
Self Organizing Map Based RED Parameter

Estimation for Congestion Avoidance

ÖZEN YELBAŞI

Ph.D. Dissertation

Graduate School of Sciences

Electrical and Electronics

Engineering Program

May 2011

JÜRİ VE ENSTİTÜ ONAYI

Özen Yelbaşı’nın Self Organizing Map Based RED Parame-

ter Estimation for Congestion Avoidance başlıklı Elektrik-Elektronik

Mühendisliği Anabilim Dalı Kontrol ve Kumanda Sistemleri Bilim Dalın-

daki Doktora Tezi 17/03/2011 tarihinde aşağıdaki jüri tarafından Anadolu

Üniversitesi Lisansüstü Eğitim-Ögretim ve Sınav Yönetmeliğinin ilgili mad-

deleri uyarınca değerlendirilerek kabul edilmiştir.

Adı-Soyadı İmza

Üye (Tez Danışmanı) : Yrd. Doç. Dr. Emin GERMEN

Üye : Doç. Dr. Yusuf OYSAL

Üye : Yrd. Doç. Dr. Hakan Güray ŞENEL

Üye : Yrd. Doç. Dr. Cüneyt AKINLAR

Üye : Yrd. Doç. Dr. Erol SEKE

Anadolu Üniversitesi Fen Bilimleri Enstitüsü Yönetim Ku-

rulu’nun tarih ve sayılı kararıyla onaylanmıştır.

Enstitü Müdürü

ABSTRACT

Ph.D. Dissertation

Self Organizing Map Based RED Parameter Estimation for

Congestion Avoidance

Özen Yelbaşı

Anadolu University
Graduate School of Sciences

Electrical and Electronics Engineering Program

Supervisor: Asst. Prof. Dr. Emin GERMEN

2011, 108 pages

In data communication networks, congestion avoidance in routers is

one of the favorite research topics. In this dissertation, new queue management

approaches are proposed on the Random Early Detection (RED) algorithm by

monitoring the global congestion status of an autonomous system. In order to

view the level of global congestion, a traffic flow is generated between routers

and a centralized observation unit. Internet Protocol (IP) routers are spe-

cialized in order to send information packets, regarding current output queue

lengths, to the observation unit. By this way, it becomes possible to produce

a global picture of congestion. A Self Organizing Map (SOM) structure is

used by the observation unit, to make predictions on the future congestion be-

haviour of the network. After some improvements, routers gain the ability to

update their RED parameters according to the congestion notifications sent by

the observation unit. In this work, the benchmarks of new queue management

approaches are investigated by simulations on OPNET Modeler and compar-

isons with recent queue management technologies: Drop Tail (DT) and RED,

are performed. The results for throughput, packet loss, end-to-end delay and

delay variation are observed.

Keywords: Congestion avoidance, Random Early Detection, Drop Tail, Self

Organizing Map.

i

ÖZET

Doktora Tezi

Tıkanıklık Önlemede Öz Düzenlemeli Ağ Kullanılarak RED

Parametrelerinin Kestirimi

Özen Yelbaşı

Anadolu Üniversitesi
Fen Bilimleri Enstitüsü

Elektrik-Elektronik Mühendisliği Anabilim Dalı

Danışman: Yard. Doç. Dr. Emin GERMEN

2011, 108 sayfa

Veri iletim ağlarında, yönlendiriciler üzerinde meydana gelen tıkanıklı-

ğın önlenmesi en popüler araştırma konularından birisidir. Bu çalışmada,

bir ağ yapısındaki genel tıkanıklık durumu gözlemlenerek RED algoritmasına

dayanan yeni kuyruk yönetim modelleri üretilmiştir. Tıkanıklık seviyesinin

anlık durumunun izlenebilmesi için merkezi gözlem birimi ile yönlendiriciler

arasında trafik akışı yaratılmıştır. Yönlendiriciler, kuyruk uzunluğu değerlerini

taşıyan bilgi paketlerini merkezi birime gönderebilecek şekilde özelleştirilmiştir.

Bu bilgi trafiği sayesinde tıkanıklığın genel durumunu gözlemlemek mümkün

olmaktadır. Merkezi gözlem birimi, tıkanıklık seviyesinin gelecekteki yönelimini

öngörebilmek amacıyla öz düzenlemeli ağ kullanmaktadır. Yönlendiriciler üze-

rinde başka bazı iyileştirmeler de yapılmıştır, öyle ki, merkezi birimden gelen

tıkanıklık durum bilgisine bağlı olarak istenen RED parametreleri güncellene-

bilmektedir. Yeni kuyruk yönetim modelleri OPNET Modeler programı kul-

lanılarak denenmiş, Drop Tail ve RED yönetim modelleriyle kıyaslanmıştır.

Paket kayıpları ve zaman gecikmeleri gibi değerlerin zamanla değişimi ince-

lenmiştir.

Anahtar Kelimeler: Tıkanıklık önleme, RED kuyruk yönetim modeli, DT

kuyruk yönetim modeli, öz düzenlemeli ağ.

ii

TEŞEKKÜR

Sahip olduğu bilgi birikimi, azmi ve enerjisiyle bu tezi tamamlamamda

en çok emeği olan, tez danışmanım Yrd. Doç. Dr. Emin Germen’e,

Jürimde yer alarak bu tezin oluşumuna önemli katkı sağlayan Doç.

Dr. Yusuf Oysal’a, Yrd. Doç. Dr. Hakan Güray Şenel’e, Yrd. Doç. Dr.

Cüneyt Akınlar’a ve Yrd. Doç. Dr. Erol Seke’ye,

Tez önerisi aşamasında verdiği değerli fikirlerden ötürü Prof. Dr.

Altuğ İftar’a,

saygılarımı ve teşekkürlerimi sunuyorum...

Okul ve iş hayatında karşılaşılan problemlerin çözümsüz olmadığını

anlamamı sağlayan değerli çalışma arkadaşlarım Hakkı Ulaş Ünal ve Murat

Başaran’a,

Sahip olduğu incelikli ruh ve yaşama sevinciyle bana destek olan canım

arkadaşım Elif Eren’e,

Karşılaştığım tüm zorluklara benimle birlikte göğüs geren, hiçbir feda-

karlıktan kaçınmayan, beni yüreklendirerek daima yanımda olduğunu hisset-

tiren, varlığıyla beni yaşama bağlayan canım aileme,

Ve bu tezin tamamlanmasını en az benim kadar yürekten isteyen,

tanımaktan mutluluk duyduğum tüm güzel insanlara,

sevgilerimi ve teşekkürlerimi sunuyorum...

İyi ki varsınız...

iii

TABLE OF CONTENTS

ABSTRACT . i

ÖZET . ii

TABLE OF CONTENTS . iv

LIST OF FIGURES . vi

LIST OF TABLES . xi

LIST OF ACRONYMS . xii

1 INTRODUCTION 1

1.1 Dissertation Outline . 3

2 QUEUE MANAGEMENT ALGORITHMS 5

2.1 Passive Queue Management . 5

2.2 Active Queue Management . 5

3 A STUDY ON CONGESTION NOTIFICATION AND AQM 15

3.1 A Network Simulation Tool: OPNET (OPtimized NETwork)

Modeler . 16

3.2 Global Congestion Problem in Multi-Bottleneck Networks and

New Approaches for AQM . 32

iv

3.2.1 Self organizing maps . 32

3.2.2 Approach 1 . 35

3.2.3 Approach 2 . 67

4 CONCLUSION 99

BIBLIOGRAPHY .102

v

LIST OF FIGURES

2.1 Probability pb vs average queue length in RED 6

2.2 Packet drop probability vs average queue length in DSRED . . . 11

3.1 Dumbbell network topology . 15

3.2 Network model designed for Approach 1 18

3.3 Node model of an IP router . 19

3.4 Process model for ip module . 21

3.5 Enter executives for state ‘newstate1’ 23

3.6 Enter executives for state ‘newstate2’ 23

3.7 Process model ‘ip output iface h2dc1 wl minth.pr.m’ 24

3.8 Process model ‘ip rte central cpu mart11.pr.m’ 25

3.9 Packet model of a ping packet 26

3.10 Packet model of an IP packet carrying ping packets 26

3.11 Packet model ‘my identifier4new h2.pk.m’ 26

3.12 Node model of the centralized observation unit 29

3.13 Process model ‘controller ip dispatch.pr.m’ 30

3.14 Process model for child process ‘controller icmp.pr.m’ 31

3.15 Link Editor . 31

3.16 Configuration of a SOM . 33

3.17 Input data structure for SOM 39

vi

3.18 SOM data structure . 40

3.19 Hit points on the SOM (Case 1) 40

3.20 Hit and frequency values of the neurons for Case 1 (map is

rotated counterclockwise by 90◦) 41

3.21 Hit and frequency values for neuron 32 (Case 1) 42

3.22 Best matching unit trajectory (Case1) 43

3.23 Labels obtained by using weighted averaging method (Case 1) . 44

3.24 minth vs labelfinal1 (Case 1) . 46

3.25 maxpden
vs labelfinal1 (Case 1) 47

3.26 maxp vs labelfinal1 (Case 1) . 48

3.27 Time average of video conferencing packet end-to-end delay

(Case 1) . 52

3.28 Time average of IP packet drop rate (Case 1) 52

3.29 Time average of video conferencing packet delay variation (Case

1) . 53

3.30 Time average of video conferencing packet receive rate (Case 1) 53

3.31 Time average of video conferencing packet sending rate (Case 1) 54

3.32 Queue length at the interface with IP address: 192.0.2.2 for Case

1. The graphics are for (a) Scenario 1, (b) Scenario 2, (c) Sce-

nario 3, (d) Scenario 4, (e) Scenario 5, (f) Scenario 6, (g) Sce-

nario 7. 55

3.33 Hit points on the SOM (Case 2) 56

3.34 Best matching unit trajectory (Case 2) 57

3.35 Hit and frequency values of the neurons for Case 2 (map is

rotated counterclockwise by 90◦) 58

3.36 Labels obtained by using weighted averaging method (Case 2) . 59

vii

3.37 minth vs labelfinal1 (Case 2) . 60

3.38 maxpden
vs labelfinal1 (Case 2) 60

3.39 maxp vs labelfinal1 (Case 2) . 61

3.40 Time average of video conferencing packet end-to-end delay

(Case 2) . 62

3.41 Time average of IP packet drop rate (Case 2) 63

3.42 Time average of video conferencing packet delay variation (Case

2) . 63

3.43 Time average of video conferencing packet receive rate (Case 2) 64

3.44 Time average of video conferencing packet sending rate (Case 2) 64

3.45 Queue length at the interface with IP address: 192.0.16.2 for

Case 2. The graphics are for (a) Scenario 1, (b) Scenario 2, (c)

Scenario 3, (d) Scenario 4, (e) Scenario 5, (f) Scenario 6, (g)

Scenario 7. 65

3.46 Network Model designed for Approach 2 71

3.47 Moving average of traffic drop rates for four different simula-

tions and the curve of average values (results for RED applied

congested interface) . 73

3.48 The queue length (congested interface) 73

3.49 Moving average of traffic drop rate (congested interface) 74

3.50 Moving average of traffic receive rate (congested interface) . . . 74

3.51 Moving average of throughput (congested link) 75

3.52 Moving average of queuing delay (congested interface) 75

3.53 Moving average of queuing delay variation (congested interface) 76

3.54 Moving average of link utilization (congested link) 76

3.55 The queue length (uncongested interface) 77

viii

3.56 Moving average of traffic drop rate (uncongested interface) . . . 78

3.57 Moving average of traffic receive rate (uncongested interface) . . 78

3.58 Moving average of throughput (uncongested link) 79

3.59 Moving average of queuing delay (uncongested interface) 79

3.60 Moving average of queuing delay variation (uncongested interface) 80

3.61 Moving average of link utilization (uncongested link) 80

3.62 Mean of global congestion data group vs group number 84

3.63 Variance of global congestion data group vs group number . . . 84

3.64 Skewness of global congestion data group vs group number . . . 85

3.65 Kurtosis of global congestion data group vs group number . . . 85

3.66 Hit and frequency values of the neurons 87

3.67 Average hit values of the neurons and the congestion regions . . 90

3.68 maxth vs congestion alarm number for Scenario 3 91

3.69 ftp traffic receive rate curves for four different simulations and

the curve of average values (results for scenario1) 93

3.70 Global statistic: ftp traffic receive rate 93

3.71 Global statistic: ftp traffic sending rate 94

3.72 Moving average of end-to-end delay measured between node 0

and node 6 . 94

3.73 Moving average of end-to-end delay variation measured between

node 0 and node 6 . 95

3.74 Moving average of end-to-end delay measured between node 1

and node 7 . 95

3.75 Moving average of end-to-end delay variation measured between

node 1 and node 7 . 96

ix

3.76 Moving average of end-to-end delay measured between node 2

and node 4 . 96

3.77 Moving average of end-to-end delay variation measured between

node 2 and node 4 . 97

3.78 Moving average of end-to-end delay measured between node 3

and node 5 . 97

3.79 Moving average of end-to-end delay variation measured between

node 3 and node 5 . 98

x

LIST OF TABLES

3.1 Data collection table . 38

3.2 Summary of Scenarios 1 - 4 of Case 1 50

3.3 Summary of Scenarios 5 - 7 of Case 1 50

3.4 Video conferencing packets received (r) to sent (s) ratio (Case 1) 54

3.5 Summary of Scenarios 1 - 4 of Case 2 61

3.6 Summary of Scenarios 5 - 7 of Case 2 62

3.7 Video conferencing packets received (r) to sent (s) ratio (Case 2) 66

3.8 Table for mean, variance, skewness and kurtosis values 69

3.9 BMU regions and congestion alarm numbers 71

3.10 Labels assigned to input vectors with different mean values . . . 86

3.11 BMU regions and RED parameters for Scenario 3 90

xi

LIST OF ACRONYMS

IP Internet Protocol

IETF Internet Engineering Task Force

IntServ Integrated Services

DiffServ Differentiated Services

QoS Quality of Service

SOM Self Organizing Map

RED Random Early Detection

DT Drop Tail

EWMA Exponentially Weighted Moving Average

AIMD Additive Increase Multiplicative Decrease

AQM Active Queue Management

ERED Enhanced RED

REM Random Exponential Marking

RAQM Rate-based Active Queue Management

PI Proportional and Integral

FTP File Transfer Protocol

HTTP Hyper Text Transfer Protocol

OPNET Optimized Network

UDP User Datagram Protocol

RIP Routing Information Protocol

OSPF Open Shortest Path First

ICMP Internet Control Message Protocol

WRED Weighted RED

FIFO First-In First-Out

BMU Best Matching Unit

PQM Passive Queue Management

xii

1 INTRODUCTION

The evolution of the Internet has been continuing since its develop-

ment in the early 1970s [1]. The data communication in the Internet is pro-

vided by the protocols that organize the functionality of network components

such as routers, end users, transmission links. The name ‘TCP/IP’ represents

the collective operation of Transmission Control Protocol (TCP) and Internet

Protocol (IP). TCP [2] is a transport layer protocol which provides process-to-

process communication between end user applications such as electronic mail

and file transfer in the Internet. The data transfer service provided by TCP

is connection oriented and reliable. IP is the network layer protocol of the

Internet and its main considerations are routing and path determination for

packets [3].

‘Best effort’ is the traditional service model of the Internet and is still

being used for packet delivery. No special service guarantees are provided by

the best effort service, on orderly and error free delivery of segments. Internet

Engineering Task Force (IETF) working group has proposed architectures like

Integrated Services (IntServ [4]) and Differentiated Services (DiffServ [5, 6])

for modifying Internet infrastructure to support real-time Quality of Service

(QoS) requirements. In [7], Internet QoS is handled as a puzzle that con-

tains many pieces such as terminology, architecture, traffic engineering and

marketing. Another work, [8] is a review on the available mechanisms used

to enable QoS guarantees in packet switched networks and to offer trade off

among performance, functionality, complexity, etc. IP QoS is about provid-

ing different services for different users in the network layer of the Internet,

while taking necessities of users and availability of network resources into ac-

count. In [9], three logical planes are defined as building blocks for QoS: control

plane, data plane and management plane. Each plane contains a different set

of mechanisms: admission control, QoS routing, resource reservation (control

plane); buffer management, congestion avoidance, packet marking, queueing &

1

scheduling, traffic shaping, traffic policing, traffic classification (data plane);

metering, service level aggreement, service restoration (management plane).

This dissertation is mainly focused on the congestion avoidance mechanism in

data plane.

Congestion occurs in the Internet when the demand for a resource, i.e.

buffer space in routers or bandwidth of a link, exceeds the available capacity

of the resource [10]. Packet losses, long end-to-end delays, delay variations

(jitters) are unwanted results of sustained network overload. As defined in [3],

end-to-end delay is the accumulation of transmission, processing and queueing

delays in routers; propagation delays in the links and processing delays at

end users. Propagation delay is affected by the distance between source and

destination, while queueing delay varies with respect to the amount of traffic

load at the routers [11]. As a result of variable queuing delays in the routers, IP

datagrams experience different delays in travelling from source to destination

and jitter occurs. Amounts of jitter, end-to-end delay and packet loss are so

important for multimedia applications such as Internet phone and real-time

video conferencing [11].

In TCP/IP networks, there are two main indicators for a congestion

problem in the network: appearance of a timeout or receipt of triple duplicated

acknowledgement for a packet previously sent by a TCP source [10,12-13]. The

algorithms against congestion that are introduced in [12] and [13] are based

on the adjustment of sending rate of a TCP source when it is notified of con-

gestion. Congestion control and congestion avoidance are different approaches

used for handling congestion problem. As described in [10], congestion con-

trol is a reactive approach that is applied to already congested networks while

congestion avoidance is used as a prevention against congestion.

