(·)

)
,

is said to be structurally observable if the matrix[
CT (τ) AT (τ)CT (τ) . . .

(
AT (τ)

)n−1
CT (τ)

]
is full rank over R[τ ]. Furthermore, the triple

(
C(·), A(·), B(·)

)
is said to be

structurally controllable and observable if the pair
(
A(·), B(·)

)
is structurally

controllable and the pair
(
C(·), A(·)

)
is structurally observable.

Lemma 4.1. Consider the system (4.3). There exist a unimodular trans-

formation matrix T (τ) ∈ Rn×n[τ ] such that the transformed system has the
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following canonical form
ẋco(t)

ẋcō(t)

ẋc̄(t)

 =


Aco(τ) 0 A13(τ)

A21(τ) Acō(τ) A23(τ)

0 0 Ac̄(τ)




xco(t)

xcō(t)

xc̄(t)

+


Bco(τ)

Bcō(τ)

0

u(t)

y(t) =

[
Cco(τ) 0 Cc̄(τ)

]

xco(t)

xcō(t)

xc̄(t)



(4.5)

where the triple
(
Cco(·), Aco(·), Bco(·)

)
is structurally controllable and observ-

able. Furthermore, the system (4.3) is zero-state equivalent to the system

ẋco(t) = Aco(τ)xco(t) +Bco(τ)u(t)

y(t) = Cco(τ)xco(t)
(4.6)

which is both structurally controllable and observable.

Proof. See [45].

The system (4.6) will be referred as the structurally controllable and

observable part of the system (4.3). The modes of the rest of the system, i.e.,

the roots of

det

 sI − Ācō(s) −Ā23(s)

0 sI − Āc̄(s)

 = 0 , (4.7)

will be called structural fixed modes of the system where Ācō(s), Ā23(s) and

Āc̄(s) are respectively obtained from the operator matrices Acō(τ), A23(τ), and

Ac̄(τ), appearing in (4.5), by replacing the operator τ by the function e−hs.

Note that, any structural fixed mode is a CFM of the original system (4.1).

Unlike, finite-dimensional systems, the structurally controllable and observable

part may still have fixed modes, which are also CFMs of the original system

(4.1). These modes will be called unstructural fixed modes.

During the continuous pole placement algorithm, when a controlled

mode approaches to a fixed mode, the sensitivity of the controlled mode with

respect to changes in the controller parameters become considerably small

27



and this causes very large changes in the controller parameters even for very

small desired displacements for the controlled modes. This is one of the major

reasons for the failure of the continuous pole placement algorithm. By using

the transformation given in Lemma 4.1, structural CFMs can be separated

from the system. Thus, this problem will be avoided for structural CFMs by

using only the structurally controllable and observable part in the stabilization

algorithm instead of the whole system. However, even if such a decomposition

is done, there may exist unstructural µ-CFMs in the structurally controllable

and observable part of the system. It should be noted that, presence of a real

unstructural µ-CFM on the left side of any real controlled mode may result in

the failure of the stabilization algorithm. Because, when only the real parts of

modes are controlled, approach of a real mode to an unstructural µ-CFM may

cause sensitivity matrices with considerably small norms which result in very

large changes in the controller parameters. Also, a similar situation may occur

for any real transmission zero in C̄+
µ , which are located on the left side of any

real controlled mode. Similar to the previous case, when only the real parts of

modes are controlled, approach of a real mode to a real transmission zero in C̄+
µ

may also cause sensitivity matrices with considerably small norms. In order to

avoid these situations, define a set Ψµ which contains all the real unstructural

µ-CFMs and real transmission zeros in C̄+
µ . If Ψµ is not an empty set, while

moving the controlled modes towards C−µ , they must be forced to go around

any member of Ψµ. That is, any real controlled mode on the right side of any

member of Ψµ, must first be combined with another real controlled mode to

form a complex-conjugate pair. Then, one of these modes must first be moved

upwards, and the other one downwards on the complex plane, before moving to

the left, one passing from above, and the other one from below the member of

Ψµ. For this, however, there must exist an even number of real modes between

any two members of Ψµ and to the right of the rightmost member of Ψµ. If the

given system does not satisfy this condition, then controller parameters must

be initialized such that real controller modes are added wherever needed.

Before presenting our algorithm, following definitions are required to
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define the closed loop system structure. First define

Âeco(s) :=

 Āco(s) 0

0 0m

 , B̂e
co(s) :=

 B̄co(s) 0

0 Im

 ,

and

Ĉe
co(s) :=

 C̄co(s) 0

0 Im

 ,

where Āco(s), B̄co(s), and C̄co(s) are respectively obtained from the opera-

tor matrices Aco(τ), Bco(τ), and Cco(τ), appearing in (4.6), by replacing the

operator τ by the function e−hs.

Now consider the controller (4.4) with m̂ := m(p+ q)+pq free param-

eters. Let K̃e ∈ Rm̂ be the vector of the free parameters, k̃e1, . . . , k̃
e
m̂, of the

controller (4.4). Then, the characteristic function of the closed-loop system,

obtained by applying the controller (4.4) to the system (4.6), is then obtained

as

φΣ,K(s) = det
[
sI − Âeco(s)− B̂e

co(s)K
eĈe

co(s)
]
. (4.8)

Therefore, finding a µ-stabilizing controller (4.4) for (4.6) is equivalent to find-

ing a parameter set K̃e ∈ Rm̂ such that all roots of φΣ,K(s) = 0 are in C−µ .

