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ÖZET 

 Yüksek Lisans Tezi 
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Elektrik-Elektronik Mühendisliği Anabilim Dalı 
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Eklenmiş gerçeklik bilgisayarda oluşturulan bilgilerin gerçek zamanda 

gerçek dünya görünümüne eklenmesi işlemidir. Bilgisayar ortamında oluşturulan 

3-boyutlu modellerin, animasyonların, videoların ve çeşitli sanal materyallerin 

gerçek dünyada arzu edilen hedef üzerine konumlandırılmasını sağlayan eklenmiş 

gerçeklik, gerçek dünyanın zenginleştirilmesini, daha faydalı ve işlevsel hale 

getirilmesine izin vermektedir. Bu tez de eklenmiş gerçeklik teknolojisinin nasıl 

çalıştığıyla ilgili bilgilendirmekte, uygulama alanlarına göre irdelemekte ve 

tarihten bugüne gelişimini özetlemektedir. 

Tez Android mobil cihazda çalışan, tamamen işaretçisiz eklenmiş 

gerçeklik uygulamasının tasarım ve geliştirilmesini sunar. Bu amaç doğrultusunda 

OpenCV bilgisayarlı görü kütüphanesi kullanılarak öznitelik çıkartma ve tanıma, 

SURF (hızlandırılmış gürbüz öznitelik çıkarım), işaretçisiz takip etme (doğal 

öznitelik izleme) gibi birçok bilgisayarlı görü tekniği kullanılarak çalışıldı. Bunun 

yanı sıra OpenGL (açık grafik kütüphanesi) kullanılarak 3-Boyutlu modelleme, 

doku giydirme, gölgelendirme vb. ve ayrıca Blender3D ile 3-boyutlu Wavefront 

OBJ model dosyaları oluşturuldu. 

Son olarak bu tezde, yukarıda bahsedilen yöntemlerden faydalanarak bir 

kaç uygulama sunulmuştur. İlk olarak eklenmiş gerçeklik mantığını anlamak için 

kamera kalibrasyonu, poz izleme ve işaretçi bazlı eklenmiş gerçeklik 

uygulamaları üzerinde çalışıldı, sonrasında algoritmanın hedef izleme kısmı için 

Vuforia SDK kullanılarak Android mobil cihaz üzerinde işaretçisiz eklenmiş 

gerçeklik uygulaması geliştirildi. 

 

Anahtar Kelimeler: Arttırılmış Gerçeklik, Eklenmiş Gerçeklik, Bilgisayarlı 

Görü,  Mobil Cihazlar, Android Ara yüz Yazılımı, SURF 
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Augmented Reality (AR) is the process of adding virtual computer 

generated information on view of a physical real-world environment in real-time. 

AR, which allows adding 3-dimensional models, animations, videos and various 

virtual materials which are generated in computer environment to be positioned 

on desired targets in the real world, allows for enabling and enriching the real 

world more functional and beneficial. In this thesis explains how AR technologies 

work, expresses and explains fields of application and gives a summary from 

history to present time and also presents a real-life demonstration of Mobile 

device-based AR. 

Thesis presents contributions for design and development of a fully 

working Markerless Augmented Reality Application that works on Android 

Mobile devices. For this purpose, were studied on several computer vision 

techniques such feature extraction-detection, SURF (Speeded Up Robust 

Features), Markerless tracking (Natural feature tracking) by using OpenCV 

Computer Vision library. As well as, were done  3D modelling, texturing, shading 

etc. by using OpenGL (Open Graphics Library) and also creating Wavefront OBJ 

3D model files via Blender 3D. 

Finally in this thesis, several applications are presented that make use of 

these methods which is mentioned above. Firstly camera calibration, pose tracking 

and marker based augmented reality applications were worked for understanding 

augmented reality idea, then a markerless augmented reality application were 

developed on android mobile device by using Vuforia SDK for target tracking 

part of algorithm. 

 

Keywords: Augmented Reality, Computer Vision, Mobile Devices, Android    

Software Interface, SURF 
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1.  INTRODUCTION 

Augmented Reality (AR) is adding virtual computer generated information 

on view of a physical real-world environment in real-time. AR is both interactive 

and registered in 3D as well as combines real and virtual objects [1]. The field of 

AR has very good potential to improve lives in many ways and help people learn, 

navigate, and search the environment. Up until now, the technology available has 

made development in this field not very meaningful or worthwhile. With the 

advancements in mobile phone technology, incorporating things like GPS data, a 

video camera, a compass, and an internet connection, the benefits of AR are 

becoming available to more and more people every day.  

The recent novelty of Augmented Reality (AR) and mobile technologies 

has enabled the creation of new mobile AR applications. Mobile AR allows users 

to integrate the information of the internet with their real lives. Lately, mobile AR 

applications becomes more commonplace in consequence of the image 

processing, computer vision techniques and rapid processing capabilities of 

mobiles has grown in recent years. 

The aim of this thesis is understanding augmented reality and create a 

mobile based 3D AR application. The future of augmented reality looks very 

promising and with the advancements in technology it will someday be an 

important part of many people’s lives [1].  

1.1. History of Augmented Reality 

First Augmented Reality systems were developed in the 1960s, 

Augmented Reality only separated itself from virtual reality and became a 

research area in its own rights in the beginning of the 1990s. Today there is two 

main definitions that describe Augmented Reality. Because of a lack of an official 

agreement on the term, both are accepted. Following the definition of Azuma [2] 

An AR system has to accomplish the three requirements: 

 

 Combine the Virtual world and Real world 

 Registered in the real world in 3D 

 Interactive in real time 
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The first requirement is a fundamental description of AR in that it 

combines the real world with virtual contents. The second requirement separates 

Augmented Reality from the more general concepts of mixed reality or mixed 

media by requiring that the virtual content must be registered in 3D within the real 

world. Finally “Interactive in real time” requires the system to react to the user 

and update in real time which differentiate AR from all off-line augmentations 

such as the use of computer graphics in movies. 

According to the older Virtuality continuum proposed by Milgram [3] (see 

Figure 1.1), AR is just one possible manifestation of Mixed Reality (MR), which 

brings together real and virtual within a single display. The Virtuality continuum 

collocate AR and Augmented Virtuality (AV). AR is mostly grounded in the real 

world, with a limited set of virtual objects mixed in. The inverse concept, AV, is 

designed as a Virtual Environment with some real directions - a recurring example 

for AV are video-textured avatars (showing a live video feed of real people) 

within a Virtual Environment. The boundary between AR and AV is not strictly 

defined. 

 

 

Figure 1.1     Milgram's Reality-Virtuality continuum [3] 

 

 Benefit of the mobile augmented reality (AR) is that mobile computing 

research is a natural complement because of the mobile AR system can assist at 

the workplace instead of requiring to stationary workstations. The advantage of 

mobile approaches is that hardware and software very similar to traditional non-

mobile AR systems can be used. Whilst there are a lot of working systems created 

of a head mounted display (HMD) and a notebook, most of these setups have been 

designed as pure proof of concept and do not provide an utilizable form factor. 

Generally HMDs have all their hardware mounted to a large rucksack, including 
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heavy power supplies for items not designed for mobile use. While such 

rucksack/HMD combinations combine high performance with handsfree 

operation, they seriously affect ability, avoid practical use and are socially 

unacceptable. They are maintenance dense and lack sturdiness on account of their 

complex hardware setups. Most of the devices used were not designed for mobile 

deployment and therefore not only require heavy batteries but also use fragile 

connectors and cables. Additionally, the prohibitive cost of these setups prevents 

dispersing them in a commercial market. On the side, the development of HMD 

technology, which is an unavoidable part of such an approach to wearable AR, is 

not keeping quickness with the advances in computer and sensor technology.  

Simultaneously, broad consumer interest in cell phones and handheld 

computers. Owing to, this is dramatically accelerating the development in this 

area. Therefore consideration of AR development will be shift to smaller and 

ergonomic devices which is smartphones [4]. 

1.2. Motivation and Approach 

Lately, augmented reality increases as an interesting topic in various field. 

What is benefit of combining real and virtual objects in 3D? Augmented Reality is 

used several areas, such as Archaeology, Architecture, Art, Commerce, 

Construction, Education, Gaming, Industrial design, Medical, Military, 

Navigation, Television etc. While these do not cover every potential application 

area of this technology, they do cover the areas explored so far [2]. 

