

 Markerless Augmented Reality Applications

Fesih KESKİN

Master of Science Thesis

Electrical and Electronics Engineering Program

July 2014

JÜRİ VE ENSTİTÜ ONAYI

Fesih KESKİN’in “Markerless Augmented Reality Applications”

başlıklı Elektrik ve Elektronik Mühendisliği Anabilim Dalındaki, Yüksek

Lisans Tezi 23.07.2014 tarihinde, aşağıdaki jüri tarafından Anadolu Üniversitesi

Lisansüstü Eğitim-Öğretim ve Sınav Yönetmeliğinin ilgili maddeleri uyarınca

değerlendirilerek kabul edilmiştir.

 Adı Soyadı İmza

Üye (Tez Danışmanı) : Prof. Dr. Ömer Nezih GEREK …………..

Üye : Doç. Dr. Serkan GÜNAL …………..

Üye : Yrd. Doç. Dr. Tansu FİLİK …………..

Anadolu Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu’nun

…………….. tarih ve …………….. sayılı kararıyla onaylanmıştır.

Enstitü Müdürü

i

ÖZET

 Yüksek Lisans Tezi

İŞARETÇİSİZ EKLENMİŞ GERÇEKLİK UYGULAMALARI

FESİH KESKİN

Anadolu Üniversitesi

Fen Bilimleri Enstitüsü

Elektrik-Elektronik Mühendisliği Anabilim Dalı

Danışman: Prof. Dr. Ömer Nezih GEREK

2014, 57 sayfa

Eklenmiş gerçeklik bilgisayarda oluşturulan bilgilerin gerçek zamanda

gerçek dünya görünümüne eklenmesi işlemidir. Bilgisayar ortamında oluşturulan

3-boyutlu modellerin, animasyonların, videoların ve çeşitli sanal materyallerin

gerçek dünyada arzu edilen hedef üzerine konumlandırılmasını sağlayan eklenmiş

gerçeklik, gerçek dünyanın zenginleştirilmesini, daha faydalı ve işlevsel hale

getirilmesine izin vermektedir. Bu tez de eklenmiş gerçeklik teknolojisinin nasıl

çalıştığıyla ilgili bilgilendirmekte, uygulama alanlarına göre irdelemekte ve

tarihten bugüne gelişimini özetlemektedir.

Tez Android mobil cihazda çalışan, tamamen işaretçisiz eklenmiş

gerçeklik uygulamasının tasarım ve geliştirilmesini sunar. Bu amaç doğrultusunda

OpenCV bilgisayarlı görü kütüphanesi kullanılarak öznitelik çıkartma ve tanıma,

SURF (hızlandırılmış gürbüz öznitelik çıkarım), işaretçisiz takip etme (doğal

öznitelik izleme) gibi birçok bilgisayarlı görü tekniği kullanılarak çalışıldı. Bunun

yanı sıra OpenGL (açık grafik kütüphanesi) kullanılarak 3-Boyutlu modelleme,

doku giydirme, gölgelendirme vb. ve ayrıca Blender3D ile 3-boyutlu Wavefront

OBJ model dosyaları oluşturuldu.

Son olarak bu tezde, yukarıda bahsedilen yöntemlerden faydalanarak bir

kaç uygulama sunulmuştur. İlk olarak eklenmiş gerçeklik mantığını anlamak için

kamera kalibrasyonu, poz izleme ve işaretçi bazlı eklenmiş gerçeklik

uygulamaları üzerinde çalışıldı, sonrasında algoritmanın hedef izleme kısmı için

Vuforia SDK kullanılarak Android mobil cihaz üzerinde işaretçisiz eklenmiş

gerçeklik uygulaması geliştirildi.

Anahtar Kelimeler: Arttırılmış Gerçeklik, Eklenmiş Gerçeklik, Bilgisayarlı

Görü, Mobil Cihazlar, Android Ara yüz Yazılımı, SURF

ii

ABSTRACT

Master of Science Thesis

MARKERLESS AUGMENTED REALİTY APPLİCATİONS

Fesih KESKİN

Anadolu University

Graduate School of Sciences

Electrical and Electronics Engineering Program

 Supervisor: Prof. Dr. Ömer Nezih GEREK

2014, 57 pages

Augmented Reality (AR) is the process of adding virtual computer

generated information on view of a physical real-world environment in real-time.

AR, which allows adding 3-dimensional models, animations, videos and various

virtual materials which are generated in computer environment to be positioned

on desired targets in the real world, allows for enabling and enriching the real

world more functional and beneficial. In this thesis explains how AR technologies

work, expresses and explains fields of application and gives a summary from

history to present time and also presents a real-life demonstration of Mobile

device-based AR.

Thesis presents contributions for design and development of a fully

working Markerless Augmented Reality Application that works on Android

Mobile devices. For this purpose, were studied on several computer vision

techniques such feature extraction-detection, SURF (Speeded Up Robust

Features), Markerless tracking (Natural feature tracking) by using OpenCV

Computer Vision library. As well as, were done 3D modelling, texturing, shading

etc. by using OpenGL (Open Graphics Library) and also creating Wavefront OBJ

3D model files via Blender 3D.

Finally in this thesis, several applications are presented that make use of

these methods which is mentioned above. Firstly camera calibration, pose tracking

and marker based augmented reality applications were worked for understanding

augmented reality idea, then a markerless augmented reality application were

developed on android mobile device by using Vuforia SDK for target tracking

part of algorithm.

Keywords: Augmented Reality, Computer Vision, Mobile Devices, Android

Software Interface, SURF

iii

ACKNOWLEDGEMENTS

First and foremost I thank my supervisor Ömer Nezih GEREK for

providing to study and complete my M.Sc. I am extremely grateful for our many

discussions which helped guide me in the right direction, his motivating attitude,

his availability as a supervisor and his many insightful suggestions.

And most importantly I would like to thank my wife Fatmanur and my

family for their encouragement and support and for keeping me honest.

 Fesih KESKİN

 July 2014

iv

TABLE OF CONTENTS

ÖZET .. i

ABSTRACT .. ii

ACKNOWLEDGEMENTS .. iii

TABLE OF CONTENTS .. iv

LIST OF ABBREVIATIONS .. vi

INDEX OF FIGURES .. viii

INDEX OF TABLES ... x

1. INTRODUCTION 1

1.1. History of Augmented Reality ... 1

1.2. Motivation and Approach .. 3

1.3. Contributions.. 4

1.4. Thesis Outline .. 5

2. LITERATURE REVIEW AND BACKGROUND 7

2.1. Augmented Reality .. 7

2.2. Augmented Reality on Handheld and Embedded Devices 8

2.3. 3D User Interfaces ... 10

2.3.1. Applications of 3D UIs ... 11

2.3.2. Mobile Applications ... 11

2.4. Pose Tracking... 13

2.4.1. Natural Feature Tracking .. 13

2.4.2. Marker Tracking ... 13

2.5. Computer Vision .. 14

2.5.1. Cameras and camera calibration ... 15

2.5.2. Feature detection and description ... 16

2.6. Discussion .. 18

3. IMAGE FEATURES 19

3.1. Feature Detectors and Descriptors ... 19

3.1.1. Feature Description .. 19

v

3.1.2. Feature extraction ... 21

3.2. SURF (Speeded-Up Robust Features) ... 22

3.3. SURF Detector Algorithm ... 31

4. POSE TRACKING 35

4.1. Camera Calibration .. 35

4.2. Pose Tracking... 40

5. RENDERING 42

6. VUFORIA SDK 45

6.1. Introduction .. 45

6.2. Architecture of Vuforia .. 45

6.3. Target management system.. 46

7. APPLICATION DEVELOPMENT 47

7.1. Software Implementation ... 47

8. TEST AND RESULTS 49

9. CONCLUSION 51

9.1. Summary and Conclusion .. 51

9.2. Future Works ... 51

REFERENCES 52

vi

LIST OF ABBREVIATIONS

2D 2-dimensional.

3D 3-dimensional.

ADT Android Developer Tools.

API Application Programming Interface.

AR Augmented Reality.

ARToolKit Augmented Reality Tool Kit.

AV Augmented Virtuality.

CCD Charge Coupled Device.

CDT C/C++ Development Tools.

CMOS Complementary Metal Oxide Semiconductor.

DoF Degree of Freedom.

DoG Difference of Gaussians.

FLANN Fast Library for Approximate Nearest Neighbors.

fps frames per second.

GPS Global Positioning System.

GPU Graphical Processing Unit.

HMD Head Mounted Display.

IA Intelligence Amplification.

KF Kalman Filter.

LCD Liquid-Crystal Display

LoG Laplacian of Gaussian.

MARS Mobile Augmented Reality Systems.

MR Mixed Reality.

mtl Material Template Library

NCFM Network Coupled Feature Maps.

NDK Native Development Kit.

NN Nearest Neighbor.

OBJ Object file.

OpenCV Open source Computer Vision.

OpenGL Open Graphics Library.

PC Personal Computer.

vii

PCA Principal Component Analysis.

PDA Personal Digital Assistant

PnP Perspective-n-Points.

RANSAC RANdom SAmple Consensus.

RGB Red, Green and Blue.

SIFT Scale Invariant Feature Transform.

SDK Software Development Kit.

SLAM Simultaneous Localization and Mapping.

SURF Speeded-Up Robust Features.

SUSAN Smallest Univalue Segment Assimilating Nucleus.

UI User Interface

UMPC Ultra-Mobile Personal Computer.

USB Universal Serial Bus.

VR Virtual Reality.

VRML Virtual Reality Modelling Language.

viii

INDEX OF FIGURES

Figure 1.1 Milgram's Reality-Virtuality continuum [3] 2

Figure 1.2 Augmenting Real World Objects [6] .. 4

Figure 2.1 Different level of outsourcing to a server: a) All tasks are runiii

natively by the client, b) Server performs tracking, c) Serveriii

performs tracking and application logic, d) All work is done byiii

the server [19] ... 8

Figure 2.2 Left image: VTT’s AR Scale Model application augments a virtualiii

model of a building on top of a floor plan in the correct scale andiii

pose using marker detection. Right image: an example of a markeriii

(ALVAR marker number 14) [45]. (Image: VTT Augmentediii

Reality team) [43] ... 14

Figure 2.3 Pinhole camera model. C is the optical center and f is the shortestiii

distance from C to the image plane. P is a 3D point with itsiii

projection p on the image plane .. 16

Figure 3.1 Image gradients with a Gaussian window, indicated by the overlaidiii

circle as shown on the left. A keypoint descriptor created by firstiii

computing the gradient magnitude and orientation as shown on theiii

right [62] ... 21

Figure 3.2 Exact and approximated Gaussian kernels [64]................................ 24

Figure 3.3 Rectangular Region for Integral Image .. 24

Figure 3.4 Lena image and the corresponding (normalized) integral image 25

Figure 3.5 Box filtering example ... 25

Figure 3.6 Calculation of an Arbitrary Rectangle Sum...................................... 26