There are plenty of passive/active queue management schemes pro-

posed to handle the congestion of recent IP infrastructure. In this disserta-

tion, congestion avoidance is examined under the scope of queue management

algorithms. The mostly cited studies and some of the recent work on queue

2

management are reviewed; their advantages/drawbacks are investigated. As

a starting point, global congestion behaviour of IP networks with multiple

bottlenecks is considered. A centralized observation method is presented to

monitor global congestion behaviour of an IP network. An observation unit

is designed to identify the congestion level of the network by collecting queue

length data from all router interfaces. Collected data are used to train a Self

Organizing Map (SOM), which is a special class of artificial neural networks.

By the help of the trained SOM, it is possible to visualize global congestion

and to make predictions on the future congestion behaviour of the network.

The information obtained by the SOM is of concern to all IP routers in the

network. A congestion notification traffic is supplied to the network by the

observation unit, and by this way, routers are informed about the level and

tendency of congestion.

New queue management approaches, which are proposed as a part of

this dissertation, aim for the treatment of end-to-end delays/delay variations,

by controlling the number of packets queued in router output interfaces. A

new queue management technique is produced due to each new approach and

then it is activated by router output interfaces. As a result, necessary updates

are performed on the new queue management technique, upon receiving the

congestion notification sent by the observation unit. Performances of new ap-

proaches are verified by the OPNET Modeler simulation program. Simulation

results are compared with that of Drop Tail (DT) and RED algorithms. The

following section presents the outline of this dissertation.

1.1 Dissertation Outline

This dissertation is organized as follows:

Chapter 2 is a motivation for the readers of this dissertation. Princi-

ples of passive and active queue management are explained by referencing to

well known algorithms such as Drop Tail and RED.

3

An object-oriented simulation program, OPNET Modeler, is described

in Chapter 3. Steps of building an IP network and producing network com-

ponents (such as routers, links, end users, etc.) with desired functionality are

summarized in this chapter. Global congestion problem in multi-bottleneck IP

networks, queue management algorithms for congestion avoidance and SOM

training are important considerations of this dissertation. Main problem state-

ment, utilization of SOMs in monitoring tendency of global congestion, defini-

tion of some parameters used in statistical data analysis and development of

new queue management approaches are presented in Chapter 3. Details about

simulations, which are carried out by the OPNET Modeler program for in-

vestigating the performances of new queue management approaches, are given

and results are discussed.

Last chapter presents concluding remarks and topics of ongoing stud-

ies.

4

2 QUEUE MANAGEMENT ALGORITHMS

Congestion avoidance mechanisms presented in [12] are based on re-

ducing the amount of traffic generated by TCP sources during congestion. As a

result of the growth in the Internet, together with the increase in the number of

Internet users and applications such as ftp, http, e-mail, video, etc., the effect

of TCP congestion avoidance mechanisms had to be strengthened by queue

management algorithms in IP routers. Queue management algorithms control

the number of packets in queues of router interfaces and decides whether to

drop/mark packets or not. There are two main classes of queue management

algorithms which are explained in the following sections.

2.1 Passive Queue Management

Passive Queue Management (PQM) is the traditional technique that

supports acceptance of packets until router buffer limit is reached. It does

not employ any preventive early packet drops [11]. DT is the most widely

used PQM technique. It lets the router queue accept packets until getting

full and then newcomers are dropped till some empty place is gained with

transmissions. It has been widely used although having important drawbacks.

The problems about DT are lock-out and full queue behaviours. Lock-out

is the situation that appears when the router queue is fully used by packets

of only a limited number of connections, so network resources are not shared

fairly. Full queue problem causes long queueing delays. ‘Random drop on

full’ and ‘drop front on full’ are other PQM techniques which are effective for

lock-out problem, but full queue situation is still a problem [14].

2.2 Active Queue Management

Active Queue Management (AQM) is a preventive queue management

technique that detects congestion early and informs end users to decrease the

5

Figure 2.1: Probability pb vs average queue length in RED

amount of traffic, for preventing packet losses due to buffer overflow [15]. As a

result of the need to improve queue management and congestion avoidance in

the Internet, [14] is presented. In [14], Internet community is suggested to use

RED algorithm [16] for providing AQM in routers. In [16], where congestion

avoidance ability of random early detection was proposed, packet switched

networks are taken into consideration. The design goals studied in [16] are as

follows:

• congestion avoidance by controlling average queue length and maintain-

ing an upper bound on the average queue length,

• avoidance of biases against bursty traffic.

In RED, marking probability for the new arrival, pa, is calculated as

follows:

pa = pb/(1− count.pb) , (2.1)

where pb is the marking probability and count is the number of arrivals since

the last marking. The variation of pb with respect to the average queue length,

qave, is shown in Fig.2.1, whose partial expression is given in (2.2):

6

pb =


0, qave < minth

maxp

[
qave −minth

maxth −minth

]
, minth ≤ qave < maxth

1, maxth ≥ qave

. (2.2)

The value of qave is updated at packet arrival times by the following equation:

qave = qavep (1− wq) + wqq , (2.3)

where qavep is the previous value of the average queue length, q is the current

value of the queue length and wq is the queue weight. (2.3) is a low pass filter

equation, known as Exponentially Weighted Moving Average (EWMA). The

decision on the values of minth, maxth and wq is an important problem. A few

rules are given in [16] for the solution of this problem:

• For efficiency of implementation, negative power of two, preferably a

value greater than 0.001 should be used for wq. If it is so low, a delay

occurs in following the increases in the instantaneous queue length,

• bursty nature of networks should be taken into consideration, average

queue length should be kept high enough for preventing underutilization

of the output link,

• the probabilistic behaviour of packet marking is a precaution against

reduction of transmission rates at once by multiple hosts in response to

packet marking. Additionally, [minth maxth] interval should be long

enough to avoid global synchronization. maxth > 2 minth should be

satisfied.

In [17], design guidelines are presented for providing stable operation

of a linear feedback control system which is represented by a combined TCP

and AQM model implementing RED. Besides its benefits in fairness and avoid-

ing global synchronization, RED suffers from low throughput, fluctuations in

the queue length and large queueing delay variation. These disadvantages of

7

RED has attracted attention of many network researchers and various RED

variants are proposed. Some of these variants and examples to AQM algo-

rithms are explained below:

Self configuring RED [18] is about improving RED, by following an

adaptive algorithm for setting RED parameter maxp due to the characteristics

of network traffic:

if (minth < qave < maxth)

status = Between;

if (qave < minth and status! = Below)

status = Below;

maxp =
maxp

α
if (qave > maxth and status! = Above)

status = Above;

maxp = maxp ∗ β;

As seen in the above algorithm, average queue length is observed, if it is

oscillating around minth, then the drop mechanism is said to be too agressive;

if it is oscillating around maxth, then it is too conservative. Simulation results

presented in [18], show that the adaptive RED algorithm reduces packet losses

and improves link utilization.

In another adaptive queue management technique proposed in [19],

maximum drop probability is updated dynamically while average queue length

is kept close to a desired level.

The design purpose for NRED [20] is truely estimating the number

of active flows and keeping the queue length close to a target value. NRED

aims to stabilize router queue length and proposes an estimator for active flow

numbers together with an algorithm for updating the value of maxp. If the

estimated number of active flows, N , is unchanged, maxp is updated by the

following equation:

maxp(new) = maxp(old) +
2 ∗maxp(old)

maxth −minth

∗ (q(new)− T) , (2.4)

8

where q(new) is the instantaneous queue length and T is the target queue

length (T value is taken as
maxth −minth

2
in simulations). If N is changed,

then maxp(new) is calculated by the following equation:

maxp(new) = 2 ∗

{
1 +

R2C2

4N2
−
√
R2C2

4N2
+
R4C4

16N4

}
, (2.5)

where R is the round trip time and C is the link capacity.

TL-RED [21] is a traffic load adaptive algorithm, such that maxp value

is varied due to changes in traffic load. The algorithm, which is given below,

is used to stabilize the queue length in various traffic conditions, by means of

changing maximum drop probability as a result of changing load conditions:

trafficave=(1-wt)∗trafficave+wt∗traffic

When trafficave <Tmin or qave < minth: maxp = maxp − α ∗ (past/trafficave)
2

When trafficave >Tmax or qave > maxth: maxp = maxp + β ∗ (trafficave/past)
2

past=trafficave

where

past : previous value of average traffic load

traffic: instantaneous value of the traffic load

trafficave : average value of the traffic load

wt : weight, wt = 0.002

α = 0.00025 and β = 0.0025

Tmin, Tmax : boundaries indicating whether traffic load is light or heavy.

In [22], maximum drop probability is changed with respect to the

performance variations. Performance is a measure of ability for keeping in-

stantaneous queue length between minimum and maximum threshold values.

A load adaptive queue management scheme is presented in [23]. By

the usage of this scheme, queue thresholds (and packet drop probabilities) are

varied dynamically as the network load changes, while packet loss rate is kept

close to a target value.

9

Calculation of the average queue length is an important process since

RED uses this value as a measure of congestion. Alternative calculation meth-

ods are presented in [24-26]:

[24] is a recent study on assigning optimal weight values, wq, to RED.

A RED variant, named fuzzy RED, is proposed in [25]. In fuzzy RED scheme,

EWMA procedure is different from RED. An estimate of the queue length

is obtained by using a fuzzy EWMA and the amount of error, between real

and estimated values, is used to calculate new weight, wq. Stability of the

queue length and robustness against variations in the network load are two

goals of [25]. Fuzzy RED scheme improves RED performance in packet loss

rate, average queueing delay and link utilization. Enhanced RED (ERED) is

introduced in [26]. For calculating average queue length, the most appropriate

equation is chosen among the equations produced for different queue length

intervals.

Each of the studies [27-37] presents a formulation for determining

packet drop/mark probability:

In DSRED ([27], [28]), average queue length (qave) is a factor in deter-

mining drop probability (pd) and it is calculated in the same way as in RED.

However, unlike in RED, a piecewise linear model is used to determine pd.

The graphics for pd vs qave is shown in Fig.2.2 and the dropping behaviour is

expressed by the following equations [27]:

pd(qave) =



0, qave < Kl

α(qave −Kl), Kl ≤ qave < Km

1− γ + β(qave −Km), Km ≤ qave < Kh

1, Kh ≤ qave ≤ N

, (2.6)

where

α =
2(1− γ)

Kh −Kl

, (2.7)

β =
2γ

Kh −Kl

. (2.8)

10

Figure 2.2: Packet drop probability vs average queue length in DSRED

γ gives the rate of change in packet drop for the case Km ≤ qave < Kh.

Simulation results in [27] show that DSRED decreases packet drop

rate and average queueing delay while improving throughput.

SRED [29], is presented for stabilizing queue length. Unlike in RED,

average queue length is of no interest. The packet drop probability depends

on the instantaneous queue length and the estimated number of active flows.

DRED, which is described in [15] and [30], calculates packet drop

probability in a different manner: samples of instantaneous queue length, qn,

is taken every ∆t seconds and drop probability, pd(n) is calculated by following

the procedure below:

• Computation of the error signal by using the target queue length value,

T (n):

e(n) = q(n)− T (n) , (2.9)

• Computation of the filtered error signal:

ê(n) = (1− β)ê(n− 1) + βe(n) , (2.10)

where β is the filter gain,

11

• Computation of the current drop probability:

pd(n) = min

{
max

[
pd(n− 1) + α

ê(n)

B
, 0

]
, θ

}
, (2.11)

where α is the control gain, θ is the upper bound on the drop probability,

which is less than or equal to 1, and B is the buffer size.

Simulation results show that DRED is able to keep the queue length close to

target value, preventing overflows and underflows.

BLUE [31] may be defined by the following algorithm:

For a packet loss (or queuelength > L) event:

if ((now − last update) > freeze time)

pm := pm + δ1

last update := now ,

For a link idle event:

if ((now − last update) > freeze time)

pm := pm − δ2
last update := now ,

where

L: a limiting value for the queue length

pm: packet marking probability

freeze time: minimum time interval between two successive updates

last update: time of last update for pm

δ1: amount of increase in marking probability

δ2: amount of decrease in marking probability

Simulations show that when the queue management is changed from RED

to BLUE, throughput increases, packet loss decreases, an improvement is ob-

served in link utilization.

12

PRED, which is proposed in [32], is another RED variant that aims

to achieve higher throughput and lower average delay. The algorithm, as

summarized below, updates the value of packet drop probability based on the

instantaneous queue length and the threshold values:

If qave<minth
⇒ enqueue all packets

If qave >
maxth + q

2
⇒ drop all packets

If minth ≤ qave <
maxth + q

2
⇒ apply the progressive adjustment method to

find the drop probability.

Another AQM method is introduced in [33], where drop probability

is adjusted with respect to the average queue length and the estimated packet

arrival rate.

A method for estimating future congestion level and calculation of

drop probability is presented in [34]. The purpose of the work is to achieve

higher link utilization and queue length stability.

Random Exponential Marking (REM), which is explained in [35], is

an AQM techique which uses link prices as a congestion measure. Its name

comes from the behaviour against arrival packets: a packet is marked with an

exponentially increasing probability as link price increases.

A queue management algorithm away from the probabilistic behaviour

of packet dropping is proposed in [36]. A virtual buffer capacity, less than the

link capacity, is introduced for a queue, and an arriving packet is marked or

dropped when the buffer is full. At each packet arrival, virtual buffer capacity

is updated with respect to the arrival rate.

In [37], the importance of packet dropping behaviour (as a linear,

convex, concave, step function of queue length), in achieving AQM stability,

is studied.

There are comparative studies, such as [38], in which simulation results

for a number of AQM algorithms are presented.

13

Robust control principles are considered in some AQM algorithms.

The studies [39] and [40] are on designing controllers by using Proportional

(P) control and Proportional-Integral (PI) control techniques where stability

of the queue length is considered. A recent study, [41], is about designing rate-

based PI controllers. In [42], a nonlinear model of TCP/RED is presented, then

the stability region for TCP/RED is obtained in terms of round trip propa-

gation delay and bottleneck link capacity. In [43], a Proportional-Derivative

(PD) control methodology is followed to produce a new AQM scheme. An-

other robust AQM design, satisfying robust stability under uncertain network

conditions, is presented in [44]. A PI-PD controller is proposed in [45] to

provide proactive congestion avoidance in the Internet. A formula (based on

input rate of the queue, capacity of the link, instantaneous queue length and

the target length) for determining the packet drop rate is proposed in [46].

RAQM, which is described in [47], is a rate-based AQM scheme, which up-

dates its packet drop probability with respect to either the input traffic rate or

the instantaneous queue length (for regulation of these values to the expected

ones). In [48], a robust H∞ controller is developped and its advantages over

RED and PI [39] schemes are presented.

14

3 A STUDY ON CONGESTION

NOTIFICATION AND AQM

The performances of most queue management schemes in Chapter 2

were tested by researchers on single bottleneck networks of dumbbell topology.

In Fig.3.1, a representation of dumbbell topology is shown. As seen in the

figure, R1 and R2 are routers, si and di are source and destination pairs,

(i = 1, 2, ..., n. n is the total number of pairs). The traffic flow (ftp, http, video,

etc.) is directed from sources to destinations except the acknowledgement

packets’ flow from destinations to sources. Queue lengths, packet losses, end-

to-end delays, delay variations, link utilizations and throughputs are observed

during simulations to test the performance of proposed queue management

algorithm and compare it with other algorithms. The reason for choosing this

topology is its simplicity in studying congestion behaviour of single bottleneck

networks.

In this dissertation, the congestion behaviour in multi-bottleneck net-

works is studied and some improvements are proposed for AQM. It is well-

known that congestion problems arise at bottlenecks as a result of heavy traf-

fic load and limitation in link/queue capacities. For observing the congestion

Figure 3.1: Dumbbell network topology

15

behaviour of bottlenecks all over the network, a centralized observation unit is

designed as a part of this dissertation. Since queue lengths at the bottlenecks

are indicators for congestion, their values are collected by the observation unit.

These data are then used to train a Self Organizing Map (SOM). After train-

ing, the resulting map is embedded in the observation unit so that the future

behaviour of congestion could be predicted by observing current state. Then,

due to predicted congestion state of the network, AQM schemes applied to

routers (and to bottleneck queues) are improved. The observation unit sends

reply packets to routers for congestion notification. Upon receiving the noti-

fication, each router updates its AQM parameters. Details of this procedure

and modeling is given in Section 3.2. Simulation results are also discussed in

the same section.

3.1 A Network Simulation Tool: OPNET (OPtimized

NETwork) Modeler

Network simulation tools, such as programs named Network Simulator

(NS) and Optimized Network (OPNET) Modeler, provide an environment for

researchers to design networks by using elements with specialized functionali-

ties, develop new algorithms and test their performances. OPNET Modeler is

one of the most commonly used tools in network design and simulation. In this

section, OPNET Modeler is going to be explained, by the help of a network

model which is used during simulations.

In this dissertation,

• a commonly used IP router model is improved,

• an observation unit is generated,

• operation of the observation unit is simulated on a network with im-

proved routers.

16

As explained above, an IP router model is generated by improving the

router model ‘ethernet4 slip8 gtwy adv’ in OPNET. Firstly, let’s study the

properties of an ethernet4 slip8 gtwy adv router:

• It is an IP based gateway, supporting 4 Ethernet hub interfaces (for

10BaseT/100BaseT connections) and 8 serial line interfaces (for IP con-

nections).

• IP, UDP, Ethernet, RIP, OSPF, SLIP are supported protocols.

• RIP (Routing Information Protocol) or OSPF (Open Shortest Path First)

protocol may be used to dynamically and automatically create its routing

tables and select routes in an adaptive manner.

• It can not be used as a source or a final destination node.

