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ABSTRACT 

Ph.D. Dissertation 

 

NEW SUBSPACE APPROACHES IN PATTERN RECOGNITION 

 

Mehmet KOÇ 

 

Anadolu University 

Graduate School of Sciences 

Electrical and Electronics Engineering Program 

Supervisor: Prof. Dr. Atalay BARKANA 

2012, 80 pages 

 

In this thesis, three topics of pattern recognition namely, feature selection, single 

image per subject problem, and within-class scatter matrix estimation of classes 

are discussed. One of the important factors that affect the performance of the 

pattern recognition system is the dimension of the feature vector. A novel feature 

selection method is proposed which is related to DCVA in order to overcome the 

high dimensionality problem encountered in recognition issues. The important 

features are determined by the column norms of the projection matrix to the range 

space of all common vectors. Another factor that affects the performance of the 

pattern recognition system is the training sample size. Traditional methods which 

use the within-class scatter matrix fail if one sample from each subject is available 

because the within-class scatter matrices are all zero. An image decomposition 

method that uses QR-decomposition with column pivoting (QRCP) is proposed to 

overcome one sample per class problem. Also a two-dimensional extension of 

DCVA is proposed. The third and also important problem is to make a good 

estimation of within-class scatter matrices. But in high dimensional classification 

problems generally it is not possible to find a sufficient number of samples per 

class. In our proposal, at first the data is projected onto the range space of the total 

within-class scatter matrix. Then the within-class scatter matrix of a class is 

modeled using not only its own data but also the data of all other classes.  

 

Keywords: Face recognition; Subspace methods; Feature selection; One sample 

problem; Discriminative common vector; Within-class scatter matrix 
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ÖZET 

Doktora Tezi 

 

ÖRÜNTÜ TANIMADA YENİ ALTUZAY YAKLAŞIMLARI  

 

Mehmet KOÇ 

 

Anadolu Üniversitesi 

Fen Bilimleri Enstitüsü 

Elektrik-Elektronik Mühendisliği Anabilim Dalı 

Danışman: Prof. Dr. Atalay BARKANA 

2012, 80 sayfa 

 

Bu tezde, örüntü tanımadaki üç konu olan öznitelik seçimi, her sınıftan tek örnek 

problem ve sınıfların sınıf-içi saçılım matrisi tahmini üzerine çalışılmıştır. Örüntü 

tanıma sisteminin başarımına etki eden önemli etkenlerden biri öznitelik vektörü 

boyutudur. Tanıma problemlerinde karşılaşılan yüksek boyut sorununun 

üstesinden gelmek için AOVY ile ilişkili bir öznitelik seçimi yöntemi önerilmiştir. 

Özniteliklerin önemli olanları tüm ortak vektörlerin görüntü uzayına izdüşüm 

matrisinin sütun normları ile belirlenir. Örüntü tanıma sistemlerini etkileyen diğer 

bir etken de eğitim örneklem büyüklüğüdür. Sınıf-içi saçılım matrisini kullanan 

klasik yöntemler her sınıftan bir örnek varsa başarısız olmaktadırlar, çünkü sınıf-

içi saçılım matrislerinin hepsi sıfır olmaktadır. Tek örnek probleminin üstesinden 

gelmek için pivot yöntemi ile QR ayrıştırmasını (QRCP) kullanan bir resim 

ayrıştırma yöntemi önerilmiştir. Ayrıca AOVY yönteminin iki boyutlu bir 

genişletmesi önerilmiştir.  Üçüncü önemli problem ise bir sınıfın sınıf-içi saçılım 

matrisinin tahmininin iyi yapılabilmesidir. Fakat yüksek boyutlu sınıflandırma 

problemlerinde her sınıf için yeterli sayıda örnek bulmak genellikle mümkün 

değildir. Bizim önerimizde, ilk olarak verilerin toplam sınıf-içi saçılım matrisinin 

görüntü uzayına izdüşümü alınır. Daha sonra bir sınıfın sınıf-içi saçılım matrisi 

sadece kendi verisi kullanılarak değil diğer sınıfların verileri de kullanılarak 

modellenir.  

 

Anahtar Kelimeler: Yüz tanıma; Altuzay yöntemleri; Öznitelik seçimi; Tek 

örnek problemi; Ayırt edici ortak vektör; Sınıf-içi saçılım 

matrisi    
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1 INTRODUCTION 

 

Face recognition is an active research area for pattern recognition and 

computer vision and it is a difficult and complex problem. A face recognition 

system is for automatically identifying or verifying a person from his/her digital 

image. Face recognition has many application areas such as security, person 

identification, passports, information security, law enforcements [1,2].   

There are several parameters that affect the performance of the face 

recognition system. One of the most important is the dimension of the feature 

vectors. The digital images contain large number of pixels which are represented 

with gray level values. Each image corresponds to a point in high dimensional 

space and this increases the computational and storage costs of the face 

recognition system [3,4,5]. Mutually related features in a feature vector may result 

in  small recognition gains but this increases the computational cost even if they 

have good classification information individually [3]. Feature selection methods 

try to find the minimal sized subset features that do not decrease the classification 

accuracy significantly [6]. Several reviews of feature selection techniques are 

given in early works [3,4,7,8,9]. A typical face recognition system with pixel 

selection is given in Figure 1.1. This excludes face recognition systems that use 

partitioning of eye, nose, and lip areas before performing any recognition tasks. 

 

Dimension 

Reduction

Training Set

Images

DCVA/CVA/

Eigenface/Fisherface/

LRC

Training

Test Image
Dimension 

Reduction
Classification

Training Parameters
Pixel Selection

with DCVA 

 

 

Figure 1.1 The block diagram of a face recognition system [10].  
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Another factor that affects the performance of the face recognition system 

is the training sample size [7,11]. One needs sufficient number of training samples 

to have a well-trained pattern recognition system [12]. The recognition process 

gets more difficult if only one sample per subject is available which is called one 

sample problem [13]. Traditional methods which use the within-class scatter 

matrix such as, Fisher linear discriminant analysis (FLDA), Eigenface, Fisherface 

suffer or fail because the within-class matrix is zero matrix. Several algorithms 

have been proposed to overcome this challenge [13,14,15,16,17,18]. General 

tendency at these methods is generating the virtual samples to increase the training 

set size. But this is not the solution of the singularity problem because in face 

recognition problems dimension of the feature space is extremely high with respect 

to the number of feature vectors. This challenge is called small sample size 

problem [4,19]. Various methods are proposed to overcome this difficulty 

[20,21,22,23,24,25,26]. One method to overcome the singularity problem is using 

the two dimensional extensions of the one dimensional methods. In [27], two 

dimensional Fisher linear discriminant analysis (2D-FLDA) with a solution of 

singularity is proposed. This method is used in [14] and [15] after generating the 

virtual samples. In [14], image is decomposed using singular value decomposition 

(SVD). The basis images corresponding to the largest singular values are used to 

generate the virtual sample. In [15], image and its transpose are decomposed using 

the QRCP decomposition to generate virtual samples. In [28], we implemented a 

two dimensional extension of discriminative common vector approach (2D-

DCVA) and compare the performances of 1D-DCVA, 2D-FLDA, and 2D-DCVA 

on different databases. A two dimensional variation of 1D-DCVA is also given in 

[29] but this method cannot yield unique common vectors which is very important 

for the performance of the face recognition systems.  

In face recognition problems it is also important to determine the 

distribution of class data. Data of a class can be modeled by its within-class 

covariance matrix. Sufficient number of data is needed to make good covariance 

matrix estimation. But especially in face recognition problems this is not possible 

because of high dimensional and insufficient number of data. In our proposal, we 

first project the data onto the range space of the total within-class scatter matrix to 
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reduce the dimensions and try to model a class using not only its own data but also 

the data of all other classes within this subspace.    

In the thesis, we focus on mainly three problems in face recognition; 

feature selection, one sample problem, and modeling the within-class covariance 

matrix of the classes in the range subspace of the total within-class scatter matrix. 

The chapters of the thesis are organized as follows: 

In Section 2, the subspace methods used in the thesis are briefly explained. 

The common vector approach, CVA, was first seen in the speech recognition area 

[30]. This paper emphasizes the uniqueness of the common vectors. The second 

important paper is published in the same area in 2001  [31]. This paper shows the 

relation between CVA and the within-class covariance matrix. CVA, alike DCVA, 

suffers from high dimensional data. In [32], a new implementation of CVA is 

given to speed up the execution time of the recognition system. A subspace based 

feature selection method related to CVA was given in [33]. Also many other 

papers are published that are related to CVA in pattern recognition areas 

[34,35,36,37,38]. Additionally, we give a novel method to derive CVA using 

Linear Regression Classification (LRC) [39]. The discriminative common vector 

approach, DCVA [20], was based on the idea of using the common vector 

approach for all classes. DCVA has become a popular face recognition method and 

various papers are published related to DCVA [40,41,42,43,44].  The 2D-FLDA 

has come into scene due to the need to overcome singularity problem. The 2D-

FLDA there is no need to transform the two dimensional images into one 

dimensional vectors.  It estimates the covariance matrices from the image matrices. 

It overcomes the singularity problem which generally occurs in face recognition 

problems. Eigenface [45] method is a powerful tool to find a lower dimensional 

subspace where an image can be represented with negligible loss of information. 

The image can be perfectly reconstructed using all the eigenfaces that are extracted 

from the original image. In Fisherface method [21], first PCA [46] is applied to the 

feature vectors to avoid the singularity of the total within-class scatter matrix. 

Then LDA [47] is applied to the feature vectors in the reduced space. The LRC 

based face recognition was first published in 2010 [39]. In this method, it is 

assumed that the images in a class lie on a linear subspace. Least squares 



4 

 

estimation method is used to determine the regression coefficients. The unknown 

query is assigned to the class where the minimum reconstruction error occurs.  

In Section 3, a novel feature (pixel) selection method is proposed. The 

features are selected according to the column norms of the projection matrix of the 

range space of the common vectors. The features corresponding to the columns 

which have the smallest norms are eliminated first, and then the remaining features 

are used to form the new feature vector. We also show that importance of the 

pixels is independent of the selection of the eigenvectors that span the range space 

projection matrix of the common vectors. We test the performance of the proposed 

feature selection method in two different face databases with DCVA, CVA, 

Eigenface, Fisherface, and LRC methods. In the results it is seen that the method 

successfully eliminates the redundant pixels. We published the method and the 

results in [10,48]. In [49], a feature selection method based on discriminant 

features is proposed. Similar to our method, they use the transformation matrices 

of various feature extraction methods. 