Figure 3.7 Smallest kernel for box filtering ... 27

Figure 3.8 Box Filter for Second Order Partial Gaussian Derivative in y-direc-iii

tion on the top and in xy-direction on the bottom [64] 28

Figure 3.9 Scale Space Structure of SURF Feature Detector 29

Figure 3.10 Non-maxima suppression for candidate SURF features [63] 29

Figure 3.11 Haar Wavelets [64] ... 30

Figure 3.12 Calculation of SURF descriptor components [72] 31

Figure 3.13 SURF implementation with good matches 34

ix

Figure 3.14 SURF implementation with rotated target good matches 34

Figure 4.1 Several screen shoots of Camera Calibration application 36

Figure 4.2 Comparison of Calibrated and Uncalibrated Camera 36

Figure 4.3 Augmentation of a Cube with calibrated camera (Left) andiii

uncalibrated camera (Right) .. 40

Figure 4.4 Pose estimation experimental work .. 41

Figure 5.1 A 3D virtual model with completed of rendering pipeline 42

Figure 5.2 The OpenGL Render Pipeline .. 43

Figure 5.3 A spaceship Wavefront OBJ 3D model in wireframe form showniii

in the upper left, solid form without texture shown in the upperiii

right. The pieces in the image texture (the lower right) are “glued”iii

onto the spaceship, and the result is shown in the lower left 44

Figure 6.1 Data flow diagram of the application with the Vuforia SDK 45

Figure 7.1 3D Wavefront OBJ Roof Model with solid and textured mode 47

Figure 8.1 Handmade 3D target model for augmentation.................................. 49

Figure 8.2 Augmentation of a handmade 3D home model 50

Figure 8.3 Unwrapped of 3D handmade home model (right) with its 2D targetiii

images ... 50

x

INDEX OF TABLES

Table 3-1 SURF Algorithm Steps ... 31

1

1. INTRODUCTION

Augmented Reality (AR) is adding virtual computer generated information

on view of a physical real-world environment in real-time. AR is both interactive

and registered in 3D as well as combines real and virtual objects [1]. The field of

AR has very good potential to improve lives in many ways and help people learn,

navigate, and search the environment. Up until now, the technology available has

made development in this field not very meaningful or worthwhile. With the

advancements in mobile phone technology, incorporating things like GPS data, a

video camera, a compass, and an internet connection, the benefits of AR are

becoming available to more and more people every day.

The recent novelty of Augmented Reality (AR) and mobile technologies

has enabled the creation of new mobile AR applications. Mobile AR allows users

to integrate the information of the internet with their real lives. Lately, mobile AR

applications becomes more commonplace in consequence of the image

processing, computer vision techniques and rapid processing capabilities of

mobiles has grown in recent years.

The aim of this thesis is understanding augmented reality and create a

mobile based 3D AR application. The future of augmented reality looks very

promising and with the advancements in technology it will someday be an

important part of many people’s lives [1].

1.1. History of Augmented Reality

First Augmented Reality systems were developed in the 1960s,

Augmented Reality only separated itself from virtual reality and became a

research area in its own rights in the beginning of the 1990s. Today there is two

main definitions that describe Augmented Reality. Because of a lack of an official

agreement on the term, both are accepted. Following the definition of Azuma [2]

An AR system has to accomplish the three requirements:

 Combine the Virtual world and Real world

 Registered in the real world in 3D

 Interactive in real time

2

The first requirement is a fundamental description of AR in that it

combines the real world with virtual contents. The second requirement separates

Augmented Reality from the more general concepts of mixed reality or mixed

media by requiring that the virtual content must be registered in 3D within the real

world. Finally “Interactive in real time” requires the system to react to the user

and update in real time which differentiate AR from all off-line augmentations

such as the use of computer graphics in movies.

According to the older Virtuality continuum proposed by Milgram [3] (see

Figure 1.1), AR is just one possible manifestation of Mixed Reality (MR), which

brings together real and virtual within a single display. The Virtuality continuum

collocate AR and Augmented Virtuality (AV). AR is mostly grounded in the real

world, with a limited set of virtual objects mixed in. The inverse concept, AV, is

designed as a Virtual Environment with some real directions - a recurring example

for AV are video-textured avatars (showing a live video feed of real people)

within a Virtual Environment. The boundary between AR and AV is not strictly

defined.

Figure 1.1 Milgram's Reality-Virtuality continuum [3]

 Benefit of the mobile augmented reality (AR) is that mobile computing

research is a natural complement because of the mobile AR system can assist at

the workplace instead of requiring to stationary workstations. The advantage of

mobile approaches is that hardware and software very similar to traditional non-

mobile AR systems can be used. Whilst there are a lot of working systems created

of a head mounted display (HMD) and a notebook, most of these setups have been

designed as pure proof of concept and do not provide an utilizable form factor.

Generally HMDs have all their hardware mounted to a large rucksack, including

3

heavy power supplies for items not designed for mobile use. While such

rucksack/HMD combinations combine high performance with handsfree

operation, they seriously affect ability, avoid practical use and are socially

unacceptable. They are maintenance dense and lack sturdiness on account of their

complex hardware setups. Most of the devices used were not designed for mobile

deployment and therefore not only require heavy batteries but also use fragile

connectors and cables. Additionally, the prohibitive cost of these setups prevents

dispersing them in a commercial market. On the side, the development of HMD

technology, which is an unavoidable part of such an approach to wearable AR, is

not keeping quickness with the advances in computer and sensor technology.

Simultaneously, broad consumer interest in cell phones and handheld

computers. Owing to, this is dramatically accelerating the development in this

area. Therefore consideration of AR development will be shift to smaller and

ergonomic devices which is smartphones [4].

1.2. Motivation and Approach

Lately, augmented reality increases as an interesting topic in various field.

What is benefit of combining real and virtual objects in 3D? Augmented Reality is

used several areas, such as Archaeology, Architecture, Art, Commerce,

Construction, Education, Gaming, Industrial design, Medical, Military,

Navigation, Television etc. While these do not cover every potential application

area of this technology, they do cover the areas explored so far [2].

Augmented Reality improve perception of users with the real world. The

virtual objects display information on devices that the user cannot directly detect

with his own senses. The virtual objects helps a user perform real-world tasks. AR

is a particular example of what Fred Brooks calls Intelligence Amplification (IA):

using the computer as a tool to make a task easier for a human to perform [5].

The dream feeding and motivating the research presented in this thesis is a

“Totally Markerless Mobile Architectural Augmentation Paradigm" which can be

illustrated as Figure 1.2

4

Figure 1.2 Augmenting Real World Objects [6]

 The main focus of the thesis is on finding aspect of 3D target as a 2D

target image and render 3D Virtual Object model on proper world coordinates.

After completion of augmentation of the 3D Virtual object, the user can look

around 3D virtual object. This will show user as a 3D reconstruction of a 3D real

world object.

1.3. Contributions

The contribution of this thesis is design and development of a fully

working Markerless Augmented Reality Application that works on Android

Mobile devices and was tested in multiple practical applications.

This thesis presents a real-life demonstration of Mobile device-based AR.

The Mobile device has a number of ergonomic advantages over a notebook AR

and head-mounted displays and the suitability of this device as an AR medium has

been demonstrated by the development and public demonstration of a functional

3D reconstruction AR applications.

The application of this thesis try to the reconstruction of a 3D Real world

object by Augmented Reality technology to the mobile phone. In order to do that,

by aspect of 3D world object, it is recognized as a 2D target image. By the way,

5

positioning 3D Object model on the world object, then we get a reconstructed

world object by augmentation of our model.

1.4. Thesis Outline

In this thesis for preliminary study, to understanding idea of augmented

reality, have worked on several computer vision techniques such feature

extraction-detection, SURF, Markerless tracking (Natural feature tracking) by

using OpenCV [7] Computer Vision library. As well as, 3D modelling, texturing,

shading etc. by using OpenGL [8] (Open Graphics Library) and creating

Wavefront OBJ 3D files via Blender 3D [9]. Chapter 1 contains an introduction to

augmented reality and its history by explaining some basic concepts and the

purpose of this thesis. To close this introductory chapter, the organization of the

remaining chapters of this thesis is outlined below.

Chapter 2 provides an overview of related work and literature review of

AR consisting of six primary sections. Firstly it describes the technology typically

associated with AR in order to give the reader context for 3D User interface, Pose

tracking and Computer Vision elements being studied and implemented in this

area. Besides, mentioned categories of AR applications.

Chapter 3 presents the recognition methods for augmentable targets.

Primarily it describes features of image in order to clarify the certain properties of

the image. Then studied theory and implementation of feature detection and

description. Additionally examined SIFT and SURF to detect and describe local

features in images and implementation of SURF on notebook by using OpenCV

library.

Chapter 4 investigate an important part of augmented reality which is pose

tracking. For augmentation of 3D object model with an appropriate view on

camera, we implemented and tested calibration and pose of camera by notebook

USB camera.

 Chapter 5 presents 3D object viewing and rendering pipeline, introduced a

3D API which is OpenGL and its properties. Besides, usage of Wavefront OBJ

3D files and Blender 3D will described.

6

Chapter 6 then briefly introduces Vuforia SDK which used for target

recognition part of mobile augmented reality application on Android software.

Chapters 7 and 8 develops the stage of markerless augmented reality

application, then tests and results it.

7

2. LITERATURE REVIEW AND BACKGROUND

2.1. Augmented Reality

In 1968 Ivan Sutherland created the first head-mounted display (HMD) [9,

10]. Owing to restricted processing power, his application demonstrated just a

simple wireframe model overlaid onto the real world. But nevertheless, it marks

the first application that fulfils the definition by Azuma and Milgram (see section

1.1).

The first Augmented Reality applications developed from basic research,

used very expensive hardware and last of all mostly covered research and

technical problems only. In his 1995 survey paper Azuma lists six categories for

AR applications: medical, manufacture and repair, visualization and annotation,

military aircraft, robot path planning and entertainment. Some seminal works in

these areas are given in the following.

Researchers at UNC Chapel Hill administered first trials of overlaying 3D

representations of ultra-sound data onto patients [10]. In the “Knowledge-based

Augmented Reality for Maintenance Assistance” (KARMA) project Feiner and

the others created a laser printer maintenance application [11]. Milgram developed

the ARGUS system [3] to create an easier way for robot path planning.

With the introduction of powerful portable computers and notebooks,

mobile AR setups became possible. The Touring Machine [13, 14] was among the

first to use this new hardware platform for mobile systems. A later project of the

same research group was MARS (Mobile Augmented Reality Systems) [12]. It

was one of the first indeed mobile augmented reality setups, Presented in 1999,

which allowed the user to freely walk around with all necessary equipment

mounted onto his back. Several similar platforms such as Studierstube [13],

Tinmith [14] and BARS [15] examined in various application areas.

Due to the recent availability of Tablet PCs and UMPCs many researchers

use these devices to bring existing software to smaller devices. Newman et al. use

these mobile devices for experiments on wide area tracking [16]. Reitinger uses

UMPCs to gather data in an urban environment [17]. After starting with backpack

setups the iPERG project [18] then switched to UMPCs and Tablet PCs due to

8

their lower costs and hardware maintenance requirements. The AMIRE3 project

used Tablet PCs for a museum guide [19].

2.2. Augmented Reality on Handheld and Embedded Devices

Many early works at least partly outsourced processing tasks to a nearby

server via tethered or wireless networking. As can be seen in Figure 2.1, there are

four different levels of outsourcing processing tasks to a server: In the ideal case

Figure 2.1(a), all work is performed natively by the client making it independent

of the server and substructure. At the other extreme, many early handheld AR

applications were based on a thin client approach with a "video-in/video-out"

communication mechanism for receiving assistance from a computing server,

which is shown as Figure 2.1(d). Such a setup does not only require a frame-by-

frame communication but also requires sending video images in both directions

requiring maximum performance of the network connection [19].