In addition to having the first three properties from the list above,

improved router model should have the ability to produce special IP packets

when needed and to receive the corresponding reply messages. This improve-

ment is necessary for collecting the queue length data of all interfaces in an

observation unit and monitoring the network congestion level.

Fig.3.2 is the project model of a network which is produced by using

the Project Editor of OPNET Modeler. Data sources, routers, links and any

other components of a network are easily selected from the ‘Object Palette’ of

the Project Editor and the network is built. Statistics, that will be collected

during simulation, are chosen and simulation is started. If a new network com-

ponent (link, node, packet,...) is to be generated, then the associated Editor

(Link Model Editor, Node Editor, Packet Format Editor, ...) is activated. The

node model of an IP router is given in Fig.3.3. There are modules - named

‘ip’, ‘ip encap’, etc... - and wires with arrows showing the direction of packet

stream, logical association or message transmission. Each module is designed

for a different purpose and has a different process model.

17

Figure 3.2: Network model designed for Approach 1

18

Figure 3.3: Node model of an IP router

19

Process models are handled in the Process Editor. A process model

is expressed in ‘Proto-C’ language. Proto-C is based on a combination of

state transition diagrams, a library of high-level commands known as ‘Kernel

Procedures’ and the C or C++ programming language. Process model for

an ‘ip’ module is shown in Fig.3.4. This model is an improved version of the

standard model given in OPNET. As seen in Fig.3.4, states are represented

by circles. States may contain a code that is performed immediately after

the state is entered (Enter Executives) or just before the state is left (Exit

Executives). States in color ‘red’ are unforced states; an unforced state is

blocked immediately after executing the Enter executives and waits for an

interrupt before executing the Exit Executives and leaving the state. States

in color ‘green’ are named ‘forced’ states [49]. Enter Executives for newstate1

and newstate2 are given in Fig.3.5 and Fig.3.6, respectively.

Process models may have ‘children’. Children are invoked during the

execution of parent processes. The process model, whose state transition di-

agram is seen in Fig.3.4, has child processes and two of them are studied in

Fig.3.7 and Fig.3.8.

When an IP packet reaches the router, ip module is activated and

the child process ‘ip rte central cpu’ is invoked. Another child process, named

‘ip output iface’, is invoked when a packet is passed from the ‘ip rte central cpu’

to be queued in one of the output interfaces. The queue lengths may be

observed in ‘ip output iface’, and the decision for packet dropping is also

made here. Before leaving the router, packets are again handled by the

parent process ‘ip dispatch’. By the help of this information, the router

model could be modified. New process models named ‘my ip dispatch.pr.m’,

‘ip rte central cpu mart11.pr.m’, ‘ip output iface h2dc1 wl minth.pr.m’ are pro-

duced by modifying the process models in OPNET Modeler: ‘ip dispatch.pr.m’,

‘ip rte central cpu.pr.m’, ‘ip output iface.pr.m’. Steps of modification are ex-

plained below:

20

Figure 3.4: Process model for ip module

21

Step 1: Code is added to the function, named ‘enqueue packet’, which is de-

fined in ‘ip output iface.pr.m’, for capturing queue length values and related

interface adddresses.

Step 2: A child process for ‘ip output iface h2dc1 wl minth.pr.m’ is gener-

ated. This child will transfer the interface address and the corresponding

queue length values to ‘my ip dispatch.pr.m’.

Step 3: The state transition diagram of ‘ip dispatch.pr.m’ is enlarged and ad-

ditional code is written (Fig.3.4 shows the enlarged model with new states:

newstate1 and newstate2) to produce ‘my ip dispatch.pr.m’.

Step 4: A new packet format is generated. In doing this, Internet Control Mes-

sage Protocol (ICMP, [50]) is studied. ICMP is an upper layer protocol for IP,

and is used for communicating information between hosts, routers, etc. Ex-

amples to ICMP applications are sending ‘ping’ packets (called ‘echo request’

and ‘echo reply’) between hosts and sending error messages like ‘Destination

is unreachable’ from routers to source hosts. In OPNET Modeler, the child

process, named ‘ip icmp’, is responsible for a limited ICMP application (only

echo request\echo reply is modeled). Fig.3.9 and Fig.3.10 show the structures

of a ping packet and an IP packet which has a field for encapsulation of a ping

packet, respectively.

The packet model generated in Step 4 is an icmp-like packet, which

is carried in an IP packet. In our network model, queue length and interface

info will be transferred to the observation unit, therefore a new ping-packet

like model is defined in the Packet Format Editor. The new packet model is

seen in Fig.3.11. In this model,

• iface info (8 bits) field carries the IP address code of the interface,

• queue length (10 bits) field carries the queue length value of the output

interface whose IP address code is written in the ‘iface info’ field of the

packet,

• type (8 bits) field carries the name ‘IpC Icmp Echo Request’ which in-

22

dicates that a reply is expected from the destination.

Figure 3.5: Enter executives for state ‘newstate1’

Figure 3.6: Enter executives for state ‘newstate2’

23

Figure 3.7: Process model ‘ip output iface h2dc1 wl minth.pr.m’

24

Figure 3.8: Process model ‘ip rte central cpu mart11.pr.m’

25

Figure 3.9: Packet model of a ping packet

Figure 3.10: Packet model of an IP packet carrying ping packets

Figure 3.11: Packet model ‘my identifier4new h2.pk.m’

26

The centralized observation unit, which is responsible for monitoring

global congestion level, is built by making some changes on a commonly used

ethernet end user model in OPNET: ‘ethernet wkstn adv’. The changes could

be summarized as follows:

• When a packet is received, the observation unit detects the data field of

the packet and follows a special procedure if the packet is of type

‘IpC Icmp Echo Request’ and carrying an interface information (queue

length and IP address code)

• If the mission of the observation unit is only collecting interface infor-

mation, then queue length and IP address code are written into a file

together with the receipt time (the time when the packet is received).

• If the observation unit is used to determine the congestion level of the

network by observing the incoming information and send a reply back to

the router for avoiding congestion, then the code needs to be a bit more

complicated.

The node model for the centralized observation unit is seen in Fig.3.12.

‘controller ip dispatch.pr.m’ is the process model of the ip module of the ob-

servation unit and it is seen in Fig.3.13.

When the type of the incoming packet is IpC Icmp Echo Request, it

is forwarded to a child process whose process model is given in Fig.3.14. If

the observation unit is to be used for congestion avoidance, it has to sense the

congestion level of the network and send a reply (a congestion notification)

back to the router. Contents of the fields in the request packet are changed to

produce the reply packet. The content of the ‘type’ field in the packet model is

changed: IpC Icmp Echo Request is replaced with IpC Icmp Echo Reply. In

addition to this replacement, there is a change in the ‘queue length’ field of

the packet: this field is used to write the value of congestion level indicator,

‘iface info’ field of the packet remains unchanged.

27

Now, it is time to make another improvement in the IP router:

• The congestion indicator should be used only by the corresponding router

(which has sent the IpC Icmp Echo Request).

• When an IpC Icmp Echo Reply is received by a router, a special ‘in-

terrupt’ signal is generated in the process so that the packet content is

handled in a different way than the contents of other ip packets.

• The value in the iface info field is compared with the output interface

addresses of the router; if it is not one of these addresses, congestion

indicator is ignored and the packet continues its way.

• If the congestion indicator is accepted, router uses this value to update

its RED parameters.

In Fig.3.2, client side of the traffic is represented by ‘10BaseT LAN’s

that are ethernet local area networks, with 10 clients and a server, in switched

topology (‘eth switched lan adv.nd.m’ is the node model for clients). Servers

use the node model ‘ethernet wkstn adv.nd.m’, which is mainly used for client-

server applications running over TCP/IP and UDP/IP. Clients and servers are

using TCP Reno, as transport layer protocol. Each client, each server and

the observation unit is connected to its edge router by a ‘10BaseT’ link. The

‘10BaseT’ is a duplex link which represents an ethernet connection operating

at 10 Mbps. The links connecting routers are duplex ‘PPP E1’ links which

operate at 2.048 Mbps. Fig.3.15 shows ‘PPP E1’ definition in the Link Editor.

In Fig.3.2, there are 3 configuration objects for attribute definition, profile

definition and IP QoS configuration. The type of the traffic (video conferenc-

ing), packet size, packet interarrival time are defined in the attribute definition

object; while the settings like traffic start and stop times, repeatibility of the

traffic profile are made in profile definition object. IP QoS configuration ob-

ject is used for QoS requirements (link-scheduling disciplines: FIFO, priority

queuing, etc. and AQM algorithms: RED,WRED,. . .) on the output interfaces

of the routers. The routing protocol used in the routers is ‘RIP’. RIP uses a

28

distance vector algorithm, called ‘Bellman-Ford algoritm’. The properties of

this algorithm may be summarized as follows [3]:

• It is a distance vector algorithm. It provides routers the information

about the cost of directly attached links, the cost of the least-cost path

and the knowledge received from directly connected neighbours.

• It is load-insensitive, link costs does not change with the variations in

the congestion level.

• Routing updates are exchanged between the routers approximately every

30 seconds by using a ‘RIP response message’.

• RIP messages are sent over UDP in a standard IP packet.

In this section, a brief information is given about OPNET Modeler

and one of the network models used in simulations. The following section con-

tains details about congestion avoidance and proposes new queue management

approaches.

Figure 3.12: Node model of the centralized observation unit

29

Figure 3.13: Process model ‘controller ip dispatch.pr.m’

30

Figure 3.14: Process model for child process ‘controller icmp.pr.m’

Figure 3.15: Link Editor

31

3.2 Global Congestion Problem in Multi-Bottleneck Net-

works and New Approaches for AQM

Fig.3.2 shows an autonomous system that is composed of end users,

routers and connection links. A bottleneck problem arises, when the demand

of multiple traffic flows using the same link goes beyond the available link

transmission capacity. As a result, some packets are queued or dropped at

router output interfaces. For handling the queue lengths appropriately and

providing congestion avoidance, queue management algorithms are necessarily

used at these interfaces. In this work, we are focused on the global congestion

problem which leads us to observe changes on all router output queues. First

of all, a centralized observation unit is designed to provide communication

with IP routers. Then routers are specialized for communicating with the

observation unit and for updating queue management schemes due to global

congestion notifications. Handling global congestion and making necessary

changes on the queue management schemes is a procedure with various steps.

These steps are explained in this section.

The idea of following the global congestion level is developped by the

fact that if there is an increasing congestion somewhere in the network, other

regions are also in danger of being affected. The changes in global congestion

level is considered as a sign of future congestion status by all interfaces.

In this section, the procedure for observation and avoidance of global

congestion is proposed. First of all, it is useful to have some information about

SOMs.

3.2.1 Self organizing maps

Self Organizing Map (SOM [51,52]) is a special class of artificial neural

networks. SOMs are used to perform a mapping from the input data space

Rn onto a one or two dimensional array of neurons. A parametric reference

vector mi = [µi1, µi2, . . . , µin]T ∈ Rn is associated with neuron i where µij are

32

Figure 3.16: Configuration of a SOM

variable scalar weights. An input vector x = [ξ1, ξ2, . . . , ξn]T is connected to

all neurons in parallel via weights µij. Configuration of a SOM is shown in

Fig.3.16. For preventing visual complexity in the figure, only the connections

for the first input element are drawn. The formation of the map is defined

below [53]:

Step 1 (Initialization): Initial values are chosen for synaptic weight vectors,

mi.

Step 2 (Sampling): An input vector, x, is chosen randomly from the input

vectors space.

Step 3 (Similarity matching): x is compared with all mi values and the neuron

with maximum similarity is defined as the Best Matching Unit (BMU). In

many applications, Euclidean distances, ||x−mi|| are used to find similarities

and the neuron with the smallest Euclidean distance to the input vector is

defined as the BMU.

Step 4 (Updating): Synaptic weights are updated:

mi(t+ 1) = mi(t) + hci(t) [x(t)−mi(t)] , (3.1)

33

where hci(t) is the neighbourhood function centered around the winning neu-

ron. It can be defined by a Gaussian function:

hci(t) = α(t).

(
−‖rc − ri‖2

2σ2(t)

)
, (3.2)

where

α(t): a learning rate factor 0 < α(t) < 1

rc, ri: location vectors of neurons c and i, respectively

σ(t): width of the neighbourhood function.

Step 5: Repeatition of Step 2 and the rest, until no noticeable changes are

observed in the map.

The SOM algorithm is used in many areas, such as speech analysis and

recognition, signal processing, telecommunications, process control... There

are also researchers working on network applications. In studies [54] and [55],

SOM based analysis of IP network traffic is proposed, data measured in a real

environment is used to analyze dynamical properties of the traffic. The usage

of SOMs in visualizing the QoS level of VoIP communications is studied in [55].

In that work, the real environment measurements of QoS-related parameters,

such as end-to-end delay and packet loss rate are used to train the map; by this

way QoS level of the communication could be estimated. Another work [56],

introduces an adaptive RED algorithm, KRED, which uses Kohonen neural

network model to solve the stability problem in queue lengths. An example

for the usage of neural networks in AQM: L-RED is proposed in [57]. It is a

variant of RED with prediction ability for increasing network utilization rate.

In this dissertation, two different AQM approaches are proposed and

simulations are performed for testing their performances. These approaches

(Approach 1 and Approach 2) depend on redefinition of some RED parameters

by investigating the general effects of local congestions on global congestion.

SOMs are used to study the tendency of global congestion and make future

predictions. Approach 1 and Approach 2 are explained in Subsection 3.2.2 and

Subsection 3.2.3, respectively.

34

3.2.2 Approach 1

In this approach, the minimum threshold (minth) and maximum prob-

ability denominator (maxpden
) parameters of RED have been redefined, using

the global congestion notifiers which are collected from a trained SOM. Steps

of Approach 1 could be summarized as given below:

• Observing the global congestion status of a network by using the queue

length information from router output interfaces.

• Training a SOM by the help of global congestion status information.

• Using the trained SOM for estimating future congestion behaviour of the

network.

• Updating some RED parameters in order to avoid future congestion

Approach 1 will be explained in detail, by the help of an autonomous

network model, which is seen in Fig.3.2. This network model is designed by

using OPNET Modeler and it is used during simulation of two different cases

for different traffic models. The network has seventeen IP routers (r1, r2,

. . ., r16, r controller), six pairs of clients&servers (c1&s1, c2&s2, . . ., c6&s6)

and a centralized observation unit (controller). A video conferencing traf-

fic is generated between clients and servers. The IP routers are similar to

‘ethernet4 slip8 gtwy adv’, besides, some changes have to be made in the

model for providing the router an additional function: managing a commu-

nication packet traffic between the centralized observation unit and itself. The

details about the router is given in Section 3.1. Clients and servers in Fig.3.2

are using the node model ‘ethernet wkstn adv’. The contol unit model is

similar to ‘ethernet wkstn adv’, but again as in the router’s improvement, the

functionality of the model is enriched. Simulations are performed for a number

of scenarios under two main cases, Case1 and Case 2. In Fig.3.2, IP addresses

of some output interfaces are given. These interfaces are the ones which suffer

35

from congestion and packet drops in at least one of the simulation cases. Case

1 and Case 2 are similar in the following ways:

• Both cases are simulated through 7 scenarios: Scenario 1 is for data

collection and SOM generation and training; Scenarios 2-7 are for data

collection, investigation on the trained SOM, future congestion estima-

tion and RED improvement by parameter updates.

• Simulations are performed on the same network model.

• Traffic type (video conferencing) is the same in both cases.

• The kind of data (queue lengths of router output interfaces) used for

training a SOM is the same.

• The idea behind RED improvement is the same.

Besides these similarities, there are differences between the two cases:

• Amounts of traffic flow are different.

• The interfaces where congestion occur are not the same.

• Formulas used for RED parameter estimation are similar, but not the

same.

After this brief information about both simulation cases, it will be

easier to understand the details which are explained below:

CASE 1:

In this case, seven scenarios are generated for inspecting congestion

problem on the network model shown in Fig.3.2:

Scenario 1 : The purpose of this scenario is obtaining data about the con-

gestion behaviour of the network by means of the queue lengths on the router

output interfaces. The simulation results will give a general information about

the system behaviour when there is no control input destined to affect the

36

AQM algorithms of routers. Scenario 1 is followed by 6 more scenarios which

will use the SOM that is obtained at the end of this scenario. Therefore, Sce-

nario 1 starts with data collection and ends with the generation of SOM based

on these data. In this scenario, in addition to the video conferencing traffic

generated between clients and servers, there is a traffic between routers and

the observation unit: ip packets carrying the queue length values (that belong

to the queues at various output interfaces) are sent to the centralized obser-

vation unit and reply packets are produced. Each of these special packets are

originated in one of the routers; carries information about an output interface

of this router (the address code of the output interface and the queue length

at this interface) and is sent in the first 2ms of each 10ms. In the observa-

tion unit, these packets are received, the queue length values are collected and

(together with the receipt time) written to a file with respect to the address

code of the interface. Then, reply packets are generated by the observation

unit and sent back to the routers in the first 100ms of each second. In the

following scenarios, the function of reply packets will be explained in detail,

for now it is enough to know that reply peckets are for readjusting some QoS

parameters in the routers. First-In First-Out mechanism (FIFO) with enabled

RED criteria is used as a QoS implementation in the routers. In Scenario 1,

RED parameters (maximum threshold, minimum threshold, maximum proba-

bility denominator) are kept constant whatever reply is received. The values

of these parameters are as follows:

• minimum threshold: minth = 100 packets

• maximum threshold: maxth = 200 packets

• maximum probability denominator: maxpden
= 10

• exponential weight factor (ewf): 9 (The queue weight, wq, is found by the

formula: wq = 2−ewf)

To give more details about this scenario, it must be added that the

evolutions in the queue lengths are noticeable on only 28 of the interfaces (IP

addresses for all -and more- of these interfaces are shown in Fig.3.2), the rest of

the interfaces had no more than 20 packets in their queues during simulation.