Now, let si ∈ C be a mode of the closed-loop system, i.e., φΣ,K(si) = 0.

Then, (
siI − Âeco(si)− B̂e

co(si)K
eĈe

co(si)
)
vi = 0

N(vi) = 1
(4.9)

where vi ∈ Cnco+m is a non-zero vector, where nco is the dimension of xco

in (4.6), and N(·) is a normalizing function, for example, one can choose

N(v) = v∗v. Differentiating (4.9) with respect to a controller parameter k̃eψ(
ψ = 1, . . . , m̂

)
, a linear system of nco +m+ 1 equations is obtained as follows(

siI − Âeco(si)− B̂e
co(si)K

eĈe
co(si)

) ∂vi

∂k̃eψ

+

(
I − ∂Âeco(si)

∂si
− ∂B̂e

co(si)

∂si
KeĈe

co(si)− B̂e
co(si)K

e∂Ĉ
e
co(si)

∂si

)
vi
∂si

∂k̃eψ

−

(
B̂e
co(si)

∂Ke

∂k̃eψ
Ĉe
co(si)

)
vi = 0
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and (
∂N(vi)

∂vi

)
∂vi

∂k̃eψ
= 0 ,

with nco +m+ 1 unknowns, where the unknowns are ∂si/∂k̃
e
ψ and the nco +m

components of ∂vi/∂k̃
e
ψ.

Assume that the modes s1, . . . , sk (k ≤ m̂) are desired to be shifted

towards C−µ . In the sequel these modes will be referred to as the controlled

modes. Now define the sensitivity matrix Θk as follows

Θk := [θi,ψ] ∈ Ck×m̂ where θi,ψ :=
∂si

∂k̃eψ
. (4.10)

Let ∆S̃dk :=
[
∆sd1 . . . ∆sdk

]T ∈ Ck be the desired displacement of the k con-

trolled modes. Assuming that ∆S̃dk is in the range space of Θk, the correspond-

ing change ∆K̃e for K̃e can be computed from

Θk∆K̃
e = ∆S̃dk . (4.11)

We note that ∆S̃dk must be chosen such that all elements of ∆K̃e are real. This

is achieved by choosing ∆S̃dk such that complex-conjugate modes remain as

complex-conjugate or both become real and no real mode becomes a complex

mode unless another real mode becomes its complex-conjugate. As in [41],

when rank(Θk) = k, a solution to (4.11), with minimal ‖∆K̃e‖, is given by

∆K̃e = Θ†k∆S̃
d
k , (4.12)

where Θ†k is the Moore-Penrose inverse of Θk (see [42]).

Now the basic algorithm for designing a centralized dynamic output

feedback controller, is as follows.

Algorithm 4.1. Centralized dynamic output feedback controller design algo-

rithm by continuous pole placement method

1) Initialize controller dimension m (see Remark 4.1 below).

2) Initialize K̃e ∈ Rm̂, where m̂ = m(p+ q) + pq (see Remark 4.1 below).
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3) Compute (e.g., by the method proposed in [46]) the roots of (4.8) with

real parts greater than or equal to (µ− ε) for some ε > 0. If there are no

roots with real parts greater than or equal µ, stop: µ-stability is achieved

with the current K̃e. Otherwise, let η be the real part of the rightmost

root and k be the number of roots with real part greater than or equal to

η − ε (note that k ≥ 1). If k > m̂, increase m so that k ≤ m̂ and go to

step 2. Otherwise, define the rightmost k roots as the controlled modes

and continue with step 4.

4) Compute the sensitivity matrix, Θk, defined in (4.10). Let ρ := rank (Θk).

5) If ρ = k, choose the desired displacement of the k controlled modes,

∆S̃dk , such that all k controlled modes move towards C−µ (see Remark 4.2

below). Compute ∆K̃e by (4.12) and go to step 7.

6) If ρ < k, check if a ∆S̃dk in the range space of Θk can be chosen so that

all k controlled modes move towards C−µ (see Remark 4.2 below). If so,

using this ∆S̃dk , compute a suitable ∆K̃e which satisfies (4.11) and go to

step 7. Otherwise, increase the controller dimension m by one and go to

step 2.

7) Update K̃e as K̃e + ∆K̃e and go to step 3.

Remark 4.1. If the set Ψµ is empty, initialize the controller dimension as m =

0 and the vector of the free controller parameters as K̃e = 0m̂×1. Otherwise,

initialize appropriate controller dimension and parameters to make sure that

there exists an even number of real modes on the right side of the rightmost

member of Ψµ and between any two members of Ψµ.

Remark 4.2. If the set Ψµ is not empty, desired displacements of the con-

trolled modes must first be chosen to form complex-conjugate pairs by com-

bining the real controlled modes on the right side of any member of Ψµ.