Augmented Reality improve perception of users with the real world. The 

virtual objects display information on devices that the user cannot directly detect 

with his own senses. The virtual objects helps a user perform real-world tasks. AR 

is a particular example of what Fred Brooks calls Intelligence Amplification (IA): 

using the computer as a tool to make a task easier for a human to perform [5]. 

The dream feeding and motivating the research presented in this thesis is a 

“Totally Markerless Mobile Architectural Augmentation Paradigm" which can be 

illustrated as Figure 1.2 
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Figure 1.2     Augmenting Real World Objects [6] 

 

 The main focus of the thesis is on finding aspect of 3D target as a 2D 

target image and render 3D Virtual Object model on proper world coordinates. 

After completion of augmentation of the 3D Virtual object, the user can look 

around 3D virtual object. This will show user as a 3D reconstruction of a 3D real 

world object. 

1.3. Contributions 

The contribution of this thesis is design and development of a fully 

working Markerless Augmented Reality Application that works on Android 

Mobile devices and was tested in multiple practical applications.  

This thesis presents a real-life demonstration of Mobile device-based AR. 

The Mobile device has a number of ergonomic advantages over a notebook AR 

and head-mounted displays and the suitability of this device as an AR medium has 

been demonstrated by the development and public demonstration of a functional 

3D reconstruction AR applications.  

The application of this thesis try to the reconstruction of a 3D Real world 

object by Augmented Reality technology to the mobile phone. In order to do that, 

by aspect of 3D world object, it is recognized as a 2D target image. By the way, 
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positioning 3D Object model on the world object, then we get a reconstructed 

world object by augmentation of our model. 

1.4. Thesis Outline 

In this thesis for preliminary study, to understanding idea of augmented 

reality, have worked on several computer vision techniques such feature 

extraction-detection, SURF, Markerless tracking (Natural feature tracking) by 

using OpenCV [7] Computer Vision library. As well as, 3D modelling, texturing, 

shading etc. by using OpenGL [8] (Open Graphics Library) and creating 

Wavefront OBJ 3D files via Blender 3D [9]. Chapter 1 contains an introduction to 

augmented reality and its history by explaining some basic concepts and the 

purpose of this thesis. To close this introductory chapter, the organization of the 

remaining chapters of this thesis is outlined below.  

Chapter 2 provides an overview of related work and literature review of 

AR consisting of six primary sections. Firstly it describes the technology typically 

associated with AR in order to give the reader context for 3D User interface, Pose 

tracking and Computer Vision elements being studied and implemented in this 

area. Besides, mentioned categories of AR applications.  

Chapter 3 presents the recognition methods for augmentable targets. 

Primarily it describes features of image in order to clarify the certain properties of 

the image. Then studied theory and implementation of feature detection and 

description. Additionally examined SIFT and SURF to detect and describe local 

features in images and implementation of SURF on notebook by using OpenCV 

library. 

Chapter 4 investigate an important part of augmented reality which is pose 

tracking. For augmentation of 3D object model with an appropriate view on 

camera, we implemented and tested calibration and pose of camera by notebook 

USB camera. 

 Chapter 5 presents 3D object viewing and rendering pipeline, introduced a 

3D API which is OpenGL and its properties. Besides, usage of Wavefront OBJ 

3D files and Blender 3D will described.  
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Chapter 6 then briefly introduces Vuforia SDK which used for target 

recognition part of mobile augmented reality application on Android software.  

Chapters 7 and 8 develops the stage of markerless augmented reality 

application, then tests and results it. 
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2. LITERATURE REVIEW AND BACKGROUND 

2.1. Augmented Reality 

In 1968 Ivan Sutherland created the first head-mounted display (HMD) [9, 

10]. Owing to restricted processing power, his application demonstrated just a 

simple wireframe model overlaid onto the real world. But nevertheless, it marks 

the first application that fulfils the definition by Azuma and Milgram (see section 

1.1).  

The first Augmented Reality applications developed from basic research, 

used very expensive hardware and last of all mostly covered research and 

technical problems only. In his 1995 survey paper Azuma lists six categories for 

AR applications: medical, manufacture and repair, visualization and annotation, 

military aircraft, robot path planning and entertainment. Some seminal works in 

these areas are given in the following.  

Researchers at UNC Chapel Hill administered first trials of overlaying 3D 

representations of ultra-sound data onto patients [10]. In the “Knowledge-based 

Augmented Reality for Maintenance Assistance” (KARMA) project Feiner and 

the others created a laser printer maintenance application [11]. Milgram developed 

the ARGUS system [3] to create an easier way for robot path planning. 

With the introduction of powerful portable computers and notebooks, 

mobile AR setups became possible. The Touring Machine [13, 14] was among the 

first to use this new hardware platform for mobile systems. A later project of the 

same research group was MARS (Mobile Augmented Reality Systems) [12]. It 

was one of the first indeed mobile augmented reality setups, Presented in 1999, 

which allowed the user to freely walk around with all necessary equipment 

mounted onto his back. Several similar platforms such as Studierstube [13], 

Tinmith [14] and BARS [15] examined in various application areas.  

Due to the recent availability of Tablet PCs and UMPCs many researchers 

use these devices to bring existing software to smaller devices. Newman et al. use 

these mobile devices for experiments on wide area tracking [16]. Reitinger uses 

UMPCs to gather data in an urban environment [17]. After starting with backpack 

setups the iPERG project [18] then switched to UMPCs and Tablet PCs due to 
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their lower costs and hardware maintenance requirements. The AMIRE3 project 

used Tablet PCs for a museum guide [19]. 

2.2. Augmented Reality on Handheld and Embedded Devices 

Many early works at least partly outsourced processing tasks to a nearby 

server via tethered or wireless networking. As can be seen in Figure 2.1, there are 

four different levels of outsourcing processing tasks to a server: In the ideal case 

Figure 2.1(a), all work is performed natively by the client making it independent 

of the server and substructure. At the other extreme, many early handheld AR 

applications were based on a thin client approach with a "video-in/video-out" 

communication mechanism for receiving assistance from a computing server, 

which is shown as Figure 2.1(d). Such a setup does not only require a frame-by-

frame communication but also requires sending video images in both directions 

requiring maximum performance of the network connection [19]. 

 

 

Figure 2.1     Different level of outsourcing to a server:  

a) All tasks are run natively by the client, b) Server performs tracking, 

c) Server performs tracking and application logic,  

d) All work is done by the server [19] 

 

On the other hand, these Figure 2.1(a) and Figure 2.1(d) solutions are just 

extreme examples of allocation of works among a handheld client and server. 

These extreme allocation may be necessary and useful depending on conditions or 

solutions. 

Typical augmented reality system for both tracking and video see-through 

display uses a single video source.  The main process of pipeline is: video 
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acquisition, tracking, application computation, rendering, display. Dispose of 

some these task to a computing server is an example of horizontally distributed 

simulation [20], and it is founded a scalable solution necessitates using of the 

available network bandwidth [21]. Communication of raw video flows in both 

directions (Figure 2.1c) does not satisfy such bandwidth limitation. A more 

preferable alternative seems to be flowing graphics commands back to the client 

such as done in the Chromium [22] framework. 

The approach demonstrated in Figure 2.1(b) leaves the tracking task to 

computing server, which needs upstream communication of pre-processed, 

compressed video for visual tracking purposes, followed by downstream 

communication of pose information. The advantage of this approach is that a very 

succinct, but general and computationally pricey task is transferred to the server, 

the client just handles all application details, in this way dependencies between 

client and server are minimal. For example, while tracking of artificial fiducials 

can be performed in realtime on embedded clients now, natural feature tracking 

can benefit from the greater computational power of a server for at least several 

more years. 

A small tethered LCD displays used for location based information by 

Amselem's work [23] and Fitzmaurice's Chameleon [24]. To track objects in the 

environment, Rekimoto's NaviCam [25] used color-coded sticker. Owing to the 

tethered trackers lately works, the degree of mobility was quite limited. mPARD 

[26] is a version of using analogue wireless video transmission to replace tethers. 

Sony CSL introduced the Transvision [27] project which is handheld augmented 

reality devices for a shared space. Researchers at HITLab later improved this 

concept [28] with a better user interface and an optical tracking solution re-using 

the camera needed for video see-through. All these works use simple tethered 

displays and cameras for the mobile device and are therefore extreme examples of 

Figure 2.1(d).  