37

Table 3.1: Data collection table

Time(seconds) Queue length Queue length · · · Queue length

at output interface 1 at output interface 2 at output interface n

0.00

0.01

0.02
...

Stop time

Collected data are stored in 28 different files, each file for a different interface

data. At the end of the simulation, the information in these files are used to

build a matrix of queue lengths, as shown in Table 3.1.

The matrix of data shows the evolution of queue lengths during periods

of 10ms at various interfaces, till the end of the simulation. The purpose of

obtaining this matrix is producing a SOM and make observations on the map

after training. The ‘som toolbox’ for MATLAB is used for initialization and

training phases.

The queue length data during the time interval 8.24 sec.-69.64 sec. is used

for training (the queue length values are all zero in the time interval 0 to 8.23

seconds). The size of the data matrix is 6141 x 28. As will be seen later,

each row in this matrix is an input vector for the map. Now, the data are

ready for use, the following procedure is an explanation of the initialization

and training:

Step 1: Producing a SOM data structure (named ‘som data’) by using the

data matrix.

Step 2: Normalizing each column (queue length values of an interface) of the

matrix due to variance criteria. 28 different normalizations with different mean

and variance values took place. The mean and variance values of each column

are saved in a 28x1 cell.

38

Figure 3.17: Input data structure for SOM

Step 3: Appending ‘label’s to input vectors, in order to group them with

respect to the congestion level they represent:

Remembering that the maximum threshold level is 200 packets, an

interface with a queue length that is greater than 200 packets may be defined

as ‘highly congested’. The number of highly congested interfaces is an indicator

of the network’s congestion level. Due to this definition, each row of ‘som data’

is labeled such that each label value is the number of highly congested interfaces

at that moment. As a summary, there are 6141 input vectors (1x28) to be used

as an input for the map and each has a label value representing the number of

vector elements whose value are greater than 200. Until now, the procedure of

reshaping the vectors in order to make them appropriate inputs for a SOM is

explained. The next phase is the definition of SOM structure and the training

process.

Step 4: When the command ‘som gui’ is typed on the command window of

Matlab, a user-friendly menu window is opened. There are necessary parts in

the menu to be filled appropriately. Here are the settings for these parameters:

• map size: 10x20 (a map of 200 neurons)

• lattice: hexagonal (The neurons are hexagonal, allowing a neighbourhood of

maximum 6 neurons)

• shape: sheet

There are also some settings that have to be made before starting the training

phase:

• type of training: sequential (finetune training is preceded by rough training)

39

Figure 3.18: SOM data structure

• initial training radius: 10 (rough training), 2 (finetune training)

• final training radius: 2 (rough training), 1 (finetune training)

• training length: 500 epochs (rough training and finetune training)

• initial learning rate: 0.5 (rough training), 0.05 (finetune training)

Step 5: As a preliminary work for Scenarios 2 to 7, it is necessary to obtain

the codebook for the data that are used to train SOM. After training, we end

up with a SOM whose structure is shown in Fig.3.18. The codebook matrix

is defined in SOM data structure and it is composed of codebook vectors of

size 1x28 for the neurons 1 to 200. Each row of the codebook matrix is the

codebook vector of a different neuron. In Fig.3.19, the black points in the

neurons are indicators of how often these neurons are hit, the empty neurons

are never hit, full black neurons are the most hit ones.

Figure 3.19: Hit points on the SOM (Case 1)

40

0(186)

0(5)

8(25)
9(20)
7(14)
6(7)
10(5)
5(3)
11(1)

9(21)
7(16)
10(15)
8(14)
11(9)
6(8)
5(7)

11(17)
9(14)
12(10)
10(8)
7(7)
6(5)
8(4)
5(4)
4(3)

10(8)
11(6)
14(6)
9(5)
12(2)
13(2)
8(1)

8(17)
6(15)
9(11)
7(10)
5(9)
10(6)
11(4)
4(4)
12(1)

7(13)
5(10)
6(9)
8(9)
3(9)
9(6)
10(3)
4(3)
12(3)
11(1)

0(16)

0(17)

7(7)
6(5)
5(5)
8(4)
4(1)

7(3)
8(3)
6(1)
5(1)

8(19)
7(18)
9(11)
5(9)
10(8)
6(8)
11(5)
12(3)
13(2)
4(1)

0(20)
1(8)

2(8)

5(19)
3(17)
4(9)
2(8)
6(5)
1(3)

8(17)
9(17)
7(12)
6(11)
10(9)
5(8)
14(6)
11(4)
12(3)
13(1)

7(26)
10(14)
5(13)
9(12)
8(11)
6(6)
4(6)
11(2)
12(1)

3(12)
2(11)
5(8)

4(24)
5(5)

7(10)
9(5)
5(5)
8(4)
4(3)

8(15)
7(12)
9(11)
5(8)
6(8)
4(4)
3(1)

5(20)
7(16)
6(16)
8(14)
10(9)
4(9)
9(8)
3(3)
2(2)
11(1)

5(26)
6(12)
7(6)
8(3)

7(17)
5(11)
6(10)

5(1)

6(7)
5(3)
4(1)

3(2)
4(1)7(23)

8(21)
6(20)
3(9)
9(8)
10(5)
5(5)
2(5)
4(2)

10(8)
6(7)
11(7)
9(6)
7(5)
8(1)

11(15)
10(6)
8(2)

5(9)
8(8)
6(4)
9(2)
7(1)

3(3)
5(3)
4(1)
6(1)

5(16)
6(14)
10(13)
9(7)
7(5)
11(5)
8(3)
4(2)
3(1)

7(18)
8(8)
9(7)
6(6)

5(12)
6(10)
9(8)
4(7)
7(5)
8(4)
11(4)

7(11)
9(10)
10(7)
6(7)
8(4)
5(3)
11(1)

11(29)
10(16)

8(20)
9(7)
7(2)

8(7)
7(3)
6(2)
4(1)

8(6)
7(4)
9(3)
10(3)

8(5)
5(5)
6(2)
7(2)

6(10)
5(2)

5(14)
6(14)
7(7)
4(5)

6(34)
8(33)
7(30)
9(28)
10(11)
5(10)
11(5)
12(4)
4(2)
3(1)
13(1)

7(11)
10(10)
8(10)
9(6)

8(11)
7(11)
6(4)
9(1)

9(5)
8(3)
7(1)

8(14)
7(11)
9(6)
6(2)

7(16)
6(12)
10(6)
9(5)
8(4)
11(3)7(22)

6(14)
8(7)
4(4)
9(2)
5(2)6(29)

7(9)
10(6)
9(4)
5(4)
8(3)

6(19)
5(11)
4(1)

5(15)
3(11)
4(11)
6(3)

6(12)
5(11)
7(5)

5(1)

10(13)
11(6)
9(5)
7(4)
6(3)
8(3)
5(2)

8(14)
10(12)
6(6)
11(4)
7(3)
9(2)

6(19)
7(19)
9(19)
8(13)
5(12)
11(7)
3(4)
10(4)
2(4)
4(2)

7(21)
8(20)
6(13)
9(11)
5(8)
4(3)
10(2)

8(30)
7(18)
6(10)
9(8)
10(7)
5(2)

5(6)
4(3)
3(3)
7(2)

7(7)
9(6)
6(5)

6(27)
5(23)
3(5)
4(5)
7(1)

7(31)
8(20)
9(17)
6(14)
5(7)
4(1)
10(1)

10(14)
8(10)
7(10)
9(7)
11(6)
12(2)
6(1)
13(1)

8(38)
7(21)
9(16)
4(12)
6(9)
5(9)
10(8)
11(2)
3(1)

7(1)

8(16)
6(9)
5(9)
7(8)
9(6)
10(2)
4(1)

6(12)
5(6)
7(1)

5(9)
6(6)
7(3)
4(2)

8(30)
9(26)
10(15)
7(13)
6(8)
5(1)8(11)

7(6)
6(2)
9(1)
5(1)

9(14)
8(14)
6(11)
5(8)
7(8)
4(1)
10(1)

8(13)
7(9)
9(6)
10(1)
5(1)
6(1)

9(23)
7(22)
8(16)
6(11)
11(3)
5(2)
10(1)

9(8)
8(2)
7(2)
10(1)
4(1)

7(40)
6(31)
9(24)
8(18)
5(11)
10(7)
4(2)
11(1)

7(27)
8(24)
6(21)
5(9)
4(3)
9(1)

10(2)
9(1)

8(17)
9(11)
10(10)
11(4)
7(4)
6(1)

6(25)
7(12)
5(11)
8(8)
3(8)
4(3)
2(2)6(19)

8(11)
7(7)
9(7)
5(7)

6(1)
8(1)

6(17)
7(14)
5(14)
8(9)
9(5)
10(4)
4(3)
3(1)

6(11)
5(7)
7(4)

5(27)
6(25)
7(18)
8(18)
4(11)
3(5)
9(1)

4(1)
5(1)
6(1)6(18)

7(15)
5(11)
8(10)
9(8)
4(5)
3(2)
2(1)

5(25)
6(10)
4(9)
3(3)
7(1)

7(14)
6(8)
8(2)
5(1)
4(1)6(13)

7(11)
8(9)
5(9)
10(6)
9(4)

7(20)
8(15)
10(14)
6(13)
5(12)
9(11)
4(4)
11(4)

6(15)
8(14)
7(14)
5(5)
9(4)
4(3)
3(2)
10(1)

4(8)
5(6)
3(3)
7(2)
6(1)
2(1)6(27)

5(19)
4(15)
7(13)
3(3)

7(4)
6(2)

5(27)
4(11)
6(8)
9(6)
8(5)
7(4)
3(2)
10(1)6(5)

5(4)
4(2)
8(2)

8(14)
6(12)
5(10)
7(9)
9(9)
4(8)
10(4)
3(2)

8(7)
5(6)
7(5)
9(2)
3(2)
10(1)
6(1)
4(1)

8(2)
6(30)
8(22)
7(18)
5(13)
9(8)
10(7)
4(4)
11(3)
3(1)

9(11)
8(9)
7(8)
4(8)
5(7)
6(5)

3(6)
6(2)
5(2)
7(1)
4(1)

7(48)
5(46)
6(43)
8(21)
4(15)
3(10)
2(10)
9(9)
10(5)

7(31)
8(21)
10(13)
5(11)
6(11)
9(11)
4(4)
11(2)

7(5)
9(2)
6(1)
11(1)
10(1)

8(8)
6(4)
7(4)
5(2)
9(2)
4(1)

6(3)

3(10)
4(8)
6(5)
2(4)
5(4)
7(1)

7(9)
6(7)
8(6)
5(5)
4(4)
3(3)
9(1)

8(10)
9(9)
6(7)
7(6)
5(4)
4(4)
3(3)

11(17)
9(13)
8(10)
10(10)
7(9)
5(6)
12(4)
6(3)

7(23)
10(22)
9(21)
6(20)
8(19)
5(15)
11(15)
12(4)
13(1)
4(1)

7(45)
8(37)
9(27)
6(25)
10(8)
5(6)
4(4)

7(6)
5(5)
6(5)
8(4)
4(3)
3(1)

7(32)
6(31)
4(22)
5(18)
8(13)
9(11)
3(8)
10(3)
2(2)6(1)

7(1)4(21)
8(21)
5(15)
7(8)
9(8)
6(8)
10(4)
3(3)
12(3)
11(2)
8(52)
7(43)
6(35)
5(17)
10(13)
9(10)
4(5)
3(2)

F
igu

re
3.20:

H
it

an
d

freq
u
en

cy
valu

es
of

th
e

n
eu

ron
s
for

C
ase

1
(m

ap
is

rotated

cou
n
terclo

ck
w

ise
b
y

90
◦)

41

Figure 3.21: Hit and frequency values for neuron 32 (Case 1)

In Scenarios 2 - 7, not only the hit values but also the frequencies of

the hits are taken into consideration while studying the congestion behaviour.

In Fig.3.20, a counterclockwise rotated (by 90◦) version of the map, these

values are shown inside the neurons, most of the neurons carry the following

information:

hit1(frequency1)

hit2(frequency2)
...

hitn(frequencyn)

which means that the neuron is hit as the BMU for inputs with n different

labels (hit1, hit2, . . ., hitn). The frequency values in paranthesis show how

many times the neuron is hit for that label. Let’s observe neuron 32: in

Fig.3.21, it is seen that the neuron has taken 29 hits, 24 of the hits have label

value 4, 5 of them have label value 5.

The trajectory of BMUs is also plotted to obtain an idea about the

reflection of congestion behaviour of the traffic on the map. The trajectory of

the BMUs (the path of BMUs corresponding to the input vectors, from the 1st

to the 6141th) is shown in Fig.3.22. It is noticeable that the trajectory finds its

way among the neighboring neurons, except rarely occuring regional jumps.

The neurons on the top left corner represent the vectors with label value 0,

meaning no heavy congestion. The trajectory then changes its region, towards

the right side of the map where label values are greater than 0.

Scenarios 2 to 7 are preceded by Scenario 1 because the resulting map

structure of Scenario 1 is used in their simulations. The observation unit in

42

Figure 3.22: Best matching unit trajectory (Case1)

Scenario 1 send reply packets to routers; however, these packets do not carry

any congestion notifications. In Scenarios 2 - 7, the reply packets sent back to

the routers are worthy of more attention because the data carried in these pack-

ets are used to update one or two RED parameters, the minimum threshold

value, maximum probability denominator or both. The main topic of discus-

sion is that how appropriately the parameters are updated. The idea behind

the update procedure is simple: increase the number of dropped packets if

there is a future congestion notification and decrease otherwise. Approach 1

presents an early drop procedure, helping to decrease end-to-end delays and

jitters while preventing a decrease in throughput and link utilization.

Scenario 2: A similar video conferencing traffic is generated as in Scenario

1, therefore similar congestion behaviour is expected. The data collection pro-

cedure is continued also in this scenario. At specific times, the vector of queue

lengths for the 28 interfaces, which are the interfaces in Scenario 1, is to be

applied as an input to the SOM obtained before. This vector is compared

with each SOM codebook vector and the euclidean distances are found. The

neuron with the least distance is the BMU for this vector. The BMU carries

information about the congestion level of the network not only for now but

also for the nearest future. Here, we have to turn back to our analysis in the

map about hits and hit frequencies of the neurons. When a neuron is hit, we

43

Figure 3.23: Labels obtained by using weighted averaging method (Case 1)

are faced with a list of label values with different weights (hit frequencies). For

obtaining the congestion state of the network, the label value information on

the BMU and on the neighbours have to be taken into account. Let’s say, the

hit and frequency values for the BMU are as follows:

10(2) 4(7) 8(1)

The BMU label value labelBMU is calculated by using a weighted average:

(10*2 + 4*7 + 8*1)/(2+7+1)=5.6

If this value is rounded up, labelBMU is obtained as 6.

This value is not enough for our control process because we have to predict the

congestion status in the future. Additionally, the label values of the neighbor-

ing neurons also have to be calculated in the same manner. (The exact label

values for the neurons are shown in Fig.3.23. The neurons with -1 value are

the ones which had no hits.)

The calculations that are made so far is a preparation for finding

labelfinal1 . labelfinal1 is the value that the observation unit sends to the routers,

as a notification of the network congestion level and it is obtained in the

following way:

labelfinal1 = β∗labelBMU +(1−β)∗((labeln1+labeln2+. . .+labelnN)/N) , (3.3)

44

where labelni is the label value calculated for neighbour i among N neighbours

(i = 1, 2, . . . , N).

A greater weight is assigned for the BMU than the one assigned for the

neighbouring neurons. Therefore, β is taken as 0.75 in order to make labelBMU

more effective on the calculation. So far, we assumed that neither labelBMU

nor labelni is -1, in other words, we assumed every neuron has at least one

hit value. What happens if this assumption is not true? Firstly, let’s assume

BMU has no hit values, but at least one of the neighbours has. Then labelfinal1

is calculated by dividing the sum of the labels different from -1 by the number

of neighbors with labels different from -1:

labelfinal1 = (labelp1 + labelp2 + . . . + labelpP)/P , (3.4)

where labelpl is the label value calculated for neighbour l among P neighbours

(l = 1, 2, . . . , P) whose label values are different from -1.

The problem arises when not only the BMU but also the neighbours

have -1 values? There may be neurons such that neither itself nor the neighbors

have valid label values. Here is the solution for this problem: we should use

the secondary neighboring layer, (the layer of neurons that are two neurons

away, the neighbours used so far were only one neron away) and use their label

values:

labelfinal1 = (labelm1 + labelm2 + . . . + labelmM)/M , (3.5)

where labelmi is the label value calculated for secondary neighbour j among M

neighbours (j = 1, 2, . . . , M). In Case 1, we are not faced with such a problem.

(But in Case 2, the secondary neighboring layer is necessarily used.)

Whenever a router receives the reply packet with the labelfinal1 value

encapsulated in, it forwards the packet to the ip layer, where the RED param-

eter minimum threshold (minth) is recalculated due to the following formula:

minth = 100 − α1 ∗ labelfinal1 (3.6)

‘How did we obtain this formula?’ The answer is simple; when the hit

values shown in Fig.3.20 are investigated, it is seen that ‘14’ is the maximum

45

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

100

M
in

im
um

 th
re

sh
ol

d,
 m

in
 t

h

label
final

1

Figure 3.24: minth vs labelfinal1 (Case 1)

label value, meaning there are at most 14 congested interfaces at a time. This

is the most dramatic case we expect for this type of traffic, therefore it must

cause the minimum value in the minimum threshold, almost 0 packets. In

addition to this, if the label value is ‘0’, no need to worry about congestion

throughout the network, normal settings of RED parameters will be enough

for congestion avoidance. As a result, the formula will cause a linear decrease

in the value of minimum threshold as labelfinal1 value increases. In our simu-

lation, α1 = 7 is used. As a result, minth takes a value in the region [2 100]

packets; until the acceptance of the next minth value, the packets in the queue

are not dropped until the average queue length reaches this value. In Fig.3.24,

minth vs labelfinal1 graphics is shown.