 In Section 4, a novel image decomposition method which uses the QR 

decomposition with column pivoting is proposed to overcome the single image 

problem. Image is decomposed using QRCP method to generate a virtual image. 

An approximation of the image is generated using the basis images which have the 

most of the energy of the image. In this section we also gave SVD based image 

decomposition method [14]. In addition, we propose a two dimensional extension 

of DCVA. We compare the performances of DCVA, 2D-DCVA, and 2D-FLDA in 

one sample problem in five different databases. 2D-DCVA clearly outperforms 

DCVA and 2D-FLDA except in one database. The methods proposed in this 

section and the experimental results are published in [15,28,50].    

In Section 5, two class modeling methods in the range space of the total 

within-class scatter matrix are proposed. It is observed that in the range space of 

total within-class scatter matrix, the data of a class is insufficient to model the 

class which it belongs to. Thus the within-class covariance matrix is singular. In 

the proposed methods, when we estimate the covariance matrix of a class, we use 

the data of the both classes. We illustrate the methods with numerical examples 
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and compare their performances with Support Vector Machines in YALE, ORL, 

and AR face databases. 

The concluding remarks are given in Section 6.   
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2 SUBSPACE METHODS 

 

 Subspace methods are widely used in many pattern recognition applications 

such as face recognition [2,15,20,21,51,52,53], speech recognition 

[30,31,37,54,55], handwritten character recognition [56,57,58], spam e-mail 

detection [59], texture classification [60] etc. In classification problems dimension 

of the feature vectors are generally high. High dimensional feature vectors may 

contain redundant or irrelevant features that adversely affect the classification. 

Subspace methods are successful tools in eliminating the redundancy of the feature 

vectors and in dimensionality reduction. In subspace methods a transformation is 

applied to the feature vectors. If suitable transformation is chosen, the transformed 

feature vector contains most of the discriminatory information in the original 

features. In this section, brief reviews of Common Vector Approach (CVA), 

Discriminative Common Vector Approach (DCVA), Two Dimensional Fisher 

Discriminant Analysis (2D-FLDA), Eigenface, Fisherface, and Linear Regression 

Classification (LRC) are given. 

 

2.1 Common Vector Approach 

 

 A feature vector is considered to have two components: The first one is the 

component that exhibits properties that are common to the class, and the second 

one is the remaining component that has all the variations from the common 

properties. After subtracting the dissimilarities of each vector of a class, the 

invariant properties of the class will remain. This vector contains the invariant 

properties, and it is called the common vector. For example, speech signal may 

contain variances due to personal and environmental effects. In a word class, the 

differences resulting from the personal and environmental effects are eliminated 

using the common vector approach(CVA). The residual vector contains the 

common properties of word class which are unique for each of the word which 

belongs to that class.  

In CVA there are two cases depending on the size of the feature vector( ) 

and the number of the feature vectors( ): (i) The insufficient case (    ), (ii) 
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The sufficient case (   ). The calculation of common vector is shown in Figure 

2.1. CVA divides the space into two orthogonal complementary subspaces, namely 

difference and indifference. It is clearly seen from the Figure 2.1 that the common 

vector lies in the indifference subspace. There are two known methods for 

calculating the common vector of a class [31]. The first one uses the Gram-

Schmidt orthogonalization process, and the second one uses the within-class 

covariance matrices. In this subsection we give a new implementation of common 

vectors using LRC. 

 

  

 

Figure 2.1 Generation of common vector in two dimensional space. 

 

2.1.1 Determining the common vectors from Gram-Schmidt 

orthogonalization process 

 

 Let the training set have   classes and each class has n-dimensional m 

samples with     . Let   
 
 be the n-dimensional column vector which denotes 
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the i
th

 sample from the j
th

 class. The difference subspace of j
th

 class is spanned by 

the difference vectors   
 
   

 
   

 
,          , that is 

        {  
 
   

 
     

 
   

 
}      {  

 
       

 
}  (2.1) 

The Gram-Schmidt orthogonalization process [61] is used to obtain the 

orthonormal vector set   {  
 
       

 
} from the difference vectors 

{  
 
       

 
}. Additionally Z must satisfy the following equation. 

 
   
    {

    
    

 (2.2) 

The common vector belongs to the j
th

 class can be calculated  

     
 

   
 
 ((  

 
)
 
   
 
)   

 
   ((  

 
)
 
     
 

)     
 

  (2.3) 

 

2.1.2 Determining the common vectors from within-class covariance 

matrices 

 

 Common vector of a class can also be calculated using the within-class 

covariance matrix. The covariance matrix of the j
th

 class can be calculated as,  

 
   ∑(  

 
     

 
)(  

 
     

 
)
 
 

 

   

  (2.4) 

where      
 

  

 
∑   

  
   . 

 Covariance matrix characterizes variances of the feature vectors with 

respect to the average vector. In the insufficient case(   ), the eigenvectors 

corresponding to the nonzero eigenvalues form an orthonormal basis to the 

difference subspace B. In this case the indifference subspace B
┴
, which is the 

complementary subspace of B, is spanned by the eigenvectors corresponding to the 

zero eigenvalues of covariance matrix. Since the common vector is orthogonal to 

all vectors in the difference subspace, it must lie in the indifference subspace. Then 
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the common vector of a class is in the direction of the linear combination of the 

eigenvectors corresponding to the zero eigenvalues of the covariance matrix[1] or 

it is the projection of any training data onto the null space of the within –class 

covariance matrix. The common vector of the j
th

 class can be calculated as 

     
 

   
   

 
   

 
     

 
                      (2.5) 

Here    and   
  are the projection matrices of the range space B and the null space 

B
┴
 of the covariance matrix and they can be calculated as below  

 

   ∑   
 
(  

 
)
 

   

   

  (2.6) 

 
  
  ∑  

 
(  

 
)
 

 

   

   (2.7) 

{  
 
       

 
} are the eigenvectors corresponding to the nonzero eigenvalues and 

{  
 
     

 
} are the eigenvectors corresponding to the zero eigenvalues. 

 

2.1.3 Determining the common vectors through LRC approach 

 

To apply LRC to CVA, it is better to start with the difference subspace of 

the j
th

 class. Let   
 
   
 
     

 
 be the feature vectors of j

th
 class used in the training 

stage. The difference subspace of the j
th

 class is spanned by the difference vectors 

{  
 
   

 
   
 
   

 
     

 
   

 
}  {  

 
   
 
       

 
}. It is known that the 

subtrahend vector can be any of the feature vector used in the training [30].  

The j
th

 distance metric of CVA can be written as 

    |(     
 
)  (     

 
)̂ |  |    ̂ 

 
|  (2.8) 

 ̂ 
 
 is the projection of    onto the difference subspace of the j

th
 class. If    is the 

projection matrix onto the j
th

 difference subspace, then the above metric will be 
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    |       |  (2.9) 

 

   can be determined in similar way that we used in LRC estimation. Let 

   [  
 
   

 
       

 
] be a matrix whose columns are the difference vectors 

of the j
th

 class. 

  ̂ 
 
              

 
     

 
           

 
 (2.10) 

or 

  ̂ 
 
            (2.11) 

The sum of error squares is 

         (           )
 
(           )  (2.12) 

After the minimization process using least-squares estimation [62,63], vector 

parameters are obtained as 

        (  
   )

  
  
     (2.13) 

If we combine (2.8), (2.11) and (2.13), we will get 

      (  
   )

  
  
   (2.14) 

Let    
  denotes the projection matrix onto the indifference subspace. Then 

(2.9) becomes  

    |       |  |  
   |                         

 |  
 (     )|  |  

      
   | 

       |  
        

 
|                                           

(2.15) 
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where     
 

 is the common vector of the j
th

 class. Here it must be noted that    and  

  
  are idempotent matrices and their sum is equal to identity, that is,      

      

 

2.1.4 Decision rule 

   

 Let    be the test sample which will be classified. The projection of    

onto the indifference subspace of the j
th

 class can be calculated as 

          
              (2.16) 

The classification can be done with the following rule. 

          
 

{‖            
 

‖}            (2.17) 

 

2.2  Discriminative Common Vector Approach 

 

 Similar to the idea used in the development of CVA, the common vectors 

in DCVA are obtained using the sum of the within- class scatter matrices. That is, 

in CVA the common vectors are obtained from each of the within-class scatter 

matrices whereas in DCVA the common vectors are obtained from the sum of the 

within class scatter matrices. The common vectors are unique for each of the 

classes in the training set [20].  An illustration of DCVA for two classes in 3-

dimensional case is shown in Figure 2.2. The indifference subspace of these two 

classes turns out to be the same with the difference subspace of the corresponding 

common vectors.      shows the difference subspace of the common vectors. This 

difference subspace is one dimensional for a two-class case. If all the data that 

belong to both of the classes are projected onto their indifference subspace first 

and onto the difference subspace of the common vectors next, then the dimension 

of all the data will be reduced to one and also 100% recognition rate is guaranteed 

for the training set. 
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Figure 2.2 An illustration of DCVA in 3-dimensional space for two classes case. 

 

 Let C be the number of classes, m be the number of feature vectors in each 

class,     be the i
th

 feature vector of the j
th

 class and let    be the mean vector of 

the j
th

 class. The sum of the within-class scatter matrices    is defined as 

 

   ∑∑(  
 
   )(  

 
   )

 
 

   

 

   

  (2.18) 

 The eigenvectors             (   ) belonging to the nonzero 

eigenvalues of the above total scatter matrix span the difference subspace of all the 

feature vectors in the training set. Similarly the eigenvectors       (   )  

      belonging to the zero eigenvalues will span the indifference subspace of all 

the feature vectors in the same training set. Therefore a projection matrix onto this 

indifference subspace can be formed from the eigenvectors as shown below 
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   ∑     

 

 

   (   )  

  (2.19) 

 

 The projections of the feature vectors onto the indifference subspace using 

this projection matrix yield unique common vectors for each one of the classes 

[20].  That is,  

      
 

     
 
                         

     
 

      
         

(2.20) 

 After obtaining the common vectors of all the classes in the database, a 

difference subspace of the common vectors can be obtained. As before the 

orthonormal basis vectors              of this subspace can be obtained 

either from the Gram-Schmidt orthogonalization process or from the scatter matrix 

of the common vectors.   