Then, for each complex-conjugate pair, by choosing the desired displacements

in complex-conjugate pairs, one of the modes forming the pair must first be

moved upwards, and the other one downwards on the complex plane, before
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moving towards C−µ , one passing from above, and the other one from below

any member of Ψµ.

4.2. Decentralized Controller Design

The objective in this section is to design µ-stabilizing decentralized

controllers for the system described as

ẋ(t) =
σ∑
i=0

(
Aix(t− hi) +

ν∑
j=1

Bj,iuj(t− hi)

)

yj(t) =
σ∑
i=0

Cj,ix(t− hi), j ∈ ν̄
(4.13)

where x(t) ∈ Rn is the state vector at time t, uj(t) ∈ Rpj and yj(t) ∈ Rqj are,

respectively, the input and the output vectors at time t, accessible by the jth

control agent (j ∈ ν̄). The matrices Ai ∈ Rn×n, Bj,i ∈ Rn×pj and Cj,i ∈ Rqj×n

are constant real matrices and hi = ih, (i ∈ {0} ∪ σ̄), are commensurate-time-

delays with a common divisor h > 0. Similar to (4.3), using the delay operator

τ , this system can be compactly represented as

ẋ(t) =A(τ)x(t) +
ν∑
j=1

Bj(τ)uj(t)

yj(t) =Cj(τ)x(t), j ∈ ν̄

, (4.14)

where

Bj(τ) := Bj,0 +
σ∑
i=1

Bj,iτ
i, Cj(τ) := Cj,0 +

σ∑
i=1

Cj,iτ
i,

for j ∈ ν̄, and A(τ) is defined in (4.2).

The controllers which are considered in this section are in class Kf ,

described as (2.22). Now suppose that decentralized controllers of the form

(2.22) has been designed for the first k control agents, where k < ν. Let

mk =
∑k

j=1mj, p
k =

∑k
j=1 pj, q

k =
∑k

j=1 qj and define

B̂k(τ) :=
[
B1(τ) . . . Bk(τ)

]
, Ĉk(τ) :=

[
CT

1 (τ) . . . CT
k (τ)

]T
,

and

Âek(τ) :=

 A(τ) 0

0 0mk

 , B̂e
k(τ) :=

 B̂k(τ) 0

0 Imk

 , Ĉek(τ) :=

 Ĉk(τ) 0

0 Imk

 .
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Also, define the controller matrix

K̂e
k :=

 K̂k Ĥk

Ĝk F̂k

 ∈ R(mk+pk)×(mk+qk) , (4.15)

where

F̂k := bdiag (F1, . . . , Fk) , Ĝk := bdiag (G1, . . . , Gk) ,

Ĥk := bdiag (H1, . . . , Hk) , K̂k := bdiag (K1, . . . , Kk) .
(4.16)

Then, the resultant system, Σk, for the (k+1)th local control agent, with input

uk+1 and output yk+1, is described by

ξ̇k(t) =
(
Âek(τ) + B̂e

k(τ)K̂e
kĈ

e
k(τ)

)
ξk(t) +

 Bk+1(τ)

0mk×pk+1

uk+1(t)

yk+1(t) =
[
Ck+1(τ) 0qk+1×mk

]
ξk(t)

(4.17)

where ξk(t) :=
[
xT (t) zT1 (t) . . . zTk (t)

]T
∈ Rn+mk . Since Σk is a central-

ized control system for k = 0, . . . , ν − 1, as in Lemma 4.1, Σk can be decom-

posed. Structurally controllable and observable part of Σk will be denoted by

Σco
k .

Now the basic algorithm for designing a µ-stabilizing overall decen-

tralized controller for the system (4.14), is as follows.

Algorithm 4.2. Decentralized dynamic output feedback controller design al-

gorithm by output continuous pole placement method

1) Fix upper limits, m̃1, . . . , m̃ν, on the dimensions of the decentralized con-

trollers.

2) Let k = 0.

3) If Σco
k is µ-stable, let mk+1 = 0 and choose a random non-zero Kk+1 ∈

Rpk+1×qk+1 such that the closed-loop system obtained by applying the static

output feedback uk+1(t) = Kk+1yk+1(t) to Σco
k is µ-stable (by the conti-

nuity of the modes with respect to the feedback gains, there exists such a

Kk+1 - see [47]) and go to step 5. Otherwise, continue with step 4.
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4) Apply Algorithm 4.1 to Σco
k to design a controller of the form (2.22) with

j = k + 1 of dimension not greater than m̃k+1 to µ-stabilize it. If such

a controller can not be designed, use the last controller with dimension

m̃k+1 which moves as many controlled modes as possible towards C−µ .

5) If k = ν − 1, go to step 6. Otherwise, set k = k + 1 and go to step 3.

6) If the overall closed-loop system Σν is µ-stable, stop: the desired de-

centralized controller has been obtained. Otherwise, increase the upper

limits, m̃1, . . . , m̃ν, and go to step 2.