Scenario 3: In Scenario 2, the labelfinal1 value is sent to a router by the

observation unit and the receiving router uses this value to update the min-

imum threshold level of its output interfaces. The only difference between

Scenarios 2 and 3 is the way the receiving router uses the labelfinal1 value.

In Scenario 3, minimum threshold level is kept constant, maximum probabil-

46

0 2 4 6 8 10 12 14
2

3

4

5

6

7

8

9

10

M
ax

im
um

 p
ro

ba
bi

lit
y

de
no

m
in

at
or

, m
ax

 p
de

n

label
final

1

Figure 3.25: maxpden
vs labelfinal1 (Case 1)

ity denominator (maxpden
) is changed instead, due to the value of labelfinal1 .

Fig.3.25 shows the relation between labelfinal1 and maxpden
, while Fig.3.26 is

for maxp vs labelfinal1 .

maxp = 1/maxpden
(3.7)

Scenario 4: In this scenario, labelfinal1 value that is sent by the observation

unit is used to update the values of minth and maxpden
at the same time. minth

vs labelfinal1 is shown in Fig.3.24; maxpden
vs labelfinal1 is shown in Fig.3.25.

Scenario 5: The distinction between the two scenarios, Scenario 2 and 5,

is the way that is followed to find the label value associated with the BMU

(labelBMU), and its neighbours. In the observation unit a vector is produced

with the 28 queue length values collected from output interfaces. By using

the SOM generated in Scenario 1 and calculating the euclidean distances, the

BMU is found. Let’s use the same example in Scenario 2 for better under-

standing and assume that the hit and frequency values for the BMU neuron

47

0 2 4 6 8 10 12 14
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
ax

im
um

 p
ro

ba
bi

lit
y

de
no

m
in

at
or

, m
ax

 p

label
final

1

Figure 3.26: maxp vs labelfinal1 (Case 1)

are given as: 10(2) 4(7) 8(1) (If we make a prediction among the values 10,

4 and 8; the probability of taking a hit with label 10 is 2/10, with label 4 is

7/10 and 8 is 1/10). A random number is generated between numbers 0 and

10 (=2+7+1); if the number is between 0 and 2, the label value is taken to be

10, if it is between 2 and 9, the label value is 4, otherwise (between 9 and 10)

the label value is 8.

As mentioned in Scenario 2, the labels for the primary or secondary

(for a special case) neighbours are also important for us. The procedure we

used for BMU, that is based on the hitting probabilities, is repeated for the

neighbours. Then the label value is found by using the suitable one among the

following methods:

Method 1 : This method is used when BMU label 6= −1 and at least one of the

primary neighbours’ labels 6= −1.

labelfinal2 = β∗labelBMU +(1−β)∗((labeln1+labeln2+. . .+labelnN)/N), (3.8)

where N is the number of primary neighbours whose label 6= −1.

48

In this method, a greater weight is assigned for the BMU than the

one assigned for the neighbouring neurons. β is taken as 0.75 in order to make

labelBMU more effective on the calculation.

Method 2 : This method is used when BMU label = -1 and at least one of the

primary neighbours’ labels 6= −1.

labelfinal2 = (labelp1 + labelp2 + . . . + labelpP)/P, (3.9)

where P is the number of primary neighbours whose label 6= −1.

Method 3 : This method is used when BMU label = -1, primary neighbours’

labels =-1 and at least one of the secondary neighbours’ labels 6= −1.

labelfinal2 = (labelm1 + labelm2 + . . . + labelmM)/M, (3.10)

where M is the number of secondary neighbours whose label 6= −1. labelfinal2

is used to determine minth, just as in Scenario 2:

minth = 100 − α1 ∗ labelfinal2 (3.11)

In simulation of Scenario 5, α1 = 7 is used.

Scenario 6: This scenario is similar to Scenario 5 in the way, the label

values are obtained, a probabilistic method is followed. labelfinal2 is used to

determine the new value for maxpden
, the relation between these two parame-

ters are seen in Fig.3.25.

Scenario 7: As in Scenarios 5 and 6, a probabilistic method is used in

the observation unit to obtain labelfinal2 value. When this value is sent to a

router, the router uses it to update both minth and maxpden
at the same time

by using the relations given in Fig.3.24 and Fig.3.25.

The properties of Scenarios 1 - 7 are summarized in Table 3.2 and Table 3.3.

49

Table 3.2: Summary of Scenarios 1 - 4 of Case 1

Property Scenario 1 Scenario 2 Scenario 3 Scenario 4

Queue management technique RED Approach1 Approach1 Approach1

label for congestion notification – labelfinal1
labelfinal1

labelfinal1

label determination method – weighted averaging weighted averaging weighted averaging

buffer limit (pkts) 300 300 300 300

minth (pkts) 100 updated due to (3.6) 100 updated due to (3.6)

maxth (pkts) 200 200 200 200

maxpden
(pkts) 10 10 updated as in Fig.3.25 updated as in Fig.3.25

Table 3.3: Summary of Scenarios 5 - 7 of Case 1

Property Scenario 5 Scenario 6 Scenario 7

Queue management technique Approach1 Approach1 Approach1

label for congestion notification labelfinal2
labelfinal2

labelfinal2

label determination method probabilistic probabilistic probabilistic

buffer limit (pkts) 300 300 300

minth (pkts) updated due to (3.11) 100 updated due to (3.11)

maxth (pkts) 200 200 200

maxpden
(pkts) 10 updated as in Fig.3.25 updated as in Fig.3.25

50

A simulation of 70 seconds is performed on each of Scenarios 1 - 7. In

Fig.3.27 - Fig.3.32, the results of the simulations are given. In each figure, there

are 7 graphics, each graphic belongs to a different scenario. The graphics are

for Scenario 1 (plotted in black line), Scenario 2 (plotted in red line), Scenario

3 (plotted in red dashed line), Scenario 4 (plotted in red pluses), Scenario

5 (plotted in blue line), Scenario 6 (plotted in blue dashed line), Scenario 7

(plotted in blue pluses). Fig.3.27 - Fig.3.31 are for observation of some global

statistics and Fig.3.32 shows the evolution of queue length at interface with

IP address: 192.0.2.2.

As seen in Fig.3.27, maximum end-to-end delay is observed for Sce-

nario 1 but its performance for delay variation is better than most of other

scenarios. Minimum end-to-end delay and delay variation are observed in Sce-

nario 7.

In all the simulations, the traffic load was similar but not the same,

therefore observing the ratio of traffic received to traffic sent may be more

helpful for comparing throughputs. By using the results in Table 3.4, that

are based on the graphics in Fig.3.30 and Fig.3.31, it is seen that throughput

performances of Scenario 3, 4 and 7 are better than that of Scenario 1.

Simulation results show that, for Case 1, Scenarios 3, 4 and 7 present

good performance in providing trade-off between throughput and delay.

51

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
im

e
av

er
ag

e
of

 v
id

eo
 c

on
fe

re
nc

in
g

pa
ck

et
 e

nd
−

to
−

en
d

de
la

y
(s

ec
)

Time (sec)

scenario 1
scenario 5
scenario 6
scenario 7
scenario 2
scenario 3
scenario 4

Figure 3.27: Time average of video conferencing packet end-to-end delay (Case

1)

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
im

e
av

er
ag

e
of

 IP
 p

ac
ke

t d
ro

p
ra

te
 (

pa
ck

et
s/

se
c)

Time (sec)

scenario 1
scenario 5
scenario 6
scenario 7
scenario 2
scenario 3
scenario 4

Figure 3.28: Time average of IP packet drop rate (Case 1)

52

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T
im

e
av

er
ag

e
of

 v
id

eo
 c

on
fe

re
nc

in
g

pa
ck

et
 d

el
ay

 v
ar

ia
tio

n(
se

c)

Time (sec)

scenario 1
scenario 5
scenario 6
scenario 7
scenario 2
scenario 3
scenario 4

Figure 3.29: Time average of video conferencing packet delay variation (Case

1)

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

T
im

e
av

er
ag

e
of

 v
id

eo
 c

on
fe

re
nc

in
g

pa
ck

et
 r

ec
ei

ve
 r

at
e

(p
ac

ke
ts

/s
ec

)

Time (sec)

scenario 1
scenario 5
scenario 6
scenario 7
scenario 2
scenario 3
scenario 4

Figure 3.30: Time average of video conferencing packet receive rate (Case 1)

53

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

T
im

e
av

er
ag

e
of

 v
id

eo
 c

on
fe

re
nc

in
g

pa
ck

et
 s

en
di

ng
 r

at
e

(p
ac

ke
ts

/s
ec

)

Time (sec)

scenario 1
scenario 5
scenario 6
scenario 7
scenario 2
scenario 3
scenario 4

Figure 3.31: Time average of video conferencing packet sending rate (Case 1)

Table 3.4: Video conferencing packets received (r) to sent (s) ratio (Case 1)

Scenario no Time average of traffic sending rate (pkts/sec) Time average of traffic receiving rate(pkts/sec)
r
s

at 70th second at 70th second

1 4961 2476 0.50

2 5606 2602 0.46

3 4850 2472 0.51

4 5299 2791 0.53

5 5299 2622 0.49

6 5927 2711 0.46

7 5399 2773 0.51

54

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts

)

Time (sec)
0 10 20 30 40 50 60 70

0

50

100

150

200

250

300

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts

)

Time (sec)

(a) (b)

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts

)

Time (sec)
0 10 20 30 40 50 60 70

0

50

100

150

200

250

300

350

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts

)

Time (sec)

(c) (d)

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts

)

Time (sec)
0 10 20 30 40 50 60 70

0

50

100

150

200

250

300

350

400

450

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts

)

Time (sec)

(e) (f)

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts

)

Time (sec)

(g)

Figure 3.32: Queue length at the interface with IP address: 192.0.2.2 for Case 1.

The graphics are for (a) Scenario 1, (b) Scenario 2, (c) Scenario 3, (d) Scenario

4, (e) Scenario 5, (f) Scenario 6, (g) Scenario 7.

55

Figure 3.33: Hit points on the SOM (Case 2)

CASE 2:

The network model used for simulation of Case 2 is the same as the

model for Case 1, as seen in Fig.3.2. Case 2 differs from Case 1 in the charac-

teristics of the video conferencing traffic generated in the network. As in Case

1, the network is analyzed under seven scenarios:

Scenario 1: The values of RED parameters are the same as in Case 1.

The values of SOM parameters used in initialization and training are also the

same. There are 29 interfaces where noticeable queue variations are observed.

These interfaces and their IP addresses are shown in Fig.3.2. The map size of

trained SOM is 10x20 and the size of the resulting codebook matrix is 200*29.

In Fig.3.33, the hits that each neuron get are indicated by black points,

empty neurons are the ones with no hits. 6169 input vectors are used to train

the map and BMU trajectories are drawn. It is easy to follow the trajectory

since it finds a way among the neighbours most of the time, as seen in 3.34.

Scenario 2: The label values are calculated as described in second scenario

of Case 1. Hit and frequency values, which are seen in Fig.3.35, are used

to calculate a weighted average value. The label values calculated for each

neuron is shown on the map in Fig.3.36. For neuron 133 and neuron 143 there

56

Figure 3.34: Best matching unit trajectory (Case 2)

is a special situation: neither themselves nor the primary neighbors have valid

label values. As described in Case 1, the solution is using the label values of

the secondary neighbours.

In Fig.3.35, maximum hit value is 16. This value is important for

finding the formula defining the relation between the label value and the min-

imum threshold value. When a router receives a reply packet, the minimum

threshold value is updated due to the formula:

minth = 100 − α2 ∗ labelfinal1 (3.12)

This formula shows that minth takes values in the region [4 100] packets when

α2 is chosen as 6. The relation between minimum threshold and labelfinal1 is

seen in Fig.3.37.

Scenario 3: Minimum threshold value is not affected by the labelfinal1 value,

its value is kept constant at 100 packets level. labelfinal1 value is used by the

receiving router, to determine maxp. maxpden
vs labelfinal1 is given in Fig.3.39.

Scenario 4: When labelfinal1 value is obtained by the observation unit and

is sent to a router, not only minth but also maxp value changes. The amount

of changes in minth and maxp may be determined from Fig.3.37 and Fig.3.39.

57

9(26)
7(25)
8(20)
10(18)
11(12)
6(11)
5(9)
4(8)
3(6)
13(5)
12(4)

10(17)
8(14)
9(13)
11(10)
5(10)
6(9)
7(6)
12(5)
14(1)
13(1)

8(22)
9(21)
11(17)
10(16)
7(13)
12(7)
5(6)
6(4)
13(4)
4(1)
14(1)

8(31)
7(27)
9(18)
10(11)
11(8)
6(8)
5(6)
12(1)

6(8)
8(6)
7(6)
10(5)
11(4)
9(3)
12(3)
4(2)
5(2)

8(25)
9(21)
7(18)
11(15)
10(13)
12(11)
6(8)
13(3)
14(2)
5(2)

8(19)
10(17)
9(14)
11(11)
15(7)
6(5)
7(4)
12(4)
14(3)
13(2)

8(31)
10(30)
7(28)
9(26)
5(21)
6(17)
11(11)
4(6)
3(5)
12(4)
13(2)
14(1)

9(19)
8(11)
10(10)
11(8)
7(5)
5(1)

11(2)
10(1)

6(8)
9(8)
7(6)
8(4)
10(3)
5(1)
4(1)

9(9)
8(8)
7(8)
6(7)
10(4)
5(2)
4(1)
11(1)

6(39)
7(31)
8(17)
5(13)
9(7)
4(4)
3(1)

7(24)
6(14)
8(12)
5(6)
9(5)
10(4)
11(1)
12(1)7(10)

8(9)
6(4)
9(2)7(25)

8(24)
6(24)
5(22)
9(17)
4(7)
10(4)
11(2)

8(13)
6(12)
9(12)
10(8)
7(8)
12(4)
11(4)
5(1)

9(11)
7(6)
4(5)
8(4)
5(3)
6(3)

9(37)
10(36)
11(24)
12(21)
8(18)
7(15)
13(15)
6(8)
5(3)
14(3)
4(2)

8(9)
7(4)
6(4)
9(3)
5(3)
10(2)

11(34)
10(28)
13(12)
12(10)
9(10)
8(5)
15(2)
14(1)
7(1)

11(24)
13(17)
12(16)
10(13)
14(7)
7(5)
9(2)
15(2)
16(2)
8(1)

8(20)
7(17)
6(16)
5(9)
9(3)
4(1)

9(5)
8(3)

7(9)
8(8)
9(5)
6(4)
10(3)
4(3)
5(1)

9(9)
7(5)
11(5)
10(4)
8(3)
13(3)
12(2)

7(12)
8(10)
10(9)
9(7)
11(5)
6(3)
12(1)

9(24)
8(24)
7(17)
10(14)
11(14)
6(12)
5(4)
14(4)
12(3)
15(2)

8(22)
7(18)
9(13)
6(9)
10(7)
5(5)

10(5)
11(5)

8(19)
6(16)
7(12)
9(6)
5(4)
4(2)

12(6)
9(5)
11(5)
10(4)
8(4)
13(3)
14(2)7(2)

6(1)
8(1)
9(1)

9(16)
10(11)
11(7)
8(4)
12(3)
13(1)

9(15)
10(8)
8(7)
6(4)
5(3)
7(2)
11(1)

8(10)
7(10)
6(8)
9(6)
10(3)
5(3)6(18)

5(16)
8(16)
7(9)
9(6)
4(1)

8(19)
7(18)
9(15)
6(10)
5(9)
10(8)
3(4)
11(3)
4(1)

9(1)

13(1)
12(1)

8(23)
9(17)
11(15)
10(10)
12(8)
7(4)

10(17)
8(15)
9(13)
6(8)
11(6)
7(5)
12(5)
5(2)
13(2)
4(1)

8(9)
6(7)
7(5)
9(1)

7(28)
6(16)
5(10)
8(10)
4(10)
9(2)
3(2)
2(2)

11(3)
12(3)
10(1)

7(11)
6(9)
9(4)
11(4)
10(4)
8(3)
5(2)

8(1)
7(1)

7(1)

6(1)

8(17)
7(15)
9(15)
6(4)
10(3)
11(2)
5(1)

6(25)
7(23)
8(10)
5(9)
9(8)
10(3)

4(27)
3(21)
5(14)
6(6)
2(4)
1(1)

6(9)
5(6)
7(3)
9(3)
4(2)
10(2)
11(1)

6(16)
7(16)
9(16)
10(9)
11(8)
5(4)
8(4)
12(2)

7(2)
5(2)

3(29)
4(11)
5(10)
6(8)
2(5)8(15)

9(7)
3(5)
4(1)
5(1)
6(1)
7(1)

8(29)
7(28)
4(19)
5(19)
6(18)
9(12)
3(7)
10(7)

5(27)
4(15)
7(14)
6(14)
3(7)
8(1)5(18)

6(6)
4(6)
7(5)
8(1)

6(24)
7(21)
4(5)
5(3)
8(2)
10(2)
9(1)

6(22)
5(22)
7(12)
4(11)
3(2)

6(10)
7(9)
8(5)
5(2)

7(2)

4(22)
3(20)
6(12)
5(2)

6(15)
5(8)
7(1)