Figure 2.1 Different level of outsourcing to a server:

a) All tasks are run natively by the client, b) Server performs tracking,

c) Server performs tracking and application logic,

d) All work is done by the server [19]

On the other hand, these Figure 2.1(a) and Figure 2.1(d) solutions are just

extreme examples of allocation of works among a handheld client and server.

These extreme allocation may be necessary and useful depending on conditions or

solutions.

Typical augmented reality system for both tracking and video see-through

display uses a single video source. The main process of pipeline is: video

9

acquisition, tracking, application computation, rendering, display. Dispose of

some these task to a computing server is an example of horizontally distributed

simulation [20], and it is founded a scalable solution necessitates using of the

available network bandwidth [21]. Communication of raw video flows in both

directions (Figure 2.1c) does not satisfy such bandwidth limitation. A more

preferable alternative seems to be flowing graphics commands back to the client

such as done in the Chromium [22] framework.

The approach demonstrated in Figure 2.1(b) leaves the tracking task to

computing server, which needs upstream communication of pre-processed,

compressed video for visual tracking purposes, followed by downstream

communication of pose information. The advantage of this approach is that a very

succinct, but general and computationally pricey task is transferred to the server,

the client just handles all application details, in this way dependencies between

client and server are minimal. For example, while tracking of artificial fiducials

can be performed in realtime on embedded clients now, natural feature tracking

can benefit from the greater computational power of a server for at least several

more years.

A small tethered LCD displays used for location based information by

Amselem's work [23] and Fitzmaurice's Chameleon [24]. To track objects in the

environment, Rekimoto's NaviCam [25] used color-coded sticker. Owing to the

tethered trackers lately works, the degree of mobility was quite limited. mPARD

[26] is a version of using analogue wireless video transmission to replace tethers.

Sony CSL introduced the Transvision [27] project which is handheld augmented

reality devices for a shared space. Researchers at HITLab later improved this

concept [28] with a better user interface and an optical tracking solution re-using

the camera needed for video see-through. All these works use simple tethered

displays and cameras for the mobile device and are therefore extreme examples of

Figure 2.1(d).

The Batportal [29] used non-mixed 3D graphics using VNC, while the

AR-PDA project [30] used digital image streaming from and to an application

server. Both projects again use the method describe in Figure 2.1(d). Shibata's

work [31] goals to load balancing between client and server - the weaker the

10

client, the more tasks are outsourced to a server. It can therefore vary between all

situations described in Figure 2.1. ULTRA uses PDA-based AR to support

maintenance workers, but concentrates on augmenting "snapshot" still images

[32]. In the absence of real-time tracking for infrastructure independence it

performs all tasks natively (Figure 2.1a).

In 2003 the author ported ARToolKit [33] to the PocketPC and developed

the first fully self-contained PDA AR application [4]. This platform was used in a

peer to peer game in [34]. Möhring et al. were the first to successfully target a

consumer smartphone for mobile AR [35]. The scarce processing power of the

target platform allowed only a very coarse estimation of the object's pose on the

screen. Henrysson ported ARToolKit to the Symbian platform and created the

first two-player AR game [36] on current-generation smartphones.

Summarizing these developments one can conclude that there is no ideal

solution for systems with scarce processing capabilities. An infrastructure

independent solution, as developed in the work of this thesis is desirable, but not

feasible for all situations. E.g. when artificial feature tracking is not an option,

embedded devices simply do not have the processing capabilities yet. While this

will certainly change in the future, new more demanding problems will emerge

too [19].

2.3. 3D User Interfaces

A 3D user interface is as simply "a UI that involves 3D interaction." This

simply delays the inevitable, as we now have to define 3D interaction. 3D

interaction is "human-computer interaction in which the user's tasks are performed

directly in a 3D spatial context [37]."

One key word in this definition is "directly." There are some interactive

computer systems that display a virtual 3D space, but the user only interacts

indirectly with this space—e.g., by manipulating 2D widgets, entering

coordinates, or choosing items from a menu. These are not 3D UIs.

The other key idea is that of a "3D spatial context." This spatial context

can be either physical or virtual, or both. The most prominent types of 3D UIs

involve a physical 3D spatial context, used for input. The user provides input to

11

the system by making movements in physical 3D space or manipulating tools,

sensors, or devices in 3D space, without regard for what this input is used to do or

control. Of course, all input/interaction is in some sense in a physical 3D spatial

context (a mouse and keyboard exists in 3D physical space), but the intent here is

that the user is giving spatial input that involves 3D position (x, y, z) and/or

orientation (yaw, pitch, roll) and that this spatial input is meaningful to the

system.

Thus, the key technological enabler of 3D UIs of this sort is spatial

tracking [38, 39]. The system must be able to track the user's position, orientation,

and/or motion to enable this input to be used for 3D interaction. For example, the

Microsoft Kinect tracks the 3D positions of multiple body parts to enable 3D UIs,

while the Apple iPhone and others Mobiles tracks its own 3D orientation,

allowing 3D interaction.

2.3.1. Applications of 3D UIs

Why is it important to understand and study 3D UIs? For many years, the

primary application of 3D UIs was in high-end virtual reality (VR) and augmented

reality (AR) systems. Since users in these systems were generally standing up,

walking around, and limited in their view of the real world, traditional mouse- and

keyboard-based interaction was impractical. Such systems were already using

spatial tracking of the user's head the correct view of the virtual world, it was

natural to also design UIs that took advantage of spatial tracking as well. As we

indicated above, however, recent years have seen an explosion of spatial input in

consumer-level systems such as game consoles and smartphones. Thus, the

principles of good 3D UIs design are now more important to understand than ever.

To further motivate the importance of 3D UI research, let's look in a bit more

detail at Mobile technology areas where 3D UIs are making an impact on real-

world applications.

2.3.2. Mobile Applications

Mobile devices, such as smartphones and tablets, are an interplay

designer's playground, not only due to the rich design space for multi-touch input,

12

but also because these devices incorporate some quite powerful sensors for 3D

spatial input. The combination of accelerometers, gyroscopes, and a compass give

these devices the ability to track their own orientation quite accurately. Position

information based on GPS and accelerometers is less accurate, but still present.

These devices offer a key opportunity for 3D interaction design, however, because

they are ubiquitous, they have their own display, and they can do spatial input

without the need for any external tracking infrastructure (cameras, base stations,

etc.).

Many mobile games are using these capabilities. Driving games, for

example, use the "tilt to steer" metaphor. Music games can sense when the user is

playing a virtual drum. And golf games can incorporate a player's real swing.

But "serious" applications can take advantage of 3D input for mobile

devices as well. Everyone is familiar with the idea of tilting the device to change

the interface from portrait to landscape mode, but this is only the tip of the

iceberg. A tool for amateur astronomers can use GPS and orientation information

to help the user identify stars and planets they point the device towards. Camera

applications can not only record the location at which a photo was taken, but also

track the movement of the camera to aid in the reconstruction of a 3D scene.

Perhaps the most prominent example of mobile device 3D interaction is in mobile

AR. In mobile AR, the smartphone becomes a window through which the user can

see not only the real world, but virtual objects and information as well [12, 40].

Thus, the user can browse information simply by moving the device to view a

different part of the real world scene. Mobile AR is being used for applications in

entertainment, navigation, social networking, tourism, and many more domains.

Students can learn about the history of an area; friends can find restaurants

surrounding them and link to reviews; and tourists can follow a virtual path to the

nearest subway station. Prominent projects like MIT's SixthSense [40] and

Google's Project Glass have made mobile AR highly visible. Good 3D UI design

is critical to realizing these visions.

13

2.4. Pose Tracking

Any Augmented Reality system requires some kind of tracking the targets

or display’s pose in order to register it in respect to the real world. Pose tracking is

especially useful for identifying camera views in databases, video streams, video

sequences, and live recordings. All of these applications require a fast pose

recognition process in real-time video. For fast pose recognition it is possible to

extend the materials to update the recognition system online [41]. Pose tracking

must run in real-time, typically requiring solutions that estimate poses in less than

50 milliseconds. Also it must be robust under many conditions such as varying

lighting. In case tracking is lost, the system must be able to recover quickly [19].

2.4.1. Natural Feature Tracking

Natural feature tracking is necessary to make markerless augmented reality

applications practical on low performance mobile devices.

Markerless tracking methods are using natural features such as color and

shape of the environment to be augmented for tracking. However, until recently,

performance of appropriate AR methods and algorithms were not sufficient on

mobile devices. Recently processing power has reached a level that allows natural

feature tracking in real time. Natural feature tracking using optical flow has been

successfully implemented on these devices though [42].

2.4.2. Marker Tracking

One of the fundamental components of augmented reality is tracking that

calculating location and orientation of camera in real-time. A computer system

detect the sign or image from a video frame by using image processing, computer

vision and pattern recognition techniques (e.g. right image in figure 2.2) When

detect the marker, then it defines the correct scale and pose of the camera.

Once detected, it then defines both the correct scale and pose of the

camera. This method widely used in AR application [43] and it is called marker-

based tracking. Marker-based systems are easy to implement and there are lots of

well-know and handy toolkits (e.g. ARToolKit [44], ALVAR [45], ARTag [46]).

These kind of toolkits provide a base for starting AR application development. As

14

well as, markers make certain that the correct scale and convenient coordinate

frames as previously mentioned. In marker-based tracking, the system needs to

detect the marker, identify it and then calculate the pose [43].

Figure 2.2 Left image: VTT’s AR Scale Model application augments a virtual model of a

building on top of a floor plan in the correct scale and pose using marker detection.

Right image: an example of a marker (ALVAR marker number 14) [45]. (Image:

VTT Augmented Reality team) [43]

2.5. Computer Vision

As humans, we sense the 3D structure of the world around us with obvious

simplify. Computer vision looks for generating useful and intelligent descriptions

of visual sequences and scenes, and adding 3D virtual objects by performing

operations on the signals received from camera frames. Vision is an important

sense for humans since it allows them to understand the structure of their

environment. This process of inferring the spatial relationships (i.e. perspective

order and 2-dimensional (2D) positions) between the objects in the surrounding

can be described in two stages. First, the reflected light from the objects in the

environment must be sensed through a sensor (the eyes), then it must be

interpreted by a processing mechanism (the brain) to make sense of the

surroundings.

The process becomes harder if the environment is not static i.e. constantly

changing in terms of viewpoints (e.g. self-motion), dynamic content (e.g. moving

objects) and lighting conditions (e.g. day/night, shadows, etc.). Fortunately, our

15

brains dedicate half of the cerebral cortex, the outer layer of the brain, for this

processing [47] and can perform the necessary `calculations' to understand these

spatial relationships instinctively. Trying to emulate the same functionality with

computers instead of the human brain using cameras as sensors is harder.