  

If one wants to use the scatter matrix approach, then the scatter matrix of 

common vectors must be calculated first, 

 

     ∑(     
      )(     

      )
 

 

   

  (2.21) 

where       
 

 
∑      

  
    is the mean of the common vectors. Then the projection 

matrix W onto the difference subspace of the common vectors must be obtained, 

that is,   [            ]
 can be obtained using the eigenvectors 

               corresponding to the nonzero eigenvalues of       

 Since the distances between the common vectors in the whole space are 

kept the same as the distances they have in the difference subspace of the common 

vectors, the classification rule can be written in the difference subspace of the 

common vectors.  This will reduce the dimensions used in the classification phase 
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from n to    . Remembering that n is the whole space dimension and   is the 

number of classes in the database; this is an important reduction in dimensionality. 

 

2.2.1 Decision rule 

 

  In the classification phase let    be the test vector which will be classified, 

then the classification can be done by the following 

          
 

{‖ (  
 
   )‖}           (2.22) 

where   is a (   )    dimensional projection matrix onto the difference 

subspace of the common vectors.  

 

2.3  Two Dimensional Fisher Linear Discriminant Analysis 

 

 The objective of FLDA is to perform dimensionality reduction while 

preserving as much information as possible. LDA allows one to choose a linear 

subspace of the original feature space in a way that maximizes the between-class 

variance with respect to the within-class variance [64]. But in face recognition 

problems generally the dimension of the feature vectors are very high with respect 

to the number of feature vectors. Since within-class scatter matrix has zero 

eigenvalues, the FLDA cannot be directly applied. To overcome this challenge, 2D 

feature matrices are used instead of one dimensional feature vectors in [27,65]. 

Also 2D-FLDA generally outperforms 1D-FLDA [66,67]. The 2D-FLDA can be 

summarized as follows: 

Let   be the number of classes,   be the number of selected samples from 

each class,   
  be the     image from     class and    be the average image of     

class, that is, 

 

   
 

 
∑  

 

 

   

          (2.23) 
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 In 2D-FLDA, the optimal projection vectors   [          ] are to 

be found. Here d is at most    (     ). The optimal projection vectors can be 

calculated by maximizing the following criterion 

 
 ( )  

     

     
  (2.24) 

where 

 

 

   ∑∑(  
    )

 
(  

    )

 

   

 

   

  (2.25) 

 
    ∑(    )

 
(    )

 

   

 (2.26) 

 

  
 

 
∑  

 

   

  (2.27) 

 

2.3.1 Decision rule 

 

Let   
                  be the j

th
 image from i

th
 class and let        

be the unknown image that will be classified. Then the optimal projection vectors 

for   
  and       can be calculated as; 

   
    

 [          ]  [  
   
   

   
     

   
]         

         
(2.28) 

and 

            [          ]  [  
       

         
    ]  (2.29) 
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respectively.       is assigned to the class i where the nearest   
  belongs to, using 

the following metric: 

          
 

{ (        
 )}                   (2.30) 

              
 

{ (        
 )}                   (2.31) 

 

                    
 

{∑‖  
       

   
‖
 

 

   

}                   (2.32) 

where ‖   ‖  denotes the Euclidean distance between two vectors. 

 

2.4 Eigenface 

 

Eigenface method uses PCA method to reduce the dimension. It finds the 

eigenvectors   [          ] that maximizes the objective function 

  ( )  |     | (2.33) 

where    is the total scatter matrix defined by 

 

   ∑(     )(     )
 

 

   

  (2.34) 

where   is the mean of the all samples.              are the eigenvectors 

corresponding to the largest eigenvalues of   . 

 The classification is done using nearest neighbor classifier in the 

transformed space. Let       be the unknown image that will be classified.       

can be projected into the eigenspace by using the following equation 

        
 (       )  (2.35) 
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Similarly     is represented in the eigenspace by the     
 (    ). Then 

      is classified to the class according to the following criterion,  

         
 

{‖        ‖}   (2.36) 

In addition to the above criterion, if   is greater than predetermined threshold    , 

then       is assigned to an unknown face. 

 

2.5  Fisherface 

 

It is known that in face recognition problems    is singular since the 

number of feature vectors is much smaller than the number of feature vectors . In 

Fisherface method [21,23] the feature vector space is reduced by using PCA to 

avoid the singularity problem of   . Subsequently, LDA is applied to the feature 

vectors in the reduced space. Let   
  be the j

th
 feature vector from i

th
 class,     be 

the mean vector of the i
th

 class. The within-class covariance matrix and the 

between-class covariance matrix are defined as 

 

   ∑∑(  
    )(  

    )
 

 

   

 

   

  (2.37) 

 

   ∑(    )(    )
 

 

   

  (2.38) 

where and     ⁄ ∑   
 
    is the mean of mean vectors of the classes. The 

optimization can be done by maximizing the criterion given in the below: 

 
 ( )  

|      
        |

|      
        |

  (2.39) 

Here      is chosen to maximize the criterion    (    )  | 
    | where    

is given in (2.34).  
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2.6 Linear Regression Classification 

 

Let C be the number of classes, m be the number of feature vectors of a 

class used in training, and {  
 
   
 
     

 
} be the feature vectors of the training set 

of the j
th

 class. LRC idea is based on a distance metric given by 

    |     
 
| (2.40) 

where    is the test feature vector and   
 
 is its projection onto the subspace 

spanned by the feature vectors of the training set of the j
th

 class. Let    be the 

projection matrix onto the j
th

 class, then the distance metric will become 

    |       |  (2.41) 

   is calculated using a linear combination of the feature vectors of the training set 

of the j
th

 class  under a constraint relation  in its optimized form in terms of 

minimum sum of error squares 

   
 
      (2.42) 

with respect to the coefficients   .    is a matrix formed  from the feature vectors 

in the training set of the j
th

 class, i.e.,    [  
 
   

 
     

 
]. 

The projection of a feature vector onto the i
th

 class can be calculated from 

           (2.43) 

where   is the error or the remaining part of    in the rest of the whole space    

of feature vectors.   

The sum of the error squares can be formed with ease 

         (       )
 
(       )  (2.44) 

To minimize SES, the critical point(s) must be calculated by taking the derivative 

of SES with respect to   . 
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   (2.45) 

  

   
[  
      

   
      

        
   

     ]    (2.46) 

     
       

        (2.47) 

    (  
   )

  
  
    (2.48) 

Then the distance metric of LRC becomes 

    |     
 
|  |       |  |     (  

   )
  
  
   |  (2.49) 

Also from (2.41) the projection matrix to the j
th

 class      (  
   )

  
  
  is 

obtained. If the orthogonal complement of the projection matrix    is shown with  

  
 , then the metric given in (2.49) is equal to 

    |  
   | (2.50) 

Here   
    is the projection of    onto the subspace that complements 

the subspace of the j
th

 class with      
    to the whole space. Therefore    is 

the distance of    to the subspace formed from the feature vectors of the j
th

 class. 

In that sense if    belongs to the j
th

 class,   
    must be negligibly small, or else 

     is almost equal to   . Let 

   
 
    (  

   )
  
  
                   (2.51) 

 

be the predicted response vectors. Classification is done according to the following 

decision rule. 
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{‖     
 
‖
 
}            (2.52) 
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3 A NOVEL FEATURE SELECTION METHOD IN THE RANGE 

SPACE OF COMMON VECTORS 

 

In face recognition problems dimensions of the feature vectors are 

generally high. This increases computational complexity and execution time of the 

system and therefore degrades the performance of the system. However there 

might be redundant features which increase the computational cost while 

increasing the recognition accuracy negligibly.  

In this chapter we introduce a new feature selection algorithm using the 

projection matrix of the common vectors. We presented the primary outcomes of 

our work in [48], secondly we performed more detailed work in [10]. In this work, 

a novel feature selection algorithm is introduced related to DCVA. The importance 

of the pixels is determined by the column norms of the projection matrix of the 

common vectors of all the classes. Then the pixels corresponding to the columns 

which have the smallest norms are omitted since their contribution to the 

classification criteria will be negligible. The pixels corresponding to the columns 

which have the largest norms are used in constructing the reduced dimensional 

feature vectors. Since the dimension of the reduced feature vector is less than the 

original one, storage and speed improvements are achieved which are important 

for real-time and real-life applications. It is also shown that the order of the 

magnitudes of the column vector norms is not affected from the choices of the 

orthonormal basis vector set that span the range space of the common vectors.  

 

3.1 Determining the Importance of Features Using the Projection Matrix of 

the Range Space of the Common Vectors 

 

It is assumed that not all the gray level values from all pixels have equal 

importance in the classification of the face images.  Depending on their 

importance, some of the features or equivalently pixels can be eliminated from the 

face images without having much effect on the classification rates. For the 

realization of this idea, the transformation or the projection matrix    is used since 

it is a projection matrix that transforms the original n – dimensional training data 
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onto a     dimensional difference subspace of the common vectors. This means 

that the projection matrix   is obtained from the within–class scatter matrix of the 

common vectors        Because of this     dimensional difference subspace, 

the transformation matrix   must have major importance in dimensionality 

reduction. Each one of the columns of   is multiplied with the gray level value of 

the corresponding pixel of the face image as it is given in (3.3). This will be 

explained with the row and the column vectors of the matrix   . 

 

  

[
 
 
 
  
 

  
 

 
    
 ]
 
 
 
  (3.1) 

where    for           are basis vectors that span the difference subspace of 

        More explicitly   is a (   )    dimensional matrix whose elements 

are given below 

 

   

[
 
 
 

      
      

 
   
   

   
 (   )  (   )   (   ) ]

 
 
 

 (3.2) 

In (3.2), if     column of   is called     which is a (   )    vector,  

then   can be expressed with its column vectors as   [          ].  Let 

  [       ]  be an n – dimensional face image vector where each 

           corresponds to a gray level of a pixel in the face image. From here 

on,    will be called the     feature of the face image vector. Then 

     [          ]                  (3.3) 

 

                     [

   
   
 

 (   ) 

]    [

   
   
 

 (   ) 

]      [

   
   
 

 (   ) 

]     (3.4) 

In the above equation it is seen that the projection of any face image vector 

onto the difference subspace of the common vectors is the sum of the 

multiplication of the column vectors of   with the gray levels of each one of the 
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pixels. That is, the elements of    are linear combinations of the features of the 

face image vector,  . This may give some hint about which pixels contribute more. 