8(27)
5(25)
6(24)
9(12)
4(11)
7(5)

6(14)
5(10)
7(6)
8(3)
4(2)
9(2)

8(8)
9(3)
10(3)
6(2)
11(1)

8(13)
9(7)
7(3)
6(3)

6(31)
4(18)
5(8)
7(5)

5(6)
4(1)

5(17)
7(15)
6(11)
4(6)
8(2)

9(21)
8(21)
7(18)
10(18)
6(14)
5(10)
11(6)
4(3)

9(31)
5(20)
8(17)
7(17)
6(13)
4(4)
3(4)

5(8)
6(6)
7(2)
8(1)

6(11)
5(8)
7(2)
4(1)

7(8)
9(6)
8(5)
6(2)

5(28)
6(21)
7(2)

9(33)
8(15)
7(11)
6(8)
10(3)
5(2)
11(1)

10(14)
8(7)
6(5)
9(5)
7(4)
5(2)
11(2)

8(27)
7(26)
6(24)
9(13)
5(7)
10(7)
11(6)
12(5)
4(2)

7(15)
8(1)

6(5)
7(3)

9(39)
7(10)
10(4)

7(27)
6(17)
8(13)
9(6)
5(5)

8(13)
7(8)
6(5)

9(22)
7(21)
10(6)
8(4)

4(10)
3(9)
5(7)
2(6)
6(2)

4(35)
6(25)
3(24)
5(21)
7(21)
2(9)
1(7)
9(4)
0(2)
8(1)

6(11)
4(8)
5(4)
7(4)

4(30)

7(15)
5(14)
6(12)
4(5)
8(4)
3(1)

5(4)
6(1)

4(5)
5(4)
6(3)
7(3)
8(1)

5(4)
4(4)
3(1)
6(1)

5(23)
6(20)
4(15)
3(10)
7(5)
2(1)

6(6)
7(6)
9(6)
8(1)

4(20)
1(5)
2(3)
3(3)

0(16)
1(15)

6(34)
7(28)
5(26)
4(18)
8(16)
3(12)
9(4)
2(3)

8(15)
7(4)
6(4)
9(3)
5(2)
3(2)
10(2)
4(1)

5(8)
4(6)
7(2)

5(15)
6(10)
7(9)
4(2)
8(1)

0(28)

0(17)

7(1)

4(28)
5(21)
6(19)
3(18)
7(8)
8(4)
2(2)5(15)

6(13)
4(10)
7(7)
3(1)6(12)

5(11)
7(6)
8(6)
4(3)
9(2)7(4)

6(3)
5(2)
4(2)
8(1)

7(50)
8(35)
6(29)
5(12)
9(12)
10(7)
4(5)
3(3)

0(8)

0(194)

F
igu

re
3.35:

H
it

an
d

freq
u
en

cy
valu

es
of

th
e

n
eu

ron
s
for

C
ase

2
(m

ap
is

rotated

cou
n
terclo

ck
w

ise
b
y

90
◦)

58

Figure 3.36: Labels obtained by using weighted averaging method (Case 2)

Scenario 5: Just as in the fifth scenario in Case 1, a probabilistic way is

followed to obtain the label values and the final label value, labelfinal2 , which

will be sent to routers from the observation unit. When labelfinal2 is obtained

by a router, minth is calculated by using the formula:

minth = 100 − 6 ∗ labelfinal2 (3.13)

Scenario 6: At the observation unit, a probabilistic way is followed to obtain

the label values and labelfinal2 . At the router, maxp value is updated due to the

value of labelfinal2 as seen in Fig.3.39. minth is kept constant during simulation.

Scenario 7: Just as in Scenarios 5 and 6, label values and labelfinal2 are

obtained in a probabilistic way. labelfinal2 is used to update both of minth and

maxp (Fig.3.37 and Fig.3.39 show the updated values).

As in Case 1, a simulation of 70 seconds is performed for each scenario.

Results of the simulations are given in Fig.3.40 - Fig.3.45. Fig.3.40 - Fig.3.44

are for observation of some global statistics, while Fig.3.45 shows how the

length of a queue changes with time. There are 7 graphics in each figure and

each graphic belongs to a different scenario.

59

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

M
in

im
um

 th
re

sh
ol

d,
 m

in
 t

h

label
final

1

Figure 3.37: minth vs labelfinal1 (Case 2)

0 2 4 6 8 10 12 14 16
2

3

4

5

6

7

8

9

10

M
ax

im
um

 p
ro

ba
bi

lit
y

de
no

m
in

at
or

, m
ax

 p
de

n

label
final

1

Figure 3.38: maxpden
vs labelfinal1 (Case 2)

60

0 2 4 6 8 10 12 14 16
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
ax

im
um

 p
ro

ba
bi

lit
y

de
no

m
in

at
or

, m
ax

 p

label
final

1

Figure 3.39: maxp vs labelfinal1 (Case 2)

Table 3.5: Summary of Scenarios 1 - 4 of Case 2

Property Scenario 1 Scenario 2 Scenario 3 Scenario 4

Queue management technique RED Approach1 Approach1 Approach1

label for congestion notification – labelfinal1
labelfinal1

labelfinal1

label determination method – weighted averaging weighted averaging weighted averaging

buffer limit (pkts) 300 300 300 300

minth (pkts) 100 updated due to (3.12) 100 updated due to (3.12)

maxth (pkts) 200 200 200 200

maxpden
(pkts) 10 10 updated as in Fig.3.38 updated as in Fig.3.38

61

Table 3.6: Summary of Scenarios 5 - 7 of Case 2

Property Scenario 5 Scenario 6 Scenario 7

Queue management technique Approach1 Approach1 Approach1

label for congestion notification labelfinal2
labelfinal2

labelfinal2

label determination method probabilistic probabilistic probabilistic

buffer limit (pkts) 300 300 300

minth (pkts) updated due to (3.13) 100 updated due to (3.13)

maxth (pkts) 200 200 200

maxpden
(pkts) 10 updated as in Fig.3.38 updated as in Fig.3.38

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
av

er
ag

e
of

 v
id

eo
 c

on
fe

re
nc

in
g

pa
ck

et
 e

nd
−

to
−

en
d

de
la

y
(s

ec
)

Time (sec)

scenario 1
scenario 5
scenario 6
scenario 7
scenario 2
scenario 3
scenario 4

Figure 3.40: Time average of video conferencing packet end-to-end delay (Case

2)

62

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

T
im

e
av

er
ag

e
of

 IP
 p

ac
ke

t d
ro

p
ra

te
 (

pa
ck

et
s/

se
c)

Time (sec)

scenario 1
scenario 5
scenario 6
scenario 7
scenario 2
scenario 3
scenario 4

Figure 3.41: Time average of IP packet drop rate (Case 2)

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

T
im

e
av

er
ag

e
of

 v
id

eo
 c

on
fe

re
nc

in
g

pa
ck

et
 d

el
ay

 v
ar

ia
tio

n(
se

c)

Time (sec)

scenario 1
scenario 5
scenario 6
scenario 7
scenario 2
scenario 3
scenario 4

Figure 3.42: Time average of video conferencing packet delay variation (Case

2)

63

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

T
im

e
av

er
ag

e
of

 v
id

eo
 c

on
fe

re
nc

in
g

pa
ck

et
 r

ec
ei

ve
 r

at
e

(p
ac

ke
ts

/s
ec

)

Time (sec)

scenario 1
scenario 5
scenario 6
scenario 7
scenario 2
scenario 3
scenario 4

Figure 3.43: Time average of video conferencing packet receive rate (Case 2)

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

T
im

e
av

er
ag

e
of

 v
id

eo
 c

on
fe

re
nc

in
g

pa
ck

et
 s

en
di

ng
 r

at
e

(p
ac

ke
ts

/s
ec

)

Time (sec)

scenario 1
scenario 5
scenario 6
scenario 7
scenario 2
scenario 3
scenario 4

Figure 3.44: Time average of video conferencing packet sending rate (Case 2)

64

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts

)

Time (sec)
0 10 20 30 40 50 60 70

0

50

100

150

200

250

300

350

400

450

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts

)

Time (sec)

(a) (b)

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts

)

Time (sec)
0 10 20 30 40 50 60 70

0

50

100

150

200

250

300

350

400

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts

)

Time (sec)

(c) (d)

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts

)

Time (sec)
0 10 20 30 40 50 60 70

0

50

100

150

200

250

300

350

400

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts

)

Time (sec)

(e) (f)

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts

)

Time (sec)

(g)

Figure 3.45: Queue length at the interface with IP address: 192.0.16.2 for Case

2. The graphics are for (a) Scenario 1, (b) Scenario 2, (c) Scenario 3, (d)

Scenario 4, (e) Scenario 5, (f) Scenario 6, (g) Scenario 7.

65

Table 3.7: Video conferencing packets received (r) to sent (s) ratio (Case 2)

scenario no Time average of traffic sending rate (pkts/sec) Time average of traffic receiving rate (pkts/sec) r/s

at 70th second at 70th second

1 5380 2897 0.54

2 5673 3080 0.54

3 5572 3252 0.58

4 5572 2962 0.53

5 6048 3171 0.52

6 6348 3237 0.51

7 6405 3146 0.49

As seen in the figures and tables for Case 2, time averaged end-to-end

delay values of Scenario 3 are less than that of Scenario 1 during simulation.

End-to-end delay performances of other scenarios are not better than that of

Scenario 1. Maximum ratio of receiving rate to sending rate is also obtained

in Scenario 3.

After obtaining the results for Case 1 and Case 2, it is easy to see

the differences between the scenarios. There are some common points for two

cases:

1. Time-averaged value of IP packet drop rate is minimum in Scenario 3.

2. Time-averaged values of end-to-end delays in Scenario 3 are less than the

values in Scenario 1. However, it is not possible to say that Scenario 3

is better than Scenario 1, in case of delay variations.

3. Scenarios 3 gives better throughput results than Scenario 1, while the

throughput performances of Scenarios 2, 4, 5, 6 and 7 vary with changing

traffic conditions.

4. As a result of the observations above, Scenario 3 should be preferred to

others. The properties of this scenario are:

66

• In investigating SOM, weighted label values are used to estimate

future congestion level

• maxpden
value is changed in order to avoid congestion.

Therefore, it is apparent that the approach in Scenario 3 is successful

in improving end-to-end delays and throughput. However, the approach is not

as good as original RED, that is presented in Scenario 1, in minimizing delay

variations. A new approach, Approach 2, is proposed for the aim of improving

RED and providing a better performance than Approach 1.

3.2.3 Approach 2

Throughput and utilization are related characteristics of a link. Qe-

lay and delay variation are two properties that are emphasized in determining

QoS requirements. It is a favorite research area to find a trade off between

throughput and delay values, that is minimizing delays/delay variations with-

out causing much decrease in throughput. This is, in fact, like combining

passive and AQM methods. There are studies proposed on this topic: [58]

presents simulation results for the comparison of two queue management algo-

rithms: Drop Tail (DT) and RED; [59] explains advantages of both algorithms

and foresees that combination of these two methods might give better results.

In Approach 2, we are focused on the idea of using advantages of DT and

RED.

Approach 1 and Approach 2 are similar in some ways: both of them in-

vestigate the global congestion data, use SOM for future prediction and update

some of the RED parameters. However, there are also significant differences

between the two approaches: in Approach 2, statistical analysis of the col-

lected data is performed through calculation of mean, variance, skewness and

kurtosis. Results of these calculations are used to train a SOM. It is noticed

that the regions of previous and current BMU in the SOM are useful indicators

for future congestion status of the network. Assignment of RED parameters

is based on a different idea, that is combining the advantages of active and

67

passive queue management techniques. The details about this approach will

be explained later in this section. Maximum threshold (maxth) is a parameter

which may be varied to make RED behave more like DT. Therefore, maxth is

varied due to changing congestion status of the network. The performance of

this approach is verified through a set of simulations.

Approach 2 may be summarized in eight steps which are explained

below:

Step 1: Observing the queue lengths on the router output interfaces during a

period of time.

We are interested in the global congestion status of the network. A

simple way for determining this status is observing the total amount of queue

lengths on all the interfaces and building a list of sums:

sumk = q1k + q2k + · · · + qfk (3.14)

where sumk is the kth sample among the list of observed sums, qmk is the kth

sample of the queue length at output interface m, m = 1, 2, ..., f)

Step 2: Producing groups by taking Z consecutive values from the list of sums,

then performing statistical analysis (by means of mean, variance, skewness,

kurtosis values of each group).

A window of size Z is shifted by P (P < Z) values each time a group

is produced, therefore each group is made to have Z − P common values with

the previous group.

gi =
{

sum(i−1)P+1, sum(i−1)P+2, · · · sum(i−1)P+Z

}

(3.15)

where gi is the ith group of sums.

Mean of the ith group is obtained by using the following equation,

where xij is the jth element of the ith group (where i = 1, 2, ...m):

meani =
1

Z

Z
∑

j=1

xij (3.16)

68

Table 3.8: Table for mean, variance, skewness and kurtosis values

i meani variancei skewnessi kurtosisi

1

2
...

m

Variance of a set of Z observations is defined as the sum of the squared

deviations of the observations from the mean divided by Z-1 [60]. Variance of

the ith group is obtained by using the following equation:

variancei =
1

Z − 1

Z
∑

j=1

(xij − meani)
2 (3.17)

Skewness is an indication of the extent of deviation from symmetry

[60]. Skewness of the ith group is obtained by using the following equation:

skewnessi =
1
Z

∑Z

j=1(xij − meani)
3

[
√

1
Z

∑Z

j=1(xij − meani)2
]3 (3.18)

Kurtosis is a degree of peakedness of a distribution [60]. Kurtosis of

the ith group is obtained by using the following equation:

kurtosisi =
1
Z

∑Z

j=1(xij − meani)
4

[
√

1
Z

∑Z

j=1(xij − meani)2
]4 (3.19)

Table 3.8 is obtained by using the mean, variance, skewness and kurtosis values

of m groups:

Step 3: Normalizing the mean, variance, skewness and kurtosis values due to

variance criteria.

Step 4: Appending ‘label’s to each group (to each row in Table 3.8) of mean,

variance, skewness and kurtosis values, in order to label them with respect

to the congestion level they represent. The higher the label, the greater the

69

congestion.

Step 5: Building the SOM structure and performing the training process.

Step 6: Obtaining regions of congestion on the trained map by the help of

labels used in Step 4. Fig.3.67 shows an example for partitioning a map into

regions. Here, the regions R1, R2, R3 are composed of the BMUs for data

of uncongested, normally congested and highly congested network conditions,

respectively.

Step 7: Studying the regions of BMU for previous/current data and describ-

ing the congestion behaviour of the network. Here, we need to define a new

parameter: congestion alarm number. As its name indicates, the value of this

parameter shows the congestion behaviour of the network. Its value varies

from 7 to 1 as the congestion shows tendency to increasing, as shown in Table

3.9. It is better to explain the assignment of alarm numbers with an example:

Alarm numbers 1-3 indicate that congestion needs to be considered

seriously and they are used when the region of current BMU is R3 (region of

high congestion); if the region of previous BMU is R1, alarm number is set to

3 according to the idea that the congestion may be caused by a bursty traffic

and it may be accomodated for a while; but if the region of previous BMU is

also R3, alarm number is set to 1 in order to prevent sustained congestion.

The last step of the procedure is about RED parameter estimation

and it will be explained in Step 8.

Step 8: Adjustment of RED parameters at router output queues. This step

is about implementing a queue management procedure by using advantages

of RED and Drop Tail. First of all, it will be useful to study the throughput

and delay behaviours of a congested queue, under the management of DT and

RED. Later both schemes will be used to manage an uncongested queue and

the results will be compared.

70

Table 3.9: BMU regions and congestion alarm numbers

Region of Region of Congestion alarm number

previous BMU current BMU (from 1(serious) to 7(not serious at all))

R1 R1 7

R1 R2 4

R1 R3 3

R2 R1 6

R2 R2 4

R2 R3 2

R3 R1 5

R3 R2 4

R3 R3 1

Figure 3.46: Network Model designed for Approach 2

71

Let’s consider a highly congested queue, which is at the output inter-

face of node 8 to the link connecting node 8 and node 9 as shown in Fig.3.46.

This queue is investigated for two cases: under management of a passive queue

management scheme (DT) and an AQM scheme (RED). For each case, four

different simulations are performed and the average of results are obtained.

Fig.3.47 is an example for obtaining curve of average values. There are five

curves in this figure: data1, data2, data3 and data4 curves are obtained by

different simulations; the curve plotted in black is the curve of average values.

Fig.3.48 - Fig.3.54 show the curves of average values for both simulation cases

(DT and RED management). Except Fig.3.48, all the plots are generated by

finding the moving averages within a window of size 5. In Fig.3.48 - Fig.3.54,

curves in black are for DT and curves in blue are for RED. The congestion

level of the queue may be understood by investigating the queue length and

the drop rate curves in Fig.3.48 and Fig.3.49, respectively. The queue length

of DT is raised to the level of 300 packets and is not allowed to exceed it. In

RED, queue length oscillates around the maximum threshold value and does

not reach the buffer limit of 300 packets, as a result of early drops. Packet

drop rates of both RED and DT are similar in the first 17 sec., after that the

drop rates are decreased and the drop rate of DT becomes less than RED.

Traffic receive rate of an output interface is the rate of traffic that

has reached the output queue of packets that will leave the router soon. In

both RED and DT scenarios, output interface receives packets at similar rates

as seen in Fig.3.50. Traffic sent by the interface is the throughput of the link

between nodes 8 and 9, as seen in Fig.3.51. Throughput of DT becomes greater

than RED after 17 sec.

The queuing delays are in Fig.3.52. RED has a lower queuing delay

than DT.