The Batportal [29] used non-mixed 3D graphics using VNC, while the 

AR-PDA project [30] used digital image streaming from and to an application 

server. Both projects again use the method describe in Figure 2.1(d). Shibata's 

work [31] goals to load balancing between client and server - the weaker the 
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client, the more tasks are outsourced to a server. It can therefore vary between all 

situations described in Figure 2.1. ULTRA uses PDA-based AR to support 

maintenance workers, but concentrates on augmenting "snapshot" still images 

[32]. In the absence of real-time tracking for infrastructure independence it 

performs all tasks natively (Figure 2.1a).  

In 2003 the author ported ARToolKit [33] to the PocketPC and developed 

the first fully self-contained PDA AR application [4]. This platform was used in a 

peer to peer game in [34]. Möhring et al. were the first to successfully target a 

consumer smartphone for mobile AR [35]. The scarce processing power of the 

target platform allowed only a very coarse estimation of the object's pose on the 

screen. Henrysson ported ARToolKit to the Symbian platform and created the 

first two-player AR game [36] on current-generation smartphones.  

Summarizing these developments one can conclude that there is no ideal 

solution for systems with scarce processing capabilities. An infrastructure 

independent solution, as developed in the work of this thesis is desirable, but not 

feasible for all situations. E.g. when artificial feature tracking is not an option, 

embedded devices simply do not have the processing capabilities yet. While this 

will certainly change in the future, new more demanding problems will emerge 

too [19]. 

2.3. 3D User Interfaces 

A 3D user interface is as simply "a UI that involves 3D interaction." This 

simply delays the inevitable, as we now have to define 3D interaction. 3D 

interaction is "human-computer interaction in which the user's tasks are performed 

directly in a 3D spatial context [37]." 

One key word in this definition is "directly." There are some interactive 

computer systems that display a virtual 3D space, but the user only interacts 

indirectly with this space—e.g., by manipulating 2D widgets, entering 

coordinates, or choosing items from a menu. These are not 3D UIs. 

The other key idea is that of a "3D spatial context." This spatial context 

can be either physical or virtual, or both. The most prominent types of 3D UIs 

involve a physical 3D spatial context, used for input. The user provides input to 
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the system by making movements in physical 3D space or manipulating tools, 

sensors, or devices in 3D space, without regard for what this input is used to do or 

control. Of course, all input/interaction is in some sense in a physical 3D spatial 

context (a mouse and keyboard exists in 3D physical space), but the intent here is 

that the user is giving spatial input that involves 3D position (x, y, z) and/or 

orientation (yaw, pitch, roll) and that this spatial input is meaningful to the 

system. 

Thus, the key technological enabler of 3D UIs of this sort is spatial 

tracking [38, 39]. The system must be able to track the user's position, orientation, 

and/or motion to enable this input to be used for 3D interaction. For example, the 

Microsoft Kinect tracks the 3D positions of multiple body parts to enable 3D UIs, 

while the Apple iPhone and others Mobiles tracks its own 3D orientation, 

allowing 3D interaction. 

2.3.1. Applications of 3D UIs  

Why is it important to understand and study 3D UIs? For many years, the 

primary application of 3D UIs was in high-end virtual reality (VR) and augmented 

reality (AR) systems. Since users in these systems were generally standing up, 

walking around, and limited in their view of the real world, traditional mouse- and 

keyboard-based interaction was impractical. Such systems were already using 

spatial tracking of the user's head the correct view of the virtual world, it was 

natural to also design UIs that took advantage of spatial tracking as well. As we 

indicated above, however, recent years have seen an explosion of spatial input in 

consumer-level systems such as game consoles and smartphones. Thus, the 

principles of good 3D UIs design are now more important to understand than ever. 

To further motivate the importance of 3D UI research, let's look in a bit more 

detail at Mobile technology areas where 3D UIs are making an impact on real-

world applications. 

2.3.2. Mobile Applications  

Mobile devices, such as smartphones and tablets, are an interplay 

designer's playground, not only due to the rich design space for multi-touch input, 
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but also because these devices incorporate some quite powerful sensors for 3D 

spatial input. The combination of accelerometers, gyroscopes, and a compass give 

these devices the ability to track their own orientation quite accurately. Position 

information based on GPS and accelerometers is less accurate, but still present. 

These devices offer a key opportunity for 3D interaction design, however, because 

they are ubiquitous, they have their own display, and they can do spatial input 

without the need for any external tracking infrastructure (cameras, base stations, 

etc.).  

Many mobile games are using these capabilities. Driving games, for 

example, use the "tilt to steer" metaphor. Music games can sense when the user is 

playing a virtual drum. And golf games can incorporate a player's real swing.  

But "serious" applications can take advantage of 3D input for mobile 

devices as well. Everyone is familiar with the idea of tilting the device to change 

the interface from portrait to landscape mode, but this is only the tip of the 

iceberg. A tool for amateur astronomers can use GPS and orientation information 

to help the user identify stars and planets they point the device towards. Camera 

applications can not only record the location at which a photo was taken, but also 

track the movement of the camera to aid in the reconstruction of a 3D scene. 

Perhaps the most prominent example of mobile device 3D interaction is in mobile 

AR. In mobile AR, the smartphone becomes a window through which the user can 

see not only the real world, but virtual objects and information as well [12, 40]. 

Thus, the user can browse information simply by moving the device to view a 

different part of the real world scene. Mobile AR is being used for applications in 

entertainment, navigation, social networking, tourism, and many more domains. 

Students can learn about the history of an area; friends can find restaurants 

surrounding them and link to reviews; and tourists can follow a virtual path to the 

nearest subway station. Prominent projects like MIT's SixthSense [40] and 

Google's Project Glass have made mobile AR highly visible. Good 3D UI design 

is critical to realizing these visions. 
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2.4. Pose Tracking 

Any Augmented Reality system requires some kind of tracking the targets 

or display’s pose in order to register it in respect to the real world. Pose tracking is 

especially useful for identifying camera views in databases, video streams, video 

sequences, and live recordings. All of these applications require a fast pose 

recognition process in real-time video. For fast pose recognition it is possible to 

extend the materials to update the recognition system online [41]. Pose tracking 

must run in real-time, typically requiring solutions that estimate poses in less than 

50 milliseconds. Also it must be robust under many conditions such as varying 

lighting. In case tracking is lost, the system must be able to recover quickly [19].  

2.4.1. Natural Feature Tracking 

Natural feature tracking is necessary to make markerless augmented reality 

applications practical on low performance mobile devices. 

Markerless tracking methods are using natural features such as color and 

shape of the environment to be augmented for tracking. However, until recently, 

performance of appropriate AR methods and algorithms were not sufficient on 

mobile devices. Recently processing power has reached a level that allows natural 

feature tracking in real time. Natural feature tracking using optical flow has been 

successfully implemented on these devices though [42].   

2.4.2. Marker Tracking 

One of the fundamental components of augmented reality is tracking that 

calculating location and orientation of camera in real-time. A computer system 

detect the sign or image from a video frame by using image processing, computer 

vision and pattern recognition techniques (e.g. right image in figure 2.2) When 

detect the marker, then it defines the correct scale and pose of the camera. 

Once detected, it then defines both the correct scale and pose of the 

camera. This method widely used in AR application [43] and it is called marker-

based tracking. Marker-based systems are easy to implement and there are lots of 

well-know and handy toolkits (e.g. ARToolKit [44], ALVAR [45], ARTag [46]). 

These kind of toolkits provide a base for starting AR application development. As 
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well as, markers make certain that the correct scale and convenient coordinate 

frames as previously mentioned. In marker-based tracking, the system needs to 

detect the marker, identify it and then calculate the pose [43]. 

 

 

Figure 2.2   Left image: VTT’s AR Scale Model application augments a virtual model of a 

building on top of a floor plan in the correct scale and pose using marker detection. 

Right image: an example of a marker (ALVAR marker number 14) [45]. (Image: 

VTT Augmented Reality team) [43]  

 

2.5. Computer Vision 

As humans, we sense the 3D structure of the world around us with obvious 

simplify. Computer vision looks for generating useful and intelligent descriptions 

of visual sequences and scenes, and adding 3D virtual objects by performing 

operations on the signals received from camera frames. Vision is an important 

sense for humans since it allows them to understand the structure of their 

environment. This process of inferring the spatial relationships (i.e. perspective 

order and 2-dimensional (2D) positions) between the objects in the surrounding 

can be described in two stages. First, the reflected light from the objects in the 

environment must be sensed through a sensor (the eyes), then it must be 

interpreted by a processing mechanism (the brain) to make sense of the 

surroundings.  