After all,    is directly used in the classification criteria as it is given in (2.22). 

In equation (3.4), it can be easily seen that the importance of     feature    

of the face image vector   is strongly related with the norm of the     column 

vector ‖  ‖. If all elements in the     column of   are zero, then the     element 

of the feature vector   has no effect on the projected face image vector. Then the 

    element or feature can be eliminated. If the number of classes is small, it may 

be possible to find all zeros in some columns of the transformation matrix. But in 

high dimensional spaces it is expected that it will be hard to find such zero 

columns. Even in this case, the magnitudes of the norms of the columns of   can 

be used in feature selection. The column that has a small norm will have negligible 

effect on the calculations of the projected face image vectors. The following 

numerical example illustrates the proposed pixel elimination method. 

 

Example 3.1 Let    

{
 
 

 
 

[
 
 
 
 
 
 
 
 
 
 
 ]
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 ]
 
 
 
 
 

}
 
 

 
 

,    

{
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 ]
 
 
 
 
 

 

[
 
 
 
 
 
 
 
  
 
 
  ]
 
 
 
 
 

}
 
 

 
 

, and 
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[
 
 
 
 
 
 
 
  
  
  
 ]
 
 
 
 
 

 

[
 
 
 
 
 
 
 
  
 
 
  ]
 
 
 
 
 

}
 
 

 
 

 are three classes and       [         ]  is the 

unknown feature vector which is  to be classified.  

The projection matrix given in Eq.(12) is calculated as   

   [
                     
                     

                   
                     

] (3.5) 

The projection of the test vector onto the range space of   can be calculated as 
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       [
                     
                     

                   
                     

]
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 (3.6) 
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]   [
       
       

]   [
       
       

]       [
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]       
(3.7) 
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]  [
      
       

]  [
       
       

]  [
       
       

]  [
      
       

]  [
      
       

] (3.8) 

  [
       
       

]                                                                                                                                (3.9) 

The norms of the columns of   are 0.5821, 0.8818, 0.4678, 0.7400, 0.0635 

and 0.3362 respectively. The 5
th

 column of   has the smallest norm. If we 

calculate         by ignoring the 5
th

 element of the feature vectors, the projection 

matrix in the reduced space becomes 

      [
       
       

      
       

       
       

       
       

      
       

]  (3.10) 

The projection of the reduced test vector onto the range space of      is 

         
     [       

       
]. The distances of the test vector to the discriminative 

common vectors of the classes in (2.22) are 4.0749, 1.2472, and 7.2667 

respectively, then       is classified to    according to the criteria given in Eq(10). 

Similarly, the distances of      
    to the discriminative common vectors of the 

classes in (2.22) are 3.9163, 1.2437, and 7.1520 respectively, then      
    is 

classified to   . The      
    is classified to the class    as it is with the previous case 

of      . The 5
th

 dimension or the fifth element of the feature vector can be thought 

as a redundant feature. 

 

Since the basis vector set that spans a subspace will not be ever unique, the 

next question would be that do the importance levels of the features (or 
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equivalently pixels) change depending on the choice of the basis vector set? 

Considering this situation, it will be shown that even though the basis vector set 

that forms the transformation matrix   is not unique, the order of the magnitudes 

of the column vector norms does not change. Depending on this fact, the 

importance level of the pixels will not change with different choices of the basis 

vector set. This is given by the following theorem. 

 

Theorem: Let  {            } and {            }  be two different 

orthonormal basis vector sets that span the range space of     . Obtaining the 

transformation matrix W using both of these orthonormal basis vector sets does not 

change the order of the magnitudes of the column vector norms of  . 

 

Proof: Let   [            ]
  and   [            ]

  be the 

transformation matrices of range space of     , where   
 ,   

  for           

  are the row vectors of   and   matrices, respectively.  

We can rewrite the transformation matrices with the column vectors as before 

   [          ]   [          ]  (3.11) 

where                   are     dimensional column vectors of the   and 

  matrices respectively. Since the columns of   and   span the range space of 

    , the following equation holds [20].  

            (3.12) 

where   is the projection matrix onto the difference subspace of the common 

vectors. 
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   ]

 
 
 
 (3.13) 

Then the corresponding elements in the two matrices are equal, that is, 
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                (3.14) 

 ‖  ‖
  ‖  ‖

              (3.15) 

 ‖  ‖  ‖  ‖             (3.16) 

This means that the norms of the column vectors of   will not change with 

different choices of the basis vector set. This completes the proof. 

  In Figure 3.1, the column norms of   in the sorted order are shown. 

Eliminating the columns of   which have the smallest norms eliminates 

corresponding pixels in the image. Figure 3.2 shows the original image and the 

pixel reduced images using the proposed feature selection method. Here eliminated 

pixels are shown in green color. In this figure, it can be easily seen that eye, nose, 

and lips remain, which means that they have the most important discriminatory 

information.  

 

 

 

Figure 3.1 The column norms of W in the ascending order 
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(a) (b) 

 

  

(c) (d) 

 

Figure 3.2 (a) Original image and (b) 2000, (c) 4000, and (d) 8000 pixels 

eliminated images, using the proposed feature selection method. 
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3.2 Experimental Work 

 

In the experimental work, the pixels are selected using the training set 

images in accordance with the method mentioned in Section 3.1. Then the images 

with the reduced number of pixels of the training set are used for training 

purposes. In the experimental stage we used two different databases, AR [68], 

ORL [69], and YALE [21]. We compare the recognition performances of DCVA, 

CVA, Eigenface, Fisherface, and LRC methods. 

 

3.2.1 AR face database 

 

The AR database contains 126 subjects with 26 images with different 

frontal views taken under different illumination conditions, occlusions and facial 

expressions. The original size of images is         pixels.  The same subjects 

are used from AR database mentioned in reference [20]. This database contains 50 

people of which 30 are male and 20 are female. After the aligning, scaling, 

localizing, cropping, and resizing operations, the final size of the images was 

       pixels so that 10,005 dimensional feature vectors are obtained from the 

face images. In Figure 3.3 the images of a subject from the database after the 

mentioned preprocessing operations are shown.  

 

 

a-1 a-2 a-3 a-4 a-5 a-6 a-7 a-8 a-9 a-10 a-11 a-12 a-13 

 

b-1 b-2 b-3 b-4 b-5 b-6 b-7 b-8 b-9 b-10 b-11 b-12 b-13 

 

Figure 3.3 AR face database images after the aligning, scaling, localizing, and 

cropping operations.  
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3.2.2 ORL face database 

 

The ORL face database contains 40 people with 10 images. The images 

were taken at different times, under varying light conditions, with different facial 

expressions and details. The images were taken at homogeneous dark background 

and all individuals are in frontal position with tolerance to some side movement. 

The size of each image is        pixels with 256 gray levels so that 10,304 

dimensional feature vectors are obtained from the face images. Images of a subject 

from ORL face database are shown in Figure 3.4. 

 

 

 

Figure 3.4   Images of a subject from ORL face database 

 

3.2.3 YALE face database 

 

YALE database contains 11 images from each of the 15 subjects. Database 

includes six facial expressions (neutral, happiness, sadness, sleepiness, surprise, 

and wink) and three illumination conditions (center-light, left-light, and right-

light), also subjects wear glasses.  The size of the images is        . It is 

pointed out in [20] that two images of the subjects numbered 2, 3, 6, 7, 8, 9, 12, 

and 14 are the same. We reduced the database as described in [20] and the number 

of images from each class is 10. All images are rotated, resized such that the eyes 
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of the subjects in each image are in the same coordinates. Finally images are 

cropped and the final size of the images is        .  Images of a subject from 

YALE database and their preprocessed versions are shown in Figure 3.5-(a) and 

Figure 3.5-(b) respectively.  

 

 

(a) 

 

(b) 

Figure 3.5  Images of a subject from YALE face database. (a) images with their 

original size, (b) the images after the preprocessing steps. 

 

3.2.4 The face images cropped elliptically and in   shape  

 

It is seen in Figure 3.2 that important parts of the face for recognition 

purposes are eyes, eyebrows, noses, and lips.  However some parts of the hair and 
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the background behind the left and right side of the neck seem to be also important 

in the recognition of the face image.  One would normally assume that these parts 

of the face would not be important at all to recognize a person. This situation may 

be arising due to the face images used in the training sets.  Therefore instead of 

spending much effort to select the pixels in face images in the training set 

correctly, we cropped the face images into elliptical and   shaped regions both in 

the training and test sets of the AR and ORL databases. To have the elliptic mask, 

we first found an ellipse that passes through the 4 midpoints of all sides of the 

rectangular image. Then the pixels which are in the interior of the ellipse were 

automatically selected. Due to the unused exterior pixels, i.e., for AR face database 

2004 pixels are eliminated from each face image initially. The way that we formed 

the   shaped mask is best illustrated in the first image of Figure 3.7-b. The 

  shaped mask is formed so that it covers the most important regions of a face 

including eyes, nose, and lips. For example, in AR face database we eliminated 

6011 pixels by applying this mask. Figure 3.6  shows the two aforementioned 

masks. Both of these masks are to include only the important parts like eyes, 

eyebrows, noses, and lips of the face images and eliminate hair and neck areas. 

The   shaped mask has an additional elimination of the pixels around the cheek 

and chin parts of the faces. After obtaining the rectangular, elliptic, and   shaped 

face images, we applied our pixel elimination method further.  The purpose of 

these pixel eliminations was to see the change in the recognition rates versus the 

number of remaining pixels. The face images of AR database cropped elliptically 

and its variants with 2000, 4000 eliminated pixels are shown in Figure 3.7-a. The 

same image is cropped in   shaped regions and its variants with 1000, 2000 

eliminated pixels are shown in Figure 3.7-b In the experiments, DCVA, CVA, 

Eigenface, Fisherface, and LRC stand for the full images, DCVA-E, CVA-E, 

Eigenface-E, Fisherface-E, and LRC-E stand for the images cropped elliptically, 

and DCVA-T, CVA-T, Eigenface-T, Fisherface-T, and LRC-T stand for the 

images cropped in T-shape. 
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Figure 3.6 The masks used in cropping the images (a) elliptically, (b) in 

  shape. 