This algorithm is an extension of the decentralized pole assignment

algorithm of Davison and Chang [22] to the time-delay case. In the algorithm,

the extension of the continuous pole placement algorithm, which is given by

Algorithm 4.1, is used as the centralized controller design algorithm at each

step. To avoid using unnecessarily high-dimensional controllers for the lower

indexed control agents, in the first step, upper limits on the dimensions of the

decentralized controllers are defined. In the third step, even if the resultant

system is stable, it is essential to apply a µ-stabilizing controller. It is indicated

in [22] that if at least a static output feedback loop is not closed at each step,

some µ-modes of the overall system may not appear as the modes of Σco
k in

the remaining steps, even if they are not µ-DFMs. So the reason for applying

a static output feedback controller in the third step, whenever Σco
k is µ-stable,

is to make sure that any µ-mode of the system (4.13), which is not a µ-DFM,

appears as a mode of Σco
s for some s > k, so that, it can be moved towards C−µ

in a later step.

4.3. Observer Based Decentralized Controller Design

As it was mentioned above, in decentralized control, the whole state

vector is not generally available to any control agent and each agent mea-

sures only a subset of all the outputs. Therefore, in Section 4.1, an extension

of the continuous pole placement algorithm to the case of dynamic output
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feedback controllers was introduced to be used as a centralized controller syn-

thesis procedure in the decentralized pole assignment algorithm. On the other

hand, instead of this algorithm, static state vector feedback controller based

continuous pole placement method can also be used in the decentralized pole

assignment algorithm by constructing observers at each step of the algorithm.

As discussed in Section 4.1, when only the real parts of the modes are con-

trolled in the continuous pole placement algorithm, approach of a real mode

to a member of Ψµ, which contains all the real unstructural µ-CFMs and real

transmission zeros in C̄+
µ , may cause sensitivity matrices with considerably

small norms which may result in very large changes in controller parameters.

Unlike the algorithm introduced in the previous section, the algorithm in this

section is not able to overcome this problem without adding some additional

dynamics to the system. Therefore, for this algorithm it is assumed that if Ψµ

is not an empty set, all the modes on the right of any member are formed as

complex-conjugate pairs or there are an even number of real modes, which can

be formed as complex-conjugate pairs, on the right of the rightmost member of

Ψµ or between any two members of Ψµ. Also, it should be noted that, as indi-

cated in the previous section, in some steps of the decentralized pole assignment

algorithm, systems seen by the control agents can be stable. In such a case, be-

cause of the reasons mentioned in the previous section, a feedback loop should

be closed. But instead of an observer based state vector feedback controller, a

stabilizing static output feedback controller, uj(t) = K̃jyj(t), K̃j ∈ Rpj×qj , can

be designed. Also, as it was indicated in the previous section, even though the

overall system does not have any µ-DFMs, the system from a particular input

channel to the corresponding output channel may have µ-CFMs. Thus, firstly

at each step, system should be decomposed as in Lemma 4.1 to remove the

structural CFMs. Then, only structurally controllable and observable part of

the system will be taken in the controller and observer synthesis at each step.

As in Section 4.2, assume that the first k control agents has been de-

signed, where k < ν. Then, by applying these k control agents to the system

Σ, the resultant system Σk for the (k + 1)th local control agent with input
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uk+1(t) and output yk+1(t) is obtained. As in Lemma 4.1, Σk can be decom-

posed and its structurally controllable and observable part can be obtained.

Let the structurally controllable and observable part, Σco
k , of Σk be as follows

ẋcok (t) = ∆co
k (τ)xcok (t) +Bco

k+1(τ)uk+1(t)

yk+1(t) = Cco
k+1(τ)xcok (t)

where xcok ∈ Rncok is the structurally controllable and observable part of the

state vector of Σk, with dimension ncok , and ∆co
k (τ) is the structurally control-

lable and observable part of the dynamics matrix ∆k(τ) of the system Σk. An

observer based state vector feedback for Σco
k can be obtained as

˙̂xcok (t) = ∆co
k (τ)x̂cok (t) +Bco

k+1(τ)uk+1(t)

+ LTk+1

(
Cco
k+1(τ)x̂cok (t)− yk+1(t)

)
uk+1(t) = Kk+1x̂

co
k (t)

(4.18)

where x̂cok (t) ∈ Rncok is the estimated state vector at time t, Kk+1 ∈ Rpk+1×ncok is

the controller gain and Lk+1 ∈ Rqk+1×ncok is the observer gain matrices. Then,

by defining the state vector estimation error for this observer as ek(t) :=

xcok (t) − x̂cok (t) and applying the estimated state vector feedback, following

equations can be obtained

ẋcok (t) =
(
∆co
k (τ) +Bco

k+1(τ)Kk+1

)
xcok (t)−Bco

k+1(τ)Kk+1ek(t)

ėk(t) =
(

∆co
k (τ) + LTk+1C

co
k+1(τ)

)
ek(t)

. (4.19)

Characteristic equation of (4.19) can be written as

det

 sIncok − ∆̄co
k (s)− B̄co

k+1(s)Kk+1 B̄co
k+1(s)Kk+1

0ncok sIncok − ∆̄co
k (s)− LTk+1C̄

co
k+1(s)

 = 0

where the Laplace transform of the operator matrices can be obtained by

replacing the operator τ by the function e−hs. Because of the block-triangular

structure, the modes of (4.19) consist of the controller modes which are the

solutions of

det
(
sIncok − ∆̄co

k (s)− B̄co
k+1(s)Kk+1

)
= 0 , (4.20)

and the observer modes which are the solutions of
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det
(
sIncok − ∆̄co

k (s)− LTk+1C̄
co
k+1(s)

)
= det

(
sIncok −

(
∆̄co
k (s)

)T − (C̄co
k+1(s)

)T
Lk+1

)
= 0

. (4.21)

Thus the continuous pole placement method need to be applied once to (4.20)

to obtain the controller gain Kk+1 and once to (4.21) to obtain the observer

gain Lk+1.