Most of the applications require an understanding of the scene and finding

spatial parameters for the camera, which is an involved process. Common

approaches start with a camera calibration step, which aims to identify the internal

parameters of the camera, and continues by finding and extracting useful bits of

information called features from the images; and then calculating a signature or

`descriptor' for these features that is assumed to identify them uniquely. These

descriptors are then used to establish correspondences between images, after

which methods for motion estimation can be used to find spatial parameters such

as position and orientation. The following subsections explain some of the

sensors, algorithms and methods that make such applications possible.

In computer vision, we are trying to describe the world by calculating of

camera calibration, pose or coordinates etc., as well as recognition of images then

reconstruct its properties such as their shape, illumination, and color distributions.

Most importantly augmented the real world by 3D virtual objects.

2.5.1. Cameras and camera calibration

A digital camera can be viewed as two components, the lens and the

imaging sensor. Reflected light from objects pass through the lens and is then

projected onto the sensor, which can be manufactured as Charge Coupled Device

(CCD) or Complementary Metal Oxide Semiconductor (CMOS) device, both

comprising of an array of sensors sensitive to light. These sensors convert the

light into electrical signals which can be read out digitally for storage or

processing. This relatively complex imaging process is normally represented

using an ideal pinhole camera model [48, 49, 50]. In this simple model, shown in

Figure 2.3, the camera is modelled using a 3D position for the optical center and a

2D image plane. The focal length of the camera is the shortest distance between

the optical center and the image plane. The projection of a 3D point can be

16

obtained by drawing a line from the optical center through the image plane to the

3D point. The projection is found as the 2D location on the image plane.

Figure 2.3 Pinhole camera model. C is the optical center and f is the shortest distance from C to

the image plane. P is a 3D point with its projection p on the image plane

Unlike this theoretical representation, real-world cameras introduce

distortion due to problems in the manufacturing process. For a more realistic

representation, these distortion parameters should also be included in the

projection model. The process for finding these parameters (as well as other

internal parameters such as the focal length) is called camera calibration [50, 51].

There are dedicated toolboxes for this purpose (e.g. [51]) which can be used to

find the distortion parameters as long as an image sequence acquired with that

camera is provided. A camera is used for vision-based user tracking algorithm and

the camera calibration is performed as described in Chapter 4.1

2.5.2. Feature detection and description

Features are often depends on the problem or what you intend to applicate.

So definition is depends on purpose. In our purpose in image processing or

computer vision, it can be defined as an "interesting" part of an image, and

features are a starting point for many computer vision algorithms and also it is an

image primal that contains valued information about the content of the image

[52]. As a result, for feature detector usually desired repeatability: whether or not

the same feature will be detected in two or more different images of the same

scene [43].

17

Every feature appearing in an image shadows a real-world object. A

feature can be in form of a corner [53] , an edge [54], a small region (blob) [55] or

a segment [56]. Features are represented using descriptors, which are calculated

using the pixel information around the feature using a variety of methods: A small

patch of surrounding pixels can include the descriptor, or a more complex

description like an oriented gradient histogram [57].

The literature presents many different feature detectors and descriptors. An

evaluation of many feature detectors can be found in [58]. Based on the review

given therein, a good feature detector should be able to detect features that are

stable in terms of geometry under different viewing conditions [59, 60] should

present important amount of variation in its neighborhood so that they will be

prominent and provide useful information as well as presenting good localization

accuracy [61]. It is also important for the detector to detect such features in a

reasonable amount of time, a vital requirement for real-time applications [62].

Scale Invariant Feature Transform (SIFT) [63] works by selecting

candidate key-points from locations which can be repeatedly chosen under

different orientations and scales. Scale invariance is achieved by using a \scale

space" which appears as a pyramid of images consisting of the octaves created by

resizing the original image to its half size and then applying a Gaussian blur

operation. Keypoints are found using a method called Difference of Gaussians

(DoG) as an approximation of Laplacian of Gaussian (LoG). A local descriptor is

then generated by calculating the magnitude and orientation of the gradient. Later,

a feature vector is computed using a histogram of these orientations.

Speeded-Up Robust Features (SURF) [64] were developed as an

improvement to SIFT for extracting features in a shorter time, employing integral

images as an intermediate image representation and using Hessian-Laplacian to

approximate LoG. For the description, Haar wavelet responses inside a circular

window are summed to obtain the orientation vector of the feature. SURF is also

claimed to be more invariant to affine transformations such as translations or

rotations than SIFT by its authors.

It is known that scale invariance on its own is not enough to show

robustness against changes in viewpoint, which result in affine transformations in

18

the image [65]. For this reason, a number of affine-invariant feature detectors

have been proposed.

2.6. Discussion

This chapter presented a large portion of Augmented Reality from

different research topics with the aim of promoting the miscellaneous different

solutions developed in this thesis. The next five chapter’s present technology

developed for mobile phones based AR and several applications.

19

3. IMAGE FEATURES

The interrogation for images are mostly to compare images directly. That

is, the pixel values of the image itself or a scaled version of image are compared

directly to the corresponding values of other images. However, this method is not

suitable for lots of application, since it is not clear which pixels are correspond to

pixels in the other image [66].

 Additionally taking the pixel values themselves several extensions are

possible. For certain properties of the image, filters and transformations can be

applied to the image, e.g. discrete cosine transformation or PCA transformation to

give a more compact representation and Sobel filters are applied to emphasize

edges [66]. Besides, image patches between images with significantly different

viewpoints or image landmarks such as their (x, y) position, scale and orientation

can be identified as image features.

3.1. Feature Detectors and Descriptors

Feature tracking and detection algorithms are widely used for different

purposes in computer vision applications. They are applied in image matching,

tracking, mosaicing, 3D modelling, motion detection, object recognition and

panorama stitching. In this instance, tracking was considered as a means for

detecting the relative pose of the camera.

We can expose localized features into three categories: feature points (e.g.

corners), feature descriptors (e.g. SURF, SIFT) and edges. A feature point (an

interest point or keypoint) which has a clear definition and a well-defined position

is a small area of an image.

A detector is used to create the descriptor and it needs to be repeatable,

meaning the same feature needs to be detected in two or more different images of

the same scene accounting for lighting and/or viewpoint changes.

3.1.1. Feature Description

A descriptor is a description of the specific point from the image stored in

the database, application, or service. For a good descriptor, clearance and

invariance are two main requirements. By meaning clearance is that feature points

20

corresponding to two different physical points result in different descriptors. As

for invariance is to changes in view points and directions, image noise and

illumination [67]. Steady detectors are selected in the image from the detection

step. In the description step, each interest point is represented by a feature vector,

which is a description of the point. To get image information, image gradients are

used. Image gradients give details on the directional change of the intensity or

color in an image.

The computation of the keypoint descriptor is shown in Figure 3.1. At first

orientations and gradient magnitudes of the image are sampled around the

keypoint location. Then, to select the level of Gaussian blur for the image, used

the scale of the keypoint. The orientation invariance is achieved by rotating the

gradient orientations and the coordinates of the descriptor to relative the keypoint

orientation. Which are shown in left side of Figure 3.1 with small arrows at each

sample location. By means of Gaussian weighting function σ window, with a

circular window which is shown in left side of Figure 3.1 is used for allocation of

a weight to the magnitude of each sample point [63].

The keypoint descriptor is shown in right side of Figure 3.1. By creating

orientation histograms over 4x4 sample regions, this allows for important shift in

gradient position. For each orientation histogram the figure shows eight directions

with the length of each arrow corresponding to the magnitude of that histogram

input. A gradient sample on the left can shift up to 4 sample positions while still

contributing to the same histogram on the right, thereby achieving the objective of

allowing for larger local positional shifts [63].

21

Figure 3.1 Image gradients with a Gaussian window, indicated by the overlaid circle as shown

on the left. A keypoint descriptor created by first computing the gradient magnitude

and orientation as shown on the right [62]

3.1.2. Feature extraction

Feature-detection algorithms, which search for corners, edges or blobs. In

our case we are interested in corner detection. The corner detection is based on an

analysis of the edges in the image. A corner-based edge detection algorithm

searches for quick changes in the image gradient. Usually it's done by looking for

extremism of the first derivative of the image gradients in the X and Y directions.

Feature-point orientation is usually computed as a direction of dominant image

gradient in a particular area. When the image is scaled or rotated, the orientation

of dominant gradient is recomputed by the feature-detection algorithm. This

means that regardless of image rotation, the orientation of feature points will not

change. Such features are called rotation invariant. Also, I have to touch on the

size feature point. Some of the feature-detection algorithms use fixed-size

features, while others calculate the optimal size for each keypoint separately.

Knowing the feature size allows us to find the same feature points on scaled

images. This makes features scale invariant [68].

 For understanding feature extraction we have work on OpenCV feature-

detection algorithms, and we used SURF method for markerless tracking.

OpenCV has several feature-detection algorithms. All of them are derived from

the base class cv::FeatureDetector. To use SURF feature-detection algorithm;

22

cv::Ptr<cv::FeatureDetector> detector =

cv::Ptr<cv::FeatureDetector>(new cv::SurfFeatureDetector());

To detect feature points, we call the detect method:

std::vector<cv::KeyPoint> keypoints; detector->detect (image, keypoints);

The detected feature points are placed in the keypoints container. Each

keypoint contains its center, radius, angle, and score, and has some correlation

with the "quality" or "strength" of the feature point.

The best results in pattern detection are achieved if the detector computes

keypoint orientation and size. This makes keypoints invariant to rotation and

scale. The most famous and robust keypoint detection algorithms are well known,

they are used in SIFT and SURF feature detection / description extraction.

If we deal with images, which usually have a color depth of 24 bits per

pixel, for a resolution of 640 x 480, we have 912 KB of data. How do we find our

pattern image in the real world? Pixel-to-pixel matching takes too long and we

will have to deal with rotation and scaling too. And this is not an option to

achieve. By using feature points this problem can be solved. By detecting

keypoints, we can be sure that returned features describe parts of the image that

contains lot of information (that's because corner based detectors return corners,

edges and other sharp figures). Therefore to find correspondences between two

frames, we only have to match keypoints.

From the patch defined by the keypoint, we extract a vector called

descriptor. It's a form of representation of the feature point [68].

3.2. SURF (Speeded-Up Robust Features)

SURF (Speeded-Up Robust Features) introduced in 2006 [64]. SURF is a

speeded-up version of SIFT (Scale-invariant feature transform). In SIFT, David

G. Lowe for finding scale-space approximated Laplacian of Gaussian with

Difference of Gaussian. SURF is a robust image descriptor, published by Herbert

Bay [64], which can be used in computer vision areas like 3D Reconstruction,

Object Recognition or AR applications. SURF detects Hessian blob like structures

23

and fundamentally it is based on determinant of the Hessian Matrix [69, 70],

SURF features are scale, rotation and translation invariant.

In order to searching of extraction image point feature, SURF has two

main steps. First, SURF interest points are selected at distinctive locations in the

image, such as blobs, corners and T-junctions. Next, the neighborhood of every

interest point is represented by a feature vector.