The queue delay variations are seen in Fig.3.53. As seen in Fig.3.54,

link utilizations of RED and DT are close to one another.

72

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

seconds

pa
ck

et
s

/ s
ec

data1
data2
data3
data4
data5

Figure 3.47: Moving average of traffic drop rates for four different simulations

and the curve of average values (results for RED applied congested interface)

5 10 15 20 25 30
0

50

100

150

200

250

300

seconds

pa
ck

et
s

DT
RED

Figure 3.48: The queue length (congested interface)

73

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

seconds

pa
ck

et
s

/ s
ec

DT
RED

Figure 3.49: Moving average of traffic drop rate (congested interface)

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

1800

2000

seconds

pa
ck

et
s

/ s
ec

DT
RED

Figure 3.50: Moving average of traffic receive rate (congested interface)

74

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

seconds

pa
ck

et
s

/
se

c

DT
RED

Figure 3.51: Moving average of throughput (congested link)

10 12 14 16 18 20 22 24 26 28 30

0.2

0.25

0.3

0.35

0.4

seconds

se
co

nd
s

DT
RED

Figure 3.52: Moving average of queuing delay (congested interface)

75

12 14 16 18 20 22 24 26 28 30
0.04

0.06

0.08

0.1

0.12

0.14

0.16

seconds

se
co

nd
s

DT
RED

Figure 3.53: Moving average of queuing delay variation (congested interface)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

seconds

ut
ili

za
tio

n
pe

rc
en

ta
ge

 o
f t

ot
al

 li
nk

 b
an

dw
id

th

DT

RED

Figure 3.54: Moving average of link utilization (congested link)

76

5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

seconds

pa
ck

et
s

DT
RED

Figure 3.55: The queue length (uncongested interface)

Now, let’s investigate an interface in uncongested status. This is at the

output interface of the link connecting nodes 9 and 11, as shown in Fig.3.46.

When Fig.3.55 is investigated, it is seen that the queue lengths are

not as high as the ones for the congested queue. None of the queues reach the

buffer limit of 300 packets.

Except Fig.3.55, all the plots are generated by finding the moving

averages within a window of size 5 values.

There is almost no packet drops as seen in Fig.3.56. There is no packet

drops in DT, while there is only a few packet drops for a short time interval

in RED.

In both RED and DT scenarios, output interface receives nearly the

same amount of traffic as seen in Fig.3.57.

Traffic sent is the throughput of the link between nodes 9 and 11, as

seen in Fig.3.58. Throughput results of both methods are similar.

The queuing delays are in Fig.3.59. Queuing delay of DT is smaller

than RED.

77

0 5 10 15 20 25 30
0

5

10

15

seconds

pa
ck

et
s

/ s
ec

DT
RED

Figure 3.56: Moving average of traffic drop rate (uncongested interface)

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

seconds

pa
ck

et
s

/ s
ec

DT
RED

Figure 3.57: Moving average of traffic receive rate (uncongested interface)

78

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

seconds

se
co

nd
s

DT

RED

Figure 3.58: Moving average of throughput (uncongested link)

12 14 16 18 20 22 24 26 28 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

seconds

se
co

nd
s

DT
RED

Figure 3.59: Moving average of queuing delay (uncongested interface)

79

12 14 16 18 20 22 24 26 28 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

seconds

se
co

nd
s

DT
RED

Figure 3.60: Moving average of queuing delay variation (uncongested interface)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

seconds

ut
ili

za
tio

n
pe

rc
en

ta
ge

 o
f t

ot
al

 li
nk

 b
an

dw
id

th

DT
RED

Figure 3.61: Moving average of link utilization (uncongested link)

80

The queue delay variations are given in Fig.3.60. Before 20 sec., vari-

ation curves are similar but after that DT gives smaller values than RED.

Link utilizations are seen in Fig.3.61. The curves are similar for both

methods. The simulation results given above show that, a static queue man-

agement technique (either it is DT or RED) is likely to present disadvantages,

i.e., unnecessary early packet drops or long delays in full queues, under vari-

able congestion conditions. If it could be possible to switch between these

two techniques as the conditions change, it seems to be possible to minimize

delays. In our recent work [61], a parameter estimation method is presented

for making RED adaptive to changing congestion conditions.

In TCP/IP netwoks, a packet drop (or marking) is a notification of

congestion for TCP sources. A TCP source adjusts its window size due to the

packet dropping (or marking) probability for its packet stream as stated in [13].

Due to our new approach, if the level of congestion is low, the queue manage-

ment scheme will encourage packet transmission by preventing unnecessary

early packet drops.

Approach 2 states that if the queue management technique used by

interfaces are adaptive to changes in the global congestion level, it will be possi-

ble to minimize delays/delay variations. In this approach, instead of switching

between DT and RED, we preferred to make adjustments on RED so that it

can dynamically change its parameter values with respect to the congestion

level of the network. This will make RED adaptive to global congestion no-

tifications. As the global congestion status moves from high to low, packet

dropping strategy of RED will become similar to DT. It is useful to prefer

DT to RED in the routers of an uncongested/low congested network, for pre-

venting unnecessary early drops, effectively using network resources, increasing

throughput and link utilization. However, if the congestion level of the network

is high or increasing, DT queues suffer from full queue and lock out problems,

delays and delay variations are increased. RED uses early drop mechanism for

keeping average queue length within limits and minimizing delays/delay vari-

81

ations. In this approach, we used the advantages of both schemes to improve

RED. The following explanation is given to summarize the new scheme:

• RED parameters are dynamically changed by routers due to global con-

gestion notifications

• For high/increasing congestion status, RED parameters are changed in

order to encourage packet drops.

• For low/decreasing congestion status, RED parameters are changed to

encourage packet queueing, drop rate is decreased to make RED similar

to DT

Routers update their RED parameters due to changes in congestion

condition. The information about the region of BMU is sent from the observa-

tion unit to routers, encapsulated in reply packets. The regions of previous ℘

current BMUs are investigated in each router and the congestion alarm num-

ber is updated. If congestion alarm number is high, RED parameters should

be changed for preventing unnecessary early drops and the queue management

scheme will be more like DT. If congestion alarm number is small, early drops

are necessary for decreasing the number of queued packets and the level of

congestion. The value of maxth will be linearly increased as the congestion

alarm number increases.

In order to observe the performance of new queue management ap-

proach, simulations are performed. The network model, that is seen in Fig.3.46,

is designed by using OPNET Modeler. The network has five IP routers (node 8,

node 9, . . ., node 12), four pairs of clients&servers (node 0 & node 6, node 1

& node 7, node 2 & node 4, node 3 & node 5) and a centralized observation

unit (controller). Clients, servers and the observation unit are connected to the

edge routers by 10BaseT links with a transmission rate of 10Mbps. The links

between routers are ’PPP E1’ with a transmission rate of 2.048 Mbps. An ftp

traffic is generated between clients and servers. Three simulation scenarios are

generated and their properties are explained below.

82

Scenario 1:

The purpose of this scenario is obtaining data about the congestion

behaviour of the network by means of the queue lengths on the router output

interfaces. The simulation results will give a general information about the

system behaviour when there is no control input destined to affect the AQM

algorithms of routers. In this scenario, in addition to the ftp traffic generated

between clients and servers, there is a traffic between routers and the obser-

vation unit: IP packets carrying the queue length values (that belong to the

queues at various output interfaces) are sent to the centralized observation

unit. Each of these special packets are originated in one of the routers; carries

information about an output interface of this router (the address code of the

output interface and the queue length at this interface) and is sent in the first

2ms of each 10ms. In the observation unit, these packets are received, the

queue length values are collected and (together with the receipt time) written

to a file. Then, reply packets are generated by the observation unit and sent

back to the routers in the first 100ms of every 500ms. In Scenario 3, the func-

tion of reply packets will be explained in detail, for now it is enough to know

that reply peckets are for readjusting some QoS parameters in the routers. In

this scenario, DT (FIFO mechanism with disabled RED criteria and a buffer

size of 300 packets) is used as the queue management scheme in the routers.

At the end of the simulation of Scenario 1, the information received by the ob-

servation unit is used to perform the operations described by equations (3.14)

- (3.19) in Step 1 and Step 2. In our network model, there are 25 router output

interfaces. Groups of sums are produced by taking 100 consecutive sums each

of which is calculated by adding the queue lengths of 25 interfaces. A window

of size 100 (Z=100) values is shifted by 20 (P=20) values each time a group

is produced, therefore each group is made to have 80 common values with the

previous group. Mean, variance, skewness, kurtosis of each group are found.

The curves for mean, variance, skewness and kurtosis values of the groups are

shown in Fig.3.62 - 3.65, respectively.

83

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

700

800

900

1000

M
ea

n
of

 g
lo

ba
l c

on
ge

st
io

n
da

ta
 g

ro
up

Group number

Figure 3.62: Mean of global congestion data group vs group number

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6
x 10

4

V
ar

ia
nc

e
of

 g
lo

ba
l c

on
ge

st
io

n
da

ta
 g

ro
up

Group number

Figure 3.63: Variance of global congestion data group vs group number

84

0 200 400 600 800 1000 1200 1400 1600
−6

−4

−2

0

2

4

6

8

10

S
ke

w
ne

ss
 o

f g
lo

ba
l c

on
ge

st
io

n
da

ta
 g

ro
up

Group number

Figure 3.64: Skewness of global congestion data group vs group number

0 200 400 600 800 1000 1200 1400 1600
0

10

20

30

40

50

60

70

80

90

100

K
ur

to
si

s
of

 g
lo

ba
l c

on
ge

st
io

n
da

ta
 g

ro
up

Group number

Figure 3.65: Kurtosis of global congestion data group vs group number

85

Table 3.10: Labels assigned to input vectors with different mean values

meani interval label

100 > meani 0

200 > meani ≥ 100 1

300 > meani ≥ 200 2

400 > meani ≥ 300 3

500 > meani ≥ 400 4

600 > meani ≥ 500 5

700 > meani ≥ 600 6

800 > meani ≥ 700 7

900 > meani ≥ 800 8

meani ≥ 900 9

As in Step 3, mean, variance, skewness and kurtosis values are nor-

malized due to variance criteria. 4 different normalizations with different mean

and variance values took place. ‘label’s are assigned to input vectors as in Step

4, in order to label them with respect to the congestion level they represent.

In Table 3.10, the intervals of meani and the corresponding label values are

given. By the end of Step 4, 1545 vectors (1x4) are produced to be used as

inputs for the SOM and each has a label value representing the global level

of congestion. The next phase is the definition of the SOM structure and the

training:

• map size: 10x10 (a map of 100 neurons)

• lattice: hexagonal

• shape: sheet

• type of training: sequential (finetune training is preceded by rough training)

• initial training radius: 10 (rough training), 2 (finetune training)

• final training radius: 2 (rough training), 1 (finetune training)

• training length: 500 epochs (rough training and finetune training)

86

0(331)
1(1)

0(25)
3(1)

0(1)

0(10)

0(4)

0(10)
1(6)

0(9)

1(3)
2(2)
0(1)

0(6)
1(2)
2(2)

2(14)
3(4)
1(1)
0(1)

0(3)

0(10)
1(1)

0(9)

1(4)

1(2)

2(6)
1(2)
3(1)

2(3)

2(4)

0(227)
1(2)

0(1)

0(1)

0(7)

1(4)
0(2)

1(4)

2(4)
1(3)

2(8)
1(2)
3(2)

2(6)
3(4)

2(8)
3(4)
5(4)
4(2)

0(3)

0(8)

0(11)

0(5)
1(1)

1(4)
0(3)

1(6)
0(1)

1(4)
2(2)

2(9)
1(1)

2(9)

2(7)
3(2)
4(2)

0(63)
1(6)

1(1)

1(4)
0(1)

1(4)
2(1)

1(7)
0(2)

1(6)
2(1)

1(11)
2(1)

1(3)
2(3)

2(4)
1(1)

2(10)
1(2)

1(88)

1(1)

2(6)

2(2)

3(2)
2(1)

1(8)
2(1)

1(9)
2(1)

2(3)
1(2)

2(8)
1(4)

2(10)

2(3)
3(2)

3(24)

3(5)
2(1)

3(11)
4(2)

3(5)

3(4)
2(1)

2(5)
1(3)
3(1)

2(15)
1(6)
3(1)

2(4)

3(12)

3(7)

3(15)
4(4)

4(7)
3(6)

4(8)
5(3)

4(9)
3(3)

4(16)

3(5)

2(4)
3(1)

3(12)

3(10)

3(30)

4(10)

4(5)
5(1)

5(2)
4(1)

6(2)

5(1)

4(1)
2(1)

3(30)

3(8)
4(1)

4(7)
3(6)

6(5)
7(2)

9(28)
8(11)
7(1)

9(2)
7(2)

8(10)
7(2)

6(7)
7(4)
8(3)

7(6)
6(5)
3(3)
5(2)
4(1)
8(1)

Figure 3.66: Hit and frequency values of the neurons

• initial learning rate: 0.5 (rough training), 0.05 (finetune training)

After training, we end up with a SOM and a codebook matrix. The

codebook matrix is composed of codebook vectors of size 1x4 for the neurons 1

to 100. Each row of the codebook matrix is the codebook vector of a different

neuron. A neuron is said to be hit when it is chosen as the BMU for an input

vector. In Scenario 3, not only the hit values but also the frequencies of the

hits are taken into consideration while studying the congestion behaviour. In

Fig.3.66, these values are shown inside the neurons, most of the neurons carry

the following information:

hit1(f1)

hit2(f2)
...

hitn(fn)

87

which means that the neuron is hit for n different labels (hit1, hit2, . . ., hitn).

The frequency values in paranthesis, f1, f2, ..., fn, show how many times the

neuron is hit for that label. A weighted averaging technique is used to represent

each neuron by a single label value:

(hit1).f1 + (hit2).f2 + . . . + (hitn).fn

f1 + f2 + . . . + fn

(3.20)

The result of the above equation is rounded up to obtain the average label value

of each neuron. The resulting label values are seen in Fig.3.67. In Fig.3.66,

there are neurons with no hit values. The average hit values for these unhit

neurons are calculated by using the average hit values of their primary neigh-

bors. As seen in Fig.3.67, neurons with the same average hit values are next

to one another and they build regions.

Scenario 2:

As in Scenario 1, there is an information flow between the routers

and the observation unit, however the queue management scheme (RED) does

not change due to network congestion level. RED parameters (maxth, minth,

maxpden
) are kept constant whatever reply is received. The values of these

parameters are as follows:

• minth = 100 packets

• maxth = 200 packets

• maxpden
= 1

maxp
= 10

• exponential weight factor: ewf = 9

Scenario 3:

The resulting SOM structure of Scenario 1 is used in simulation of

Scenario 3. At specific times, the vector of mean, variance, skewness, kurtosis

values is applied as an input to the SOM obtained before. This vector is

compared with each SOM codebook vector and the euclidean distances are

calculated. The neuron whose codebook vector is the most similar to the

input vector - with the least euclidean distance - is the BMU for this input.

88

For estimating future congestion status, we pay attention to the congestion

regions (R1, R2, R3) - shown in Fig.3.67 and described in step 6 - which differ

from one another by the level of congestion they represent:

• Neurons with average label values 0 or 1 are grouped to form region

R1. R1 represents the network status which has no global congestion

problem. If BMU is in R1, RED parameters should be changed for

preventing unnecessary early drops; the amount of change is determined

by the previous BMU region.

• Neurons with average label values greater than 3 are grouped to form

region R3. R3 represents the status where the congestion problem must

be seriously considered. If BMU is in R3, earlier drops are necessary

for decreasing the number of queued packets and the level of congestion.

The amount of change in RED parameters is determined by the previous

BMU region.

• R2 appears between regions R1 and R3, not only by its location but also

by the congestion status it represents.

Scenario 3 provides the estimation of RED parameters, as summarized

in Steps 7 - 8. The queue management scheme used in this scenario is a RED

variant whose parameters are given in Table 3.11. As seen in the table, the

values of minth and maxpden
are kept constant while maxth values are changed

with respect to the congestion alarm number. Equation (3.21) and Fig.3.68

show how maxth changes with respect to the congestion alarm number. maxth

keeps its new value at least 1 second before another update takes place.

maxth = 295 − 15 ∗ (7−congestion alarm number) (3.21)

89

0

0

0

0

0

0

0

1

1

2

0

0

0

0

0

1

1

2

2

2

0

0

0

0

1

1

2

2

2

3

0

0

0

0

1

1

1

2

2

3

0

1

1

1

1

1

1

2

2

2

1

1

1

2

2

3

1

1

2

2

2

2

2

3

3

3

3

3

2

2

2

3

3

3

4

4

4

4

3

2

3

3

3

4

4

6

5

6

5

3

3

3

4

5

6

9

8

8

7

6

R1R1 R2

R3

Figure 3.67: Average hit values of the neurons and the congestion regions

Table 3.11: BMU regions and RED parameters for Scenario 3

Region of Region of Congestion alarm number minth maxth maxpden

previous BMU current BMU

R1 R1 7 100 295 10

R1 R2 4 100 250 10

R1 R3 3 100 235 10

R2 R1 6 100 280 10

R2 R2 4 100 250 10

R2 R3 2 100 220 10

R3 R1 5 100 265 10

R3 R2 4 100 250 10

R3 R3 1 100 205 10

90

1 2 3 4 5 6 7
200

210

220

230

240

250

260

270

280

290

300

M
ax

im
um

 th
re

sh
ol

d,
 m

ax
 t

h

Congestion alarm number

Figure 3.68: maxth vs congestion alarm number for Scenario 3

Scenarios 1 - 3 are simulated for 320 sec. Four different simulations

are performed for each scenario. After running four individual simulations,

the average of the results are obtained and comparative graphs are plotted.