Now the basic algorithm, for designing µ-stabilizing decentralized con-

trollers for the system (4.14), is as follows.

Algorithm 4.3. Observer based decentralized controller design algorithm

1) Let k = 0.

2) If Σco
k is µ-stable, choose a random non-zero K̃k+1 ∈ Rpk+1×qk+1 such that

the closed-loop system obtained by applying the static output feedback

uk+1(t) = K̃k+1yk+1(t) to Σco
k is µ-stable and go to step 4. Otherwise,

continue with step 3.

3) Apply the continuous pole placement method once to (4.20) to obtain

the controller gain Kk+1 and once to (4.21) to obtain the observer gain

Lk+1. If stabilizing gain matrices can not be found, use the controller and

observer gains which move as many controlled modes as possible towards

C−µ . Then, apply the resulting observer based controller (4.18) to Σco
k .

4) If k = ν − 1, go to step 5. Otherwise, set k = k + 1 and go to step 2.

5) If the overall closed-loop system Σν is µ-stable, stop: the desired decen-

tralized observer based controller has been obtained. Otherwise repeat the

algorithm by trying to design different observer based control agents or

control agents which apply dynamic output feedback in step 3.

Similar to Algorithm 4.2, this algorithm is also an extension of the

decentralized pole assignment algorithm to the time-delay case. In the algo-

rithm, depending on the stability of the system at each step, controller agents

which apply observer based state vector feedback or static output feedback,
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are designed by a centralized controller design algorithm. Similar to Algo-

rithm 4.2, the reason behind applying static output feedback controllers even

if the resultant system is stable is to make sure that any µ-mode of the system

(4.13), which is not a µ-DFM, appears as a mode of Σco
s for some s > k, so

that, it can be moved towards C−µ in a later step. A µ-stabilizing decentralized

controller can be designed by this algorithm if a µ-stabilizing control agent,

which applies observer based state vector feedback, can be designed at each

step that requires observer based state vector feedback. Otherwise, designing a

µ-stabilizing decentralized controller by this algorithm can not be guaranteed.
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5. EXAMPLES

In this chapter, we will present two examples in order to illustrate the

design approaches proposed in Section 4.2 and Section 4.3. In the following

example, a decentralized controller is designed by using the design approach

proposed in Section 4.2.

Example 5.1. Consider a LTI retarded time-delay system Σ0 described as in

(4.13) with ν = 2, σ = 1, h = h1 = 1,

A0 =


7 9 7 9

0 −1 4 −2

−11 −6 −7 −11

−22 −12 −4 −27

 , A1 =


−4 6 −8 −1

0 4 0 0

5 −3 9 1

10 −6 6 8

 ,

B1,0 =


−4

−3

2

4

 , B1,1 =


2

1

−1

−2

 , B2,0 =


3

0

−3

−5

 , B2,1 =


1

0

−1

−1

 ,

C1,0 =
[

0 1 4 −2
]
, C1,1 =

[
1 −1 1 0

]
,

C2,0 =
[

1 −1 2 −0.5
]
, C2,1 =

[
1 0 0 1

]
.

By using the programs of [46], for ε = 1, −ε-modes of the system can

be found as

Ω−ε(Σ) =
{

0.7990, 0.1523,−0.1904± 5.4367i,

− 0.2104± 4.8730i,−0.7049 + 11.3571i
}
,

(5.1)

which are plotted in Figure 5.1., using ‘ ∗’. Since the system has two modes,

s1 = 0.7990 and s2 = 0.1523, with non-negative real parts, the system is not

µ-stable for µ = 0. Furthermore, s1 is a CFM for control agent 2 and s2 is

a CFM for control agent 1. Hence, the system is not stabilizable by any one

of the control agents alone. However, neither s1, nor s2 is a DFM, hence,

it is possible to µ-stabilize the system by decentralized feedback. To obtain a

stabilizing decentralized controller, Algorithm 4.2 is applied.
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Figure 5.1.: Open-loop and closed-loop modes of the system in Example 5.1.