The process becomes harder if the environment is not static i.e. constantly 

changing in terms of viewpoints (e.g. self-motion), dynamic content (e.g. moving 

objects) and lighting conditions (e.g. day/night, shadows, etc.). Fortunately, our 
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brains dedicate half of the cerebral cortex, the outer layer of the brain, for this 

processing [47] and can perform the necessary `calculations' to understand these 

spatial relationships instinctively. Trying to emulate the same functionality with 

computers instead of the human brain using cameras as sensors is harder. 

Most of the applications require an understanding of the scene and finding 

spatial parameters for the camera, which is an involved process. Common 

approaches start with a camera calibration step, which aims to identify the internal 

parameters of the camera, and continues by finding and extracting useful bits of 

information called features from the images; and then calculating a signature or 

`descriptor' for these features that is assumed to identify them uniquely. These 

descriptors are then used to establish correspondences between images, after 

which methods for motion estimation can be used to find spatial parameters such 

as position and orientation. The following subsections explain some of the 

sensors, algorithms and methods that make such applications possible. 

In computer vision, we are trying to describe the world by calculating of 

camera calibration, pose or coordinates etc., as well as recognition of images then 

reconstruct its properties such as their shape, illumination, and color distributions. 

Most importantly augmented the real world by 3D virtual objects. 

2.5.1. Cameras and camera calibration 

A digital camera can be viewed as two components, the lens and the 

imaging sensor. Reflected light from objects pass through the lens and is then 

projected onto the sensor, which can be manufactured as Charge Coupled Device 

(CCD) or Complementary Metal Oxide Semiconductor (CMOS) device, both 

comprising of an array of sensors sensitive to light. These sensors convert the 

light into electrical signals which can be read out digitally for storage or 

processing. This relatively complex imaging process is normally represented 

using an ideal pinhole camera model [48, 49, 50]. In this simple model, shown in 

Figure 2.3, the camera is modelled using a 3D position for the optical center and a 

2D image plane. The focal length of the camera is the shortest distance between 

the optical center and the image plane. The projection of a 3D point can be 
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obtained by drawing a line from the optical center through the image plane to the 

3D point. The projection is found as the 2D location on the image plane. 

 

 

Figure 2.3      Pinhole camera model. C is the optical center and f is the shortest distance from C to 

the image plane. P is a 3D point with its projection p on the image plane 

 

Unlike this theoretical representation, real-world cameras introduce 

distortion due to problems in the manufacturing process. For a more realistic 

representation, these distortion parameters should also be included in the 

projection model. The process for finding these parameters (as well as other 

internal parameters such as the focal length) is called camera calibration [50, 51]. 

There are dedicated toolboxes for this purpose (e.g. [51]) which can be used to 

find the distortion parameters as long as an image sequence acquired with that 

camera is provided. A camera is used for vision-based user tracking algorithm and 

the camera calibration is performed as described in Chapter 4.1 

2.5.2. Feature detection and description 

Features are often depends on the problem or what you intend to applicate. 

So definition is depends on purpose. In our purpose in image processing or 

computer vision, it can be defined as an "interesting" part of an image, and 

features are a starting point for many computer vision algorithms and also it is an 

image primal that contains valued information about the content of the image 

[52]. As a result, for feature detector usually desired repeatability: whether or not 

the same feature will be detected in two or more different images of the same 

scene [43]. 
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Every feature appearing in an image shadows a real-world object. A 

feature can be in form of a corner [53] , an edge [54], a small region (blob) [55] or 

a segment [56]. Features are represented using descriptors, which are calculated 

using the pixel information around the feature using a variety of methods: A small 

patch of surrounding pixels can include the descriptor, or a more complex 

description like an oriented gradient histogram [57].  

The literature presents many different feature detectors and descriptors. An 

evaluation of many feature detectors can be found in [58]. Based on the review 

given therein, a good feature detector should be able to detect features that are 

stable in terms of geometry under different viewing conditions [59, 60] should 

present important amount of variation in its neighborhood so that they will be 

prominent and provide useful information as well as presenting good localization 

accuracy [61]. It is also important for the detector to detect such features in a 

reasonable amount of time, a vital requirement for real-time applications [62]. 

Scale Invariant Feature Transform (SIFT) [63] works by selecting 

candidate key-points from locations which can be repeatedly chosen under 

different orientations and scales. Scale invariance is achieved by using a \scale 

space" which appears as a pyramid of images consisting of the octaves created by 

resizing the original image to its half size and then applying a Gaussian blur 

operation. Keypoints are found using a method called Difference of Gaussians 

(DoG) as an approximation of Laplacian of Gaussian (LoG). A local descriptor is 

then generated by calculating the magnitude and orientation of the gradient. Later, 

a feature vector is computed using a histogram of these orientations. 

Speeded-Up Robust Features (SURF) [64] were developed as an 

improvement to SIFT for extracting features in a shorter time, employing integral 

images as an intermediate image representation and using Hessian-Laplacian to 

approximate LoG. For the description, Haar wavelet responses inside a circular 

window are summed to obtain the orientation vector of the feature. SURF is also 

claimed to be more invariant to affine transformations such as translations or 

rotations than SIFT by its authors. 

It is known that scale invariance on its own is not enough to show 

robustness against changes in viewpoint, which result in affine transformations in 
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the image [65]. For this reason, a number of affine-invariant feature detectors 

have been proposed.  

2.6. Discussion 

This chapter presented a large portion of Augmented Reality from 

different research topics with the aim of promoting the miscellaneous different 

solutions developed in this thesis. The next five chapter’s present technology 

developed for mobile phones based AR and several applications.  
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3. IMAGE FEATURES 

The interrogation for images are mostly to compare images directly. That 

is, the pixel values of the image itself or a scaled version of image are compared 

directly to the corresponding values of other images. However, this method is not 

suitable for lots of application, since it is not clear which pixels are correspond to 

pixels in the other image [66]. 

 Additionally taking the pixel values themselves several extensions are 

possible. For certain properties of the image, filters and transformations can be 

applied to the image, e.g. discrete cosine transformation or PCA transformation to 

give a more compact representation and Sobel filters are applied to emphasize 

edges [66]. Besides, image patches between images with significantly different 

viewpoints or image landmarks such as their (x, y) position, scale and orientation 

can be identified as image features. 

3.1. Feature Detectors and Descriptors 

Feature tracking and detection algorithms are widely used for different 

purposes in computer vision applications. They are applied in image matching, 

tracking, mosaicing, 3D modelling, motion detection, object recognition and 

panorama stitching. In this instance, tracking was considered as a means for 

detecting the relative pose of the camera. 

We can expose localized features into three categories: feature points (e.g. 

corners), feature descriptors (e.g. SURF, SIFT) and edges. A feature point (an 

interest point or keypoint) which has a clear definition and a well-defined position 

is a small area of an image. 

A detector is used to create the descriptor and it needs to be repeatable, 

meaning the same feature needs to be detected in two or more different images of 

the same scene accounting for lighting and/or viewpoint changes. 

3.1.1. Feature Description 

A descriptor is a description of the specific point from the image stored in 

the database, application, or service. For a good descriptor, clearance and 

invariance are two main requirements. By meaning clearance is that feature points 
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corresponding to two different physical points result in different descriptors. As 

for invariance is to changes in view points and directions, image noise and 

illumination [67]. Steady detectors are selected in the image from the detection 

step. In the description step, each interest point is represented by a feature vector, 

which is a description of the point. To get image information, image gradients are 

used. Image gradients give details on the directional change of the intensity or 

color in an image.  

The computation of the keypoint descriptor is shown in Figure 3.1. At first 

orientations and gradient magnitudes of the image are sampled around the 

keypoint location. Then, to select the level of Gaussian blur for the image, used 

the scale of the keypoint. The orientation invariance is achieved by rotating the 

gradient orientations and the coordinates of the descriptor to relative the keypoint 

orientation. Which are shown in left side of Figure 3.1 with small arrows at each 

sample location. By means of Gaussian weighting function σ window, with a 

circular window which is shown in left side of Figure 3.1 is used for allocation of 

a weight to the magnitude of each sample point [63].  