 

 

(a) 

 

(b) 

Figure 3.7 A face image from AR face database cropped  (a) elliptically, (b) in 

  shape and its variants with eliminated pixels. 



33 

 

3.2.5 Experiments in AR face database 

 

We executed two experiments in this database.  In the first experiment 

fourteen non-occluded images (a-1 to a-7 and b-1 to b-7 in Figure 3.3) of the 

subjects are used from AR database. The 7 images from each class were selected 

randomly for the training and the remaining images were used in the test stage. 

Thus 350 images were used in training and 350 images were used in testing. This 

process is performed 10 times and recognition rates are obtained by averaging 

each run. 1000 pixels were eliminated according to our pixel selection method and 

the recognition operations were performed. Pixel elimination was continued until 

the final dimension of the feature vector is 2005. Recognition rates according to 

the dimension of the feature vector are given together with the databases of the 

face images cropped elliptically and in   shape for all methods in Figure 3.8. 

The recognition rates of the rectangular face images are in general superior to the 

face images which have elliptical and   shaped regions. When the dimension of 

the feature vectors is reduced however elliptically cropped images outperform the 

rectangular and T-shape cropped images. All of the figures belonging to the 

experiments show the same behavior. There is a slight decrease in all methods 

with rectangular images until the dimension of the feature vectors is 6000.  

  shape cropped images always give the worst recognition results. This may be 

due to the elimination of the discriminative pixels of the face images while using 

the   shaped mask. In Figure 3.8, recognition results achieved with the 

elliptically cropped images surpass the recognition results obtained with 

rectangular images in all methods through the steps of the pixel elimination 

process. For example, in Figure 3.8-(d) Fisherface-E surpasses Fisherface after the 

elimination of 5000 pixels. 
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Figure 3.8 Recognition rates of (a) DCVA, (b) CVA, (c) Eigenface, (d) 

Fisherface, and (e) LRC in AR face database with original images, 

the face images cropped elliptically and in   shape with respect to 

the dimension of the feature vectors. 
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In the second AR face database experiments, 3 non-occluded (a-1, a-2, a-3 

in Figure 3.3) and 3 occluded  images (a-11, a-12, a-13 in Figure 3.3) were used 

for training stage, 3 non-occluded(b-1, b-2, b-3 in Figure 3.3) and 3 occluded 

images ( b-11, b-12, b-13 in Figure 3.3) were used for the test stage to investigate 

the performance of our feature selection method on the occluded images. In Figure 

3.9 the eliminated pixels in an image with a scarf is shown. Especially in Figure 

3.9 (b), it is seen that many of the pixels belonging to scarf are eliminated.  

 

  

(a) (b) 

  

(c) (d) 

Figure 3.9 (a) Original face image and its variants with eliminated pixels: (b) 

rectangular face image, (c) face image cropped elliptically, (d) face 

image cropped in   shape. In (b), (c) and (d) about 8000 pixels are 

eliminated. 
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Figure 3.10 Recognition rates of (a) DCVA, (b) CVA, (c) Eigenface, (d) 

Fisherface, and (e) LRC in AR face database (including occluded 

images) with original images, the face images cropped elliptically 

and in   shape with respect to the dimension of the feature 

vectors.  
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The performance of the proposed feature selection method in terms of 

recognition rates according to the dimension of the feature vector is given with the 

databases of the face images cropped elliptically and in   shape regions for all 

methods as shown in Figure 3.10.  It can be seen from the figure that eliminating 

the pixels using the proposed method increases the recognition rates with almost 

all types of images and with all methods. In Figure 3.10, generally results with 

elliptically cropped images are better than the other methods except in Figure 3.10-

(a). The recognition rate curves in all figures show an increase as the dimension of 

the feature vectors decreases in all methods. This result is an important 

performance indicator of the proposed feature selection method. The best 

recognition rates of the methods are given in descending order, DCVA, Fisherface, 

CVA, Eigenface as reported in [20,26]. 

A great dimensionality reduction is achieved with a small decrease in 

recognition rates in the first experiments. As an example, if 10,005 dimensional 

feature vectors are used, the recognition rate is 99.3% using DCVA. However 

96.3% recognition rate is achieved by using only 2005 dimensional feature vectors 

using the same method. Some pixels from background of the original image are 

selected with the proposed feature selection method which may unfavorably affect 

the training stage. Since it is known that most discriminatory features are eyes, 

eyebrows, nose and lips, the face image is cropped to obtain an ellipse and/or a 

  shaped region that includes the fiduciary regions of the face image. It can be 

seen in Figure 3.8 that all methods exhibit the same behavior as the dimension of 

the feature vectors is decreased. This means that great dimensionality reduction 

with a proper feature selection method is achieved causing a small recognition rate 

loss. 

In the second part of the experiments in AR face database, the efficiency of 

the proposed feature selection algorithm becomes clear with the occluded images. 

It must be noted that establishing the training set has a fundamental role in pixel 

selection process. In the training set we had to use occluded images to eliminate 

the occluded regions. Eliminating pixels, this time, not only decreases the testing 

time but also increases the recognition performance with all methods. As an 

example, the best recognition result achieved is 98.7% with DCVA-T where the 
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dimension of the feature vectors is about 4000. The dimension of the feature 

vectors is 10,005 without pixel elimination and the recognition rate is 94.7%. Thus 

we achieved 60% dimensional reduction with 4% increase in recognition rate 

using   shaped images. The maximum recognition rate with original rectangular 

shaped face images with 3000 dimensional feature vectors is 98%. Thus a 

reduction of 70% in feature vector dimension with an increase of 3.3% in 

recognition rate was achieved. Similar cases occur with the other three methods.  

 

3.2.6 Experiments in ORL face database 

 

In the training stage 5 images per class were randomly selected. 200 images 

were used in training and the remaining 200 images were used for testing 

purposes. This procedure repeated 10 times and the recognition rates were 

obtained by averaging each run. First 1000 pixels were eliminated according to our 

pixel selection method and the recognition operations described above were 

performed. Pixel elimination was continued until the final dimension of the feature 

vector is 2304. Recognition rates are given with respect to the dimension of the 

feature vector together with the face images cropped elliptically in Figure 3.11. 

The rectangular shaped face images are always superior to the elliptically cropped 

face images. This may due to the pose of the subjects in the database. The images 

are taken in frontal position with tolerance to some side movements as in Figure 

3.4. Consistent with the previous experiments, all the graphics in the figure exhibit 

the same behavior. These experiments show that the proposed feature selection 

method is sensitive to the side movements of the face. 

We cropped the images only in ellipse shape because the faces in ORL 

database have certain movements. This situation prevents cropping the images in 

  shaped regions which would include eyes, eyebrows, mouth and lips at the 

same time. For instance, if the full image is used as a feature vector, then the 

recognition rate is 97.5% with DCVA. However the recognition rate is 95% when 

4300 dimensional reduced image is used. It is about 58% dimensional reduction 

with only %2.5 recognition rate loss using DCVA. In this database, rectangular 

images give the best recognition performance with all four methods.  Main reason 
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is the variable side movements of faces in this database.  DCVA is superior to the 

others in terms of recognition performance in all databases. 

 

Figure 3.11 Recognition rates of (a) DCVA, (b) CVA, (c) Eigenface, (d) 

Fisherface, and (e) LRC in ORL face database with original images 

and the face images cropped elliptically with respect to the 

dimension of the feature vectors. 
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3.2.7 Experiments in YALE face database 

 

In the training stage 5 images per class were randomly selected. 75 images 

were used in training and the remaining 75 images were used for testing purposes. 

This procedure repeated 10 times and the recognition rates were obtained by 

averaging each run. First 1000 pixels were eliminated according to our pixel 

selection method and the recognition operations described above were performed. 

Pixel elimination was continued until the final dimension of the feature vector is 

2200. Recognition rates are given with respect to the dimension of the feature 

vector together with the face images cropped elliptically and in   shape for all 

methods in Figure 3.12.  The rectangular shaped face images are generally 

superior to the face images cropped elliptically and in   shape. We achieved not 

only dimensionality reduction but also achieved slight increase in recognition 

performance with all types of images with all methods, except Fisherface method 

with rectangular images. In Table 3.1, we summarized the best recognition rate 

increase and the corresponding dimension reductions of the images as a 

percentage. Here, Image, Image-E, Image-T, R.I., D.R. stand for the full image, 

image cropped elliptically, image cropped in   shape, recognition rate increase, 

and corresponding dimension reduction respectively.  

 

Table 3.1 Dimensionality reduction amounts as percentages according to the best 

recognition rates with all methods, using Image, Image-E, and Image-T. 

 Image Image-E Image-T 

Method R.I. (%) D.R. (%) R.I. (%) D.R. (%) R.I. (%) D.R. (%) 

DCVA 0,5 38 0,4 53 1,1 76 

CVA 2 53 2,5 45 4,1 83 

Eigenface 1,5 38 1,3 76 8 83 

Fisherface 0 0 0,4 68 3,8 83 

LRC 4,5 45 1,2 76 4 83 
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Figure 3.12 Recognition rates of (a) DCVA, (b) CVA, (c) Eigenface, (d) 

Fisherface, and (e) LRC in YALE face database with original 

images, the face images cropped elliptically and in   shape with 

respect to the dimension of the feature vectors. 
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It must also be noted that we achieved a great dimensionality reduction with all 

methods with all types of images with either no or very little loss in recognition 

rates. For example, using rectangular images with DCVA we achieved 68% 

dimensional reduction with no recognition loss. Similarly we achieved 83% 

dimensional reduction only %3 recognition rate loss using elliptically cropped 

images with CVA. Consistent with the previous experiments, all the graphics in 

the figure exhibit the same behavior. 