SURF interest points can be found by calculating an interest point criteria

𝑅(𝑥, 𝑦) which is the blobness value of a pixel in the image. The blobness value 𝑅

can be formulated with blobness function 𝑓 as follows with input image 𝐼

 𝑅(𝑥, 𝑦) = 𝑓(𝐼(𝑥, 𝑦)) (3.1)

For robustness to scale changes, a collection of the input image in different

scales is considered. Therefore 𝐼(𝑥, 𝑦) becomes a 3D data which is 𝐼(𝑥, 𝑦, 𝜎)

“image pyramid”. Here σ is scale parameter. So interest point criteria becomes

 𝑅(𝑥, 𝑦, 𝜎) = 𝑓(𝐼(𝑥, 𝑦, 𝜎)) (3.2)

 The blobness value of a pixel in the image is the determinant of the

Hessian Matrix which is equal to interest point criteria. Thus, Hessian Matrix can

be define as follows

 𝐻(𝑥, 𝑦, 𝜎) = [
𝐿𝑥𝑥(𝑥, 𝑦, 𝜎) 𝐿𝑥𝑦(𝑥, 𝑦, 𝜎)

𝐿𝑦𝑥(𝑥, 𝑦, 𝜎) 𝐿𝑦𝑦(𝑥, 𝑦, 𝜎)
] (3.3)

Here 𝐿𝑥𝑥(𝑥, 𝑦, 𝜎) is the convolution of
𝜗2

𝜗𝑥2 𝑔(𝜎) (second order derivative

Gaussian) with input image 𝐼 at point(𝑥, 𝑦). The blobness value 𝑅(𝑥, 𝑦, 𝜎) finally

becomes as follows

 𝑅(𝑥, 𝑦, 𝜎) = 𝑑𝑒𝑡(𝐻(𝑥, 𝑦, 𝜎)) (3.4)

24

In order to save time Bay [64] suggest an approximation for the second

order Gaussian derivative kernel which proper box filter kernels. Instead of a

discretized Gaussian kernel, this mostly affect the performance of the algorithm.

In order to clarify the advantage of box filter more clearly, integral of the input

image is obtained. Integral images developed by Viola and Jones [71]. Discretized

Gaussian Kernels and related box filters are shown in Figure 3.2.

Figure 3.2 Exact and approximated Gaussian kernels [64]

 Integral image 𝐼Ʃ(𝑥, 𝑦) of an image 𝐼(𝑥, 𝑦) is defined as follows [64]

 𝐼Ʃ(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑥, 𝑦)𝑗≤𝑦
𝑗=0

𝑖≤𝑥
𝑖=0 (3.4)

The intensity value at (𝑥, 𝑦) in the integral image 𝐼Ʃ(𝑥, 𝑦) is the sum of the

pixel values above and to the left of (𝑥, 𝑦) included shown in Figure 3.3.

Figure 3.3 Rectangular Region for Integral Image

25

Also demonstration of integral image (on the left) of Lena image (on the

right) is shown in Figure 3.4.

Figure 3.4 Lena image and the corresponding (normalized) integral image

The integral image concept is making easier calculating the summation of

the pixel intensities in a rectangular area on the image as can be seen in Figure

3.5.

Figure 3.5 Box filtering example

26

Let’s consider an image 𝐼(𝑥, 𝑦) in the Figure 3.5. Number of summations

(𝐵 − 𝐷)𝑥(𝐴 − 𝐵) which the normal operation is to calculate summation of the

pixels in the region Ʃ. Assume the integral image 𝐼Ʃ(𝑥, 𝑦) corresponding to the

image 𝐼(𝑥, 𝑦);

 𝐼Ʃ(𝐴) = 𝐴1 + 𝐴2 + 𝐴3 + Ʃ (3.5)

 𝐼Ʃ(𝐵) = 𝐴1 + 𝐴2 (3.6)

 𝐼Ʃ(𝐶) = 𝐴1 + 𝐴3 (3.7)

 𝐼Ʃ(𝐷) = 𝐴1 (3.8)

After mathematical operations we get integral image value (rectangle sum) for an

arbitrary rectangular region Ʃ inside the image is as follows;

 Ʃ = 𝐼Ʃ(𝐴) + 𝐼Ʃ(𝐷) − 𝐼Ʃ(𝐵) − 𝐼Ʃ(𝐶) (3.8)

The formula (3.8) can be demonstrate as shown in Figure 3.6.

Figure 3.6 Calculation of an Arbitrary Rectangle Sum

27

SURF feature detector is based on determinant of Hessian matrix [69, 70]

for both scale and location. Therefore second order partial Gaussian differentials

are established in scale space. In order to approximate Hessian matrix determinant

calculation, considered the smallest kernel (9x9) of box filter in Figure 3.7.

Figure 3.7 Smallest kernel for box filtering

The determinant of the approximated Hessian matrix is define in (3.9).

Constant multiplier is 0.9 in order to normalize the error caused by the

approximation. The second order partial Gaussian derivative filter in x-direction

𝐿𝑥𝑥, y-direction 𝐿𝑦𝑦 and xy-direction 𝐿𝑥𝑦 shown in Figure 3.8. Approximation for

the second order partial Gaussian derivative filter in x-direction 𝐷𝑥𝑥, y-

direction 𝐷𝑦𝑦 and xy-direction 𝐷𝑥𝑦.

 𝑑𝑒𝑡(𝐻𝑎𝑝𝑝𝑟𝑜𝑥) = 𝐷𝑥𝑥𝐷𝑦𝑦 − (0.9𝐷𝑥𝑦)
2
 (3.9)

28

Figure 3.8 Box Filter for Second Order Partial Gaussian Derivative in y-direction on the top and

in xy-direction on the bottom [64]

Scale space of SURF feature detector is implemented by using image

pyramids. The initial filter kernel size is 9x9 and the image is filtered by filter

kernels of 15x15, 21x21, 27x27 and so on for the next scale levels of the first

octave. The filter size increase 12 for the next octave, beginning from 39x39 filter

kernel. The scale space structure of the SURF detector is shown in Figure 3.9

below.

29

Figure 3.9 Scale Space Structure of SURF Feature Detector

After finding approximated hessian determinant values in all scales and

candidate, obtained final step is “Non-maxima Suppression”.

Approximated hessian determinant values through the image in all scales

and candidate interest features are found. Final step to obtain SURF features is

“Non-maxima Suppression”. A blob on image may give blobness response on

more than one scale or more than one point on the coordinate plane. So, a

candidate point is chosen as SURF feature if its blobness response is greater than

its entire 3x3x3 neighborhood in x, y, σ dimensions. The visualization is shown in

Figure 3.10.

Figure 3.10 Non-maxima suppression for candidate SURF features [63]

30

So far, SURF interest points on an image are found. For each features,

descriptor calculation needs. Descriptors are used for the matching step. Haar

wavelets are operated during descriptor calculation steps. 2D Haar wavelets

responses makes an efficient use of integral images. Haar wavelet in Figure 3.11

are simple filters for gradients calculations. The left filter in the x- direction and

the right filter in the y-direction computes the response. Weights of black region is

1 and -1 for white region [72].

Figure 3.11 Haar Wavelets [64]

Haar wavelet’s mother wavelet function 𝜓(𝑡) is shown below.

 𝜓(𝑡) = {
1 0 ≤ 𝑡 < 1/2,
−1 1/2 ≤ 𝑡 < 1,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.10)

Scaling function 𝜑(𝑡) of Haar wavelet is also shown below.

 𝜑(𝑡) = {
1 0 ≤ 𝑡 < 1,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.11)

 SURF descriptor calculation occurs with two main steps which are

orientation assignment and calculation of descriptor components. In the first step a

robust and repeatable orientation is assigned for each SURF feature. In the second

step calculated descriptor components. Based on the orientation which is

calculated before. Finally applying these two procedure for each SURF feature, a

31

descriptor array of size 64 (16x4) is constructed. Similarity of two features

determined by calculating the Euclidean distance between their descriptors. Figure

3.12 visualizes the descriptor concept as well as the descriptor formulation. One

of the 16 subregions which is the green square and blue circle inside its represents

the sample points at which computed the wavelet responses.

Figure 3.12 Calculation of SURF descriptor components [72]

3.3. SURF Detector Algorithm

Table 3-1 SURF Algorithm Steps

SURF Detector Algorithm

1. Finding integral image of the input image

 Integral image value 𝐼Ʃ(𝑥, 𝑦) at pixel (x, y) is calculated in a single

pass.

 𝐼Ʃ(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) + 𝐼Ʃ(𝑥, 𝑦 − 1) + 𝐼Ʃ(𝑥, 𝑦)+𝐼Ʃ(𝑥 − 1, 𝑦) − 𝐼Ʃ(𝑥 − 1, 𝑦 −

1)

 Ʃ = 𝐼Ʃ(𝐴) + 𝐼Ʃ(𝐷) − 𝐼Ʃ(𝐵) − 𝐼Ʃ(𝐶)

 The integral image values are stored as a look-up table for later use in

construction of differential scale space.

 End

2. Differential SURF Scale Space of input image is constructed.

32

 Integral image look-up table is initialized.

 Box filter of size 9x9 is initialized based on the following second order

differential filter kernels.

ℎ𝑥𝑥 = [1 −2 1] ℎ𝑦𝑦 = [
1

−2
1

]

ℎ𝑥𝑦 = [
1 −1

−1 1
]

 Integral image values corresponding to the inner rectangular regions of

size 9x9 is calculated.

𝐼Ʃ(𝑥, 𝑦, ℎ, 𝑤) = 𝐼Ʃ(𝑥, 𝑦) + 𝐼Ʃ(𝑥 + 𝑤, 𝑦 + ℎ) − 𝐼Ʃ(𝑥, 𝑦 + ℎ) − 𝐼Ʃ(𝑥 + 𝑤, 𝑦)

height (h) and width (w) of the rectangular regions are 9.

 Second order partial Gaussian derivatives of input image 𝐷𝑥𝑥, 𝐷𝑦𝑦 and

𝐷𝑥𝑦 are calculated by using box filters.

 Box filters of sizes 15x15, 21x21 and 27x27 with an increase of 6 units

are initialized for next scale levels of the first octave.

SURF Detector Algorithm(Continued)

 Second order partial Gaussian derivatives of input image 𝐷𝑥𝑥, 𝐷𝑦𝑦 and

𝐷𝑥𝑦 are calculated for next scales.

 Box filter size is doubled.

 Box filters of sizes 39x39, 51x51, 63x63, and so on with an increase of

12 units are initialized for next scale levels of the second octave.

 Continue smoothing until number of octaves corresponding to the size

of box filters is less than the size of the input image.

 End, differential SURF scale space𝐷𝑥𝑥, 𝐷𝑦𝑦 and 𝐷𝑥𝑦 is obtained.

3. Calculation of determinant of Hessian matrices

 Components of approximate Hessian matrices are initialized for all

image coordinates at all scale levels.

 Weights of the derivatives are balanced by Frobenius norm of the

second order Gaussian partial derivatives.

33

|𝐿𝑥𝑦(1.2)|
𝐹

|𝐷𝑥𝑥(9)|𝐹

|𝐿𝑥𝑦(1.2)|
𝐹

|𝐷𝑥𝑦(9)|
𝐹

≅ 0.9

 Determinant of Hessian matrices are calculated.

𝑑𝑒𝑡(𝐻𝑎𝑝𝑝𝑟𝑜𝑥) = 𝐷𝑥𝑥𝐷𝑦𝑦 − (0.9𝐷𝑥𝑦)
2

 End

4. Finding local maxima of determinant measure

 Local maxima of determinant values are found in a region around each

point of the image.

 Local maximum points are stored whose values are greater than some

local maximum threshold.