In the first phase, structurally controllable and observable part, Σco
0 , of

the system seen by the first control agent is obtained as follows

ẋco1 (t) =

 −1 −9

0 −4

xco1 (t) +

 4 −6

0 1

xco1 (t− 1)

+

 0 3

0 0

xco1 (t− 2) +

 0

1

u1(t)

y1(t) =
[

1 −3
]
xco1 (t) +

[
0 2

]
xco1 (t− 1)

. (5.2)

Then, Algorithm 4.1 is applied to Σco
0 to design a stabilizing controller and for

m = 0, a stabilizing controller can be designed as

u1(t) = 2.60718 y1(t) (5.3)

The progress of the algorithm, i.e., the real parts of the rightmost modes and

the controller parameters as a function of the iterations, is shown in Figure

5.2..
In the second phase, structurally controllable and observable part of

the system seen by the second control agent, Σco
1 , is obtained as follows
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Figure 5.2.: Real parts of the rightmost modes (left) and the controller parameters (right),

as a function of the iterations, for the first control agent of Example 5.1.

ẋco2 =


7 −1.4287 −34.7149 29.8574

0 −8.8215 −27.2862 13.6431

−11 −0.7856 13.8574 −21.4287

−22 −1.5713 37.7149 −47.8574

x
co
2 (t)

+


−14.4287 21.6431 2.4287 −11.4287

−7.8215 14.4287 2.6072 −5.2144

10.2144 −10.8215 3.7856 6.2144

20.4287 −21.6431 −4.4287 18.4287

x
co
2 (t− 1)

+


5.2144 −5.2144 5.2144 0

2.6072 −2.6072 2.6072 0

−2.6072 2.6072 −2.6072 0

−5.2144 5.2144 −5.2144 0

x
co
2 (t− 2)

+


3

0

−3

−5

u2(t) +


1

0

−1

−1

u2(t− 1)

y2(t) =
[

1 −1 2 −0.5
]
xco2 (t) +

[
1 0 0 1

]
xco2 (t− 1)
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For this system, Algorithm 4.1 fails to find a stabilizing controller with di-

mension m = 0. Also based on the controllable canonical form

ż2(t) =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

f1 f2 f3 . . . fm


z2(t) +



0

0
...

0

1


y2(t)

u2(t) =
[
h1 h2 h3 . . . hm

]
z2(t) +

[
k
]
y2(t)

,

Algorithm 4.1 fails to find a stabilizing controller with dimension m = 1, and

m = 2. However, with m = 3, the controller

ż2(t) =


0 1 0

0 0 1

−0.24403 −0.17958 −0.59405

 z2(t) +


0

0

1

 y2(t)

u2(t) =
[
−0.19224 −0.22153 −0.28122

]
z2(t)− 0.0949 y2(t)

(5.4)

is found to stabilize Σco
1 . The progress of the algorithm is shown in Figure 5.3..

The overall closed-loop system, Σ2, following the application of the

decentralized controllers (5.3) and (5.4) to the original system Σ is then ob-

tained. By using the programs of [46], for ε = 1, the −ε-modes of this system

are computed as

Ω−ε(Σ2) =
{
− 0.0508,−0.06406,−0.14947,−0.17236,−0.17413± 0.61987i,

−0.17426± 5.43642i,−0.28966± 5.96136i,−0.58366± 11.76667i,

−0.6897± 11.35471i− 0.88144± 17.80495i
}
,

which are plotted in Figure 5.1. using ’+’. It is seen that the closed-loop system

does not have any modes with non-negative real parts. Hence, the decentralized

controllers (5.3) and (5.4) stabilize the given system.

Following example is provided here to illustrate the design approach

proposed in Section 4.3.

Example 5.2. Consider the same LTI retarded time-delay system Σ0 described

in Example 5.1. For ε = 1, −ε-modes of the system Σ0 is given in (5.1)
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Figure 5.3.: Real parts of the rightmost modes (left) and the controller parameters (right),

as a function of the iterations, for the second control agent of Example 5.1.

and they are plotted in Figure 5.4., using ‘ ∗’. As mentioned in the previous

example, it can be verified that the system Σ0 is not stabilizable by any one

of the control agents alone. However, the system does not have any unstable

DFMs, hence it can be possible to find a stabilizing decentralized feedback. To

obtain a decentralized controller, the procedure in Algorithm 4.3 is used.

In the first phase, structurally controllable and observable part, Σco
0 ,

of the system seen by the first control agent is obtained as in (5.2). Then, the

continuous pole placement algorithm is applied once to obtain the controller

gain K1 and once to obtain the observer gain L1. At the end of the procedure,

controller gain K1 is obtained as

K1 =
[

20.5113 −28.3535
]
,

and the observer gain L1 is obtained as

L1 =
[
−43.1485 0.5327

]
.

The observer based controller for Σco
0 is obtained as follows
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Figure 5.4.: Open-loop and closed-loop modes of the system in Example 5.2.