 

3.3 Summary of Pixel Selection 

 

In this chapter, we proposed a novel feature selection method which uses 

the projection matrix   of the range space of the common vectors. Features are 

selected according to the norms of columns of  . Experiments are performed on 

AR, ORL, and YALE face databases. Number of dimensions is greatly reduced in 

AR and ORL databases with and acceptable recognition rate loss in non-occluded 

images. In the second experiments made with occluded face images of AR face 

database, not only dimension of the feature vector is reduced but also recognition 

rate is increased with all four methods. Great dimensionality reduction is achieved 

with small increase in recognition rates in YALE face database. The results show 

the success of the proposed feature selection algorithm. Intuitively, it is expected 

that the important parts of the face for recognition should be the eyes, the mouth, 

and the nose. In Figure 3.2, Figure 3.7, and Figure 3.9 it is clearly seen that the 

most important pixels appear around eyes, nose, and mouth. Thus we have used a 

mathematical approach and we have shown that this intuition is correct 

experimentally. But one also has to be careful in the selection of faces in the 

training set, otherwise the results can be delusive. If the face images of a person in 

the training set have the same background, then the background pixels in the 

image may be assigned as important features for face recognition as in Figure 3.2. 

The testing time is the time required to classify a test image. For example, 

in AR face database, testing time is reduced from 15.2 milliseconds to 3.2 

milliseconds when the dimension of the feature vectors is reduced from 10,005 to 

2005, which is important for real-time and real-life applications.  
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Experimental and theoretical works show that the feature selection method 

introduced in this thesis is good for dimensionality reduction both in terms of 

testing time and classification performance. 
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4 SINGLE IMAGE PER SUBJECT PROBLEM 

 

In this chapter we deal with the one sample problem in face recognition 

which is a problem for security, law enforcement, person identification, etc. If only 

one image per person is available, the recognition process gets more difficult. This 

problem is called one sample problem [13]. In the case of having one sample 

problem, many methods like FLDA which uses the within-class scatter matrix will 

fail because the within-class scatter matrices are all zero. Traditional methods will 

suffer or fail when single image per person is available [21,23,45]. Several 

algorithms have been proposed to overcome this difficulty [13,14,16,17,18,52]. 

General tendency at these methods is generating the virtual samples to increase the 

training set size. But this is not the solution of the singularity problem because in 

face recognition problems dimension of the feature space is high with respect to 

the number of feature vectors. One solution to overcome the singularity problem is 

using the two dimensional variant of one dimensional methods after increasing the 

training set size.  

We give two image decomposition methods in this chapter. Singular value 

decomposition (SVD) based image decomposition method was proposed in [14] to 

overcome one sample problem. In [15], we developed a novel image feature 

extraction method using QR decomposition with column pivoting (QRCP) 

[70,71,72]. Also we propose a two dimensional extension of discriminative 

common vector approach (2D-DCVA). The performance of 1D-DCVA, 2D-

DCVA, and 2D-FLDA are compared in the experimental work. 

 

4.1 Image Decomposition Using QRCP Decomposition 

 

QR decomposition [70,73] is a typical factorization of a matrix       . 

  can be decomposed as      where        with orthogonal columns 

which span the same subspace with the columns of  , and   is an upper triangular 

matrix. 

We decompose the image        and its transpose         into two 

parts using QRCP. QR-decomposition with column pivoting is a modified version 
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of QR. This algorithm sorts the columns of matrix   such that the absolute values 

of the diagonal elements of matrix   are in the descending order and this makes a 

typical energy compaction into some basis images.  

Let   [          ]   
    be a matrix which will be decomposed 

where            is the     column of the image  . The algorithm of QRCP-

decomposition can be summarized as follows [15,70]: 

 

Table 4.1. QRCP-decomposition algorithm 

 

1. Find the column of   which has the maximum norm,         
 

{‖  ‖} 

        

2. Swap    with    

3. Compute the     column of  ,     
  

‖  ‖
. 

4.                   

5.                         

6.                
     ∑     

   
   
    

7.           

8.               
 

{‖  
 ‖}            

9.      Swap    with    

10.      Compute the      column of  ,     
  
 

‖  
 ‖

. 

11.     

 

Then the selection orders of the columns of   are sorted in the permutation 

matrix  . Finally the following equation holds, 

        (4.1) 

Here   is the upper triangular matrix. 
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After applying the algorithm, the absolute values of the diagonal elements 

of matrix   are in descending order. The approximation of image   can be written 

as  

 

 ̂  ∑    
  

 

   

 [∑    

 

   

]     (4.2) 

where    is the     column of   and    is the      row of    and    . The value 

of   is determined according to the following ratio. 

 ∑   
 
   

∑   
 
   

   (4.3) 

 

where              are the absolute values of the diagonal elements of  . 

The algorithm given in Table 4.1 concentrates the energy in some basis 

images     . It can be easily seen in (4.2) that the difference between  ̂ and   

decreases when    approaches to  .  

There are two main directions in a face image, horizontal and vertical. 

Horizontal and vertical gradients are useful to find the horizontal and vertical 

edges respectively which are generally seen around boundaries of face, eye, nose, 

and mouth [51]. Horizontal and vertical variations which most probably occur 

around the edges [14] contain important information about the within-class scatter. 

Horizontal and vertical variations of an image can be found by applying QRCP 

decomposition to the face image   and its transpose    respectively. The 

approximation of   which will be called as  ̌  also can be calculated using (4.2). 

The absolute values of the diagonal elements of   evaluated from QR 

decomposition and QRCP decomposition are shown in Figure 4.1 and Figure 4.2 

respectively.  

 



47 

 

 

 

Figure 4.1 The absolute values of diagonal elements of   evaluated from QR 

decomposition 

 

 

 

Figure 4.2 The absolute values of diagonal elements of   evaluated from QRCP 

decomposition 
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An image taken from a subject from the ORL face database and two virtual 

images  ̂,  ̌ reconstructed from the image and from the transpose of the image are 

shown in Figure 4.3. The within-class covariance matrices in (2.18) and in (2.25) 

can be calculated using the generated set {   ̂  ̆}. Using this set, not only FLDA 

is made applicable but also the training set size is increased to three. It is known 

that increasing the training set size helps us in modeling the classes better and this 

will increase the performance of the recognition system [7,11]. Let us define the 

difference images as       ̂       ̆     ̂   ̆. Using the difference 

images    can be calculated as below: 

 

   ∑∑(  
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This means that    can be modeled using the difference images which 

contain horizontal and vertical variations. The difference images are shown in 

Figure 4.4. A typical system diagram of the QRCP-based recognition system is 

shown in Figure 4.5. 
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(a) (b) (c) 

 

Figure 4.3 (a) The original image, approximated images evaluated (b) from the 

original image  ̂  and (c) from the transpose of the original image  ̌. 

 

 

 

Figure 4.4 The difference images           respectivelly. 

 

4.2 Image Decomposition Using SVD Decomposition 

 

Let   be an     dimensional image.   can be decomposed using 

singular value decomposition as follow [74]. 

    [
  
  

]   (4.8) 



50 

 

where     ,      are orthogonal matrices and     is the diagonal matrix whose 

diagonal elements are the singular values           . It is shown in [14] that 

most of the energy of the image   is concentrated in the basis images 

          
          (4.9) 

corresponding to the largest singular values. Here    and    represent the     

columns of   and  . Assuming that     the approximated image evaluated from 

SVD can be calculated as follow. 

 

 ̅  ∑      
 

 

   

 (4.10) 
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Figure 4.5 System diagram [15]. 
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In Figure 4.6 an image from ORL database and the virtual image generated 

from the image using SVD are shown. We can compute the within-class 

covariance matrices in (2.18) and in (2.25) using the generated set {   ̅}.  

 

 

(a) (b) 

 

Figure 4.6 (a) The original image, (b) the approximated image evaluated using 

SVD. 

 

4.3 Two Dimensional Extension of Discriminative Common Vector 

Approach 

 

The face image is transformed from matrix to vector form in many 

traditional pattern recognition methods [20,21,23,31]. Recently there appear 

methods which try to extract features without transform the image into vector form 

[27,53,75,76].  It is also known that generally two dimensional methods 

outperform their one dimensional variants [66]. In this section we give a two 

dimensional extension of DCVA.  

Let   be the number of image classes,  , be the number of feature vectors 

in each class and,   
   be the     two dimensional p  by  q pixel

 
 image of the     

class. We convert the image matrix   
  to a vector   

  in the       

dimensional space.  

It is proved in [20] that the common vectors obtained from total within-

class scatter matrix are unique for each class. In order to get unique common 
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vectors we use    which is defined in (2.18), in the first stage of the proposed 

method. We apply the eigen decomposition to    and obtain the projection matrix 

  [          ] where                 are the eigenvectors 

corresponding to the nonzero eigenvalues of   . Then the common vector of 

   class is calculated as 

     
    

        
                        (4.11) 

It should be noted that (2.20) and (4.11) give exactly the same results. We 

convert the common vectors      
 into p by q matrices,      

 . The covariance 

matrix of the common matrices can be calculated as 

 

     ∑(    
      )

 
(    

      )

 

   

 (4.12) 

where        ⁄ ∑     
  

    is the mean of the common matrices. We are trying 

to find the optimal projection vectors   [          ] which maximize 

the criterion  ( )          under the constraint      . Here d can be at 

most    (     ).  

We use the nearest neighbor classifier for classification. The decision rule 

is the same as the rule given in Section 2.3.1. 

 

4.4 Experimental Work 

 

In this section we compare the performances of 1D-DCVA, 2D-DCVA, 

and 2D-FLDA in one sample problem in five different databases, ORL, FERET 

[77], YALE, UMIST [78], PolyU-NIR [79]. We used the virtual samples generated 

using both SVD based image decomposition method and QRCP based image 

decomposition method in the experiments. 
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4.4.1 FERET face database 

 

The FERET database contains 14,051 images from 1199 different subjects 

with different illumination conditions, pose, ethnicity, age, and expression. In the 

experiments we use 200 images from fa and fb probes.  The original size of the 

images is        . All images are scaled, aligned, cropped, and resized. The 

final size of the images is        . Sample images from fa and fb probes of 

FERET database in their original size and after the preprocessing steps are shown 

in Figure 4.7-(a) and Figure 4.7-(b) respectively.  

 

 

(a) 

 

(b) 

 

Figure 4.7 Sample images from FERET face database. (a) images with their 

original size, (b) the images after the preprocessing steps. 
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4.4.2 UMIST face database 

 

UMIST face database contains 564 images from 20 subjects. Number of 

images per subject varies from 19 to 48. So we used 19 images from each subject. 

The size of the cropped images are        with 256-bit gray-scale. Subjects 

cover a range of poses from profile to frontal views and gender. In Figure 4.8 the 

selected images from UMIST database are shown. 