The keypoint descriptor is shown in right side of Figure 3.1. By creating 

orientation histograms over 4x4 sample regions, this allows for important shift in 

gradient position. For each orientation histogram the figure shows eight directions 

with the length of each arrow corresponding to the magnitude of that histogram 

input. A gradient sample on the left can shift up to 4 sample positions while still 

contributing to the same histogram on the right, thereby achieving the objective of 

allowing for larger local positional shifts [63]. 
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Figure 3.1      Image gradients with a Gaussian window, indicated by the overlaid circle as shown 

on the left. A keypoint descriptor created by first computing the gradient magnitude 

and orientation as shown on the right [62] 

 

3.1.2. Feature extraction 

Feature-detection algorithms, which search for corners, edges or blobs. In 

our case we are interested in corner detection. The corner detection is based on an 

analysis of the edges in the image. A corner-based edge detection algorithm 

searches for quick changes in the image gradient. Usually it's done by looking for 

extremism of the first derivative of the image gradients in the X and Y directions. 

Feature-point orientation is usually computed as a direction of dominant image 

gradient in a particular area. When the image is scaled or rotated, the orientation 

of dominant gradient is recomputed by the feature-detection algorithm. This 

means that regardless of image rotation, the orientation of feature points will not 

change. Such features are called rotation invariant. Also, I have to touch on the 

size feature point. Some of the feature-detection algorithms use fixed-size 

features, while others calculate the optimal size for each keypoint separately. 

Knowing the feature size allows us to find the same feature points on scaled 

images. This makes features scale invariant [68]. 

 For understanding feature extraction we have work on OpenCV feature-

detection algorithms, and we used SURF method for markerless tracking. 

OpenCV has several feature-detection algorithms. All of them are derived from 

the base class cv::FeatureDetector. To use SURF feature-detection algorithm; 
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cv::Ptr<cv::FeatureDetector> detector = 

cv::Ptr<cv::FeatureDetector>(new cv::SurfFeatureDetector()); 

 

To detect feature points, we call the detect method:  

std::vector<cv::KeyPoint> keypoints; detector->detect (image, keypoints);  

The detected feature points are placed in the keypoints container. Each 

keypoint contains its center, radius, angle, and score, and has some correlation 

with the "quality" or "strength" of the feature point. 

The best results in pattern detection are achieved if the detector computes 

keypoint orientation and size. This makes keypoints invariant to rotation and 

scale. The most famous and robust keypoint detection algorithms are well known, 

they are used in SIFT and SURF feature detection / description extraction. 

If we deal with images, which usually have a color depth of 24 bits per 

pixel, for a resolution of 640 x 480, we have 912 KB of data. How do we find our 

pattern image in the real world? Pixel-to-pixel matching takes too long and we 

will have to deal with rotation and scaling too. And this is not an option to 

achieve. By using feature points this problem can be solved. By detecting 

keypoints, we can be sure that returned features describe parts of the image that 

contains lot of information (that's because corner based detectors return corners, 

edges and other sharp figures). Therefore to find correspondences between two 

frames, we only have to match keypoints. 

From the patch defined by the keypoint, we extract a vector called 

descriptor. It's a form of representation of the feature point [68]. 

3.2. SURF (Speeded-Up Robust Features) 

SURF (Speeded-Up Robust Features) introduced in 2006 [64]. SURF is a 

speeded-up version of SIFT (Scale-invariant feature transform). In SIFT, David 

G. Lowe for finding scale-space approximated Laplacian of Gaussian with 

Difference of Gaussian. SURF is a robust image descriptor, published by Herbert 

Bay [64], which can be used in computer vision areas like 3D Reconstruction, 

Object Recognition or AR applications. SURF detects Hessian blob like structures 
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and fundamentally it is based on determinant of the Hessian Matrix [69, 70], 

SURF features are scale, rotation and translation invariant.  

In order to searching of extraction image point feature, SURF has two 

main steps. First, SURF interest points are selected at distinctive locations in the 

image, such as blobs, corners and T-junctions. Next, the neighborhood of every 

interest point is represented by a feature vector. 

SURF interest points can be found by calculating an interest point criteria 

𝑅(𝑥, 𝑦) which is the blobness value of a pixel in the image. The blobness value 𝑅 

can be formulated with blobness function 𝑓 as follows with input image 𝐼 

 

                                   𝑅(𝑥, 𝑦) = 𝑓(𝐼(𝑥, 𝑦))                                                 (3.1) 

 

For robustness to scale changes, a collection of the input image in different 

scales is considered. Therefore 𝐼(𝑥, 𝑦) becomes a 3D data which is 𝐼(𝑥, 𝑦, 𝜎) 

“image pyramid”. Here σ is scale parameter. So interest point criteria becomes 

 

                            𝑅(𝑥, 𝑦, 𝜎) = 𝑓(𝐼(𝑥, 𝑦, 𝜎))                                          (3.2) 

 

 The blobness value of a pixel in the image is the determinant of the 

Hessian Matrix which is equal to interest point criteria. Thus, Hessian Matrix can 

be define as follows 

 

         𝐻(𝑥, 𝑦, 𝜎) = [
𝐿𝑥𝑥(𝑥, 𝑦, 𝜎) 𝐿𝑥𝑦(𝑥, 𝑦, 𝜎)

𝐿𝑦𝑥(𝑥, 𝑦, 𝜎) 𝐿𝑦𝑦(𝑥, 𝑦, 𝜎)
]                                    (3.3) 

 

Here 𝐿𝑥𝑥(𝑥, 𝑦, 𝜎) is the convolution of 
𝜗2

𝜗𝑥2 𝑔(𝜎) (second order derivative 

Gaussian) with input image 𝐼 at point(𝑥, 𝑦). The blobness value 𝑅(𝑥, 𝑦, 𝜎) finally 

becomes as follows 

 

                                         𝑅(𝑥, 𝑦, 𝜎) = 𝑑𝑒𝑡(𝐻(𝑥, 𝑦, 𝜎))                                    (3.4) 

 



24 

 

In order to save time Bay [64] suggest an approximation for the second 

order Gaussian derivative kernel which proper box filter kernels. Instead of a 

discretized Gaussian kernel, this mostly affect the performance of the algorithm.  

In order to clarify the advantage of box filter more clearly, integral of the input 

image is obtained. Integral images developed by Viola and Jones [71]. Discretized 

Gaussian Kernels and related box filters are shown in Figure 3.2. 

 

 

 

Figure 3.2     Exact and approximated Gaussian kernels [64] 

 

 Integral image 𝐼Ʃ(𝑥, 𝑦) of an image 𝐼(𝑥, 𝑦) is defined as follows [64] 

 

                                           𝐼Ʃ(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑥, 𝑦)𝑗≤𝑦
𝑗=0

𝑖≤𝑥
𝑖=0                                     (3.4) 

 

The intensity value at (𝑥, 𝑦) in the integral image 𝐼Ʃ(𝑥, 𝑦) is the sum of the 

pixel values above and to the left of (𝑥, 𝑦) included shown in Figure 3.3. 

 

 

Figure 3.3     Rectangular Region for Integral Image 
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Also demonstration of integral image (on the left) of Lena image (on the 

right) is shown in Figure 3.4. 

 

 

Figure 3.4     Lena image and the corresponding (normalized) integral image 

 

The integral image concept is making easier calculating the summation of 

the pixel intensities in a rectangular area on the image as can be seen in Figure 

3.5. 

 

Figure 3.5     Box filtering example 
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Let’s consider an image 𝐼(𝑥, 𝑦) in the Figure 3.5. Number of summations 

(𝐵 − 𝐷)𝑥(𝐴 − 𝐵) which the normal operation is to calculate summation of the 

pixels in the region Ʃ. Assume the integral image 𝐼Ʃ(𝑥, 𝑦) corresponding to the 

image 𝐼(𝑥, 𝑦); 

 

                𝐼Ʃ(𝐴) = 𝐴1 + 𝐴2 + 𝐴3 + Ʃ                                         (3.5)                                  

                 𝐼Ʃ(𝐵) = 𝐴1 + 𝐴2                                              (3.6) 

                                        𝐼Ʃ(𝐶) = 𝐴1 + 𝐴3                                                        (3.7) 

                                        𝐼Ʃ(𝐷) = 𝐴1                                                                 (3.8) 

 

After mathematical operations we get integral image value (rectangle sum) for an 

arbitrary rectangular region Ʃ inside the image is as follows;  

 

                                      Ʃ = 𝐼Ʃ(𝐴) + 𝐼Ʃ(𝐷) − 𝐼Ʃ(𝐵) − 𝐼Ʃ(𝐶)                            (3.8) 

 

The formula (3.8) can be demonstrate as shown in Figure 3.6. 