 Candidate SURF feature points are obtained.

 End

5. Subpixel localization of initial SURF feature points

 Initial feature points are initialized.

 Non-maximum suppression is applied in a 3x3x3 neighborhood of

each initial feature point.

 Initial feature points are localized in space and scale.

 The value of the maximum of the determinant is interpolated in space

and scale.

 End, final SURF feature points are obtained.

In this thesis for the extraction of SURF feature points mainly used SURF

detector implementation of Bay et.al. The algorithm is developed in C++

environment and OpenCV library used. The purpose of this chapter was natural

feature tracking for the markerless augmented reality tracker part. However, for

purpose of mobile augmented reality SURF algorithm by using Mobile version of

OpenCV was not efficient and robust. So this approaches are unsuitable for low-

end embedded platforms such as phones. Because of that we used Vuforia SDK

for tracking part in mobile application.

34

Figure 3.13 SURF implementation with good matches

Figure 3.14 SURF implementation with rotated target good matches

35

4. POSE TRACKING

This chapter introduces the concepts of pose estimation and presents

Vuforia SDK solution for markerless target tracking on mobile phones. It gives

details on the phone specific features. Augmented Reality (AR) and Virtual

Reality (VR) require real-time and proper 6DOF pose tracking of devices. Pose

tracking should be cheap, work robustly in changing environmental conditions,

provide automatic localization in global coordinates and support a large working

area.

4.1. Camera Calibration

Camera calibration is an important issue in computer vision. With

calibrated camera, the system can render 3D virtual objects on the target in the

correct place. Camera parameters consist of the intrinsic and extrinsic parameters.

The intrinsic camera parameters are the vertical and horizontal focal lengths and

the principal point of the camera and the skew. For satisfy distortion of the

camera, also the tangential and radial distortion coefficients up to second order

need to be computed. To calibrate these, an enough amount of 2D–3D

correspondences has to be created, this is typically done using a known target like

a chessboard. For the calibration of the low resolution camera, in this thesis used

the calibration method from Zhang [73] from OpenCV [7].

Here captured inner corners of the chessboard from live camera, then by

updating the extrinsic and intrinsic parameters of the camera, iteratively

minimized the squared distance of the reprojection of the chessboard corners to

the detected corners [1]. Experimental work shown in Figure 4.1 with good

results.

36

Figure 4.1 Several screen shoots of Camera Calibration application

If enough capturing inner corner didn't, the camera calibration get wrong

parameters and the view would be erratic as shown comparison of with calibrated

camera in Figure 4.2.

Figure 4.2 Comparison of Calibrated and Uncalibrated Camera

37

 After calibration, the application will create two XML (Extensible Markup

Language) files which are include Distortion and Intrinsic parameters. Intrinsic

parameters are as follows:

<?xml version="1.0"?>

<opencv_storage>

<Intrinsics type_id="opencv-matrix">

 <rows>3</rows>

 <cols>3</cols>

 <dt>f</dt>

 <data>

 6.15828369e+002 0. 3.71354889e+002 0. 6.15828369e+002

 2.26973648e+002 0. 0. 1.</data></Intrinsics>

</opencv_storage>

In this thesis used OpenCV library for experimental work and an A4 Tech

webcam so-called pinhole camera model calibrated. Camera calibration

theoretical steps shown as following equations. In this model, a scene view is

formed 3D points into the image plane using a perspective transformation.

 𝑠m′ = A[𝑅|𝑡]𝑀′ (4.1)

Or

 𝑠 [
𝑢
𝑣
1

] = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 𝛼

] [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

 |

𝑡1

𝑡2

𝑡3

] [

𝑋
𝑌
𝑍
1

] (4.2)

Where:

 (u,v) are the coordinates of the projection point in pixels

 A is a camera matrix which matrix of intrinsic parameters

38

 (𝑐𝑥, 𝑐𝑦) is parameters of intrinsic matrix which is principal point that usually at

image center.

 𝑓𝑥 , 𝑓𝑦 are the focal lengths expressed in pixel units.

 𝛼 is aspect ratio usually 1. Note that, 𝑓𝑦 = 𝑓𝑥 ∗ 𝛼

 𝑟𝑖𝑗 and 𝑡𝑖 are the joint Rotation and Translation matrix elements.

 (X,Y,Z) are the coordinates of a 3D point in the world coordinate space.

Thus, if an image from the camera is scaled by a factor, all of these

parameters should be scaled (multiplied/divided, respectively) by the same factor.

The matrix of intrinsic parameters does not depend on the scene viewed. So, once

estimated, it can be re-used as long as the focal length is fixed (in case of zoom

lens). The joint rotation-translation matrix [𝑅|𝑡] is called a matrix of extrinsic

parameters. It is used to describe the camera motion around a static scene, or vice

versa, rigid motion of an object in front of a still camera. That is, [𝑅|𝑡] translates

coordinates of a point (X,Y,Z) to a coordinate system, fixed with respect to the

camera. The transformation above is equivalent to the following (when ≠ 0):

 [

𝑥𝑐

𝑦𝑐

𝑧𝑐

] = 𝑅 [
𝑋
𝑌
𝑍

] + 𝑡 (4.3)

 𝑥′ = 𝑥/𝑧 (4.4)

 𝑦′ = 𝑦/𝑧 (4.5)

 𝑢 = 𝑓𝑥 ∗ 𝑥′ + 𝑐𝑥 (4.6)

 𝑣 = 𝑓𝑦 ∗ 𝑦′ + 𝑐𝑦 (4.7)

Real lenses usually have some distortion, mostly radial distortion and

slight tangential distortion. So, the above model is extended as:

 [
𝑥
𝑦
𝑧

] = 𝑅 [
𝑋
𝑌
𝑍

] + 𝑡 (4.8)

 𝑥′ = 𝑥/𝑧 (4.9)

 𝑦′ = 𝑦/𝑧 (4.10)

39

 𝑥′′ = 𝑥′ 1+𝑘1𝑟2+𝑘2𝑟4+𝑘3𝑟6

1+𝑘4𝑟2+𝑘5𝑟4+𝑘6𝑟6 + 2𝑝1𝑥′𝑦′ + 𝑝2(𝑟2 + 2𝑥′2
) (4.11)

 𝑦′′ = 𝑦′ 1+𝑘1𝑟2+𝑘2𝑟4+𝑘3𝑟6

1+𝑘4𝑟2+𝑘5𝑟4+𝑘6𝑟6 + 𝑝1(𝑟2 + 2𝑦′2
) + 2𝑝2𝑥′𝑦′ (4.12)

Where

 𝑟2 = 𝑥′2
+ 𝑦′2

 (4.13)

 𝑢 = 𝑓𝑥 ∗ 𝑥′′ + 𝑐𝑥 (4.14)

 𝑣 = 𝑓𝑦 ∗ 𝑦′′ + 𝑐𝑦 (4.15)

𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5 𝑎𝑛𝑑 𝑘6 are radial distortion coefficients. 𝑝1 𝑎𝑛𝑑 𝑝2 are

tangential distortion coefficients. In the functions below the coefficients are

passed or returned as:

(𝑘1, 𝑘2, 𝑝1, 𝑝2, [𝑘3, [𝑘4, 𝑘5, 𝑘6]])

vector. That is, if the vector contains four elements, it means that 𝑘3 = 0.

The distortion coefficients do not depend on the scene viewed. Thus, they also

belong to the intrinsic camera parameters. And they remain the same regardless of

the captured image resolution. If, for example, a camera has been calibrated on

images of 320 x 240 resolution, absolutely the same distortion coefficients can be

used for 640 x 480 images from the same camera while 𝑓𝑥, 𝑓𝑦 , 𝑐𝑥 𝑎𝑛𝑑 𝑐𝑦 need to

be scaled appropriately.

Camera calibration is needed for property augmentation of 3D model on

our target, Augmentation of a Cube on the target by using calibrated and

uncalibrated camera is shown in Figure 4.1. In this thesis we have worked on

desktop application to understand camera calibration features and needed

approach for mobile 3D reconstruction.

40

Figure 4.3 Augmentation of a Cube with calibrated camera (Left) and uncalibrated camera

(Right)

4.2. Pose Tracking

Pose is a position and orientation of an object (6DOF) and description of

pose estimation is that getting the pose of an object from a 2D image. In order to

get convenient augmentation to my thesis, we have to deal with the pose

estimation. Therefore, we did some theoretical researches and experimental work

on this.

Previous subsection on camera calibration, we have found the camera

matrix, distortion coefficients etc. By given target image, we can use this

information to calculate its pose, or how the object is situated in space, like how it

is displaced, how it is rotated etc. We assume that Z=0 for a 2D object, so, the

problem now becomes how camera is placed in space to see our target image.

Therefore, if we know object location in the space, we can draw some 2D

diagrams in it to simulate the 3D effect.

Problem is that we want to draw our 3D coordinate axis (X, Y, Z axes) on

our chessboard’s first corner. X axis in blue color, Y axis in green color and Z

axis in red color. Therefore, Z axis should feel like it is vertical to our chessboard

target.

41

Initially, we load the camera matrix and distortion coefficients from the

camera calibration result. Then, we take the corners in the chessboard and axis

points to draw a 3D axis.

Then, we create object points (3D points of corners in chessboard) and

axis points. Axis points are points in 3D space for drawing the axis. After that,

searches for 8x5 grid (chessboard size). If found, we depurate it with subcorner

pixels. Then calculates the rotation and translation [7]. Finally, we draw it on

chessboard target. The results shown in Figure 4.4.

Figure 4.4 Pose estimation experimental work

42

5. RENDERING

Real time rendering is related with generating images quickly on the

camera scene. This is totally interactive on computer vision, computer graphics

and augmented reality applications etc. The rendering pipeline occurs with a 2D

image, a virtual camera, 3D object, light sources, shading equations, textures, and

more. The process of using the pipeline is depicted in Figure 5.1. The location and

shape of the object on the camera are determined by their geometry [74].

Figure 5.1 A 3D virtual model with completed of rendering pipeline

In mobile applications prompt rendering is needed. Therefore, we use a 3D

API which is OpenGL for 3D rendering in my augmented reality application [8].

OpenGL is a common tool which is represented in research and professional

applications [4]. OpenGL render pipeline is shown in Figure 5.2. OpenGL has two

stages; first stage is geometry stage which consists model and view transform,

vertex shading, projection, clipping and screen mapping. Second stage is

rasterizer stage which consists triangle setup, triangle traversal, pixel shading and

merging [74].

43

Figure 5.2 The OpenGL Render Pipeline

Creating a 3D model has crucial importance for augmented reality

applications. In our application we chose Wavefront OBJ 3D files. Reason of

choosing this file format is a simple data-format that represents 3D geometry

alone namely, the position of each vertex, the UV position of each texture

coordinate vertex and texture vertices etc. Also it is a simple text-based format

that is supported by many 3D packages. In order to generate 3D model and its

texture we used Blender 3D software [9]. Exporting 3D Wavefront OBJ Model,

Blender creates two files with .obj (Object) and .mtl (Material Template Library)

extensions. The .obj extension file contains geometry information of 3D model.

The .mtl extension file contains the visual aspects of the polygons and texture

image file path.