 

 

 

Figure 4.8 Images of a subject from UMIST face database. 

 

4.4.3 PolyU-NIR face database 

 

PolyU – NIR face database contains 35,000 images which are captured 

near infrared band from 350 subjects including different pose, scale, illumination, 

expression, time, blurring, etc. The original size of each image is        . We 

selected 420 images from 60 subjects. Each image is normalized according to the 

location of eyes so that the distance between eyes are the same. Then the image is 

cropped and the final size of the image is       . Images of three different 

subjects from PolyU – NIR face database are shown in Figure 4.9.  
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Figure 4.9 Images of from PolyU – NIR face database. 

 

4.4.4 Experiments 

 

We tested the performances of the methods in single image problem. We used 

SVD based image decomposition and QRCP based image decomposition methods 

to generate virtual samples. In equation (4.3), we selected the value of       

as in [15] and in (4.10) we selected     as in [14]. The number of subjects, the 

number of images taken from each subject, and the size of the images taken from 

ORL, FERET, YALE, UMIST, and PolyU-NIR databases after the preprocessing 

operations are summarized in Table 4.2. In the experiments we select a random 

image from each class and use that image to generate the virtual sample(s) using 

SDV based image decomposition or QRCP based image decomposition method. 

The image and the generated virtual samples are used to form the training set of 

the class where the image is selected. The rest of the images are used for testing 

purposes. This procedure is repeated five times and the recognition rates are 

obtained by averaging each run. We did this procedure to all databases. The 

recognition rates of the methods with respect to the number of the projection 

vectors are shown in Figure 4.10. 
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Figure 4.10 The recognition rates of 2D-DCVA and 2D-FLDA using QRCP and 

SVD based decomposition methods in (a) ORL, (b) FERET, (c) 

YALE, (d) UMIST, and (e) PolyU-NIR face databases 
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Table 4.2  The summary of the databases after the preprocessing steps 

 

 

 

Table 4.3  The recognition rates of 1D-DCVA, 2D-DCVA, and 2D-FLDA using 

SVD based image decomposition 

 

 

 

 

 

 

Table 4.4  The recognition rates of 1D-DCVA, 2D-DCVA, and 2D-FLDA using                             

QRCP based image decomposition 

 

 

 

 

 

 

 

Table 4.3 and Figure 4.4 show the best recognition rates of 1D-DCVA, 2D-

DCVA, and 2D-FLDA methods using SVD based image decomposition method 

and QRCP based image decomposition method respectively. We can see from 

Table 4.3 and Figure 4.4 that 2D-DCVA method outperforms 1D-DCVA and 2D-

Database Number of classes Number of images per class Dimensions 

ORL 40 10 112x92 

FERET 200 2 100x100 

YALE 15 10 120x110 

UMIST 20 19 112x92 

PolyU-NIR 60 7 120x90 

Method ORL  FERET  YALE UMIST PolyU – NIR 

1D-DCVA 70.9 87  55.9  58.7  39.7  

2D-DCVA 76.1 90 64.0 63.5 45.8 

2D-FLDA 75.9 89.7  63.3 68.2 45.7 

Method ORL FERET  YALE  UMIST PolyU – NIR 

1D-DCVA 69.8  88.8  56.3  55.9  41.1  

2D-DCVA 76.6 90.6 64.3 63.6 46.1 

2D-FLDA 76.0 89.7 60.9 60.9 45.8 
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FLDA methods. In Table 4.3, 2D-FLDA exhibits better performance than 2D-

DCVA only in the UMIST face database. 1D-DCVA shows the lowest 

performance in all experiments. This should be due to fact that the two 

dimensional methods generally outperform the one dimensional methods [66]. 

 

4.5 Summary of Single Image Training Problem 

 

In this chapter, we gave two image decomposition methods, namely SVD 

based image decomposition and QRCP based image decomposition which are used 

to generate virtual samples. QRCP which is a modification of QR method 

decomposes the image into two matrices   and  . Then the absolute values of the 

diagonal elements of   are in descending order. By this way most of the energy is 

concentrated into some basis images. Using some of this basis images an 

approximation of the original image is generated. Another approximation of the 

image is generated using the transpose of the image. The image and its two 

approximations are used to generate the training set of the class where the image 

belongs to. Similarly SVD is another matrix decomposition method which is first 

used in one sample problem in [14].  Image is decomposed into some basis images 

using singular values.  An approximation of the image is generated using the basis 

images corresponding to the largest singular values. Similarly the original image 

and the approximation of that image are used to form the training set of the 

subject. 

Also, we proposed a novel two dimensional extension of discriminative 

common vector approach (2D-DCVA). We used the vector form of the images in 

the first stage of the method to compute the common vectors uniquely.  

The performances of 1D-DCVA, 2D-DCVA, and 2D-FLDA are compared in one 

sample problem in five different databases. It is clearly seen in Table 4.3 and 

Figure 4.4 that 2D-DCVA surpasses the other two methods. Also we can infer 

from Table 4.3 and Figure 4.4 that QRCP is a better decomposition method than 

SVD based image decomposition.   
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5 COVARIANCE MATRIX ESTIMATION IN SUBSPACES 

 

It is known that the data distribution of a class can be represented by a 

Gauss distribution. But the variances of a Gauss distribution depend only on the 

data of the class that the distribution belongs to. In high dimensional data, the 

equipotential curves of a class distribution become elliptic hypercylinders with 

endless top and bottom surfaces because of the zero eigenvalues of the covariance 

matrix. It should be better to use the data of the other classes to model a class that 

may help to limit the Gauss distribution and convert the equipotential curves of a 

class distribution to hyperellipsoids. In this work, when modeling the covariance 

matrix of a class we use not only the data of one class but also the data of the other 

classes. We try to model the classes in the subspaces, especially in the range space 

of the total within-class scatter matrix,   , ( (  )) in this section. 

In face recognition problems, if the whole face image is used as a feature 

vector, the dimension of the feature space is very high. Since the images from a 

class are very limited, the class model cannot be estimated well. Let  ,  ,   be the 

number of classes, number of feature vectors from each class and the dimension of 

the feature vectors respectively. We perform a great dimensionality reduction by 

projecting the feature vectors onto  (  ). The dimension of the range space of  

   is  (   ) whereas the dimension of range space of within-class covariance 

matrix    ( (  )) which is given in (2.22) is (   ). If we try to model a class 

in the range space of   , we do not have enough samples in that class.  

When we model a class in this study, we use the data of all classes. We 

give two methods to model the classes with exponential surfaces, thus we estimate 

the within-class covariance matrices of the classes in  (  ). We obtain a decision 

surface using the covariance matrices of the classes in  (  ). We illustrate the 

two methods with numerical examples and finally we compare the performances 

of two methods with several experiments in YALE, ORL, and AR face database. 
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5.1 Class Modeling Using Exponential Hypersurfaces 

 

Let   be the number of classes and   be the number of feature vectors 

from each class in n-dimensional subspace. Let with     and      The 

training set of the two classes is    {  
    

 },    {  
    

 } where   
    . Let 

  be the projection matrix onto the  (  ). The projections of the feature vectors 

onto the  (  ) are defined as 

   
 
     

 
          (5.1) 

Similarly, the average vectors of two classes can be defined as     
        

 , 

    
         

 . 

We try to find the surfaces for classes using the training set data in 

 (   )   -dimensional subspace. Let     
   ,       be the surfaces that 

will be fitted to the class distributions. Here  

 

    (      
 )   (      

 )        (5.2) 

where    [
  
  

   
 ],      . We select    as diagonal matrices to reduce the 

number of unknown parameters. As a result, the level curves of the exponential 

functions become the ellipses which are parallel to the coordinate axes. It can be 

thought that    is the inverse of the estimated covariance matrix of the     class. 

Actually, we model the covariance matrix of each class in the range space of   . 

Let   
  be the projected feature vector from one of the two classes onto the 

 (  ). We use the following conditions to compute the sum of square errors for 

  . 

    
        

     
 
   

        (5.3) 

    
        

     
 
   

        (5.4) 

The sum of squares for    is computed as follows 
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Similarly, the sum of square errors for    can be computed using the following 

conditions. 
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The values of   
    

        that minimize      and      are used to 

obtain the difference surface        . The optimum values of   
    

        

are found by steepest descent method [80]. In this method, we start the searching at 

an initial point    which is generally chosen randomly. In each step the point is 

updated according to the following equation. 

            (  ) (5.9) 

Here     denotes the gradient of the function   that will be minimized and   

denotes the weight factor.   is generally chosen as        and it determines 

the step size at every iteration. 

 When we model a class we use data of the all classes. If we assume that   

is a non-diagonal matrix, the number of unknown variables will increase 

drastically. For example, the number of unknown variables in two-dimensional 
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space is 3 whereas there are 1275 unknown variables in 50-dimensional space. The 

method is not feasible for high dimensional data even if we select   as diagonal 

matrix.  

In classification phase, a query is sent to all two-class models and is 

assigned to one of two classes in each model. The class with the highest vote is the 

final predicted class. The assignment is done according to the value of the 

difference surface        . If    , then the query belongs to the class 1 else 

it belongs to the class 2. 

    

5.2 Novel Covariance Matrix Modeling in the Subspaces 

 

When we estimate the new within-class covariance matrix of a class in the 

range space of   , we use not only the class’s own data but also use the data of 

the other class for a two-class problem. Let    and    be the two classes that will 

be modeled. Let   
 ,   

          be feature vectors and let     
       

  be the 

means of the classes    and    respectively. Let   be the projection matrix of the 

range space of   . Then the projections of the feature vectors can be defined as 

   
      

 

  
      

 
,          (5.10) 

and the average vectors in the range space of    can be defined as     
  

      
 ,     

         
 . 

The within-class covariance matrices of the classes    and    in the range 

space of    are defined as follow. 
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We also define new covariance matrices that can be used to model the 

deviation of a data from the mean of the other class. 

 

   ∑(  
      

 ) (  
      

 )

 

   

 (5.13) 

 

   ∑(  
      

 ) (  
      

 )

 

   

  (5.14) 

The new covariance matrices can be defined as 

 
      

 

 
    (5.15) 

 
      

 

 
   (5.16) 

   and    matrices are normalized with the number of feature vectors,  , used in 

training set from a class to reduce the unwanted effect in recognition. In a two 

dimensional space if     the rank of    and    are 1. Thus    and    are 

singular matrices. But the covariance matrices defined in (5.14) and (5.15) are 

nonsingular and invertible.  