 

 

Figure 3.6     Calculation of an Arbitrary Rectangle Sum 
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SURF feature detector is based on determinant of Hessian matrix [69, 70] 

for both scale and location. Therefore second order partial Gaussian differentials 

are established in scale space. In order to approximate Hessian matrix determinant 

calculation, considered the smallest kernel (9x9) of box filter in Figure 3.7. 

 

 

Figure 3.7     Smallest kernel for box filtering 

 

The determinant of the approximated Hessian matrix is define in (3.9). 

Constant multiplier is 0.9 in order to normalize the error caused by the 

approximation. The second order partial Gaussian derivative filter in x-direction 

𝐿𝑥𝑥, y-direction 𝐿𝑦𝑦 and xy-direction 𝐿𝑥𝑦 shown in Figure 3.8. Approximation for 

the second order partial Gaussian derivative filter in x-direction 𝐷𝑥𝑥, y-

direction 𝐷𝑦𝑦 and xy-direction 𝐷𝑥𝑦. 

 

                                𝑑𝑒𝑡(𝐻𝑎𝑝𝑝𝑟𝑜𝑥) = 𝐷𝑥𝑥𝐷𝑦𝑦 − (0.9𝐷𝑥𝑦)
2
                              (3.9) 



28 

 

 

Figure 3.8     Box Filter for Second Order Partial Gaussian Derivative in y-direction on the top and 

in xy-direction on the bottom [64] 

 

Scale space of SURF feature detector is implemented by using image 

pyramids. The initial filter kernel size is 9x9 and the image is filtered by filter 

kernels of 15x15, 21x21, 27x27 and so on for the next scale levels of the first 

octave. The filter size increase 12 for the next octave, beginning from 39x39 filter 

kernel. The scale space structure of the SURF detector is shown in Figure 3.9 

below. 
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Figure 3.9     Scale Space Structure of SURF Feature Detector 

 

After finding approximated hessian determinant values in all scales and 

candidate, obtained final step is “Non-maxima Suppression”. 

Approximated hessian determinant values through the image in all scales 

and candidate interest features are found. Final step to obtain SURF features is 

“Non-maxima Suppression”. A blob on image may give blobness response on 

more than one scale or more than one point on the coordinate plane. So, a 

candidate point is chosen as SURF feature if its blobness response is greater than 

its entire 3x3x3 neighborhood in x, y, σ dimensions. The visualization is shown in 

Figure 3.10. 

 

 

Figure 3.10     Non-maxima suppression for candidate SURF features [63] 
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So far, SURF interest points on an image are found.  For each features, 

descriptor calculation needs. Descriptors are used for the matching step. Haar 

wavelets are operated during descriptor calculation steps. 2D Haar wavelets 

responses makes an efficient use of integral images. Haar wavelet in Figure 3.11 

are simple filters for gradients calculations. The left filter in the x- direction and 

the right filter in the y-direction computes the response. Weights of black region is 

1 and -1 for white region [72]. 

 

 

Figure 3.11     Haar Wavelets [64] 

 

Haar wavelet’s mother wavelet function 𝜓(𝑡) is shown below. 

 

                        𝜓(𝑡) = {
1         0 ≤ 𝑡 < 1/2,
−1       1/2 ≤ 𝑡 < 1,

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                       (3.10) 

 

Scaling function 𝜑(𝑡) of Haar wavelet is also shown below. 

 

                         𝜑(𝑡) = {
1         0 ≤ 𝑡 < 1,
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                           (3.11) 

 

 SURF descriptor calculation occurs with two main steps which are 

orientation assignment and calculation of descriptor components. In the first step a 

robust and repeatable orientation is assigned for each SURF feature. In the second 

step calculated descriptor components. Based on the orientation which is 

calculated before. Finally applying these two procedure for each SURF feature, a 
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descriptor array of size 64 (16x4) is constructed. Similarity of two features 

determined by calculating the Euclidean distance between their descriptors. Figure 

3.12 visualizes the descriptor concept as well as the descriptor formulation. One 

of the 16 subregions which is the green square and blue circle inside its represents 

the sample points at which computed the wavelet responses. 

 

 

 

Figure 3.12     Calculation of SURF descriptor components [72] 

 

3.3. SURF Detector Algorithm 

Table 3-1     SURF Algorithm Steps 

 

SURF Detector Algorithm 

1. Finding integral image of the input image 

 Integral image value 𝐼Ʃ(𝑥, 𝑦) at pixel (x, y) is calculated in a single 

pass. 

          𝐼Ʃ(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) + 𝐼Ʃ(𝑥, 𝑦 − 1) + 𝐼Ʃ(𝑥, 𝑦)+𝐼Ʃ(𝑥 − 1, 𝑦) − 𝐼Ʃ(𝑥 − 1, 𝑦 −

1) 

           Ʃ = 𝐼Ʃ(𝐴) + 𝐼Ʃ(𝐷) − 𝐼Ʃ(𝐵) − 𝐼Ʃ(𝐶)                             

 The integral image values are stored as a look-up table for later use in 

construction of differential scale space. 

 End 

2. Differential SURF Scale Space of input image is constructed. 
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 Integral image look-up table is initialized. 

 Box filter of size 9x9 is initialized based on the following second order 

differential filter kernels. 

ℎ𝑥𝑥 = [1 −2 1]      ℎ𝑦𝑦 = [
1

−2
1

] 

ℎ𝑥𝑦 = [
1 −1

−1 1
] 

 

 Integral image values corresponding to the inner rectangular regions of 

size 9x9 is calculated. 

𝐼Ʃ(𝑥, 𝑦, ℎ, 𝑤) = 𝐼Ʃ(𝑥, 𝑦) + 𝐼Ʃ(𝑥 + 𝑤, 𝑦 + ℎ) − 𝐼Ʃ(𝑥, 𝑦 + ℎ) − 𝐼Ʃ(𝑥 + 𝑤, 𝑦) 

height (h) and width (w) of the rectangular regions are 9. 

 Second order partial Gaussian derivatives of input image 𝐷𝑥𝑥, 𝐷𝑦𝑦 and 

𝐷𝑥𝑦 are calculated by using box filters. 

 Box filters of sizes 15x15, 21x21 and 27x27 with an increase of 6 units 

are initialized for next scale levels of the first octave. 

 

 

SURF Detector Algorithm(Continued) 

 Second order partial Gaussian derivatives of input image 𝐷𝑥𝑥, 𝐷𝑦𝑦 and 

𝐷𝑥𝑦 are calculated for next scales. 

 Box filter size is doubled. 

 Box filters of sizes 39x39, 51x51, 63x63, and so on with an increase of 

12 units are initialized for next scale levels of the second octave. 

 Continue smoothing until number of octaves corresponding to the size 

of box filters is less than the size of the input image. 

 End, differential SURF scale space𝐷𝑥𝑥, 𝐷𝑦𝑦 and 𝐷𝑥𝑦 is obtained. 

3. Calculation of determinant of Hessian matrices 

 Components of approximate Hessian matrices are initialized for all 

image coordinates at all scale levels. 

 Weights of the derivatives are balanced by Frobenius norm of the 

second order Gaussian partial derivatives. 
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|𝐿𝑥𝑦(1.2)|
𝐹

|𝐷𝑥𝑥(9)|𝐹

|𝐿𝑥𝑦(1.2)|
𝐹

|𝐷𝑥𝑦(9)|
𝐹

≅ 0.9 

 Determinant of Hessian matrices are calculated. 

𝑑𝑒𝑡(𝐻𝑎𝑝𝑝𝑟𝑜𝑥) = 𝐷𝑥𝑥𝐷𝑦𝑦 − (0.9𝐷𝑥𝑦)
2
    

 End 

4. Finding local maxima of determinant measure 

 Local maxima of determinant values are found in a region around each 

point of the image. 

 Local maximum points are stored whose values are greater than some 

local maximum threshold. 

 Candidate SURF feature points are obtained. 

 End 

5. Subpixel localization of initial SURF feature points 

 Initial feature points are initialized. 

 Non-maximum suppression is applied in a 3x3x3 neighborhood of 

each initial feature point. 

 Initial feature points are localized in space and scale. 

 The value of the maximum of the determinant is interpolated in space 

and scale. 

 End, final SURF feature points are obtained. 