Texturing is one of the most important steps for pixel shading on 3D

object model. Texturing an object is simply means gluing an image onto that

object. This process is depicted in Figure 5.3.

44

Figure 5.3 A spaceship Wavefront OBJ 3D model in wireframe form shown in the upper left,

solid form without texture shown in the upper right. The pieces in the image texture

(the lower right) are “glued” onto the spaceship, and the result is shown in the lower

left

45

6. VUFORIA SDK

6.1. Introduction

Vuforia is an augmented reality SDK (Software Development Kit) which

is supported by Android, iOS and Unity 3d that allows actualize real time AR

applications on smartphone devices. This software development kit uses computer

vision technology to recognize target image and get pose of objects by camera in

real time. In this project the used Vuforia SDK 2.8.8 version for android software

environment [75].

6.2. Architecture of Vuforia

Vuforia is capture and pass the frame of camera efficiently to the tracker.

The frame of camera is automatically arranges image format and size dependent

devices. Then converts pixel format from the camera format (e.g., YUV12) to

suitable format for OpenGL ES 3D model rendering (e.g., RGB565) and for

tracking internally. Finally Vuforia detects and tracks real-world objects in camera

video frames by computer vision algorithms.

Figure 6.1 Data flow diagram of the application with the Vuforia SDK

46

6.3. Target management system

Vuforia has two type of target database. One of these device databases

which is uploading image on target manager website, then downloading the target

database to recognize. In this way the device doesn’t need internet connection.

The second type of target database is cloud database which is creating a cluster of

image and suitable for uploading several images. In this way device needs to

internet connection and it is creating an Id and password to be able to use in

application. In this thesis we used both of them.

47

7. APPLICATION DEVELOPMENT

The aim of thesis is creating markerless augmented reality application on

Android platform. In order to achieve, we need Eclipse IDE (Integrated

Development Environment) and its plugins; Android SDK, ADT (Android

Developer Tools), Eclipse CDT (C/C++ Development Tools) and Android NDK

(Native Development Kit).

Eclipse IDE is a project which aiming to provide a universal tool set for

software development. Open Source IDE, mostly provided in Java, but the

development language is independent [76]. Our application implemented and

tested on this environment.

Blender is a 3D computer graphics software is used for creating a

Wavefront OBJ 3D model for augmentation. For this application, we created a 3D

roof model as shown in Figure 7.1.

Figure 7.1 3D Wavefront OBJ Roof Model with solid and textured mode

7.1. Software Implementation

In this thesis OpenCV 2.4 version is used on Microsoft Visual Studio 10.0

to implementation of camera calibration, pose tracking and markerless

augmentation of a cube. Project properties must be included Additional Include

Directories and Libraries for usage of OpenCV on Visual Studio environment.

48

OpenGL is used in Markerless augmented reality desktop application for

drawing cube on the target image. This also must be included additional

directories on Visual Studio similarly with OpenCV,

OpenGL is also used in Mobile Markerless application for rendering of 3D

Wavefront OBJ model.

Vuforia was introduced in chapter 6. In our application we used Vuforia

2.8.8 version. This SDK only used for target recognition, other steps are covered

by developer section.

49

8. TEST AND RESULTS

The experimental works has been done on Visual Studio by using OpenCV

library. Then the final version of Markerless Augmented Reality Application

which is successfully working on Android Mobile devices has been implemented.

Some screen shoots of the application are shown in Figure 8.1 and Figure 8.2. In

figure 8.1 handmade 3D target that has covered with 2D target images as in figure

8.3 is shown.

Figure 8.1 Handmade 3D target model for augmentation

 As shown in figure 8.2 the screen shoot of Samsung Galaxy SIII mobile

devices is showing that Augmentation of a 3D roof model on proper position.

50

Figure 8.2 Augmentation of a handmade 3D home model

 After augmentation of 3D roof model, even if user looks around to 3D

target home model, the 3D roof model will track view of camera. So the aim of

thesis which was 3D reconstruction of an architectural building was achieved.

Figure 8.3 Unwrapped of 3D handmade home model (right) with its 2D target images

51

9. CONCLUSION

9.1. Summary and Conclusion

As a conclusion we analyzed how the totally working Markerless

Augmented Reality Application that works on Android Mobile devices. We

discussed how each requirement was met; gave guidelines on creating handheld

AR applications and finished with an outlook to future work.

Application of AR to cultural heritage is an enchanting research topic. It

allows maintaining the original building structures, already subject to wear and

tear, and provides a way of learning their history by seeing the original building

structures instead of ruins.

To achieve AR of cultural heritage necessary experimental studies are

completed and results are obtained. In this thesis firstly the basic parts of

Markerless AR was developed. It was aimed to develop a mobile based solution

which is capable real time working. In order to ensure real time performance, C++

native language and Vuforia SDK were used for algorithm development. Similar

applications in the literature were analyzed.

According to the initial goal of the thesis, 3D target recognition and its

augmentation was developed on mobile platform. The developed application can

work approximately at 30 fps. The application was tested with several targets and

appropriate results were obtained.

9.2. Future Works

The developed application in this thesis is using the Vuforia SDK target

recognition system. Therefore for future work, this part of algorithm desired to

made by client and achieve robust recognition system as good as Vuforia’s

performance. After all, next targeted work is using architectural 3D model data for

augmentation of historical places in Turkey for touristic guidance purpose.

Another future work is developing of the same Markerless AR application

on iOS platform. Moreover not only target based but also GPS based application

can be developed.

52

REFERENCES

[1] B. Furht, "Augmented Reality: An Overview," in Handbook of Augmented,

Florida Atlantic University, Florida, USA, Springer Science+Business

Media, LLC, 2011, p. 3.

[2] R. T. Azuma, "A Survey of Augmented Reality," Computer Graphics

(SIGGRAPH '95 Proceedings, Course Notes #9: Developing Advanced

Virtual Reality Applications), pp. 1-38, 1995.

[3] P. Milgram and F. Kishino, "A taxonomy of mixed reality visual displays,"

EICE Transactions on Information Systems, Vols. E77-D, no. 12, December

1994.

[4] D. Wagner and D. Schmalstieg, "First Steps Towards Handheld Augmented

Reality," in Proceedings of the 7th International Conference on Wearable

Computers, IEEE Computer Society Press,2003.

[5] F. P. Brooks, "The Computer Scientist as Toolsmith II," Communications of

the ACM, vol. 39, no. 3, pp. 61-68, March 1996.

[6] ARmedia, "Augmenting Real World Objects with ARmedia 3D Tracker,"

http://arblog.inglobetechnologies.com/?p=1188, Last Access: 01/ 07/ 2014.

[7] G. Bradski, "The OpenCV Library," Dr. Dobb’s Journal of Software Tools,

2000.

[8] OpenGL, "OpenGL," http://www.opengl.org/about/#12, Last Access: 20 June

2014.

[9] Blender 3D, "http://wiki.blender.org/index.php/Doc:2.6/Manual,"

http://wiki.blender.org/index.php/Doc:2.6/Manual, Last access: 15 July 2014.

[10] M. Bajura, H. Fuchs and R. Ohbuchi, "Merging Virtual Reality with the Real

World: Seeing Ultrasound Imagery Within the Patient," ACM SIGGRAPH

Computer Graphics, vol. 26, no. 2, pp. 203-210, 1992, USA.

[11] S. Feiner, B. MacIntyre and D. Seligmann, "Knowledge-based augmented

reality," Communications of the ACM, vol. 36, no. 7, pp. 52-62, 1993.

[12] T. Höllerer, S. Feiner, T. Terauchi and D. Gus Rashid, "Exploring MARS:

Developing Indoor and Outdoor User Interfaces to a Mobile Augmented

Reality System," Computers and Graphics, vol. 23, no. 6, pp. 779-785, Dec.

1999.

[13] M. Kalkusch, T. Lidy, M. Knapp, G. Reitmayr, H. Kaufmann and D.

Schmalst, "Structured Visual Markers for Indoor Pathfinding," in

Proceedings of the First IEEE International Workshop on ARToolKit

(ART02), 2002.

[14] W. Piekarski and B. . H. Thomas, "Tinmith evo5 - An Architecture for

Supporting Mobile," 2nd International Symposium on Augmented Reality

(ISAR), pp. 177-178, 2001, USA.

[15] D. G. Brown, S. Julier, Y. Baillot, M. A. Livingston and L. J. Rosenblum,

"Event-Based Data Distribution for Mobile Augmented Reality and Virtual

Environments," Presence - Teleoperators and Virtual Environments, vol. 13,

no. 2, pp. 211-221, 2004.

53

[16] J. Newman, G. Schall, I. Barakonyi, A. Schürzinger and D. Schmalstieg,

"Wide-Area Tracking Tools for Augmented Reality," in In Proceedings of

the 4th International Conference on Pervasive Computing, UK, 2006.

[17] B. Reitinger, C. Zach, . K. Karner and D. Schmalstieg, "Automated Model

Acquisition using 3D Reconstruction for Urban Planning," in Demo at the

ISMAR 2006 symposium, USA, 2006.

[18] I. Lindt, J. Ohlenburg, U. Pankoke-Babatz and S. Ghellal, "A report on the

crossmedia game epidemic menace," Computers in Entertainment (CIE), vol.

5, no. 1, Section on Pervasive gaming, ACM Press,2007.

[19] D. Wagner, "Handheld Augmented Reality," in Dissertation, Graz, Austria,

October 1st, 2007, pp. 15-18.

[20] B. MacIntyre and S. Feiner, "A Distributed 3D Graphics Library," Annual

Conference Series, pp. 361-370, 1998.

[21] M. R. Macedonia and M. J. Zyda, "A Taxonomy for Networked Virtual

Environments," Networked Virtual Environments, In Proceedings of the

Virtual Reality Annual International Symposium,VRAIS '95, pp. 230-231,

1995.

[22] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner and J.

T. Klosowsk, "Chromium: a stream-processing framework for interactive

rendering on clusters," ACM Transactions on Graphics, vol. 21, no. 3, pp.

693-702, 2002.

[23] D. Amselem, "A window on shared virtual environments," Presence:

Teleoperators and Virtual Environments, vol. 4, no. 2, pp. 130-145, 1995.

[24] G. W. Fitzmaurice, "Situated Information Spaces and Spatially Aware

Palmtop," Communications of the ACM,, vol. 36, no. 7, pp. 38-49, 1993.

[25] J. Rekimoto, "The World through the Computer: Computer Augmented

Interaction with Real World Environments," User Interface Software and

Technology (UIST '95), pp. 29-38, 1995.

[26] H. Regenbrecht and R. .. Specht, "A Mobile Passive Augmented Reality

Device - mPARD," Proceedings of ISAR, pp. 81-84, 2000, Germany.

[27] J. Rekimoto, "A Hand-held Augmented Reality System for Collaborative,"

Proceedings of Virtual Systems and Multi-Media (VSMM '96),, pp. 18-20,

Gifu, Japan, 1996.

[28] D. Mogilev, K. Kiyokawa, M. Billinghurst and J. Pair, "AR Pad: An Interface

for Face-to-Face AR Collaboration," Conference on Human Factors in

Computing Systems (CHI'02) Extended abstracts on Human factors in

computer systems, pp. 654-655, 2002, USA.