Fig.3.69 shows how the curve of average values is obtained for a global statistic:

traffic receive rate of ftp traffic. Fig.3.69 has 5 curves: the curves of data1,

data2, data3, data4 are obtained by different simulations. Curve of average

values (plotted in black) is obtained by calculating the mean value for each

time interval.

Simulation results are given in Fig.3.70 - Fig.3.79. Except Fig.3.70

and Fig.3.71, all the plots are generated by finding the moving averages within

a window of size 5. The result for each statistic is given as a group of 3 graphs,

each for a different scenario. Different colors are used for graphs: graph for

Scenario 1 is plotted in black, graph for Scenario 2 is plotted in blue and

graph for Scenario 3 is plotted in red. Each graph is composed of average

values of simulation results obtained for four different simulations. Fig.3.70

and Fig.3.71 are the graphics for two global statistics: ftp traffic received and

ftp traffic sent, respectively. The aim of plotting these figures is determining

91

the throughput from the ratio of received to sent. It is seen that throughput

has similar values for all scenarios.

When all the graphs are investigated, the following results are ob-

tained:

• In the interval [0 100] sec., which corresponds to the time where the global

congestion status is low, DT (Scenario 1) provides minimum delay and

delay variation.

• In the interval [300 315] sec., which corresponds to the time where the

global congestion status is high, RED (Scenario 2) provides minimum

delay and delay variation.

• Delay and delay variation values obtained for Approach 2 is

– smaller than the values for RED, when the global congestion status

is low,

– smaller than the values for DT, when the global congestion status

is high.

• From the perspective of throughput, Approach 2 performs as well as

RED and DT.

As a result, Approach 2 was successful in taking advantages of RED and DT:

delays and delay variations are kept at small values while throughputs are as

high as those of RED and DT.

92

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

seconds

pa
ck

et
s

/ s
ec

data1

data2

data3

data4

data5

Figure 3.69: ftp traffic receive rate curves for four different simulations and

the curve of average values (results for scenario1)

0 50 100 150 200 250 300
0

100

200

300

400

500

600

seconds

pa
ck

et
s

/ s
ec

scenario 1
scenario 2
scenario 3

Figure 3.70: Global statistic: ftp traffic receive rate

93

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

seconds

pa
ck

et
s

/ s
ec

scenario 1
scenario 2
scenario 3

Figure 3.71: Global statistic: ftp traffic sending rate

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

seconds

se
co

nd
s

scenario 1
scenario 2
scenario 3

Figure 3.72: Moving average of end-to-end delay measured between node 0

and node 6

94

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

seconds

se
co

nd
s

scenario 1
scenario 2
scenario 3

Figure 3.73: Moving average of end-to-end delay variation measured between

node 0 and node 6

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

seconds

se
co

nd
s

scenario 1
scenario 2
scenario 3

Figure 3.74: Moving average of end-to-end delay measured between node 1

and node 7

95

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

seconds

se
co

nd
s

scenario 1
scenario 2
scenario 3

Figure 3.75: Moving average of end-to-end delay variation measured between

node 1 and node 7

140 160 180 200 220 240 260 280 300 320
0

0.02

0.04

0.06

0.08

0.1

0.12

seconds

se
co

nd
s

scenario 1
scenario 2
scenario 3

Figure 3.76: Moving average of end-to-end delay measured between node 2

and node 4

96

140 160 180 200 220 240 260 280 300 320
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

seconds

se
co

nd
s

scenario 1
scenario 2
scenario 3

Figure 3.77: Moving average of end-to-end delay variation measured between

node 2 and node 4

140 160 180 200 220 240 260 280 300 320
0

0.02

0.04

0.06

0.08

0.1

0.12

seconds

se
co

nd
s

scenario 1
scenario 2
scenario 3

Figure 3.78: Moving average of end-to-end delay measured between node 3

and node 5

97

140 160 180 200 220 240 260 280 300 320
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

seconds

se
co

nd
s

scenario 1
scenario 2
scenario 3

Figure 3.79: Moving average of end-to-end delay variation measured between

node 3 and node 5

98

4 CONCLUSION

There are many published studies on avoiding congestion in dumbbell

networks. Most of these studies are inspired by the idea of providing a trade-off

between throughput and delay/delay variation in single-bottleneck networks.

The study about RED [16] is one of the most famous studies and it has a proved

ability in management of single bottleneck queues. When the performance of

RED is tested in a multi-bottleneck network, as a part of this dissertation,

some disadvantages are noticed. When the congestion level of the network is

low, meaning there are no sustained packet drops in most of the interfaces,

early drop mechanism and static threshold values will be handicaps for RED.

In that case, its performance against delays/delay variations is not as good as

that of DT. In order to improve its performance in multi-bottleneck networks,

some changes have to be made. As a result of this idea, different approaches

are proposed in this dissertation. The achievements of this dissertation may

be summarized as follows:

• A centralized observation method is presented to monitor global

congestion behaviour of an IP network.

A centralized observation unit which collects information from all

router interfaces, is presented. In addition to this, IP routers are spe-

cialized to inform the observation unit about the changes in their queue

lengths.

• The relation between local and global congestion behaviours

are studied by the help of a SOM.

Queue length values of router interfaces, that are managed by RED

(in Approach 1) or DT (in Approach 2), are collected by the observa-

tion unit. Offline training is performed by using the collected data and

SOM is produced. After training, SOM structure is embedded in the

centralized observation unit. The queue length information received by

the observation unit is accepted as an input to the SOM. Global conges-

99

tion level is monitored and tendency of congestion is estimated by using

the SOM.

• The information provided by the trained SOM is used to de-

velop new queue management approaches.

As a part of this dissertation, two new AQM approaches are pro-

posed. With new approaches, different from the original RED scheme,

values of some RED parameters are dynamically changed due to the

observed level and tendency of global congestion, that are obtained by

using SOMs. In Approach 1, updated parameters are minth and maxp

while in Approach 2, maxth is updated.

• OPNET Modeler simulations are generated to study perfor-

mance of new approaches.

OPNET Modeler is used not only to make innovations in IP routers

and produce a host with specialized functionality, but also to generate

an IP network and make simulations on it. New RED variants, that are

introduced with respect to new approaches, update their RED param-

eters due to changes in global congestion level. Congestion avoidance

is performed in IP routers and the RED variant of the new approach

is used as the queue management scheme in router interfaces. By this

way, RED scheme in individual routers are made adaptive to changes

in the congestion throughout the network. The simulation results for

Approach 1 show that changing the value of maxp is more effective in

improving RED performance than changing minth, due to variations in

global congestion conditions. An improvement is observed in end-to-end

time delays and throughput, however RED is still better than RED vari-

ant of Approach 1 in handling delay variations. Approach 2 is based

on the idea of using advantages of AQM and PQM. Its performance is

tested and compared with DT and RED performances through various

simulations. Results show that Approach 2 is successful in eliminat-

ing disadvantages of RED and DT when analyzed from the perspective

100

of delay/delay variation. Moreover, Approach 2 performs this without

causing a decrease in throughput.

The approaches proposed in this work worth attention for providing

congestion avoidance in multi-bottleneck IP networks, because of the above

achievements. However, assignment of RED parameters is still among favorite

topics of queue management and it is open to improvements. New approaches

could be produced in order to consider global and local congestion problems

at the same time and develop new queue management strategies.

101

BIBLIOGRAPHY

[1] V. G. Cerf. On the evolution of Internet technologies. Proceedings of the

IEEE, 92(9):1360–1370, 2004.

[2] J. Postel. RFC 793: Transmission Control Protocol. Internet Engineering

Task Force, 1981.

[3] J. F. Kurose and K. W. Ross. Computer Networking: A Top Down Ap-

proach Featuring the Internet. Addison-Wesley, U.S.A., 2003.

[4] R. Braden, D. Clark, and S. Shenker. RFC 1633: Integrated services in

the Internet architecture: an overview. Internet Engineering Task Force,

1994.

[5] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. RFC

2475: An Architecture for Differentiated Services. Internet Engineering

Task Force, 1998.

[6] D. Grossman. RFC 3260: New terminology and clarifications for DiffServ.

Internet Engineering Task Force, 2002.

[7] A. Meddeb. Internet QoS: Pieces of the puzzle. IEEE Communications

Magazine, 48(1):86–94, 2010.

[8] R. Guerin and V. Peris. Quality-of-service in packet networks: basic

mechanisms and directions. Computer Networks, 31:169–189, 1999.

[9] H.-L. Lu and I. Faynberg. An architectural framework for support of

quality of service in packet networks. IEEE Communications Magazine,

41(6):98–105, 2003.

102

[10] S. Ryu, C. Rump, and C. Qiao. Advances in Internet congestion control.

IEEE Communications Surveys, 5(1):28–39, 2003.

[11] M. Hassan and R. Jain. High Performance TCP/IP Networking: Con-

cepts, Issues, and Solutions. Pearson Prentice Hall, U.S.A., 2004.

[12] V. Jacobson. Congestion Avoidance and Control. Proceedings of the ACM

SIGCOMM, 314-329, August 1988.

[13] W. Stevens. RFC 2001: TCP slow start, congestion avoidance, fast re-

transmit, and fast recovery algorithms. Internet Engineering Task Force,

1997.

[14] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin,

S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ra-

makrishnan, S. Shenker, J. Wroclawski, and L. Zhang. RFC 2309: Rec-

ommendations on queue management and congestion avoidance in the

Internet. Internet Engineering Task Force, 1998.

[15] J. Aweya, M. Ouellette, and D.Y. Montuno. A control theoretic approach

to active queue management. Computer Networks, 36:203–235, 2001.

[16] S. Floyd and V. Jacobson. Random early detection gateways for conges-

tion avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413,

1993.

[17] C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong. A Control Theoretic

Analysis of RED. Proceedings of INFOCOM 2001, 3:1510–1519, 2001.

[18] W.-C. Feng, D. D. Kandlur, D. Saha, and K. G. Shin. A self-configuring

RED gateway. Proceedings of the IEEE INFOCOM 1999, 3:1320–1328,

1999.

[19] Y.-D. Xu, Z.-Y. Wang, and H. Wang. ARED: A novel adaptive coges-

tion controller. Proceedings of 2005 International Conference on Machine

Learning and Cybernetics, 2:708–714, 2005.

103

[20] J.-S. Li and Y.-S. Su. Random early detection with flow number estima-

tion and queue length feedback control. Journal of System Architecture,

52:359–372, 2006.

[21] J. Ming, C. Qin, and T. Jingfan. TL-RED: A traffic load adaptive RED

algorithm. Proceedings of IET International Conference on Wireless, Mo-

bile and Multimedia Networks, 1-3, 2006.

[22] H.-J. Ho and W.-M. Lin. AURED - autonomous random early detection

for TCP congestion control. Proceedings of International Conference on

Systems and Networks Communications, 79-84, 2008.

[23] J. Aweya, M. Ouellette, D. Y. Montuno, and A. Chapman. A load adap-

tive mechanism for buffer management. Computer Networks, 36:709–728,

2001.

[24] B. Zheng and M. Atiquzzaman. A framework to determine the optimal

weight parameter of RED in next-generation Internet routers. Interna-

tional Journal of Communication Systems, 21:987–1008, 2008.

[25] T. A. Trinh and S. Molnar. A comprehensive performance analysis of

random early detection mechanism. Telecommunication Systems, 25:9–

31, 2004.

[26] D. Que, Z. Chen, and B. Chen. An improvement algorithm based on RED

and its performance analysis. Proceedings of International Conference on

Signal Processing, 2005-2008, 2008.

[27] B. Zheng and M. Atiquzzaman. DSRED: An active queue management

scheme for next generation networks. Proceedings of the IEEE Conference

on Local Computer Networks, 242-251, 2000.

[28] B. Zheng and M. Atiquzzaman. DSRED: Improving performance of active

queue management over heterogeneous networks. Proceedings of the IEEE

International Conference on Communications, 8:2375–2379, 2001.

104

[29] T. J. Ott, T. V. Lakshman, and L. H. Wong. SRED: Stabilized Red.

Proceedings of the IEEE INFOCOM 99, 3:1346–1355, 1999.

[30] J. Aweya, M. Ouellette, and D. Y. Montuno. DRED: a random early de-

tection algorithm for TCP/IP networks. International Journal of Com-

munication Systems, 15:287–307, 2002.

[31] W.-C. Feng, K. G. Shin, D. D. Kandlur, and D. Saha. The Blue active

queue management algorithms. IEEE/ACM Transactions on Networking,

10(4):513–528, 2002.

[32] G.-Y. Su and C. C. Ho. Random Early Detection improved by progressive

adjustment method. Proceedings of the IEEE 6th National Conference on

telecommunication technologies, 250-253, 2008.

[33] J. Hong, C. Joo, and S. Bahk. Active queue management algorithm con-

sidering queue and load states. Computer Communications, 30:886–892,

2007.

[34] A. Jain, A. Karandikar, and R. Verma. An adaptive prediction based ap-

proach for congestion estimation in active queue management (APACE).

Proceedings of IEEE Global Telecommunications Conference, 7:4153–

4157, 2003.

[35] S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin. REM: Active queue

management. IEEE Network Magazine, 15:48–53, 2001.

[36] S. S. Kunniyur and R. Srikant. An adaptive virtual queue (AVQ) algo-

rithm for active queue management. IEEE/ACM Transactions on Net-

working, 12:286–299, 2004.

[37] A. Chydzinski. Towards a stable AQM via dropping function shaping.

Proceedings of 9th International Conference on Networks, 93-97, 2010.

[38] C. Zhu, O. W. W. Yang, J. Aweya, M. Ouellette, and D. Y. Montuno.

A comparison of active queue management algorithms using the OPNET

Modeler. IEEE Communications Magazine, 40(6):158–167, 2002.

105

[39] C. V. Hollot, V. Misra, and W.-B. Gong D. Towsley. Analysis and design

of controllers for AQM routers supporting TCP flows. IEEE Transactions

on Automatic control, 47:945–959, 2002.

[40] C. V. Hollot, V. Misra, and W.-B. Gong D. Towsley. On designing im-

proved controllers for AQM routers supporting TCP flows. IEEE INFO-

COM 2001, 3:1726–1734, 2001.

[41] J. Aweya, M. Ouellette, D. Y. Montuno, and K. Felske. Design of rate-

based controllers for active queue management in TCP/IP networks.

Computer Communications, 31:3344–3359, 2008.

[42] S. H. Low, F. Paganini, J. Wang, S. Adlakha, and J. C. Doyle. Dynamics

of TCP/RED and a scalable control. Proceedings of the 21th Annual

Conference of the IEEE Computer and Communications Societies, 1:239–

248, 2002.

[43] J. Sun, K.-T. Ko, G. Chen, S. Chan, and M. Zukerman. PD-RED: To

improve the performance of RED. IEEE Communications Letters, 7:406–

408, 2003.

[44] S. M. M. Alavi and M. J. Hayes. Robust active queue management design:

a loop-shaping approach. Computer Communications, 32:324–331, 2009.

[45] S. Ryu, B. Ryu, M. Jeong, and S. Park. PI-PD controller for adaptive and

robust active queue management for Internet congestion control. Simula-

tion, 81(6):437–459, 2005.

[46] J. Sun and M. Zukerman. RAQ: A robust active queue management

scheme based on rate and queue length. Computer Communications,

30:1731–1741, 2007.

[47] C. Wang, B. Li, Y. T. Hou, K. Sohraby, and K. Long. A stable rate-

based algorithm for active queue management. Computer Communica-

tions, 28:1731–1740, 2005.

106

[48] P.-F. Quet and H. Özbay. On the design of AQM supporting TCP flows

using robust control theory. IEEE Transactions on Automatic Control,

49(6):1031–1036, 2004.

[49] Opnet Technologies Inc. Modeling Concepts Reference Manual Release

12.0.

[50] J. Postel. RFC 792: Internet Control Message Protocol. Internet Engi-

neering Task Force, 1981.

[51] T. Kohonen. Self-Organizing maps. Springer, Germany, 1997.

[52] T. Kohonen. The Self-Organizing Map. Proceedings of the IEEE,

78(9):1464–1480, 1990.

[53] S. Haykin. Neural Networks: A comprehensive foundation. Pearson Edu-

cation, India, 1999.

[54] M. Masugi and T. Takuma. Multi-fractal analysis of IP network traffic for

assessing time variations in scaling properties. Physica D, 225:119–126,

2007.

[55] M. Masugi. QoS mapping of VoIP communication using self-organizing

neural network. IEEE workshop on IP operations and management, 13-

17, 2002.

[56] E. Lochin and B. Talavera. Managing network congestion with a

Kohonen-based RED queue. Proceedings of IEEE International Confer-

ence on Communications, 5586-5590, 2008.

[57] L. Enhai, L. Yan, and P. Ruimin. An improved random early detection

algorithm based on flow prediction. Proceedings of International Confer-

ence on Intelligent Networks and Intelligent Systems, 425-428, 2009.

[58] T. Bonald, M. May, and J.-C. Bolot. Analytic Evaluation of RED perfor-

mance. Proceedings of the IEEE INFOCOM, 1415-1424, 2000.

107

[59] S. Patel, P. Gupta, and G. Singh. Performance Measure of Drop Tail and

RED Algorithm. Proceedings of International Conference on Electronic

Computer Technology, 35-38, 2010.

[60] C. A. Hawkins and J. E. Weber. Statistical Analysis: Applications to

Business and Economics. Harper & Row Publishers, New York, 1980.

[61] Ö. Yelbaşı and E. Germen. A New Method for Estimating RED Param-

eters Based on Global Congestion Notification. Proceedings of Interna-

tional Conference on Network Computing and Information Security, NCIS

2011 (accepted for publication), 2011.

108