 

In this thesis for the extraction of SURF feature points mainly used SURF 

detector implementation of Bay et.al. The algorithm is developed in C++ 

environment and OpenCV library used. The purpose of this chapter was natural 

feature tracking for the markerless augmented reality tracker part. However, for 

purpose of mobile augmented reality SURF algorithm by using Mobile version of 

OpenCV was not efficient and robust. So this approaches are unsuitable for low-

end embedded platforms such as phones. Because of that we used Vuforia SDK 

for tracking part in mobile application. 
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Figure 3.13     SURF implementation with good matches 

 

 

Figure 3.14     SURF implementation with rotated target good matches 
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4. POSE TRACKING 

This chapter introduces the concepts of pose estimation and presents 

Vuforia SDK solution for markerless target tracking on mobile phones. It gives 

details on the phone specific features. Augmented Reality (AR) and Virtual 

Reality (VR) require real-time and proper 6DOF pose tracking of devices. Pose 

tracking should be cheap, work robustly in changing environmental conditions, 

provide automatic localization in global coordinates and support a large working 

area. 

4.1. Camera Calibration 

Camera calibration is an important issue in computer vision. With 

calibrated camera, the system can render 3D virtual objects on the target in the 

correct place. Camera parameters consist of the intrinsic and extrinsic parameters. 

The intrinsic camera parameters are the vertical and horizontal focal lengths and 

the principal point of the camera and the skew. For satisfy distortion of the 

camera, also the tangential and radial distortion coefficients up to second order 

need to be computed. To calibrate these, an enough amount of 2D–3D 

correspondences has to be created, this is typically done using a known target like 

a chessboard. For the calibration of the low resolution camera, in this thesis used 

the calibration method from Zhang [73] from OpenCV [7]. 

Here captured inner corners of the chessboard from live camera, then by 

updating the extrinsic and intrinsic parameters of the camera, iteratively 

minimized the squared distance of the reprojection of the chessboard corners to 

the detected corners [1]. Experimental work shown in Figure 4.1 with good 

results.  
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Figure 4.1     Several screen shoots of Camera Calibration application 

 

If enough capturing inner corner didn't, the camera calibration get wrong 

parameters and the view would be erratic as shown comparison of with calibrated 

camera in Figure 4.2. 

 

 

Figure 4.2     Comparison of Calibrated and Uncalibrated Camera 
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 After calibration, the application will create two XML (Extensible Markup 

Language) files which are include Distortion and Intrinsic parameters. Intrinsic 

parameters are as follows: 

 

<?xml version="1.0"?> 

<opencv_storage> 

<Intrinsics type_id="opencv-matrix"> 

  <rows>3</rows> 

  <cols>3</cols> 

  <dt>f</dt> 

  <data> 

    6.15828369e+002 0. 3.71354889e+002 0. 6.15828369e+002 

    2.26973648e+002 0. 0. 1.</data></Intrinsics> 

</opencv_storage> 

 

In this thesis used OpenCV library for experimental work and an A4 Tech  

webcam  so-called pinhole camera model calibrated. Camera calibration 

theoretical steps shown as following equations. In this model, a scene view is 

formed 3D points into the image plane using a perspective transformation. 

 

                                   𝑠m′ = A[𝑅|𝑡]𝑀′                                            (4.1) 

 

Or 

 

                     𝑠 [
𝑢
𝑣
1

] = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 𝛼

] [ 

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

 |   

𝑡1

𝑡2

𝑡3

] [

𝑋
𝑌
𝑍
1

]              (4.2) 

 

Where: 

 (u,v) are the coordinates of the projection point in pixels 

 A is a camera matrix which matrix of intrinsic parameters  
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 (𝑐𝑥, 𝑐𝑦) is parameters of intrinsic matrix which is principal point that usually at 

image center. 

 𝑓𝑥 , 𝑓𝑦 are the focal lengths expressed in pixel units. 

 𝛼 is aspect ratio usually 1. Note that, 𝑓𝑦 = 𝑓𝑥 ∗ 𝛼 

 𝑟𝑖𝑗 and  𝑡𝑖 are the joint Rotation and Translation matrix elements. 

 (X,Y,Z) are the coordinates of a 3D point in the world coordinate space. 

 

Thus, if an image from the camera is scaled by a factor, all of these 

parameters should be scaled (multiplied/divided, respectively) by the same factor. 

The matrix of intrinsic parameters does not depend on the scene viewed. So, once 

estimated, it can be re-used as long as the focal length is fixed (in case of zoom 

lens). The joint rotation-translation matrix [𝑅|𝑡] is called a matrix of extrinsic 

parameters. It is used to describe the camera motion around a static scene, or vice 

versa, rigid motion of an object in front of a still camera. That is, [𝑅|𝑡] translates 

coordinates of a point (X,Y,Z) to a coordinate system, fixed with respect to the 

camera. The transformation above is equivalent to the following (when ≠ 0 ): 

                                      [

𝑥𝑐

𝑦𝑐

𝑧𝑐

] = 𝑅 [
𝑋
𝑌
𝑍

] + 𝑡                                        (4.3) 

 

                                                     𝑥′ = 𝑥/𝑧                                                  (4.4) 

                                         𝑦′ = 𝑦/𝑧                                                  (4.5) 

                                                      𝑢 = 𝑓𝑥 ∗ 𝑥′ + 𝑐𝑥                                     (4.6) 

                                         𝑣 = 𝑓𝑦 ∗ 𝑦′ + 𝑐𝑦                                      (4.7) 

 

Real lenses usually have some distortion, mostly radial distortion and 

slight tangential distortion. So, the above model is extended as: 

 

                                         [
𝑥
𝑦
𝑧

] = 𝑅 [
𝑋
𝑌
𝑍

] + 𝑡                                       (4.8) 

                                          𝑥′ = 𝑥/𝑧                                                  (4.9) 

                                                     𝑦′ = 𝑦/𝑧                                                (4.10) 
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               𝑥′′ = 𝑥′ 1+𝑘1𝑟2+𝑘2𝑟4+𝑘3𝑟6

1+𝑘4𝑟2+𝑘5𝑟4+𝑘6𝑟6 + 2𝑝1𝑥′𝑦′ + 𝑝2(𝑟2 + 2𝑥′2
)        (4.11) 

 

               𝑦′′ = 𝑦′ 1+𝑘1𝑟2+𝑘2𝑟4+𝑘3𝑟6

1+𝑘4𝑟2+𝑘5𝑟4+𝑘6𝑟6 + 𝑝1(𝑟2 + 2𝑦′2
) + 2𝑝2𝑥′𝑦′        (4.12) 

 

Where    

                                              𝑟2 = 𝑥′2
+ 𝑦′2

                                                    (4.13) 

                                              𝑢 = 𝑓𝑥 ∗ 𝑥′′ + 𝑐𝑥                                        (4.14) 

                                              𝑣 = 𝑓𝑦 ∗ 𝑦′′ + 𝑐𝑦                                        (4.15) 

 

𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5 𝑎𝑛𝑑 𝑘6 are radial distortion coefficients. 𝑝1 𝑎𝑛𝑑 𝑝2 are 

tangential distortion coefficients. In the functions below the coefficients are 

passed or returned as: 

(𝑘1, 𝑘2, 𝑝1, 𝑝2, [𝑘3, [𝑘4, 𝑘5, 𝑘6]]) 

 

vector. That is, if the vector contains four elements, it means that 𝑘3 = 0. 

The distortion coefficients do not depend on the scene viewed. Thus, they also 

belong to the intrinsic camera parameters. And they remain the same regardless of 

the captured image resolution. If, for example, a camera has been calibrated on 

images of 320 x 240 resolution, absolutely the same distortion coefficients can be 

used for 640 x 480 images from the same camera while 𝑓𝑥, 𝑓𝑦 , 𝑐𝑥 𝑎𝑛𝑑 𝑐𝑦 need to 

be scaled appropriately. 

Camera calibration is needed for property augmentation of 3D model on 

our target, Augmentation of a Cube on the target by using calibrated and 

uncalibrated camera is shown in Figure 4.1. In this thesis we have worked on 

desktop application to understand camera calibration features and needed 

approach for mobile 3D reconstruction. 
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Figure 4.3     Augmentation of a Cube with calibrated camera (Left) and uncalibrated camera 

(Right) 

 

4.2. Pose Tracking 

Pose is a position and orientation of an object (6DOF) and description of 

pose estimation is that getting the pose of an object from a 2D image. In order to 

get convenient augmentation to my thesis, we have to deal with the pose 

estimation. Therefore, we did some theoretical researches and experimental work 

on this. 

Previous subsection on camera calibration, we have found the camera 

matrix, distortion coefficients etc. By given target image, we can use this 

information to calculate its pose, or how the object is situated in space, like how it 

is displaced, how it is rotated etc. We assume that Z=0 for a 2D object, so, the 

problem now becomes how camera is placed in space to see our target image. 