˙̂xco1 (t) =

 −1 −9

0 −4

 x̂co1 (t) +

 4 −6

0 1

 x̂co1 (t− 1)

+

 0 3

0 0

 x̂co1 (t− 2) +

 0

1

u1(t)

+

 −43.1485

0.5327

([ 1 −3
]
x̂co1 (t) +

[
0 2

]
x̂co1 (t− 1)− y1(t)

)
u1(t) =

[
20.5113 −28.3535

]
x̂co1 (t)

.(5.5)

The real parts of the rightmost modes during the continuous pole place-

ment algorithms in the first phase with controller and observer parameters as

a function of the iterations are respectively shown in Figure 5.5. and Figure

5.6..
In the second phase, structurally controllable and observable part Σco

1

of the system Σ1, which is obtained by applying the observer based controller

(5.5) to the system Σ0, is obtained as follows

ẋco2 (t) =


−125.7 59.7 202.5 −155.1

−99.5 37 150.6 −125.1

55.4 −31.3 −104.7 71

110.7 −62.7 −199.5 137.1

x
co
2 (t)
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Figure 5.5.: Real parts of the rightmost modes (left) and the parameters of the controller

gain K1 = [k1 k2] (right) as a function of the iterations of the continuous pole placement

algorithm in Example 5.2.
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Figure 5.6.: Real parts of the rightmost modes (left) and the parameters of the observer

gain L1 = [l1 l2] (right) as a function of the iterations of the continuous pole placement

algorithm in Example 5.2.
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+


144.4 −101.4 −23.7 81

94.7 −70.2 12.7 41

−69.2 50.7 16.8 −40

−138.4 101.4 21.7 −74

x
co
2 (t− 1)

+


−41 41 −41 0

−20.5 20.5 −20.5 0

20.5 −20.5 20.5 0

41 −41 41 0

x
co
2 (t− 2)

+


3

0

−3

−5

u2(t) +


1

0

−1

−1

u2(t− 1)

y2(t) =
[

1 −1 2 −0.5
]
xco2 (t) +

[
1 0 0 1

]
xco2 (t− 1)

Then, continuous pole placement algorithm is applied once to obtain

the controller gain K2 and once to obtain the observer gain L2. At the end of

the procedure, controller gain K2 is obtained as

K2 =
[
−0.893 0.3704 0.77 −1.474

]
,

and the observer gain L2 is obtained as

L2 =
[
−147.5 −71.04 55.58 147.85

]
.

The observer based controller for Σco
1 is obtained as follows

˙̂xco2 (t) =


−125.7 59.7 202.5 −155.1

−99.5 37 150.6 −125.1

55.4 −31.3 −104.7 71

110.7 −62.7 −199.5 137.1

 x̂
co
2 (t)

+


144.4 −101.4 −23.7 81

94.7 −70.2 12.7 41

−69.2 50.7 16.8 −40

−138.4 101.4 21.7 −74

 x̂
co
2 (t− 1)
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+


−41 41 −41 0

−20.5 20.5 −20.5 0

20.5 −20.5 20.5 0

41 −41 41 0

 x̂
co
2 (t− 2)

+


3

0

−3

−5

u2(t) +


1

0

−1

−1

u2(t− 1)

+


−147.5

−71.04

55.58

147.85


([

1 −1 2 −0.5
]
x̂co2 (t)+

+
[

1 0 0 1
]
x̂co2 (t− 1)− y2(t)

)
u2(t) =

[
−0.893 0.3704 0.77 −1.474

]
x̂co2 (t)

. (5.6)

The real parts of the rightmost modes during the continuous pole placement

algorithms in the second phase with controller and observer parameters as a

function of the iterations are respectively shown in Figure 5.7. and Figure 5.8..

By using the programs of [46], for ε = 1, the −ε-modes of the closed-

loop system, obtained by applying observer based controller (5.6) to Σ1, are

computed as

Ω−ε(Σ2) =
{
− 0.5031± 0.2534i, −0.5488± 6.3059i, −0.5624± 12.2662i,

−0.5813± 2.8987i, −0.6018, −0.61, −0.618± 5.222i, −0.6486,

−0.6532± 6.1082i, −0.6683± 18.2687i, −0.6794± 12.2224i,

−0.702± 5.8868i, −0.7207± 18.3383i, −0.7562± 8.776i,

−0.7815± 24.4575i, −0.818± 24.348i, −0.8638± 30.5868i,

−0.9022± 11.8936i, −0.921± 5.8564i, −0.964± 36.7338i,

−0.9716± 30.4884i
}

which are plotted in Figure 5.4. using ’+’. It is seen that the closed-loop system

does not have any modes with non-negative real parts. Hence, the decentralized

observer based controllers stabilize the given system.
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Figure 5.7.: Real parts of the rightmost modes (left) and the parameters of the controller gain

K2 = [k1 k2 k3 k4] (right) as a function of the iterations of the continuous pole placement

algorithm in Example 5.2.
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Figure 5.8.: Real parts of the rightmost modes (left) and the parameters of the observer

gain L2 = [l1 l2 l3 l4] (right) as a function of the iterations of the continuous pole placement

algorithm in Example 5.2.
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In this chapter, stabilizing decentralized controllers for an unstable

retarded commensurate-time-delay system was designed by using Algorithms

4.2 and 4.3. In Example 5.1, the first control agent of the designed decen-

tralized controller applies static output feedback and the second control agent

applies a dynamic output feedback. In Example 5.2, the first and the second

control agents apply observer based state feedback and, as can be seen, the

observer poles were placed slightly farther to the left than the dominant poles

of each resultant system. It should be noted that the spectral abscissas of the

closed-loop systems obtained in the examples are considerably different. The

spectral abscissa of the closed-loop system obtained at the end of Example

5.1 is −0.0508 and the spectral abscissa of the closed-loop system obtained at

the end of Example 5.2 is −0.5031. Compared to Example 5.1, the growth in

the dimension of the designed controllers in Example 5.2 has allowed to get a

better spectral abscissa.
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6. CONCLUSION