The new exponential surfaces,    and    can be fitted by redefining    in 

(5.2) as      
         as follow: 

       ( 
 )     ( (      

 )   
  (      

 ))        (5.17) 

 

5.3 Numerical Examples 

 

In this section, we give two numerical examples to illustrate the proposed 

class modeling methods. 
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Example 5.1 Let    {[
 
 
]  [
 
 
]},    {[

 
 
]  [
 
 
]} are the two classes. In this 

example we model the classes in the range space of    using the method given in 

Section 5.1. 

After applying the steepest descent algorithm to      and     , the 

optimum values of   
    

        are found as below. 

[  
   

   
   

 ]  [                   ] 

The mesh and the contour plots of the difference surface are shown in 

Figure 5.1 and Figure 5.2 respectively. In Figure 5.2, the curve represented by 

"   " indicates the zero-crossing level of the difference surface which can be 

used as decision curve. 

 

 

 

Figure 5.1 The mesh plot of the difference surface         
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Figure 5.2 The contour plot of the difference surface         

 

 

 

 

Figure 5.3 The mesh plot of the difference surface         
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Example 5.2 We model the same classes given in the Example 5.1 in the range 

space of    using the method in Section 5.2. 

 

The mesh plot and the contour plot of the difference surface         in 

the normalized space are shown in Figure 5.3 and Figure 5.4 respectively. The 

curve represented by "   " shown in Figure 5.4 is the decision boundary. 

 

 

 

Figure 5.4 The contour plot of the difference surface         

 

5.4 Experimental Work 

 

In the experimental work, we compare the performances of the methods 

defined in Section 5.1, Section 5.2 and Support Vector Machines [81] in YALE, 

ORL, and AR face databases. The images automatically cropped according to the 

eye coordinates, resized to      ,      , and       respectively. Support 

Vector Machine finds a hyperplane which optimally separates the n-dimensional 
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space into two categories. If the data cannot be separated by a linear hyperplane, 

SVM uses kernel functions to map the data onto a higher dimensional space to 

make it linearly separable. In the experiments, we used linear and quadratic 

kernels.  

We perform pairwise classification [82] in the experiments. Pairwise 

classification converts the multi-class problems into series of two-class 

classification problems [83,84].  -class classification problem is converted into 

 (   )

 
 two-class classification problems. The experiments are executed the range 

space of the total within-class scatter matrix    given in (2.18). The dimension of 

   is equal to  (   ). The images are projected onto the range space of    

then normalized. In each experiment, we randomly selected   samples (  5 for 

YALE, ORL and     for AR database) from each of   classes and the 

remaining samples are used for testing proposes. This procedure is repeated 5 

times and the recognition rates are obtained by averaging each run. The 

experiments are executed in YALE, ORL, and AR face databases. The 

experimental results and their standard deviations are shown in Table 5.1 – Table 

5.6. Here SVM-Lin denotes Support Vector Machines with linear kernel and 

SVM-Quad denotes Support Vector Machines with quadratic kernel. In the 

training stage SVM-Quad always gives 100% recognition rate. Similarly the 

method which is given in Section 5.2 gives close results to SVM-Quad. The best 

recognition results are achieved with the method given in Section 5.2 except one 

experiment. These results show that the proposed method given in Section 5.2 is 

successful against all of the other three methods. 

 

Table 5.1 The recognition performance of the methods and their standard 

deviations in the training set on the YALE face database. 

  Method in Sec.5.1 Method in Sec.5.2 SVM-Lin SVM-Quad 

5 94.4 ± 4.6 100 ± 0 93.6 ± 4.6 100 ± 0 

10 97.2 ± 2.7 98.8 ± 1.1 98.8 ± 1.1 100 ± 0 

15 97.1 ± 1.7 98.7 ± 1.3 98.6 ± 1.3 100 ± 0 
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Table 5.2 The recognition performance of the methods and their standard 

deviations in the training set on the ORL face database. 

  Method in Sec.5.1 Method in Sec.5.2 SVM-Lin SVM-Quad 

10 99.6 ± 0.9 99.6 ± 0.9 72.0 ± 9.1 100 ± 0 

15 100 ± 0 99.5 ± 0.7 72.0 ± 4.7 100 ± 0 

20 100 ± 0 99.6 ± 0.5 69.0 ± 5.0 100 ± 0 

 

Table 5.3 The recognition performance of the methods and their standard 

deviations in the training set on the AR face database. 

  Method in Sec.5.1 Method in Sec.5.2 SVM-Lin SVM-Quad 

10 98.3 ± 1.9 100 ± 0 95.0 ± 2.5 100 ± 0 

15 97.7 ± 0.9 100 ± 0 92.6 ± 4.1 100 ± 0 

20 98.3 ± 0.4 100 ± 0 92.7 ± 3.8 100 ± 0 

 

Table 5.4 The recognition performance of the methods and their standard 

deviations in the test set on YALE face database. 

  Method in Sec.5.1 Method in Sec.5.2 SVM-Lin SVM-Quad 

5 72.8 ± 16.8 78.4 ± 4.6 81.6 ± 6.1 76.8 ± 6.6 

10 58.4 ± 7.8 72.0 ± 1.4 69.2 ± 5.0 63.6 ± 4.3 

15 55.2 ± 3.1 69.9 ± 2.0 65.3 ± 4.2 61.1 ± 1.7 

 

Table 5.5 The recognition performance of the methods and their standard 

deviations in the test set on ORL face database. 

  Method in Sec.5.1 Method in Sec.5.2 SVM-Lin SVM-Quad 

10 70.8 ± 4.6 86.4 ± 3.3 66.8 ± 12.5 80.0 ± 5.1 

15 76.3 ± 2.4 89.1 ± 3.0 65.6 ± 7.5 82.4 ± 6.1 

20 71.2 ±3.0 85.8 ± 6.2 59.6 ± 5.4 77.4 ± 7.5 
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Table 5.6 The recognition performance of the methods and their standard 

deviations in the test set on AR face database. 

  Method in Sec.5.1 Method in Sec.5.2 SVM-Lin SVM-Quad 

10 60.9 ± 4.4 78.0 ± 6.5 65.4 ± 4.9 75.1 ± 6.2 

15 57.7 ± 2.9 76.8 ± 3.8 54.1 ± 2.1 73.7 ± 2.2 

20 52.5 ± 4.5 73. 9 ± 1.9 46.9 ± 1.9 69.4 ± 2.4 

 

5.5 Summary of Covariance Estimation 

 

In this section we give two class modeling methods in the range space of 

total within-class scatter matrix   . At first we project all samples in the range 

space of    to reduce the dimensions. 

In the first method, we generate the exponential surfaces to all classes. We 

define a diagonal rotation matrix   . The variables of    are found using the 

steepest descent method. Since we use the diagonal rotation matrices, the level 

curves of the class model functions are the hyper ellipsoids which are parallel to 

the coordinate axis. The main reason using diagonal matrix is the difficulty in 

computation of variables. This method is not feasible for the databases which have 

numerous samples.  

In the second method, we form new covariance matrices in the range space 

of   . We normalized the projected samples before modeling the classes. The 

inverse of the new covariance matrices are used to model the classes using 

exponential surfaces.  

The within-class covariance matrices    and   in the range space of    

are not full rank. Then the classes cannot be bounded in some dimensions. When 

we model a class, we use data of the both classes. The modified covariance 

matrices given in (5.15) and (5.16) are full rank so they are invertible. Since the 

classical quadratic classifiers use the inverse of within-class covariance matrix, 

they cannot be used in the range space of   . 

We perform the experiments on the YALE, ORL and AR face databases 

with different number of classes. In the experiments we used pairwise 
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classification method. Experimental results show that the method described in 

Section 5.2 always gives better results except one case than the method given in 

Section 5.1, SVM-Lin and SVM-Quad.  
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6 CONCLUSION 

 

In this thesis three problems in pattern recognition are examined namely, 

feature selection, single image per class problem, and within-class scatter matrix 

estimation in high dimensional space. 

A novel feature selection algorithm is proposed that use the projection 

matrix of the common vectors. The importance of the features is determined by the 

corresponding column norms of the projection matrix of the common vectors of all 

classes. The most important parts of the face image for the recognition purposes 

are eyes, mouth, and nose. In the experiments it is seen that this assumption is 

correct. The experiments are performed on AR, ORL, and YALE face databases. 

We achieved great dimensionality reduction with small decrease in recognition 

rates. In the experiments with occluded face images we achieved not only great 

dimensionality reduction but also an increase in recognition rates. Also in the 

experiments carried out in YALE face database, we achieved great dimensionality 

reduction with slight increase in recognition rates. One of the most important 

conclusions of this work is the selection of the training set images. We think that 

the training set images must have variable backgrounds to eliminate the pixels 

belonging to the background.  In ORL face database experiments, it is seen that 

our pixel elimination method is sensitive to face rotations. Also we proved that the 

importance of the pixels is independent of the selection of the basis vectors of the 

range space of the covariance matrix. 

Collecting samples for a subject is a difficult task for face recognition 

applications.  Well-known face recognition techniques fail if only one sample 

available for a subject. Many algorithms are proposed to overcome this difficulty. 

A novel image decomposition method using QRCP algorithm is proposed in our 

study. It is known that DCVA is an extension of FLDA. Also a two dimensional 

extension of DCVA is proposed. The performances of 2D-FLDA, DCVA, and 2D-

DCVA are compared in one sample problem in five different face databases. 

Proposed decomposition method gave satisfactory results compared with SVD 

based decomposition algorithm. Also 2D-DCVA gave superior results than DCVA 
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and 2D-FLDA. Also it is seen that QRCP-based image decomposition method 

generally gives better results than SVD-based image decomposition method.   

Covariance matrix estimation is an important problem especially in high 

dimensional space because of insufficient number of data. We proposed two 

within-class covariance matrix estimations. In both of the methods the data of 

classes are projected onto the range space of the total within-class scatter matrix, 

 (  ), which makes a great dimensionality reduction. In  (  ), the within-class 

covariance matrix of a class is modeled using not only its own data but also the 

data of the other classes. Experimental results show that the method described in 

Section 5.2 gives better results than SVM in  (  ). 
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