Therefore, if we know object location in the space, we can draw some 2D 

diagrams in it to simulate the 3D effect.  

Problem is that we want to draw our 3D coordinate axis (X, Y, Z axes) on 

our chessboard’s first corner. X axis in blue color, Y axis in green color and Z 

axis in red color. Therefore, Z axis should feel like it is vertical to our chessboard 

target. 
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Initially, we load the camera matrix and distortion coefficients from the 

camera calibration result. Then, we take the corners in the chessboard and axis 

points to draw a 3D axis. 

Then, we create object points (3D points of corners in chessboard) and 

axis points. Axis points are points in 3D space for drawing the axis. After that, 

searches for 8x5 grid (chessboard size). If found, we depurate it with subcorner 

pixels. Then calculates the rotation and translation [7]. Finally, we draw it on 

chessboard target. The results shown in Figure 4.4. 

 

 

Figure 4.4     Pose estimation experimental work 
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5. RENDERING 

Real time rendering is related with generating images quickly on the 

camera scene. This is totally interactive on computer vision, computer graphics 

and augmented reality applications etc. The rendering pipeline occurs with a 2D 

image, a virtual camera, 3D object, light sources, shading equations, textures, and 

more. The process of using the pipeline is depicted in Figure 5.1. The location and 

shape of the object on the camera are determined by their geometry [74]. 

 

 

Figure 5.1     A 3D virtual model with completed of rendering pipeline 

 

In mobile applications prompt rendering is needed. Therefore, we use a 3D 

API which is OpenGL for 3D rendering in my augmented reality application [8]. 

OpenGL is a common tool which is represented in research and professional 

applications [4]. OpenGL render pipeline is shown in Figure 5.2. OpenGL has two 

stages; first stage is geometry stage which consists model and view transform, 

vertex shading, projection, clipping and screen mapping. Second stage is 

rasterizer stage which consists triangle setup, triangle traversal, pixel shading and 

merging [74]. 
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Figure 5.2     The OpenGL Render Pipeline 

 

Creating a 3D model has crucial importance for augmented reality 

applications. In our application we chose Wavefront OBJ 3D files. Reason of 

choosing this file format is a simple data-format that represents 3D geometry 

alone namely, the position of each vertex, the UV position of each texture 

coordinate vertex and texture vertices etc. Also it is a simple text-based format 

that is supported by many 3D packages. In order to generate 3D model and its 

texture we used Blender 3D software [9].  Exporting 3D Wavefront OBJ Model, 

Blender creates two files with .obj (Object) and .mtl (Material Template Library) 

extensions. The .obj extension file contains geometry information of 3D model. 

The .mtl extension file contains the visual aspects of the polygons and texture 

image file path. 

Texturing is one of the most important steps for pixel shading on 3D 

object model. Texturing an object is simply means gluing an image onto that 

object. This process is depicted in Figure 5.3.  
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Figure 5.3     A spaceship Wavefront OBJ 3D model in wireframe form shown in the upper left, 

solid form without texture shown in the upper right. The pieces in the image texture 

(the lower right) are “glued” onto the spaceship, and the result is shown in the lower 

left 
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6. VUFORIA SDK 

6.1. Introduction 

Vuforia is an augmented reality SDK (Software Development Kit) which 

is supported by Android, iOS and Unity 3d that allows actualize real time AR 

applications on smartphone devices. This software development kit uses computer 

vision technology to recognize target image and get pose of objects by camera in 

real time. In this project the used Vuforia SDK 2.8.8 version for android software 

environment [75]. 

6.2. Architecture of Vuforia 

Vuforia is capture and pass the frame of camera efficiently to the tracker. 

The frame of camera is automatically arranges image format and size dependent 

devices. Then converts pixel format from the camera format (e.g., YUV12) to 

suitable format for OpenGL ES 3D model rendering (e.g., RGB565) and for 

tracking internally. Finally Vuforia detects and tracks real-world objects in camera 

video frames by computer vision algorithms. 

 

Figure 6.1     Data flow diagram of the application with the Vuforia SDK  
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6.3. Target management system 

Vuforia has two type of target database. One of these device databases 

which is uploading image on target manager website, then downloading the target 

database to recognize. In this way the device doesn’t need internet connection. 

The second type of target database is cloud database which is creating a cluster of 

image and suitable for uploading several images. In this way device needs to 

internet connection and it is creating an Id and password to be able to use in 

application. In this thesis we used both of them. 
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7. APPLICATION DEVELOPMENT 

The aim of thesis is creating markerless augmented reality application on 

Android platform. In order to achieve, we need Eclipse IDE (Integrated 

Development Environment) and its plugins; Android SDK, ADT (Android 

Developer Tools), Eclipse CDT (C/C++ Development Tools) and Android NDK 

(Native Development Kit). 

Eclipse IDE is a project which aiming to provide a universal tool set for 

software development. Open Source IDE, mostly provided in Java, but the 

development language is independent [76]. Our application implemented and 

tested on this environment. 

Blender is a 3D computer graphics software is used for creating a 

Wavefront OBJ 3D model for augmentation. For this application, we created a 3D 

roof model as shown in Figure 7.1. 

 

 

Figure 7.1     3D Wavefront OBJ Roof Model with solid and textured mode 

 

7.1. Software Implementation 

In this thesis OpenCV 2.4 version is used on Microsoft Visual Studio 10.0 

to implementation of camera calibration, pose tracking and markerless 

augmentation of a cube. Project properties must be included Additional Include 

Directories and Libraries for usage of OpenCV on Visual Studio environment. 
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OpenGL is used in Markerless augmented reality desktop application for 

drawing cube on the target image. This also must be included additional 

directories on Visual Studio similarly with OpenCV, 

OpenGL is also used in Mobile Markerless application for rendering of 3D 

Wavefront OBJ model. 

Vuforia was introduced in chapter 6.  In our application we used Vuforia 

2.8.8 version. This SDK only used for target recognition, other steps are covered 

by developer section.  
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8. TEST AND RESULTS 

The experimental works has been done on Visual Studio by using OpenCV 

library. Then the final version of Markerless Augmented Reality Application 

which is successfully working on Android Mobile devices has been implemented. 

Some screen shoots of the application are shown in Figure 8.1 and Figure 8.2. In 

figure 8.1 handmade 3D target that has covered with 2D target images as in figure 

8.3 is shown. 

 

 

Figure 8.1     Handmade 3D target model for augmentation 

 

 As shown in figure 8.2 the screen shoot of Samsung Galaxy SIII mobile 

devices is showing that Augmentation of a 3D roof model on proper position.   
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Figure 8.2     Augmentation of a handmade 3D home model 

 

 After augmentation of 3D roof model, even if user looks around to 3D 

target home model, the 3D roof model will track view of camera. So the aim of 

thesis which was 3D reconstruction of an architectural building was achieved. 

 

 

Figure 8.3     Unwrapped of 3D handmade home model (right) with its 2D target images 
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9. CONCLUSION 

9.1. Summary and Conclusion 

As a conclusion we analyzed how the totally working Markerless 

Augmented Reality Application that works on Android Mobile devices. We 

discussed how each requirement was met; gave guidelines on creating handheld 

AR applications and finished with an outlook to future work. 

Application of AR to cultural heritage is an enchanting research topic. It 

allows maintaining the original building structures, already subject to wear and 

tear, and provides a way of learning their history by seeing the original building 

structures instead of ruins.  

To achieve AR of cultural heritage necessary experimental studies are 

completed and results are obtained.  In this thesis firstly the basic parts of 

Markerless AR was developed. It was aimed to develop a mobile based solution 

which is capable real time working. In order to ensure real time performance, C++ 

native language and Vuforia SDK were used for algorithm development. Similar 

applications in the literature were analyzed. 

According to the initial goal of the thesis, 3D target recognition and its 

augmentation was developed on mobile platform. The developed application can 

work approximately at 30 fps. The application was tested with several targets and 

appropriate results were obtained. 

9.2. Future Works 

The developed application in this thesis is using the Vuforia SDK target 

recognition system. Therefore for future work, this part of algorithm desired to 

made by client and achieve robust recognition system as good as Vuforia’s 

performance. After all, next targeted work is using architectural 3D model data for 

augmentation of historical places in Turkey for touristic guidance purpose. 

Another future work is developing of the same Markerless AR application 

on iOS platform. Moreover not only target based but also GPS based application 

can be developed. 
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