In this thesis, stabilization of LTI time-delay systems by decentralized

controllers has been considered. In Chapter 3, in terms of µ-DFMs, necessary

and sufficient conditions for the decentralized stabilizability of LTI time-delay

systems was obtained. To obtain these conditions, it was first shown that

the sets of µ-DFMs of a LTI time-delay system under decentralized static,

dynamic finite-dimensional or dynamic time-delay output feedback controllers

are equivalent. Then it was proved that there exists a µ-stabilizing time-delay

dynamic output feedback controller for a neutral time-delay system if and only

if the proposed border of the stability region on the complex plane µ is greater

than or equal to cD + ε for some ε > 0 (where cD is the spectral abscissa of

the associated delay difference equation) and the system does not have any

µ-DFMs with respect to LTI decentralized static output feedback controllers.

In the light of the obtained results, the decentralized counterpart of the main

result of Kamen et. al. [40] was also obtained. According to this result, a LTI

neutral time-delay system can be µ-stabilized by a decentralized time-delay

dynamic output feedback controller if and only if there exists a µ-stabilizing

decentralized finite-dimensional dynamic output feedback controller for this

system. However, in some cases, there may exist only very high dimensional

stabilizing controllers which require a large number of integrators. In such a

case, it may be possible to design time-delay controllers which require a smaller

number of integrators. Such a time-delay controller may be implemented by

using delay elements besides integrators.

In Chapter 4, decentralized controller design problem for LTI retarded

commensurate-time-delay systems was considered. The reason behind consid-

ering only commensurate-time-delay systems, rather than more general case of

incommensurate-time-delay systems, is that a decomposition such as the one

presented in Lemma 4.1 is required in order to leave the structural fixed modes

out of the controller design problem to avoid a possible failure of the continuous

pole placement algorithm. On the other hand, even if the considered system
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does not have any structural fixed modes, there may still exist unstructural

fixed modes or transmission zeros in C̄+
µ that may cause the failure of the

continuous pole placement algorithm. Among other reasons, to overcome this

problem, in Section 4.1, the extension of the continuous pole placement algo-

rithm to dynamic output feedback controller design was given. Then, using

this centralized controller design algorithm, in Section 4.2, a decentralized con-

troller design algorithm, which is based on the decentralized pole assignment

algorithm, was introduced. Furthermore, in Section 4.3, a decentralized con-

troller design algorithm, which is based on the decentralized pole assignment

algorithm and observer based continuous pole placement algorithm, was intro-

duced. The problems that might be caused by the unstructural fixed modes

and transmission zeros in C̄+
µ , however, were not considered in Section 4.3.

As noted, in order to leave the structural fixed modes out of the con-

troller design problem, a decomposition such as the one presented in Lemma

4.1 is needed. Working on another approach which do not require such a de-

composition can be one of the further research lines. Another further research

line is to develop techniques to overcome the problems that might be caused by

the unstructural fixed modes and transmission zeros in C̄+
µ during the observer

based design proposed in Section 4.3. As another possible further research line,

in the decentralized controller design problem, time-delay controllers can be

considered instead of finite-dimensional controllers. Furthermore, decentrali-

zed controller design problem for LTI neutral time-delay systems is also not

discussed in this thesis. The reason behind this is that the neutral time-delay

systems may have infinitely many µ-modes and this causes difficulties in finding

the µ-modes of these systems. However, in the existence of an approach which

is also capable of finding the µ-modes of neutral time-delay systems, similar to

the algorithms presented here, a decentralized controller design algorithm for

neutral incommensurate-time-delay systems, which has finitely many unstable

modes, may also be obtained.
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[27] A. İftar and Ü. Özgüner. An optimal control approach to the decentral-

ized robust servomechanism problem. IEEE Transactions on Automatic

Control, AC–34:1268–1271, 1989.
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[34] A. İftar. Decentralized robust control of large-scale time-delay systems.

In Proceedings of the 17th IFAC Word Congress, pages 9332–9337, Seoul,

Korea, July 2008.

[35] M. S. Mahmoud and N. B. Almutairi. Decentralized stabilization of inter-

connected systems with time-varying delays. European Journal of Con-

trol, 6:624–633, 2009.

[36] İ. Munyas, Ö. Yelbaşı, E. Biberović, A. İftar, and H. Özbay. Decentralised

robust flow controller design for networks with multiple bottlenecks. In-

54



ternational Journal of Control, 82:95–116, 2009.

[37] A. Momeni and A.G. Aghdam. A necessary and sufficient condition for

stabilization of decentralized time-delay systems with commensurate de-

lays. In Proceedings of the 47th IEEE Conference on Decision and Con-

trol, pages 5022–5029, Cancun, Mexico, 2008.

[38] A. Momeni, A. G. Aghdam, and E. J. Davison. Decentralized fixed modes

for LTI time-delay systems. In Proceedings of the American Control Con-

ference, pages 6593–6599, Baltimore, MD, U.S.A, 2010.
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