[29] J. Newman, D. Ingram and A. Hopper, "Augmented Reality in a Wide Area

Sentient Environment," Proceedings of the 2nd IEEE and ACM International

Symposium on Augmented Reality (ISAR 2001), pp. 77-86, 2001, USA.

[30] J. Gausemeier, J. Fruend, C. Matysczok, B. Bruederlin and D. Beier,

"Development of a real time image based object recognition method for

mobile AR-devices," Proceedings of the 2nd International Conference on

Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa

(Afrigraph 2003), pp. 133-139, 2003, Africa.

54

[31] F. Shibata, "Mobile Computing Laboratory," Department of Computer

Science, Ritsumeikan University,

http://www.mclab.ics.ritsumei.ac.jp/research.html, Japan.

[32] A. Makri, . D. Arsenijevic, J. Weidenhausen, P. Eschler, D. Stricker, O.

Machui, C. Fernandes, S. Maria, G. Voss and . N. Loannidis, "ULTRA: An

Augmented Reality System for Handheld Platforms," Targeting Industrial

Maintenance Applications, Proceedings of 11th International Conference on

Virtual Systems and Multimedia (VSMM'05), Belgium, 2005.

[33] H. Kato and M. Billinghurst, "Marker Tracking and HMD Calibration for a

Video-based Augmented Reality Conferencing System," in Proceedings of

the 2nd International, USA, 1999, pp. 85-94.

[34] D. Wagner, T. Pintaric, F. Ledermann and D. Schmalstieg, "Towards

Massively Multi-User Augmented Reality on Handheld Devices,"

Proceedings of the 3rd International Conference on Pervasive Computing

(PERVASIVE 2005), pp. 208-219, 2005, Germany.

[35] M. Möhring, C. Lessig and O. Bimber, "Video See-Through AR on

Consumer Cell-Phones," Proceedings of International Symposium on

Augmented and Mixed Reality (ISMAR'04), pp. 252-253, 2004, USA.

[36] A. Henrysson , M. Billinghurst and M. Ollila, "Face to Face Collaborative

AR on Mobile Phones," Proceedings International Symposium on

Augmented and Mixed Reality (ISMAR’05), pp. 80-89, 2005, Austria.

[37] D. A. Bowman, E. Kruijff, J. J. LaViola and I. Poupyrev, "What Are 3D User

Interfaces?," in 3D User Interfaces: Theory and Practice, USA, Pearson

Education, Inc., 2005, pp. 3-4.

[38] K. Meyer, H. L. Applewhite and F. A. Biocca, "A Survey of Position

Trackers," Teleoperators and Virtual Environments, vol. 1, no. 2, pp. 173-

200, Spring 1992 .

[39] G. Welch and E. Foxlin, "Motion Tracking: No Silver Bullet, but a

Respectable Arsenal," IEEE Computer Graphics and Applications, vol. 22,

no. 6, pp. 24-38, 2002.

[40] P. Mistry and P. Maes, "SixthSense: a wearable gestural interface," in

International Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH ASIA, Yokohama, Japan, December , 2009.

[41] M. Felsberg and J. Hedborg, "Real-time view-based pose recognition and

interpolation for tracking initialization," Journal of Real-Time Image

Processing, vol. 2, no. 2-3, pp. 103-115, November 2007.

[42] OpenCV: Open Source Computer Vision Library Reference Manual, Intel,

2000.

[43] S. Siltanen, "Marker-Based Tracking," in Theory and applications of marker-

based augmented reality, Finland, Copyright © VTT , 2012, p. 39.

[44] ARToolKit , "ARToolkit," http://www.hitl.washington.edu/artoolkit, Last

Access: 15 May 2014.

[45] ALVAR, "A Library for Virtual and Augmented Reality,"

www.vtt.fi/multimedia/ alvar.html, 01 May 2013.

[46] ARTag, "Augmeneted Reality system," http://www.artag.net , 01 May 2013.

55

[47] D. J. Felleman and D. C. Van Essen, "Distributed hierarchical processing in

the primate cerebral cortex," Cereb Cortex, pp. 1-47, 1991.

[48] Y. Ma, S. Soatto, J. Kosecka and S. S. Sastr, in An Invitation to 3-D Vision:

From Images to Geometric Models, Springer, 2004.

[49] R. Hartley and A. Zisserman, in Multiple View Geometry in Computer

Vision, Cambridge University Press, 2003.

[50] D. A. Forsyth and J. Ponce, in Computer Vision: A Modern Approach,

Pearson Education, Limited, 2011.

[51] J.-Y. Bouguet, "Camera Calibration Toolbox for Matlab," http://www.

vision.caltech.edu/bouguetj/calib_doc/index.html, 2008., Last Access: 24

June 2014.

[52] "Feature detection (computer vision),"

http://en.wikipedia.org/wiki/Feature_detection_(computer_vision), Last

access: 24 June 2014.

[53] M. Zuliani, C. Kenney and B. S. Manjunath, "A Mathematical Comparison of

Point Detectors," in IEEE Computer Vision and Pattern Recognition,

Washington, DC, 2004.

[54] M. O. SHNEIER, "Extracting Linear Features from Images Using Pyramids,"

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS, vol. 12,

no. 4, pp. 569-572, July/August, 1982.

[55] A. K. Jain and G. R. Cross, "Markov random field texture models," Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. PAMI, no. 1,

pp. 25-39, 1983.

[56] J. Shi and J. Malik, "Normalized Cuts and Image Segmentation," Computer

Vision and Pattern Recognition,Proceedings,IEEE Computer Society

Conference on, pp. 731-737, 1997.

[57] N. Dalal and B. Triggs, "Histograms of oriented gradients for human

detection," Computer Vision and Pattern Recognition, CVPR 2005. IEEE

Computer Society Conference on, vol. 1, pp. 886-893, 2005.

[58] T. Tuytelaars and K. Mikolajczyk, "Local invariant feature detectors: A

survey," Foundations and Trends in Computer Graphics and Vision, vol. 3,

no. 3, pp. 177-280, 2008.

[59] C. Schmid, R. Mohr and C. Bauckhage, "Evaluation of interest point

detectors," International Journal of Computer Vision, vol. 37, no. 2, pp. 151-

172, 2000.

[60] O. M. Mozos, A. Gil, M. Ballesta and O. Reinoso, "Interest Point Detectors

for Visual SLAM," Current Topics in Arti cial Intelligence, vol. 4788, pp.

170-179, 2007.

[61] S. M. Smith and J. Brady, "Susan: A new approach to low level image

processing," International Journal of Computer Vision, vol. 23, no. 1, pp. 45-

78, 1997.

[62] G. E. Bostancı, "User Tracking Methods for Augmented Reality Applications

in Cultural Heritage," in School of Computer Science and Electronic

Engineering University of Essex, Colchester, England, November, 2013.

56

[63] D. G. Lowe, "Distinctive image features from scale-invariant keypoints,"

International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

[64] H. Bay, T. Tuytelaars and L. V. Gool, "SURF: Speeded Up Robust Features,"

EECV, LNCS:3951, pp. 404-417, 2006.

[65] K. MIKOLAJCZYK and C. SCHMID, "Scale & Affine Invariant Interest

Point Detectors," International Journal of Computer Vision, vol. 60, no. 1,

pp. 63-86, 2004.

[66] H. Ney, in Features for Image Retrieval, Aachen, Germany, 2003, p. 17.

[67] D. Kurz and S. B. Himane, "Inertial sensor-aligned visual feature

descriptors," Proceedings IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 161-166, 2011.

[68] D. L. Baggio, S. Emami, D. M. Escriva, K. Ievgen, N. Mahmood, J. Saragih

and R. Shilkrot, "Markerless Augmented Reality," in Mastering OpenCV

with Practical Computer Vision Projects, Packt Publishing , December 3,

2012, pp. 95-120.

[69] K. MIKOLAJCZYK and C. SCHMID, "Indexing based on scale invariant

interest points," ICCV, vol. 1, pp. 525-531, 2001.

[70] T. Lindeberg, "Feature detection with automatic scale selection," IJCV, vol.

30, no. 2, pp. 79-116, 1998.

[71] P. Viola and M. Jones, "Rapid Object Detection using a Boosted Cascade of

Simple Features," IEEE Conference on Computer Vision and Pattern

Recognition, vol. 1, p. 511, 2001.

[72] C. Evans, "Notes on the OpenSURF Library," University of Bristol Tech.

Rep. CSTR, vol. 9, no. 1, p. 7, January 18,2009.

[73] Z. Zhang, "A Flexible New Technique for Camera," Pattern Analysis and

Machine Intelligence, IEEE Transactions on, vol. 22, no. 11, pp. 1330-1334,

2000.

[74] T. Akenine-Moller, E. Haines and N. Hoffman, Real-Time Rendering,

Wellesley, Massachusetts, USA: A K Peters/CRC Press, July 25, 2008.

[75] A. S. Ibañez and J. P. Figueras, "Vuforia v1.5 SDK: Analysis and evaluation

of capabilities," Escola d'Enginyeria de Telecomunicació i Aeroespacial de

Castelldefels, Barcelona, İspanya, 19 March 2013.

[76] Eclipse IDE, "http://www.eclipse.org/org/," Eclipse Foundation, Inc.,

Ontario, Canada, Last access: 15 July 2014.

[77] O. Bimber and R. Raskar, "Modern Approaches to Augmented Reality," in

ACM SIGGRAPH, New York, USA, 2006.

[78] I. Sutherland, "The Ultimate Display," in Proceedings of International

Federation of Information Processing, Spartan Books, 1965, pp. 506-508.

[79] I. Sutherland, "A Head-Mounted Three Dimensional Display," in

Proceedings of Fall Joint Computer Conference, USA, 1968, pp. 758-765.

[80] S. Feiner, B. MacIntyre and T. Höllerer, "First steps toward mobile

augmented reality systems," In Proceedings of ISMR, pp. 363-377, 1999,

Japan.

[81] S. Feiner, B. MacIntyre and T. Höllerer, "A touring machine: Prototyping 3d

57

mobile augmented reality systems for exploring the urban environment,"

Proceedings of the First International Symposium on Wearable Computers

(ISWC), pp. 74-81, 1997,USA.

[82] J. Rekimoto, "Multiple-Computer User Interfaces: A Cooperative

Environment Consisting of Multiple Digital Devices," Cooperative

Buildings: Integrating Information, Organization, and Architecture Lecture

Notes in Computer Science , vol. 1370, pp. 33-40, 1998.

[83] S. Ashley, "Annotating the Real World: Augmented Reality Makes

Commercial Headway," Scientific American, vol. 299, no. 4, pp. 27-28, 2008.

[84] R. Szeliski, in Computer Vision: Algorithms and Applications, September 3,

2010.

[85] J. Weng, P. Cohen and M. Herniou, "Camera calibration with distortion

models and accuracy evaluation," Pattern Analysis and Machine Intelligence,

IEEE Transactions on, vol. 14, no. 10, pp. 965-980, 1992.

[86] I. Guyon and . A. Elisseeff, "An Introduction to Feature Extraction," Spring

Berlin Heidelberg, pp. 1-25, 2006.

[87] M. Zhao and S. Qin, "Socket connector recognition based on SVM with

speeded up robust feature (SURF)," International Conference on Electronic

Measurement & Instruments, vol. 9, no. 4, pp. 827-831, 2009.

